
	

	

FACULTY	
 OF	
 SCIENCE	
 AND	
 TECHNOLOGY	

DEPARTMENT	
 OF	
 COMPUTER	
 SCIENCE	

Skynet	

A	
 distributed,	
 autonomous	
 filesystem	

	

Svein	
 Ove	
 Aas	

	

	

Inf-­‐3990	

Master's	
 Thesis	
 in	
 Computer	
 Science	

May,	
 2010	
 	
 	

Contents

1 Introduction 3
1.1 Problem statement . 3
1.2 Glossary . 4

2 Skynet 6
2.1 Requirements . 6

2.1.1 Reliability . 6
2.1.2 Redundancy . 7
2.1.3 Coherency . 7
2.1.4 Security . 8

2.2 Design . 8
2.2.1 Storage layer . 9
2.2.2 Distribution layer . 13
2.2.3 Failure handling and recovery 17
2.2.4 Client layer . 18
2.2.5 Autonomic maintenance 20

3 Hermes 22
3.1 Network requirements . 22
3.2 Modules . 23

3.2.1 Core (unicast) . 23
3.2.2 Signature . 25
3.2.3 Gossip . 25
3.2.4 Membership . 28
3.2.5 RPC . 29

3.3 AES . 30
3.4 SHA2 . 32

4 Evaluation 34
4.1 Design choices . 34
4.2 Functionality . 34

1

4.3 Performance . 36
4.4 Final Status . 36

5 Conclusion 38

A Installation and usage 39

2

Chapter 1

Introduction

Skynet is an autonomous, distributed, POSIX-like filesystem.
It is distributed: The filesystem can be (and usually is) distributed across

multiple physical computers, which each see the same virtual filesystem.
It is autonomous: Files are automatically redistributed between nodes at

need, maintaining invariants on redundancy or redistributing free space.
It is POSIX-like: It does not support hardlinks or user/group security,

but otherwise follows the POSIX filesystem requirements except when asked
not to.

1.1 Problem statement

This section describes the reasoning behind creating this project. To sum-
marize, there is a distinct lack of distributed filesystems that are both easy to
use, safe, can store files on multiple computers and can be easily grafted on
top of an existing filesystem, or shut down to recover that filesystem. Skynet
is an attempt to remedy this.

When picking a network filesystem, the existing ones fall into two main
groups.

There are those that are strictly client-server and do not let you spread a
single filesystem over multiple machines, such as SSHFS[1] or NFS[2]. These
are typically simple to set up, but of course extremely limited in use.

There are also more complex filesystems that are meant to cover multiple
nodes - AFS[3], Coda[4] and Ceph[5] just to mention some. These do not
share the limitations of single-node filesystems, but as they do not share their
simplicity either, they are still somewhat unsatisfactory.

Additionally, some of the most advanced filesystems (Coda being a no-
table example) require users to create storage partitions using their own spe-

3

cial on-disk format, which complicates conversion and makes recovery harder
due to needing special tools.

The purpose of Skynet, then, was to create a distributed filesystem that
lacks those particular weaknesses. This means there were two main goals:
The filesystem should use an existing filesystem for storage, as far as possible
making this storage tree a partial copy of the distributed filesystem; and, the
filesystem should as far as possible take care of its own maintenance.

Although it is impossible for such automated maintenance to reach quite
the same level as traditional, human-mediated maintenance, in many use
cases it would be good enough. Additionally, this would allow it to be used
by nontechnical users who are unable to administrate more traditional dis-
tributed filesystems.

Another extremely important goal was that existing programs should keep
working - in other words, that it should behave like a POSIX filesystem. Not
being an absolute requirement, this target was occasionally missed where
examination of usage patterns showed that it wouldn’t affect programs, and
deviating would simplify the system or improve one of the other targets.
There is a long tradition of such adjustments in Unix filesystems, though
usually not to this level; to name one, modern Linux kernels mostly disable
access-time updates on all filesystems, in direct contradiction of POSIX.

As work progressed, it became obvious that the Haskell ecosystem lacked
some fundamental tools for such a system, and so three additional targets
were added: The creation of a cryptographically secure message-passing mid-
dleware that could provide location transparency, as none existed, and the
creation of AES and SHA bindings because the existing ones were unreliable.

1.2 Glossary

Each of these glosses is described in more detail later in the document, but
before the main text starts, here is a glossary to refer back to.

Node Any single Skynet node, usually meaning a single machine. Nodes
can be moved from machine to machine, or multiple nodes may run on
one machine. The latter condition will be assumed not to happen for
the purposes of writing clear documentation, but is harmless so long
as they do not use the same storage area.

Client A Skynet node currently acting as a client for a user application.
This does not refer to the application itself; multiple applications on
the same machine will share the same client.

4

Server A Skynet node with data storage, acting on a request from a client.

Resource A file or directory. Not anything else.

Master A server authoritative for a given resource.

Slave A non-authoritative server for a given resource, acting as backup.

Lease The Skynet equivalent of a file descriptor.

Address Not IP or DNS address, but instead a 128-bit integer designating
a Skynet node (via Hermes), which uniquely identifies it regardless of
IP changes. As explained in the Hermes chapter, this is actually the
hash of an RSA public key.

Administrator A Hermes node responsible for controlling access to the
network, by creating cryptographic tokens; does not require an actual
trained human administrator. Hermes can be set to a low-security
mode where any node can perform this role.

5

Chapter 2

Skynet

This chapter documents the detailed requirements, design and implemen-
tation of the Skynet package, which is to say the actual filesystem in the
Skynet project. The middleware and attendant packages are documented in
the Hermes chapter.

2.1 Requirements

The problem statement section explains that the most important require-
ments were, in order of importance, automatic maintenance, simple conver-
sion to/from the filesystem’s storage format, and POSIX-compliance.

This section goes into more detail, explaining secondary requirements
that are logically required to fulfill the primary ones.

2.1.1 Reliability

In order to prevent any requirement for manual intervention, an important
design principle has been that no single or multi-node failure should ever
prevent Skynet from completing operations that don’t necessarily touch the
failed nodes. Combined with redundancy in data storage, this makes a highly
available, high-performance distributed filesystem possible.

This means that, for some file, if the entire directory structure from root
to a requested file is available along with the file itself, then no unrelated
node failures or network failures that prevent communication with nodes
that store other data should ever affect operations on that file.

Additionally, cached information should be used where possible; for ex-
ample, once the location of a file is known there should be no requirement to
look it up again for later operations. Instead, the authoritative node(s) stor-

6

ing the file should inform the client if their information is invalidated, once
they attempt to use it. This also removes any requirement to communicate
such changes to clients.

2.1.2 Redundancy

Skynet offers a master-slave model of storage redundancy. Read performance
can be improved by using the slaves as well as the master, but writes can
only be streamed to a single node at a time.

This drastically simplifies the implementation (increasing reliability), but
may reduce write performance if aggregate bandwidth to the responsible
nodes is higher than bandwidth to just the master node. However, such a
scenario is unusual; typically the storage nodes will be on the same network,
or individually have higher bandwidth available than any given client is likely
to have.

2.1.3 Coherency

POSIX semantics require global serialization of all filesystem actions. This is
not compatible with a highly available distributed filesystem, where enforcing
such serialization would create excessive network traffic at best, and could
easily stall it entirely in case of incidental network failures or node failures
that can’t be immediately characterized as such, even failures of a single
unrelated node.

As a compromise, Skynet offers per-file serialization. Assuming POSIX
coherency has been selected by all clients involved in a sequence of operations
on one file, they will see the same sequence; however, they may see different
sequences if comparing different files. This is assumed to be a reasonable
trade-off, as very few applications will rely on this POSIX guarantee without
using explicit calls to flock.

