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Virtual screening methods are now widely used in early
stages of drug discovery, aiming to rank potential inhibi-
tors. However, any practical ligand set (of active or inac-
tive compounds) chosen for deriving new virtual
screening approaches cannot fully represent all relevant
chemical space for potential new compounds. In this
study, we have taken a retrospective approach to evalu-
ate virtual screening methods for the leukemia target
kinase ABL1 and its drug-resistant mutant ABL1-T315I.
‘Dual active’ inhibitors against both targets were
grouped together with inactive ligands chosen from dif-
ferent decoy sets and tested with virtual screening
approaches with and without explicit use of target struc-
tures (docking). We show how various scoring functions
and choice of inactive ligand sets influence overall and
early enrichment of the libraries. Although ligand-based
methods, for example principal component analyses of
chemical properties, can distinguish some decoy sets
from active compounds, the addition of target structural
information via docking improves enrichment, and expli-
cit consideration of multiple target conformations (i.e.
types I and II) achieves best enrichment of active versus
inactive ligands, even without assuming knowledge of
the binding mode. We believe that this study can be
extended to other therapeutically important kinases in
prospective virtual screening studies.
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The availability of crystal structures of many key drug tar-
gets and the low cost of computational methods now
encourage the use of virtual screening (VS) in early stages
of drug discovery. There is an enormous quantity of data
regarding target structures and ligand binding, and VS
should be expected to work best when all experimental
knowledge is integrated appropriately into the methods. If

the ligand set contains diverse or focussed scaffolds, then
the training or parameterization of the VS method should
be designed to account for this. Screening of focussed da-
tabases will best predict active ligands when trained against
similar compounds, and screening of diverse sets will best
identify active ligands if the variability of the target protein is
adequately represented in the method. In this study, we
examine VS approaches for the leukemia target receptor
ABL1, a protein tyrosine kinase now well characterized by
knowledge of multiple inhibitors and target conformations.

Inhibition of protein kinases by selective inhibitors has
become a major therapeutic approach for many diseases,
especially well established for cancer. Targeted inhibition
of ABL1 and several related kinases by imatinib (Gleevec,
Novartis) has become the successful front-line therapy for
chronic myeloid leukemia (CML) and several solid tumors
(1). Response to imatinib therapy in CML statistically is
highly durable in the chronic phase; especially with early
initiation of treatment; more advanced stages of the dis-
ease often involve relapse and imatinib resistance (2,3).
Mutations of amino acids in the kinase domain of ABL1
are the most common cause of such resistance, affecting
some 50–90% patients with acquired resistance (4–6).
Among the various mutations, an isoleucine substitution at
the ‘gatekeeper’ residue threonine (T315I) accounts for
about 20% of the total burden of clinical resistance (5).
This residue has been designated ‘gatekeeper’ due to its
position that determines the size of a hydrophobic pocket
in the active site of the kinase domain. Many small mole-
cule inhibitors exploit this threonine residue for their speci-
ficity (7). Substitution of the gatekeeper residue has been
observed as a major mechanism of acquired resistance for
other tyrosine kinase drug targets, including c-KIT-T670I
(8), EGFR-T790I (9), and PDGFRalpha-T74M/I (10).

Recent studies have shown a strong correlation between
substitution of the gatekeeper residue and oncogenic
transformation (11), and substitution of a threonine gate-
keeper residue with a hydrophobic residue such as leucine
is a mechanism of activation of several tyrosine kinases
(12). Thus, the mechanism of resistance against Abl inhibi-
tor drugs involves not only drug binding properties, but
also the oncogenic transformation capacity of gatekeeper
mutant itself. Second-generation CML drugs, such as
dasatinib and nilotinib, have been introduced to combat or
forestall resistant forms. However, many of these newer
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drugs do not eliminate resistance via the gatekeeper muta-
tion (ABL1-T315I) (4,13), despite greater potency against
wild-type protein (ABL1-wt) and most of the imatinib-resis-
tant mutations (13–15). Therefore, developing ABL1 inhibi-
tors that target resistance mutations, and in particular the
ABL1-T315I gatekeeper mutation, currently remains a goal
of leukemia drug research.