It is also possible to select the weaker session or eventual coherency when
opening a file, in which case all nodes using POSIX coherency still see the
same order of operations for all operations involving the file (including those
initiated by nodes using eventual coherency), but non-POSIX nodes may not
see that order.

For session semantics, clients will never see updates from a different node
while holding a file open, nor will other clients see theirs. Implementing this
potentially requires extra storage on the file’s master for a COW mapping,
causing writes by other nodes to block if this space isn’t available at the
moment.

7

For eventual semantics, updates are eventually seen by all other (non-
session) clients. There is no timeliness or sequencing guarantee on this, but in
practice updates will be seen approximately as fast as with POSIX semantics;
the difference is that calls involving the file won’t block until this time has
passed.

The usefulness of this mode is limited, as the performance improvements
should only be seen for concurrent access to the same file. It may be useful
when different nodes are accessing different parts of the same file, to cover
the lack of file segment leases. Implementing such leases would, however, be
better, and it is also an extremely unusual mode of operation.

2.1.4 Security

The only security currently offered is the ability to limit network access to
trusted nodes. Only the administrator node has the ability to grant access
to a Skynet network; without a signed cryptographic token from this node,
it should be impossible for third parties to break in.

In the future, it would be possible to implement the POSIX user/group
security model by adding per-user/per-group cryptographic tokens. Properly
integrating this with the underlying OS of each node where it is mounted is
a bit of a research topic, however, as user ID numbers can differ between
nodes and it is not entirely obvious what to do if the system requests access
to a file it does not have access to.

Denying the request is the obvious choice, but many programs appear to
assume that if the user IDs of the file and caller match, they have access.
Breaking this assumption on several occasions caused the GNOME desktop
environment to crash the moment the filesystem was mounted, which is not
a desirable feature.

2.2 Design

Skynet is roughly divided in five sections.
There is a middleware layer - Hermes - which handles communication,

authentication and encryption, and hides the physical addresses of Hermes
nodes behind a unique identifier. “Address” refers to that identifier in the
rest of this document. It is described at length in the Hermes chapter.

The storage module abstracts disk storage, caching and journalling or
using COW capabilities in the underlying filesystem transparently. It is
conceptually divided into directory and file storage, though nodes can and
do offer both. This layer is provided as a Haskell API, and does not directly

8

touch any network interfaces or Hermes; it is thus limited to single nodes,
though the interface is tailored to implementing the distribution layer.

The server module mediates inter-node communication, handling normal
file/directory operations and replica maintenance and creation as well as
crash recovery, but does not decide when to do any of this in the first place;
it provides mechanism, not policy.

Of the remaining sections, one is a FUSE1 interface that provides normal
applications with access to the filesystem. The other is a set of autonomic
management routines that can ideally replace a human administrator, which
enforces user requests such as a given level of redundancy and performance
by moving replicas around.

These management routines may in extreme circumstances such as disk
failures that causes unrecoverable loss of redundancy request assistance from
a human administrator, but should be capable of handling all routine main-
tenance themselves.

2.2.1 Storage layer

The storage layer handles all persistence in Skynet, which is to say all state-
changing operations that require crash-proofing go through this layer. This
includes file and directory operations, but also maintaining replica pointers
and leases.

It currently uses haddock-state for all storage except bulk file data and
some file metadata. Since haddock-state is an in-memory persistence layer,
per-node filesystem size is currently limited by the size of their memory.

The reason for this is that, while it is easy to find persistence layers
that provide ACID, systems that provide a subset of ACID - in particular
atomicity without durability, or reporting when an operation is complete but
not blocking - are relatively unknown, yet vital for filesystem performance.

An experiment in creating one was carried out.

Btrfs

The as-yet incomplete Btrfs[9, 10] filesystem exposes low-level transaction
primitives that could be used to build such an improved system. Explaining
how they work is beyond the scope of this document, but there are four main
primitives of interest, implemented via IOCTLs:

Transaction start/stop Btrfs is a transactional filesystem. It normally
creates transactions as it sees fit, but by using the TRANS START/TRANS END

1
Filesystem in USErspace

9

ioctls, it is possible to manually invoke a transaction. Transactions are
ordered, but - importantly - not durable. Calling TRANS END does
not guarantee that the transaction has been forced out to disk, it merely
tells the filesystem it is now allowed to do so. (Data may be written
out during a transaction, but will not be visible until some point after
calling TRANS END).

As most POSIX file operations fall into this same “atomic, ordered, but
not durable” category, having the ability to create such transactions is
an absolute requirement for achieving high performance.

Some caveats apply, however. Most importantly, it is relatively easy to
crash the filesystem by using these ioctls; many operations that touch
the metadata, even when that is not obvious, can only be executed
outside of a transaction. This includes such operations as allocating
more space for a file.

Further, using the transaction calls would prevent any other programs
(than the Skynet daemon) from using the filesystem, necessitating that
it is hosted on a separate partition.

The transactions also are not atomic, which necessitates a certain
amount of cleverness to build atomic primitives on top of them.

Sync Occasionally, you do want the transaction to be durable. Calling sync
is the way to do this; it is not significantly different in effect from fsync,
but affects the entire filesystem instead of just a single file.

Clone/clone range Btrfs is a copy-on-write filesystem. This also means
that multiple files can share the same data blocks; by using the clone
ioctl, a file can be very quickly copied, which would simplify the im-
plementation of session semantics dramatically.

Using the current Linux Btrfs driver, an attempt was made to exploit
these primitives. This had tragic consequences, however: A misunderstand-
ing of what operations were safe inside a transaction caused a filesystem
crash. Worse, a crash that silently corrupted recently written files, which did
not become obvious until much later.

Given the apparent number of sharp corners left in the implementation,
therefore, it is preferable that it be left to mature for another year before
attempting such a thing again.

10

API / Semantics

This subsection describes the storage module interface at a high level. For
call details, see the generated Haddock documentation. Where not otherwise
specified, POSIX semantics apply.

For all data stored by the storage layer, in addition to the metadata
mandated by POSIX there is an additional tag specifying whether this node
is authoritative for the data, as well as a list of other servers containing the
data (with the master marked).

It must be noted that this metadata is not maintained by the storage
module itself; it is the responsibility of the server module to keep it up to
date.

The directory API is mainly identical to the POSIX directory API, with
a few alterations:

- File references, instead of the traditional i-node integers, are an URI-like
structure usable for identifying files across nodes. File references consist of
the address of its master, as well as its path. The choice of using a path
instead of indirection via arbitrary i-node integer dramatically complicates
the implementation of rename(), but is nevertheless desirable. In order to
simplify failure recovery, specifically the ability to shut down Skynet and
recover the filesystem from its underlying storage, there needs to be single
canonical pathname per file anyway; the rename() complications would exist
regardless of i-nodes, so long as such an association exist.

- Hardlinks are not allowed. The main reason to not allow hardlinks is
that they, while technically possible, are very badly supported on Windows
and it is desirable to maintain at least theoretical portability. Additionally
it would complicate failure recovery since, again, there would not necessarily
be a single canonical name for each file.

- While the Windows complication also applies to symlinks, the cost of
supporting them is close to zero. They will therefore be legal until such a
time as Skynet is ported to windows, at which point a decision on how to
handle them must be made.

- The file/directory APIs do not have a notion of file descriptors as such,
but uses an expanded notion called leases. These have several properties
apart from the simple fact of representing a handle on an open file or direc-
tory:

• A lease is either local or proxy. Proxy leases amount to temporary as-
signments of authority to other nodes, allowing for local write-buffering
or caching while maintaining coherency; local leases are merely an in-
dication that some client has the file open.

11

• Each lease has an associated timeout. Leases can be refreshed an ar-
bitrary number of times, but if it isn’t refreshed before it times out,
it is automatically removed and any resources held (such as otherwise
deleted files) are removed.

• Leases can be read-only or read-write; in this case POSIX has more
modes. All the POSIX modes other than read-only map to read-write;
in particular, POSIX append mode alters the write command offset, not
the lease. This is necessary, as multiple POSIX file descriptors (from
multiple applications on the same client) can correspond to one lease.
A lease can be promoted from read-only to read-write, or demoted back
down, the former operation may block (in the server module) due to
coherency requirements.

• A lease can require one of three levels of coherency:

POSIX All clients which have the file open in this mode will see the
same order of updates.

There can be at most one read-write proxy lease of this kind, and
any number of read-only proxy leases so long as there are no read-
write POSIX coherency leases of any kind. Any number of local
leases are allowed; therefore, if multiple POSIX leases where at
least one is read-write are simultaneously required, existing proxy
leases should be invalidated and made local.

Session Any client which has the file open will see no updates by
different clients until it is closed. This may require duplicating the
file on the server, which depending on available space can cause
whichever operation required the duplication to block or trigger
re-balancing.

Unsynchronized/Eventual Anything goes. Clients must explicitly
synchronize access patterns between themselves and flush as nec-
essary.

Note that coherency limitations on buffering/caching are merely ad-
visory at this level. There is no way to prevent a client from caching
data inappropriately; the API limitations are an aid to correctness, not
a guarantee of it.

Data Model

This section describes how data is physically stored, in terms of the operating
system(s) Skynet is built on. That is to say, the physical layout of a single

12

node; not that of the virtual filesystem, which is covered in the Distribution
Layer subsection.

The format is designed to be accessible without special tools, and to be
easy to repair or convert to/from a normal filesystem.

All descriptions are relative to a root directory, configured by the user.

Files are stored in the files/ subdirectory, exactly as they appear in the
filesystem (modulo write buffering).

In practice, you can recover a working monolithic filesystem from Skynet
by unioning all the files/ directories on the various nodes, preferring master
nodes over slaves where possible since slave nodes may contain outdated data.
Permission bits on the directories may be lost, however.

Directories are stored using happstack-state, which persists to the meta/
subdirectory. A directory consists solely of a list of file or directory names,
along with the directory permission and time bits; information that exists
per-file in POSIX filesystems is stored in the file, not here.

Skynet-specific metadata such as master/slave node relationships or
lease states is also stored using happstack-state, which uses the meta/ sub-
directory for all its data.

2.2.2 Distribution layer

Apart from the POSIX-mandated file/directory data and metadata which
is kept on the master node and replicated on slaves, there are several bits
of extra metadata per resource which must be maintained across nodes, as
follows:

The master node - that is, the node which at any given time controls the
resource.

The coordinator - The master of the parent directory of a given file or
directory. To clarify, for a file /a/b/c the coordinator is the master of
b, not a or c.

The coordinator is critical for failure recovery, but is not otherwise
involved in normal operation.

Slave nodes - the master node’s backups, which are kept continually up-
dated.

13

Lease nodes - which nodes which currently hold leases on the file/directory.

As a special case, the root directory has no coordinator.
The canonical record of all these facts is held by the master node, and

updated on the other nodes involved as described below.

Normal operation

To reduce latency, a modified RPC mechanism is used. For all queries that
could touch multiple nodes, the full details of the query is passed to the first
node queried, which then sends it on to the next appropriate node instead
of using a round-trip through the client.

Additionally, to mitigate the effect of lost messages, partial information
sufficient to skip nodes up until the next hop (thus, containing at the very
least the address of said next hop) is passed back to the originating node at
each hop.

In all cases, a configurable number of timeouts of configurable length are
allowed before any failure mode is entered. However, multi-hop queries never
trigger either retries or timeouts in nodes beyond the originating client; in
fact, information is rarely passed backwards through the chain, but always
directly to that originating node.

Most file and directory operations do not touch multiple nodes, however;
only the client node and the master and/or slave nodes for that particular di-
rectory or file. While other client nodes are involved inasmuch as there can be
contention, there is no direct cross-client talk; contention is handled through
locking on the server nodes, by acquiring leases on the files or directories.

Locating directories and files A recursive lookup is used. For a file
/1/2/3/4:

A cold client sends the full path of the directory to the master of the root
directory; this node resolves the path as far as possible, then passes the mes-
sage on to the master node responsible for the next directory in. Ownership
information for the directory chain is passed back to the originating client as
possible.

This continues until the master node for the requested directory/file has
been located. This node is not contacted in the process, except if it’s also
the master node for the parent directory of the requested resource.

Returned information is cached by the client, so later lookups can start
deeper in the tree. If such a warm client sends the query to the wrong node
for 4 (probably due to relocation, or error recovery), this node passes the
query on to the deepest node it believes it knows the location of (3, 2, 1 or

14

even the root); if this information is wrong, this procedure may also recurse.
Cache invalidation messages are sent backwards through the chain, though
one hop only.

Addresses are aggressively cached on the client, as they rarely change.
If they turn out to be mistaken, requests to a node that does not own the
file/directory will simply return an error, allowing for invalidation and a new
query.

Leases Location operations can get away without locking because outdated
location information only triggers a re-query. All other operations (described
below) require some form of locking, however; mostly, acquiring a lease on
the file. These leases also double as file descriptors, as described in section
2.2.1.

Several POSIX directory operations do not involve file descriptors. These
have been altered to use file (directory) descriptors that double as locks on
the server, called leases, to allow higher performance. The FUSE interface
hides this from user applications.

Lease requirements are described for each individual operation. A lease
is requested using the Open RPC call, which does not need to correspond to
open/opendir system calls by the user; for example, the rename() call will
first require opening both the source and destination directories.

In case of write conflicts, where POSIX level coherency is requested,
Skynet resorts to a “Local” lease mode where calls are unbuffered and un-
cached - using the master node as the arbitrator of call order. If a file/directory
is opened that is already held open by another client, depending on coherency
requirements and mode the open call may block until said other clients have
either had their lease demoted to Local or have timed out.

Any operation that requires a read-only lease will also work fine with a
read-write lease.

All directory operations use POSIX coherency, regardless of configuration.

Leases are always managed by the master node of the file/directory in
question. The lease comes with a list of up-to-date slave nodes, however;
read operations can thereby be distributed across the slave nodes.

Lease acquirement/releases are mirrored to the slaves, so if the master
fails a minimal number of leases will be lost. However, the master does not
wait for acknowledgment from slaves before replying to lease requests, which
leaves open the possibility that a lease may be stolen if a master crashes.
This is a performance trade-off that will in the future be configurable.

15

open/read/write/close are implemented in the most direct possible fash-
ion. open acquires a file lease, read-write iff write mode is requested, other-
wise read-only. read, write and close simply use this lease.

As one lease can correspond to multiple file descriptors on the client side,
there is also a “reopen” call to turn a lease from read-only to read-write or
vice versa.

Write calls return as soon as the file has been written to the master
node’s filesystem, and does not wait for slave nodes. This will in the future
be configurable.

Write calls are only valid on the master node, while read calls are valid
on any relevant node. Slave nodes of a file inform the client when a lease has
been mirrored to them and they are available for reads.