Known inhibitors of ABL1 that also inhibit the ABL1-T315I
form are predominantly ‘type II’ inhibitors, targeting an
inactive conformation of the kinase. These include ponati-
nib (in clinical trials, also known as AP2453416, along with
others in earlier stages of development) (16,17). Type II
inhibitors bind in a deep and mostly hydrophobic pocket
that exists when the activation loop of a kinase adopts an
inactive conformation in which the phenylalanine of the
conserved DFG motif is removed from its hydrophobic
packing position that becomes the pocket. Other charac-
teristics of type II inhibitors include hydrogen bonding inter-
actions, usually involving amide or urea moieties. In
contrast, type I inhibitors bind to the active form of the
kinase, in which the DFG phenylalanine is bound in its
hydrophobic site, and the neighboring aspartate is posi-
tioned appropriately for its role in the phosphotransfer reac-
tion of the kinase. Both type I and type II inhibitors typically
bind to the hinge region that also anchors the ATP adenine
via hydrogen bonds. Figure 1 shows type I and type II
binding conformations of ABL1 kinase domain structures.

We studied a set of high-potency ABL1 inhibitors that can
inhibit both ABL1-wt and ABL1-T315I forms (Figure 2).
Applying VS retrospectively to these and related inhibitors,
we aimed to identify VS protocols that best identify active
inhibitors dispersed in larger libraries. The protocols vary
with respect to the chemical properties analyzed, and the
amount and type of target structural information integrated
into the procedures. Such optimized protocols would be
best suited to screen libraries of ligands with unknown
activity against ABL1 and mutant forms. The study can in
principle be extended to other therapeutically important
kinases and also provides information for the extent of
structural information needed for success.

Methods and Materials

ABL1 inhibitor set
To create a library of inhibitors that inhibit both ABL1-wt and
ABL1-T315I, representing a set of active compounds with
decreased drug resistance potential, compounds with IC50

values <100 nM in enzyme assays for ABL1-wt or ABL1-
T315I were retrieved from the Kinase Knowledgebase (KKB,
www.eidogen-sertanty.com). Of the inhibitors identified, 38
were inhibitory (IC50 < 100 nM) for both the wild-type and
mutant forms; 16 of these were ponatinib analogs. In
addition, 141 were inhibitory for ABL1-wt alone (IC50 for
ABL1-T315 > 1 lM or no mutant binding data available). In
contrast, all the high-potency inhibitors of ABL1-T315I were

active against the wild-type target (IC50 < 1 lM). Here, we
study the dual high-potency (IC50 < 100 nM) inhibitors in
detail, as they possess in common one of the selectivity cri-
teria for ABL inhibition therapy that aims to reduce the occur-
rence of drug resistance. Table 1 summarizes the sizes of
the relevant inhibitor sets taken from the KKB database.

The diversity of this inhibitor set was analyzed by the Scaf-
fold Hunter program (18). A scaffold is defined by the all
carbon and heterocyclic rings, their aliphatic linker bonds,
and atoms attached via a double bond (19). Scaffold Hun-
ter extracts chemically meaningful compound scaffolds
and iteratively removes one ring at a time to generate
smaller compounds. Thereby, a hierarchical arrangement
of parents and children is formed, yielding branches that
are combined to form a tree (Figure 3).

Inactive ligand sets
Three ‘decoy’ sets were chosen for inclusion into test
libraries that combine active and inactive compounds. The
largest set was retrieved from the Directory of Useful
Decoys (DUD) (20), containing 6319 physically similar but
topologically distinct ligands. As no decoy set chosen
explicitly for ABL kinase domains is available from DUD,
the decoy set for homologous kinase SRC was used for
this study. A second set was taken from Glide (21). This
set is ‘universal’, that is, neither ‘kinase inhibitor-like’ nor
specifically ‘non-kinase-inhibitory’, consists of 1000 ligands
and was created from one million druglike ligands. Finally,
a set was chosen from the weak binding inhibitors
(enzyme inhibition IC50 = 100–1000 nM), containing 89
inhibitors. As weak binders, these might be considered the
most challenging decoys.

ABL1 kinase domain structures
Five crystal structures of T315I mutants of ABL1 kinase
domain in complex with inhibitors were taken for analysis,
along with structures for four of these inhibitors that have
been co-crystallized also with the ABL1-wt kinase domain.
These structures, summarized in Table 2, were used for
VS of dual active inhibitors and of inactive ligands.
Because four pairs of structures, each with one inhibitor
binding both the wt and T315I forms, are included, the
test set includes a range of inhibitor-associated flexibilities,
DFG conformational states, and allows direct comparisons
of the effects of gatekeeper mutations.