The coherency parameter is set by per-node user configuration.

fsync explicitly flushes the client-side write buffer of a file or directory, and
blocks until it has been stored on at least the file’s master node. This may
take a long time. It does not require any particular kind of lease, though
using it on a read-only lease will tend to be a no-op.

truncate, utime require a read-write lease on the file.

fstat,access,readlink require a read-only lease on the file/directory.

opendir requests a read-only lease. Further directory operations may be
able to use this lease, or may request that it be promoted first. While opendir
does not actually require a lease of any kind, it nevertheless blocks until the
lease has been acquired.

readdir requires a read-only lease.

closedir requires a lease, specifically the one returned from opendir. The
lease is not immediately released, as there is a good chance other operations
using the directory will follow.

mknod is not supported, and will return EIO. Device nodes on a network
filesystem are an obvious security problem; it may later prove useful to op-
tionally allow this, but for the time being there’s no need to tempt fate.

mkdir, unlink, rmdir, symlink, chmod, chown require a read-write
lease on the parent directory.

16

link immediately returns EMLINK. See section 2.2.1 for a discussion of
why hardlinks are not allowed.

rename is the most complex call, as it frequently touches multiple nodes.
Renaming a file requires read-write leases on the file and both directories
involved, as all are modified; the directories to remove/add a file entry, the
file to change its path.

Two-phase commit is used for this, with the client doing the rename as
the coordinator. As leases already have timeouts, if the client fails during
the transaction the leases will eventually time out and the transaction can
be rolled back, without further issue.

Renaming a directory is a more problematic matter. In this case, any
number of sub-files and subdirectories will have to be recursively modified,
which could cause the filesystem to grind to a halt attempting to lock all of
them. In lieu of a better solution, a rename of a directory will return EXDEV
- suggesting that the source and target are on separate filesystems, even if
that is not the case - which will cause the calling process to use a copy-delete
algorithm instead.

This works, but is very much not desirable. A possible improvement
would be to use the file-renaming algorithm recursively, moving files one
at a time instead of all in one transaction. This would however expose
an intermediate state where the renaming is partially complete. As this is
essentially the algorithm all known file-movers fall back to if rename returns
EXDEV, this should not be an issue, but more research is required to make
sure.

2.2.3 Failure handling and recovery

If a slave node is unreachable within a reasonable amount of time (picked to
limit network traffic and false timeouts; any value will allow correctness), it is
considered to be down. No action is necessarily taken other than blacklisting
the node for a period of time so it will not be contacted again (by this
particular node), so long as there are others that can answer queries.

If a master node discovers one of its slaves to be down, this can trigger
a maintenance routine to look for a new slave. To avoid excessive network
traffic, the minimum and maximum number of slaves should not be set equal.

If a master node is unreachable within the same reasonable amount of
time, it is considered to be down. In this case, other nodes may take contin-
gency actions as follows:

17

1. Any nodes which require access to the downed node to reach a partic-
ular resource may appeal to the coordinator for this resource. If the
coordinator (and thus the parent directory) is also down, the procedure
recurses, attempting to recover the parent directory in turn. If the root
directory’s master is down, the system will freeze until it is back up;
please try to ensure this one node is reliable.

2. If the appeal applies to a node that is not the master for the resource,
presumably because it has just been replaced through a different ap-
peal, a pointer to the new master is simply returned. Otherwise:

3. The coordinator picks a random slave to serve as the new master. The
slave is informed of its new responsibilities; if it happens to be down as
well, the coordinator repeats until it finds a working slave. If all slaves
are down, it gives up and reports failure to the appellant; otherwise,
once a functioning slave has been promoted, success is reported.

The root node is an obvious weakness in this algorithm. One possible
solution would be to have the root directory slaves regularly ping the master
to ensure it is up, and initiate an election if it fails. This has however not
been implemented.

Another weakness is the fact that if a master fails and then comes back
up, it will believe it is still the master. Given that addresses are aggressively
cached by clients, it is then possible for a client to contact it believing it is
the master, despite the parent directory’s master (that is, its coordinator)
knowing better. This is impossible to fully prevent while maintaining func-
tion in the face of network partitioning, but a limited attempt is made: The
new master will regularly ping the old one, trying to tell it it is no longer
the master. Additionally, once the old master eventually contacts a slave to
attempt a write, the situation will be explained.

If, perhaps due to actual network partitioning, we still end up with two
masters being written to, once the situation is eventually discovered the
master with the newest modification time for this file will retain its status,
while the old one discards its copy. This is the sole case in which data loss
is possible.

If the resource is a directory, it is unioned instead - hopefully preventing
significant data loss, but perhaps causing undeletion of files instead.

2.2.4 Client layer

This section describes the interface between FUSE and the distribution layer.
Overall, the client layer has four components:

18

The lease refresher maintains active leases by periodically requesting their
renewal from their master server.

The buffer buffers all updates to leases that are held in proxy mode, send-
ing them in FIFO order one at on a per-server basis; one send can be
active at a time per server.

There is a configurable maximum buffer size, measured in bytes.

The cache maintains copies of all cache-able data, defined as all data re-
turned from queries on a lease in proxy mode. There is no size limit
on this, although the data is removed when a lease is closed or put in
local mode.

The FUSE interface mediates between FUSE and the distribution layer.

FUSE methods match relatively directly to distribution layer messages.
In general, they are implemented as follows:

1. Resolve the path of the resource in question. These are always cached,
so this is typically cheap.

2. Ask for a lease. If we already have one with the appropriate mode
(read-only/read-write), use that; otherwise, reopen an existing one (if
there’s a mode mismatch) or open a new lease.

If this operation fails, either due to a timeout or an error, the client will
first attempt to resolve the path from scratch before possibly invoking
node failure recovery.

3. For updates: if the lease is in proxy mode and there’s space in the
buffer, stash the call in the buffer, otherwise block while calling the
server.

For both queries and updates, the changed/fetched information is stored
in a local cache if the lease is in proxy mode, otherwise discarded.

If either of the last two operations fail due to a timeout, this will cause
the downed-node failure handling to be invoked for this node. Any other
server-side error is passed on to FUSE.

There is one exception to this rule. The flush (fsync) call is implemented
by extracting all updates to the given lease from the buffer, then blocking
until they have been completed.

19

2.2.5 Autonomic maintenance

Rebalancing has three purposes: Handling intra-node out of space condi-
tions, ensuring a configurable level of filesystem redundancy, and optimizing
performance.

Of these three, only the first two are handled autonomously. Performance
is mainly ensured by aggressive caching and buffering, with any performance-
related rebalancing being initiated by the filesystem user.

Each node broadcasts its free/total space statistics, along with some basic
notion of reliability (you wouldn’t want to use a laptop as a master node)
via the gossip functionality of Hermes.

Reliability is currently a boolean value - one or zero - but is implemented
as a 32-bit integer to leave space for cleverer implementations in the future.

Out of space conditions When a file grows, it is possible for it to outgrow
the available space on a node. If the node in question is a slave, the master
node is informed so it can pick an alternative slave node, and the file then
removed once the master agrees.

If the current node is the master node, it will attempt to transfer its
master rights to one of its slaves first, to avoid stalling the writer(s).

To avoid a hot potato scenario where the file ends up losing all redun-
dancy, below a minimum number of replicas the master will stall writes in-
stead of allowing replicas to be removed. Write operations can resume once
the number of slaves is again above this threshold.

Creating replicas If the number of slaves for a master is below the con-
figured minimum limit, it will look for a reliable node with sufficient space
to hold the entire file or directory, then contact the node and allocate space.
(If the node is down, naturally, trying another until it finds one that works.)

Filling works differently depending on whether the resource in question
is a file or a directory.

For directories, the space is allocated and contents transferred in a single,
atomic transaction.

For files, the space is allocated separately from data transfer. After alloca-
tion, the master will stream the data over in bite-sized chunks2, maintaining
a pointer of how far it has gotten. If the file is written to at a point before the
pointer while this process is in progress, the writes are immediately streamed
before the process continues.