Virtual screening studies

Protein preparation
For docking, the single kinase domain structures, in com-
plex with their native ligands, were analyzed by the protein
preparation wizard of Schrodinger program (Schrodinger
LLC, 2011, New York, NY, USA). Water molecules were
deleted, bond orders assigned, and hydrogen atoms were
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added. A restrained minimization was then performed with
the OPLS2005 force field using the default constraint of
0.30 �A RMSD. A grid box was then generated for each
structure that included co-crystallized ligand and most of
the binding cleft between the N- and C-lobes. The main
chain nitrogen of Met318 at the hinge segment of kinase
domain was included as constraint as a hydrogen bond
donor for the docking runs.

Ligand preparation
Ligand preparation and the subsequent calculations were
performed by modified KNIME (www.knime.org) workflows
made up of Schrodinger modules. The co-crystallized
ligands, the dual active inhibitors, and decoy sets men-
tioned in the ligand-based study were prepared using the

OPLS2005 force field in the ligand preparation module of
Schrodinger. The ligands were ionized as between pH
5–9, and the tautomers and stereoisomers were gener-
ated. Finally one lowest energy conformation from the gen-
erated conformer set was chosen for docking with Glide.

Docking and scoring protocol
The compounds of the libraries were classified into ‘hits’ –
a ranked list – and ‘inactives’ using three different Glide
docking protocols: high throughput virtual screening
(HTVS), standard precision (SP), and extra precision (XP).
For each ligand, Glide generates a set of low-energy con-
formations and then exhaustively searches the receptor
active site to position the conformers. The docked poses

A B
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E

Figure 1: Representative active
and inactive conformations of the
ABL1 kinase domain. (A) Overall
kinase domain structure of ABL1.
The major structural features (C-
lobe, N-lobe, and hinge) are
labeled. The ligand (ponatinib) is
represented by a stick model
surrounded by a solvent accessible
surface. (B) The active DFG-in
conformation, target form for type I
inhibitors, is shown here taken from
Protein Databank (PDB) entry 2z60
with inhibitor PPY-A. The
phenylalanine of the DFG motif is
packed into its hydrophobic spine
position, and the DFG aspartic acid
is in a position able to coordinate
Mg ions for ATP binding. (C) The
DFG-out configuration is shown
here for type II inhibitor ponatinib
(3ik3). The DFG phenylalanine is
removed from its active position,
and the activation loop is greatly
displaced. (D) An inactive
conformation of ABL1 bound to
inhibitor PD166326 (1opk) is
intermediate between ‘DFG-in’ and
‘DFG-out’. The DFG phenylalanine
is removed from its active position,
but the overall activation loop main
chain resembles an active
conformation. The salt bridge
between the conserved glutamic
acid emerging from the C helix and
the catalytic lysine residue from
beta strand 3 is present. (E)
Overview of ABL1 interactions with
type II inhibitor ponatinib.
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pass through a series of hierarchical filters that evaluate
the receptor–ligand interactions and are then energy-mini-
mized on a precomputed grid of van der Waals and elec-
trostatic energies for the receptor. The final scores are
calculated according to the energy functions described
elsewhere (22). In short, all docking functions use flexible
ligand docking and same scoring scheme. But HTVS
reduces the number of low-energy conformers through the
docking filters. Moreover, HTVS reduces the thoroughness
of the final torsional refinement and sampling of the ligand
conformers. Compared with XP, SP is a softer method
that can identify relatively weak binders by allowing ‘less
than perfect’ poses. Therefore, SP is used in large-scale
VS to identify ligands with a reasonable propensity to bind.
Extra precision imposes severe penalties for poses that
apparently violate physical chemistry rules. For example,
charged and strongly polar groups should be adequately
exposed to solvent. Extra precision thereby reduces false
positives and can be used in lead optimization studies
where only a limited number of compounds are consid-
ered for synthesis or other experiments.

MM-GBSA re-scoring
To estimate the free energy of binding between the receptor
and the ligands, an implicit solvation model was used via
the molecular mechanics – generalized Born surface (MM-
GBSA) approach. Glide SP poses were re-scored using
MM-GBSA in two ways: first, as a rigid receptor, and sec-
ondly, as a partially flexible receptor where any residue with
an atom within 12 �A of the ligand remained flexible.

The MM-GBSA is a postprocessing end-state method for
calculating free energies of binding of molecules in solution.
Compared with more rigorous methods such as free energy
perturbation and thermodynamic integration methods,
MM-GBSA and the related method MM-PBSA are
computationally more efficient. All these methods allow for
rigorous free energy decomposition into contributions from
different groups of atoms or types of interaction. In MM-
GBSA, the binding free energy (DGbind) between a ligand (L)
and a receptor (R) in forming the complex (RL) is calculated
as:

DG ¼ DH� TDS � DEMM þ DGsol � TDS (1)

DEMM ¼ DEinternal þ DEelectrostatic þ DEvdw (2)

DGsol ¼ DGGB � DGSA (3)

where DEMM, DGsol and DS denote the change in gas
phase MM energy, solvation free energy, and the confor-
mational entropy upon binding. DEMM is composed of

A
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Figure 2: Scaffold tree of high-
affinity dual inhibitors for ABL1-wt
and ABL1-T315I. Imidazole is the
parent scaffold that gives rise to all
ponatinib analogs. (A) First two
parent layers of the scaffold tree.
(B) Full extension of the imidazole
containing scaffolds: the ponatinib
containing scaffold is marked. (C)
All inhibitors derived from ponatinib
scaffold. The term ‘analog’ is used
loosely in this article. The inhibitors
that are visually similar to ponatinib
in 2D sketches are termed analogs.
Scaffold is a well-defined term in
this article. A scaffold consists of all
carbo- and heterocyclic rings, their
aliphatic linker bonds, and atoms
attached via a double bond.
Therefore, the inhibitors that have
similar structures but differ in
heterocyclic atoms are not
considered to have the same
parent scaffold.

Table 1: ABL1 inhibitors existing in kinase knowledgebase (KKB).
An inhibitor can be counted for both wild-type and mutant forms

IC50 (nM) ABL1-wt ABL1-T315I

<100 232 60
100–299 68 79
300–1000 48 60
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DEinternal (bond, angle, and dihedral energies), DEelectrostatic,
and DEvdw (van der Waals) energies. DGsol is the sum of
electrostatic solvation energy (polar contribution), DGGB,
and the non-electrostatic solvation component (non-polar
contribution), DGSA. The polar contribution is calculated
using either the GB or PB model, while the non-polar
energy is estimated by solvent accessible surface area.
In Schrodinger, the calculation is performed in following
steps:

� Minimization of receptor alone

� Minimization of ligand alone

� Energy calculation after ligand extraction from optimized
receptor-ligand complex

� Energy calculation after receptor extraction from opti-
mized receptor-ligand complex

Figure 3: Scaffold generation
process. Taking ponatinib as an
example, a chemically meaningful
scaffold is extracted and
successively deconstructed one
ring at a time.

Table 2: ABL1 kinase domain structures deposited in the Protein Databank (PDB). IC50 values of the co-crystallized inhibitors and some
structural features are also listed. The X-ray crystallographic resolution is shown in braces

Co-crystallized ligand Ligand structure

PDB IDs IC50 (nM)

ReferencesABL1-wt ABL1-T315I ABL1-wt ABL1-T315I Comment

Danusertib (PHA-739358) – 2v7a (2.50 �A) 21 5 Type I
DFG-in
G-loop extended

(32)

PPY-A 2qoh (1.95 �A) 2z60 (1.95 �A) 20 9 Type I
DFG-in

(33)

SX7 3dk3 (2.02 �A) 3dk7 (2.10 �A) – – Type I
DFG-intermediate

–

DCC-2036 2qri (2.10 �A) 2qrj (1.82 �A) 0.75 5 Type II
DFG-out

(34)

Ponatinib (AP24534) 3oxz (2.20 �A) 3ik3 (1.90 �A) 8.6 40 Type II
DGF-out

(35)
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Docking analyses
Two metrics were used to calculate the enrichment suc-
cess of the virtual screening output ‘hit’ lists: the enrich-
ment factor (EF) and the receiver operating characteristic
(ROC) plot. The EF plots the percentage of actives as a
function of the position in the ranked list versus percen-
tage of all hits from the database. Active ligands or
decoys were identified as hits once they pass the Glide
docking filters mentioned above and can be ranked
according to Glide docking scores. In an XY plot for EF
calculation,

Y ¼ No. of actives identified as hits

All active hits
� 100; and

X ¼ Screened hits (Actives + Decoys)

All active hits + All Decoy hits
� 100:

The EF was calculated for 1%, 5%, and 10% of the total
hits that contain active ligands and decoys. This method
approximates and tests reasonable procedures of select-
ing compounds for testing after ranking compounds of
unknown activity by VS.