2
Meaning, at the moment, 64 kilobytes

20

After streaming is complete (or immediately after creation, for directo-
ries), the coordinator node is informed of the new slave and it becomes eligible
for read access by clients.

When the minimum and maximum number of replicas aren’t equal, which
they shouldn’t be, once replica creation has started it will repeat until the
maximum number has been reached.

21

Chapter 3

Hermes

Hermes is a self-maintaining peer-to-peer messaging system, which provides
distribution transparency in the form of hiding the physical addresses and
address changes from the library user.

Instead, each node is identified by a logical address, the hash of their
RSA public key.

It was designed for the purpose of supporting a high-performance low-
node-count distributed filesystem, and is therefore optimized for performance
in small networks rather than scalability, for reasons given on page ??.

In particular, each Hermes node maintains addressing information for
every other node in the network, and per-node overhead (bandwidth and
storage) is generally proportional to the size of the network.

There are two modes of operation - unicast and gossip. Unicast pro-
vides a best-effort, fail-fast mode of communication, while gossip provides a
tuplespace-like abstraction without any guarantees on ordering or speed, but
tolerant of network failures. Additionally, an RPC library built on unicast is
provided, sharing its limitations.

All messages use public-key encryption to ensure confidentiality and au-
thenticity, with symmetric session keys as an optimization.

Haddock documentation for Hermes can be found at http://hackage.
haskell.org/package/Hermes.

3.1 Network requirements

Hermes works as a single-layer peer-to-peer network, which requires all nodes
to be able to talk to all other nodes. It makes no attempt at traversing
firewalls, instead providing IPv6 support for the purpose.

22

http://hackage.haskell.org/package/Hermes
http://hackage.haskell.org/package/Hermes

A node can be configured with a different public and local IP, which
allows port forwarding to be used.

However, at the time of writing we’re less than two years from IANA IPv4
address exhaustion. As NAT solutions have gotten more baroque over the
years, and now often use multiple levels of translation, it would be unwise to
rely on port forwarding to work in the long term.

3.2 Modules

Hermes is divided into a number of modules, most representing different
modes of communication.

While they are mostly distinct, all modules have at least three functions
in common: One to create a new module context, one to snapshot it for
storage to disk, and one to restore it.1

In one case (RPC), snapshots contain no actual information. However,
the snapshot functions are still provided to ensure forwards-compatibility of
your programs, as there is no guarantee that Hermes won’t change in the
future to add information to those snapshots.

Additionally, a simplified wrapper module (Network.Hermes) is provided,
which should be sufficient for most purposes and will have a greater emphasis
on interface stability than the internal modules. For purposes of versioning,
only changes to this module will be counted.

This wrapper interface is essentially the the union of the below described
modules, and so is not separately described.

3.2.1 Core (unicast)

The low-level Core module handles protocol setup, encryption and authenti-
cation as well as unicast messaging and connection and address management.

Unicast messages are keyed by the binary serialization of a tag, as well as
the type of the tag and message. There are separate untagged send/receive
functions, which do not interfere with the tagged ones. (Internally, a special
“NoTag” tag type is used.)

When receiving unicast messages, in order to avoid queuing messages po-
tentially forever, the receiver must explicitly request the delivery of particular
tag/type combinations. This is done automatically by the receive call, but
may also be done explicitly. It is expected that most applications will do this
on startup, before activating listeners.

1
In the future, the snapshot functions will be obsoleted by use of happstack-state.

23

Finally, if a message is rejected in this way the intended recipient will
attempt to send a RejectedMessage in return, which includes the tag and
original message type, but not the message contents. This is naturally not
recursive; a RejectedMessage that is rejected is dropped instead of bouncing.

Future

While the core works well as it is, it is hard to read and could benefit from
a refactoring. In particular, the address book should be separated out.

Also, the tags could be deserialized and compared using Eq/Ord instead
of being compared in binary form.

For many applications, it would be convenient to turn off the rejection
logic. Although it is essential to avoid memory leaks in complex applications,
simple ones have no need for it.

Reliability

Since there is no real way to guarantee that messages are received and acted
on2 or even that errors are detected, and trying would drastically reduce
performance, Hermes does not try.

Instead, error detection is provided on a best-effort basis. In practice,
this means that any errors in the connection setup phase are converted into
exceptions, including if a remote host unexpectedly closes the connection and
Hermes is unable to reopen it; almost always, if no exception is thrown the
message will have been successfully received, but it may have been dropped
after sending - either by the network or receiver.

In particular, messages are sent at most once. If you receive an exception,
the message has not been sent; if you do not, then it has been sent but may
not have been received.

If message acknowledgment is desired, feel free to use the RPC module
with a ()-typed return value. However, keep in mind that this is not the same
as actual transactions, which should be implemented by the library user if
needed.

Performance

Hermes is thread-safe3, but not inherently multithreaded, and will serialize
send calls single hosts. Only when sending multiple messages to different

2
Ref: The end-to-end argument

3
Hopefully. If you have strange problems in a multithreaded program, there may well

be undiscovered bugs.

24

hosts can it leverage multiple CPU cores for processing and encryption, or
send in parallel; on the receiving side, only when receiving messages on mul-
tiple listeners, although deserialization always takes place in the thread that
calls recv.

This is not an inherent flaw in the design, but merely an implementation
detail, and could be fixed in future iterations.

Security

As Core is the base module, its security model is largely what the other
modules use as well.

Messaging requires any node you communicate with to have an RSA
key for authentication. The AES session keys used for communication are
encrypted using these keys; only negotiation details such as the HermesIDs
of each host is transmitted unencrypted.

Additionally, Hermes requires some assurance that the keys provided be-
long to someone trusted. Depending on the trust level set, the proof required
may be none at all (for test networks), a signature from a trusted authority
(see the signature functions in this module), or even that the key is explicitly
added by the Hermes library user.

Both the RSA key of the sender and the receiver are checked in this
manner, before any information is transferred.

3.2.2 Signature

The signature module allows you to create authorities, and use them to sign
a node’s keys. It is possible to use this in the traditional manner, creating a
signature request on the node, having the authority sign it and then returning
it.

However, there’s also a convenient function in the Network.Hermes wrap-
per module which allows you to create a context with its key pre-signed by
the authority, and that authority inserted as authoritative.

You can then serialize the context, and move it to the machine you want
to use it on.

3.2.3 Gossip

The Gossip module allows a form of blackboard communication. Each node
may insert an arbitrary number of “factoids” in the network, which will be
spread through the network using a standard gossip protocol.

25

Eventually, barring network partitions, the inserted factoid can be looked
up by key and/or originating node on any other node in the network.

Similarly to messages, factoids are keyed by type, tag and tag type; only
matching factoids will be returned. They are also keyed by the inserting
node; when requesting a factoid, this key can be left as a wildcard, in which
case all matching factoids are returned.

It is also possible to tag factoids with a timeout. In this case the network
will keep track of how long it has been since a factoid was inserted and will
attempt to drop it once past the timeout, providing a simple form of garbage-
collection. This function is not meant to be absolutely reliable, particularly
in the face of deliberate attacks.

Performance and Reliability

As factoids are transmitted via a gossip protocol, unlike unicast messages
they will in practice always arrive, barring network partitions. There is no
absolute guarantee, however; sufficiently bad luck could theoretically prevent
them from ever arriving.

However, using this protocol induces a per-node load on the network
proportional to the size and number of factoids in the network. Additionally,
factoid transmission takes time; although it is possible to reduce this time
by reducing the gossip interval, network load is also proportional to gossip
frequency.

When a factoid is first inserted, an dissemination mode is triggered that
will, with a high probability, transmit it to a large proportion of the nodes on
the network. This drastically reduces the time required for full dissemination,
as well as quickly preventing factoid loss unless a large proportion of the nodes
are simultaneously lost.

The dissemination mode will attempt to transmit the factoid to every
node the disseminating node knows of. This procedure works recursively; a
node contacted in this manner will itself start attempting to disseminate the
factoid. It stops once a node that already knows of the factoid is contacted,
or in the unlikely event that every node is contacted.

To limit network load while avoiding stalls from unresponsive nodes, a
maximum of one node is contacted every half second, but any number of
nodes can be simultaneously contacted if contact with one takes over half a
second.

26

Security

The factoids are signed by the originating node, to prevent the possibility
of fake facts. However, it is still possible for a node to insert an arbitrary
number of factoids, thus arbitrarily increasing network load.

One way of preventing this would be to add a max per-node factoid
count, but this is not currently implemented. Another would be to revoke
their access, but revocation certificates are not currently implemented either.

Additionally, a node could wrongly reset the timeout values for arbitrary
factoids, causing them to hang around in the network forever.

This could be fixed by tagging the factoids with a signed time-of-insertion
at the originating node instead of using intervals, at the cost of requiring all
non-compromised nodes to have synchronized clocks. This would be a cure
worse than the disease.

As there is no significant security risk in having factoids hang around too
long, and purely malevolent attackers are assumed to be rare in practice, the
problem has not been further examined.

Assumptions

The gossip module assumes that the system clock on any particular node is
monotonic. If this assumption is broken, any factoids with timeouts set may
be removed either before or after they should be; however, a single change is
unlikely to cause problems, as any lost factoids will be recovered from some
neighboring node at the next gossip interval.

More problematically, in the event that a clock is reset to an earlier
time, an older factoid (timestamped after the current time) may override
a newer one. It is therefore recommended to use some variant of NTPd in
to avoid this, as it can perform backwards corrections through skewing the
clock instead of stepping it.

There are no assumptions about clocks on other nodes, other than that
those should also be reasonably monotonic.

Future

A Gossip variant that uses a central server (or multiple servers) instead of a
peer-to-peer protocol would be a useful addition, in the common case where
there are at least some reliable computers, or computers without which the
system using Hermes wouldn’t work in any case.

27

3.2.4 Membership

The membership module uses the gossip module to disseminate information
on the addresses of various peers, which is what allows Hermes to operate in
the first place. It should probably always be active.

There are no usage requirements for this module. Create a membership
context based on a Gossip context, start it, and everything else will happen
automatically.

A Membership snapshot can be deserialized on another node, which pro-
vides a quick way to initialize the address list of new nodes. Alternately, the
connect function of the Core module may be used to gain the initial address
information required for the gossip function to operate.

Security

Membership transmits only addressing information. Since this is not consid-
ered sensitive information, Gossip makes it impossible to fake, and erroneous
information would merely result in an error in the connection negotiation
phase, there should be no security considerations.

Assumptions

It is assumed that nodes join and leave the network rather infrequently,
which allows membership or address changes to take up to several minutes
to propagate through the network using the gossip protocol without incur-
ring unacceptable amounts of downtime. It is possible to reduce this delay
by adjusting the gossip configuration, but it is impossible to guarantee a
maximum delay, and so there is no way to guarantee that no online nodes
have stale address information at any given time.

A node crashing/shutting down and then rejoining the network without
changing address does not generate any such membership change, and there
is no need to wait for the event to propagate. There is, in fact, no event to
propagate.

However, when a node joins the network at a new/updated address it
may immediately send and receive messages without waiting for propagation,
in the particular case that it starts every conversation. That is, a newly
connected node A may talk to node B, and B may then reply. However, if A
talks to B which talks to C, then C will not necessarily know the location of
A and messages from C to A may fail.

If this is insufficient for a particular application, it is suggested that ad-
dress information is added to the messages or a central “gossip” server is
implemented.

28

3.2.5 RPC

The RPC module, as its name suggests, allows convenient two-way commu-
nication in a function call style.

Functions, which must be of the type a → IO b, are discriminated based
on parameter and return type as well as an arbitrary unicode name (String).
Individual calls are additionally tagged with a sufficiently large random num-
ber in order to prevent any confusion in the event of parallel calls.

In the event that a call is made to a non-registered function, or one of
the wrong type, an error is returned. Client calls will block until an answer
or error is returned, or a timeout is reached.

On the RPC server side individual calls to any given function are executed
in serial, but when there are multiple registered functions they otherwise
execute in parallel with each other.

The RPC module is not actually used by Skynet, and is provided mainly
as an example.

Future

It should be relatively easy to make parallel/serial execution of requests con-
ditional on user desires, or limit the number or concurrent tasks to a fixed
number.

Additionally, it should be possible to add a yieldUntilIdle call to GHC.
This would delay execution until one or more OS threads in the runtime is
idle, which could be used to dynamically limit the number of processes based
on actual load. IRC talks with the GHC developers suggest that this is a
probable addition sometime within the next five years.

Superficially, this could also be implemented using forkOS and pthread setschedprio
or pthread self. However, doing so would break assumptions in the GHC run-
time and drastically decrease performance, so is to be avoided.

The use of a string to identify functions may have been a mistake, as
there is no guarantee of uniqueness. Instead, future versions will likely use a
phantom type for the purpose, with a request that the user define it next to
the function being called.

At one point, there was an OpenGL visualizer for Hermes traffic, based
on mirroring every message sent to a central computer. This worked pretty
well at first, but became unusably cluttered as traffic increased, and eventu-
ally bit-rotted and was removed. A similar visualizer, displaying statistical
functions of the traffic instead of individual messages (unless you ask it for
individual messages) would be of great usefulness.

29

3.3 AES

The AES package is a Haskell binding to the C-based AES library written
by Brian Gladman.[6]

Every effort has been made to maximize performance and prevent any
usage possibilities that could cause undefined behavior. At the moment, it
is single-copy: The only memory allocation that happens is for the new,
encrypted or decrypted bytestring.

There should be no possible usage patterns that cause undefined behavior.
AES offers several levels of abstraction. The main documentation can be

found at http://hackage.haskell.org/package/AES, so this text will give
brief overviews and usage guidelines.

Codec.Crypto.AES provides a pure interface for encrypting or decrypt-
ing bytestrings. Both strict and lazy bytestrings are supported. Using the
latter, an arbitrarily large bytestring can be en/decrypted using a constant
amount of memory.

Unfortunately, for lazy bytestrings, reading N bytes of the output bytestring
may require more than N bytes of the input, and indeed more than N plus
the AES block size of 16 bytes. Specifically, lazy bytestrings are handled
by unpacking them to their component strict bytestrings, which are then
handled individually. As such, only complete bytestring chunks are handled.

As it is desirable for encryption output to be independent of bytestring
internals, a future version will likely split these at AES block size boundaries
instead. This will significantly alter laziness characteristics from what is
described above, as overflow from a non-aligned chunk will be prepended to
the next chunk, in effect increasing buffering from one to two chunks.

The lazy pure interface is therefore best suited for applications where par-
tial output is not required. You should consider the laziness an optimization,
and not depend on output being available before all the input is.

The strict pure interface does not suffer from this unpredictability, but
as it does not return an updated initialization vector using it repeatedly will
require inventing new IVs each time.

Codec.Crypto.AES.Monad provides a monad transformer built on ST
or IO, which allows for fine control of operation order while ensuring safety.

The main motivation for its existence is to interleave operations from
different libraries. For example, given a list of (strict) bytestrings, the hash
update operation from the corresponding SHA module can be interleaved
with the encryption operation, finally encrypting and appending the hash
value in the same encryption context.

30

http://hackage.haskell.org/package/AES

Incremental encryption/decryption results are available, both inside the
monad (as return values from crypt) and in the final lazy bytestring.