Receiver operating characteristic plots true positive rates
in Y-axis and the corresponding true positive rate in X-
axis:

Y ¼ No. of actives identified as hits

All active hits
� 100; and

X ¼ No. of decoys identified as hits

All Decoy hits
� 100:

The area under the curve (AUC) of ROC plot is equivalent
to the probability that a VS run will rank a randomly cho-
sen active ligand over a randomly chosen decoy.

The EF and ROC methods plot identical values on the
Y-axis, but at different X-axis positions. Because the EF
method plots the successful prediction rate versus total
number of compounds, the curve shape depends on the
relative proportions of the active and decoy sets. This
sensitivity is reduced in ROC plot, which considers
explicitly the false positive rate. However, with a suffi-
ciently large decoy set, the EF and ROC plots should be
similar.

Ligand-only-based methods
In principle, (ignoring the practical need to restrict chemi-
cal space to tractable dimensions), given enough data on
a large and diverse enough library, examination of the
chemical properties of compounds, along with the target
binding properties, should be sufficient to train cheminfor-
matics methods to predict new binders and indeed to
map the target binding site(s) and binding mode(s). In
practice, such SAR approaches are limited to interpola-
tion within structural classes and single binding modes,

partly because of the amount of data available and also
partly because of the consequently limited number of
chemical descriptors considered. Here, in order to investi-
gate to what extent the active inhibitors and decoys can
be distinguished, the compounds were assigned chemical
space coordinates according to the molecular descriptor-
based principal component (PC) sets of ChemGPS-
NPweb (23). These descriptors include some 40 molecu-
lar descriptors such as molecular weight, number of
rotatable bonds, number of hydrogen bond donors/ac-
ceptors and were analyzed for active ligands, DUD
decoys, and randomly selected high-potency
(IC50 < 100 nM) kinase inhibitors. The first three PCs from
the ChemGPS-NPweb-based calculations can distinguish
the inhibitor and decoy compound sets (with some over-
lap), but the ABL1 inhibitors are found scattered and
indistinguishable within the volume populated by ran-
domly chosen kinase inhibitors (IC50 < 100 nM). The first
four dimensions of the ChemGPS-NP PC calculation
account for 77% of the data variance. For typical
compound sets, PC1 represents size, shape, and
polarizability; PC2 corresponds to aromatics and conjuga-
tion-related properties; PC3 describes lipophilicity, polar-
ity, and H-bond capacity; and PC4 expresses flexibility
and rigidity. A 3D plot was constructed from the three-
first PCs to display the distinctions between the various
compound sets.

Correlation of molecular properties and binding affinity:
The Canvas module of the Schrodinger suit of programs
provides a range of methods for building a model that can
be used to predict molecular properties. They include the
common regression models, such as multiple linear
regression, partial least-squares regression, and neural
network model.

Several molecular descriptors and binary fingerprints were
calculated, also using the Canvas module of the Schro-
dinger program suite. From this, models were generated
to test their ability to predict the experimentally derived
binding energies (pIC50) of the inhibitors from the chemical
descriptors without knowledge of target structure. The
training and test set were assigned randomly for model
building.