Codec.Crypto.AES.IO is the lowest-level binding to the AES library. It
provides a slightly abstracted interface, adding garbage-collection and wrap-
ping the C interface with one that uses strict bytestrings.

Every effort has been made to ensure this interface is as close to foolproof
as possible. Its major downside is that it can only be accessed from the IO
monad.

Codec.Crypto.AES.Random provides three varieties of random-number
generation: True random bytes (from /dev/random), cryptographic pseudo-
random bytes from an AES cipher in counter-mode, and a System.Random
wrapper for the latter to facilitate generating high-quality random values of
arbitrary types.

31

3.4 SHA2

The SHA2 package is a Haskell binding to the C-based SHA library written
by Aaron Gifford.[7]

Although Gifford’s library supports both SHA-1 and SHA-2, only the
SHA-2 functionality is exposed. This is mainly due to a lack of need for SHA-
1; since it has been mostly broken[8], its use in new systems is discouraged.

The same design concepts as for the AES binding were used. In this case,
the binding is truly zero-copy: No memory is allocated beyond that needed
for the SHA context.

However, unlike the AES binding it may be possible to corrupt the run-
time by use of unsafe functions in the IO module. For that reason, be very
careful if using a function marked unsafe.

SHA2 offers several levels of abstraction. The main documentation can
be found at http://hackage.haskell.org/package/SHA2, so this text will
give only brief overviews and usage guidelines.

In general, all hash functions in this package will accept both strict and
lazy bytestrings. The output hash is provided as a bytestring; for conve-
nience, a function to convert a bytestring to a hexadecimal string is provided
and exported from each module.

Codec.Digest.SHA provides a pure interface to SHA2, as well as an
HMAC function.

Codec.Digest.SHA.Monad provides a monadic interface to SHA2, sim-
ilar to that for AES.

As explained in the corresponding AES section, the purpose of this in-
terface is to safely allow interleaving of AES and SHA operations. However,
the underlying library is missing a function to extract a hash value from an
intermediate state (feeding more data into the hash function afterwards),
which limits the usefulness of the interface until this has been remedied.

Codec.Digest.SHA.IO provides a low-level binding to the SHA library,
adding garbage collection and wrapping it in a bytestring interface.

Similarly to the AES equivalent, all functions require calling from the IO
monad. However, unlike that interface, this one can be misused.

As implied above, after a SHA2 context has been finalized it is undefined
behavior to continue using it. However, there is no logic in the binding to
prevent you from doing so.

32

http://hackage.haskell.org/package/SHA2

The most probable fix is to make the finalization function work on a copy
of the SHA state.

33

Chapter 4

Evaluation

4.1 Design choices

If I could start the design over again, there are a number of things I would
do differently.1

The choice of keying data by pathname instead of i-nodes has caused a
great deal of grief. It was originally done to simplify the system, but between
the loss of hardlinks and the increased complexity of moves, it has greatly
outlived its usefulness.

Another questionable decision was the decision to create a network API
mimicking the POSIX filesystem API instead of creating something very dif-
ferent such as, let’s say, a key-value store. Though in this case it would have
to be translated on both ends, the simplified network model would lend itself
to creating generic functionality for things such as two-phase transactions,
which are currently done on a per-function basis.

Additionally, Ceph[5] is another filesystem with largely duplicate func-
tionality, which I was not aware of at the time I started this project. As
Ceph’s design is superior to mine in most ways, examining it closely for
ideas would have been useful. There is still sufficient divergence for a useful
project; most notably, Ceph is not meant to be completely maintenance-free.

4.2 Functionality

The system essentially does what it is meant to do, which is to say: Store
files. As the commands in the installation/usage chapter are the sum total
commands required to set the system up and use it, it has definitely achieved

1
Starting, perhaps unsurprisingly, with the decision not to make more offline backups.

34

the “ease of use” requirement, and using it as storage for a variety of com-
mon software, including Firefox, has revealed no damaging deviations from
POSIX.

There is some less-common software that causes trouble, however. Most
notably, the Darcs and Git revision-control systems use hard-links for, re-
spectively, its patch caches and its installed program components. Since
Skynet does not support hardlinks, this degrades the performance of Darcs
on the system, while Git ends up taking twenty times as much disk space to
install as usual.2

There was also some functionality on the wish-list that did not make it
into the final system. Specifically:

Amazon S2 support would have allowed the system to handle out-of-disk-
space conditions rather more gracefully, by pushing files out to Amazon.
It could also provide a significant performance boost for Internet access
by users that lack a high-bandwidth home connection.

Stashing support - making a frequently-disconnected node, for example
a laptop, automatically fetch updates to some subset of the filesys-
tem whenever possible; in effect, acting as a pull-only slave node.
As this would immediately lead to users trying to write to stashed
files/directories as well, the complexity involved became too much to
fit.

Network coordinates - generating some notion of network speed between
nodes, and trying to move files to storage nodes close to where the
clients that use them are. This turned out to border on AI in difficulty.

Lost node recovery - currently, when files that exist on a crashed node are
accessed, the node will be entirely removed from the node list for that
file. If the node then comes back up, the filesystem does not understand
that there is a near-past version of the file there that could be used if
the node is again used as a slave. Ideally, the node would be preferred
for this purpose over others, and an rsync algorithm would be used to
update the file instead of a straight write.

Maintenance automation works relatively well, with lost replicas being
regenerated the quickly after someone tries to access the file/directory. How-
ever, since uncommonly accessed files may never trigger this, a periodic pro-
cess that explicitly checks for node failures and regenerates every resource
using that node as a slave would increase reliability. This would require

2
Still not very much.

35

implementing lost node recovery first, however, to avoid having to entirely
rewrite the contents of crashed nodes when they recover.

4.3 Performance

Performance measurement of Skynet is problematic. Because of the aggres-
sive caching and buffering of uncontested files, most of the time the speed
of the system doesn’t enter into it; file reads take place at wire speed in all
observed cases, while writes complete instantaneously until the write buffer
is filled, at which point they are limited to wire speed as the buffer is emptied
in a FIFO fashion.

In one dramatic, if improbable example, unpacking and then compiling
a Linux kernel reliably took slightly less time on a wifi-mounted Skynet
filesystem than on the local disk, as in this case Skynet devolved into an
in-memory filesystem from the viewpoint of the compiler. This did however
require the available buffer space to be increased to half a gigabyte from the
default of 100 megabytes; below this, the unpacking procedure would block
as the buffer was filled. It is also likely that the Linux kernel would normally
prefer not to use 70% of all available memory as cache.

Where files are contested, performance drastically degrades as every op-
eration becomes a remote procedure call, requiring a round-trip. In this sce-
nario speed is dependent on the latency and bandwidth characteristics of the
underlying network; as most calls involve only one node, it has followed the
simple (but extremely noisy) equation of delay = latency+transferSize/bandwidth.

In either scenario, the cost of encrypting everything is noticeable. On a
100Mbit network a modern laptop was still capable of transferring at wire
speed, but at the cost of roughly half its CPU power. Disabling encryption
cut that number by nine tenths. As newer Intel CPUs have built-in hardware
specifically for AES that has been shown to be highly effective, there would
be a great deal of benefit to be had from exploiting these.

The one unquestionably slow operation is directory renames. Since these
require the invoking program to fall back to copying the data through the
network twice, it is in many cases unusably slow. Some solution is required,
but the best solution for this particular problem - using traditional, path-less
i-nodes - would require a dramatic redesign.

4.4 Final Status

Broken. A slight exaggeration, but unfortunately only a slight one.