Neural network regression
Neural networks are biologically inspired computational
methods that simulate models of brain information pro-
cessing. Patterns (e.g. sets of chemical descriptors) are
linked to categories of recognition (e.g. binder/non-binder)
via ‘hidden’ layers of functionality that pass on signals to
the next layer when certain conditions are met. Training
cycles, whereby both categories and data patterns are
simultaneously given, parameterize these intervening lay-
ers. The network then recognizes the patterns seen during
training and retains the ability to generalize and recognize
similar, but non-identical patterns.
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Results

Diversity of the inhibitor set
The high-affinity dual inhibitors for wt and T315I ABL1 kinase
domains can be divided roughly into two major scaffold cat-
egories: ponatinib-like and non-ponatinib inhibitors. The
scaffold analysis shows that there are some 23 major scaf-
folds in these high-affinity inhibitors. Although ponatinib ana-
logs comprise 16 of the 38 inhibitors, they are constructed
from seven child scaffolds (Figure 2). These seven child
scaffolds give rise to eight inhibitors, including ponatinib.
However, these closely related inhibitors vary significantly in
their binding affinity for the T315I isoform of ABL1, while wt
inhibition values are similar (Figure 4).

Figure 4 shows clearly that T315I affinity for ponatinib
analogs vary according to variations in their hydrophobic
binding interactions. For example, replacement of CF3 by
a chlorine atom causes a dramatic decrease in affinity for
T315I. A similar effect can be observed for 4-methyl sub-
stitution at the piperazine ring. Thus, the ponatinib scaf-
fold provides the greatest binding energy components via
predominantly polar interactions, especially H-bonding at
the hinge, but variations in the side chains and their
mostly hydrophobic interactions cause the variations in
binding affinity seen mostly for binding to the T315I
isoform.

HTVS and SP docking with DUD decoys
Virtual screening docking runs were performed for the
library of dual active compounds dispersed in the DUD
decoy set against the nine ABL1 kinase domains as sum-
marized in Table 2. For each kinase domain target struc-
ture, the co-crystallized ligand, the dual active inhibitors,
and the DUD sets were docked using the HTVS and SP
modes. The resulting ranked hit lists were characterized
using the EF and ROC AUC methods (Table 3, Figure 5).
The AUC values show that – with a single exception – SP
docking shows better results compared with the HTVS
protocol (Table 3). The exception occurs for docking
against the PPY-A-bound ABL1-T315I structure. Docking
to the type II receptor conformations in general provided
much higher enrichment of active inhibitors. Nearly 99%
enrichment was obtained by docking against each of the
type II conformation structures of ABL1-T315I. For VS
against a single target structure, the ROC AUC values
from the SP docking highlight the type II ABL1-T315I
kinase domain structure as the best choice.

Evaluation of early enrichment factors
The early EFs calculated for the VS runs are shown for the
SP method in Table 4, highlighting the relative success of
the docking runs to identify actives, filter away decoys,
and rank actives over the remaining decoys in the hit list.
Both the type II conformation targets provide the best
results. As the best example, docking against the ponati-
nib-bound ABL1-T315I kinase domain structure, 34 (89%)

of 38 active inhibitors versus only 1915 (30%) of 6319
decoys were identified as hits. At the EF1% level, 18
(47%) of these active inhibitors were already included. The
superior performance of the type II conformation target
structures is perhaps not surprising, given the preponder-
ance of type II inhibitors in the dual active set. However,
there are significant differences between the docking runs
against the two type II target structures. Against the DCC-
2036 bound kinase domains, enrichment of the active
inhibitors was a bit higher, but at the cost of identifying
more than 70% of decoys as hits. However, some of the
discouragement of this result is compensated for by the
relatively high early enrichment values. Using type I kinase
domain conformations, more actives and decoys were
identified as hits – up to 80% of the decoys – and early
enrichments were much poorer than using the type II con-
formation as docking target.

Binding energy prediction and enrichment with
MM-GBSA
Binding energies were calculated for the SP docked poses
using MM-GBSA, which in theory should provide improved
energy values and, by extension, should improve the rank-
ing of the hit list. However, Table 5 shows that both the
ROC AUC and enrichment values are decreased for type II
conformation targets with MM-GBSA approach. For the
type I, the results were mixed. Although the overall enrich-
ments were generally increased compared with the SP
and HTVS approaches, the early enrichment values are
lowered in most cases. These values show that binding
energies calculated by MM-GBSA approach could enrich
the active inhibitors from decoys, but the performance
was less satisfactory than SP docking energies.