36

Remember the Btrfs experiment? Every file that had recently been writ-
ten to was corrupted, which unfortunately included the source code of Skynet.
There were backups; those were overwritten and also corrupted before the sit-
uation was discovered, as their object-file equivalents remained intact. Well,
until GHC attempted to recompile them.

Peeling back further layers of backups and restoring as possible, the cur-
rent status is:

Hermes is undamaged, and fully functional. Being dependencies, so are
the AES and SHA bindings. This means Haskell now has a secure message-
passing middleware package, with gossip support, which has gathered some
acclaim.

Skynet is essentially nonfunctional. Since making it work was the entire
point of the thesis, this is somewhat unfortunate. Itemizing:

The resolver is functional. However, some glitch in the storage layer is
causing the root node to disclaim responsibility for the root directory,
which effectively breaks it.

File creation and writing is functional.

File reading is mostly functional, but the FUSE interface is broken and
thus in practice nonfunctional.

File metadata queries/updates are functional.

Directory queries/updates are functional. Directory creation is not, though
only by a hair.

Master/slave redundancy is partially implemented, but nonfunctional.

Automatic balancing is nonfunctional.

Failure recovery is nonfunctional.

The rest of this document was written prior to this event, or has been
written based on memories of how it worked.

37

Chapter 5

Conclusion

The project meant to create a distributed fault-tolerant, maintenance-free
filesystem, with supporting Haskell message-passing middleware.

Overall, this has succeeded. Although there are plenty of design warts,
for at least one use case - bulk media file storage - it works perfectly well,
accomplishing the goal of acting as a trouble-free filesystem. Power-cycling
tests show that even with a hard machine crash, the filesystem recovers from
loss of nodes easily and is capable of reusing them when they come back up.

Last-minute disasters aside, I am quite satisfied with the results, and
wouldn’t mind using the system myself. However, if I had the free time there
are a number of improvements possible; deep design changes that were not
obviously a good idea in advance, but in retrospect could have been predicted
by asking myself why other unix filesystems do it that way.

The choice of Haskell as an implementation language was a great help.
While it is difficult to see the language being used for fast prototyping, for any
project of size I believe it would help greatly. The type-checker in particular
has saved me probably weeks or months of time, by discovering nine-tenths
of the bugs that were ever discovered.

Many of the higher-level code patterns such as transactions, buffers and
caches, though not exactly extractable as functions, should be possible to
create a generic combinator library for in Haskell. However, this would prob-
ably be an equivalently large project on its own, no matter how eventually
useful.

38

Appendix A

Installation and usage

Bearing the status section in mind, installing Skynet or one of its subordinate
libraries is relatively easy (and still works). The standard Cabal Haskell
packaging system is used, which will automatically download and install all
dependencies (including Hermes, AES and SHA; there is no need to use the
bundled copies of those, as they have been uploaded to Hackage), with one
exception.

The current HFuse version (0.2.2) has a bug (misfeature?), which causes it
to change to the root directory at startup; this breaks the rest of the system.
To avoid this, a modified version (“HFuse-99.2.2”) has been supplied in the
package, which should be installed first.

Additionally, Skynet requires the 6.12.1 version of GHC. Previous versions
will not work, and 6.12.2 has several bugs that affect its proper functioning.
Future Haskell Platform versions of GHC will likely also work; 6.12.1 is the
current one.

If you have ip (of the iproute2 package) installed, and a single public or
private non-loopback IP, Skynet will automatically bind to this IP at startup.
If you don’t, you will have to provide the desired IP manually.

Once Skynet has installed, it provides its own usage instructions, which
are printed to standard output when Skynet is executed without parameters.
Skynet expects to use its current working directory for storage, so a typical
workflow would be as follows:

1. For each node, create a storage/state directory, perhaps /.skynet, then
cd to that directory.

2. On the administrative node, run skynet create-network. Then, run
skynet authorize-node, once for each other node on the network. Copy
the resulting authorization files to these nodes.

39

3. On each node, run skynet create-node in their storage/state directory
to initialize it.

4. Finally, to start the system run “skynet run [mount-point]” on each
node, starting with the master.

To explicitly make a particular node a slave for a given file/resource, run
“skynet enslave [file]” on the node in question, in its state-directory. This
will use a hidden file “/.skynetcomm” on the filesystem to order the node.
This communication channel currently has no other uses.

40

Bibliography

[1] The SSH Filesystem on FUSE, http://fuse.sourceforge.net/
sshfs.html

[2] Design and Implementation of the Sun Network Filesystem, Russel
Sandberg and David Goldberg and Steve Kleiman and Dan Walsh and
Bob Lyon, 1985

[3] An overview of the andrew file system, Howard, J.H. and others, Pro-
ceedings of the USENIX Winter Technical Conference, 23–26, 1988,

[4] The Coda Distributed File System, Braam, P. J., Linux Journal,
edition 50, June 1998, http://www.cs.cmu.edu/afs/cs/project/
coda-www/ResearchWebPages/docdir/lj98.pdf, http://www.coda.
cs.cmu.edu/

[5] Ceph: Reliable, Scalable, Scalable, and High-Performance Distributed
Storage, Sage Weil doctoral dissertation, University of California, Santa
Cruz, http://ceph.newdream.net/weil-thesis.pdf, http://ceph.
newdream.net/

[6] Brian Gladman, AES implementation, http://gladman.plushost.co.
uk/oldsite/AES/

[7] Aaron Gifford, SHA2 implementation, http://www.aarongifford.
com/computers/sha.html

[8] Xiaoyun Wang, Yiquin Lisa Yin, Finding Collisions in the
Full SHA-1, 2005, http://people.csail.mit.edu/yiqun/
SHA1AttackProceedingVersion.pdf

[9] Dominique A. Heger, Workload Dependent Performance Evaluation of
the Btrfs and ZFS Filesystems, DHTechnologies, Austin, Texas http:
//www.dhtusa.com/media/IOPerf_CMG09DHT.pdf,

41

http://fuse.sourceforge.net/sshfs.html
http://fuse.sourceforge.net/sshfs.html
http://www.cs.cmu.edu/afs/cs/project/coda-www/ResearchWebPages/docdir/lj98.pdf
http://www.cs.cmu.edu/afs/cs/project/coda-www/ResearchWebPages/docdir/lj98.pdf
http://www.coda.cs.cmu.edu/
http://www.coda.cs.cmu.edu/
http://ceph.newdream.net/weil-thesis.pdf
http://ceph.newdream.net/
http://ceph.newdream.net/
http://gladman.plushost.co.uk/oldsite/AES/
http://gladman.plushost.co.uk/oldsite/AES/
http://www.aarongifford.com/computers/sha.html
http://www.aarongifford.com/computers/sha.html
http://people.csail.mit.edu/yiqun/SHA1AttackProceedingVersion.pdf
http://people.csail.mit.edu/yiqun/SHA1AttackProceedingVersion.pdf
http://www.dhtusa.com/media/IOPerf_CMG09DHT.pdf
http://www.dhtusa.com/media/IOPerf_CMG09DHT.pdf

[10] https://btrfs.wiki.kernel.org/index.php/Main_Page, btrfs on
irc.freenode.org,

42

https://btrfs.wiki.kernel.org/index.php/Main_Page

	Svein-O
	skynet.pdf
	Introduction
	Problem statement
	Glossary

	Skynet
	Requirements
	Reliability
	Redundancy
	Coherency
	Security

	Design
	Storage layer
	Distribution layer
	Failure handling and recovery
	Client layer
	Autonomic maintenance

	Hermes
	Network requirements
	Modules
	Core (unicast)
	Signature
	Gossip
	Membership
	RPC

	AES
	SHA2

	Evaluation
	Design choices
	Functionality
	Performance
	Final Status

	Conclusion
	Installation and usage