VS with Glide decoys and weak inhibitors of ABL1
As it was most successful, the ponatinib-bound ABL1-
T315I conformation was chosen for further VS studies to
test the effects of alternate choices for decoys and alter-
nate methods for binding energy calculations. Using either
the ‘universal’ Glide decoys or ABL1 weak binders as
decoy sets, ranked hit lists from SP and/or XP docking
runs were either used directly or re-ranked using the MM-
GBSA approach with a rigid receptor model or using the
MM-GBSA approach with receptor flexibility within 12 �A of
the ligand. Table 6 summarizes the results. For the Glide
decoys, SP docking was sufficient to eliminate 86% of
decoys, partially at the cost of low early enrichment values,
which MM-GBSA energy calculations were not able to
improve. The ABL1 weak inhibitor set was used as the
strongest challenge to VS runs, because these, as ABL1
binders, require highest accuracy in binding energy rank-
ing for recognition. And indeed, SP docking eliminated
only roughly 50%, in contrast to the results for the Glide
‘universal’ decoys. However, the XP docking was able to
improve this to eliminate some 83%, at the cost, however,
of eliminating a larger set of active compounds. Both ROC
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and early enrichment values show that XP docking per-
formed better than random for the reduced set of com-
pounds classified as hits, but only barely. The addition of
MM-GBSA calculations with the rigid and flexible receptors
did not offer significant improvement.

Ligand-based studies

Chemical space of active inhibitors
Despite some overlap, active inhibitors and DUD decoys
map to distinguishable volumes in chemical space (Fig-

ure 6A). This itself provides information to filter sets of poten-
tial inhibitors to eliminate compounds that match decoys
rather than inhibitors. In contrast, plotting ABL1-wt selective
inhibitors versus dual active ABL1 inhibitors does not distin-
guish the sets (Figure 6B) in the major PC dimensions.

Correlation of molecular properties and binding
affinity
Multiple calculations were made to identify the strongest
linear correlations between the molecular properties of the
inhibitors and their experimental pIC50 values. For ABL1-
wt, the numbers of hydrogen bond donors and rotatable
bonds showed the strongest correlations (R2 of 0.87 and
�0.69, respectively). In contrast, for ABL1-T315I, only the
number of rotatable bonds showed a strong correlation
(R2 = �0.59), consistent with loss of threonine as a hydro-
gen bonding acceptor in the ABL1-T315I mutant. In both
cases, the number of rotatable bonds was found to nega-
tively correlate with the pIC50 values with moderate corre-
lation, supporting the generally valid inhibitor design goal
that minimizing flexibility will enhance binding (provided the
ability to fit the binding site is maintained, of course).

Several methods (multiple linear regression, PLS regres-
sion, and neural network regression) were used to create

Table 3: Docking of high-affinity inhibitors onto ABL1 kinase
domains. The results are shown as ROC AUC values

Type Ligand of target kinase

ABL1-wt ABL1-T315I

HTVS SP HTVS SP

Type I Danusertib – – 0.70 0.74
PPY-A 0.77 0.78 0.90 0.82
SX7 0.59 0.88 0.69 0.93

Type II DCC-2036 0.86 0.97 0.88 0.99
Ponatinib 0.87 0.96 0.94 0.99

AUC, area under the curve; HTVS, high throughput virtual screen-
ing; ROC, receiver operating characteristic; SP, standard precision.

Figure 4: Scatter plot of high-affinity inhibitors of wild-type and T315I mutant ABL1. Selected ponatinib analogs show how ABL1-T315I
inhibition varies among close analogs.
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models for predicting the experimental binding affinity
(pIC50) from molecular properties. Even in the absence of
clear correlations with individual molecular properties,
such models can in principle be trained to recognize
complex multifactorial patterns, given enough data. Here,
the neural network–based regression provided the best
correlation between the experimental and predicted val-
ues (Figure 7).

Discussion

Structure-based studies

ABL1 kinase domain structure
Some 40 crystal structures of ABL kinase domains (includ-
ing point mutants and ABL2) are available in the Protein
Databank (PDB), providing a good picture of the plasticity

Figure 5: Receiver operating
characteristic (ROC) plots of the
selected docking runs. The light
gray diagonal line shows
hypothetical random performance,
with an area under the curve (AUC)
of 0.50. The overall and early
enrichment are low with type I
ABL1 conformation as target using
the high throughput virtual
screening (HTVS) method. With
type II conformations, enrichments
are better, especially for the
standard precision (SP) method
(compared with HTVS).

Table 4: Overall and early enrichment of high-affinity inhibitors in SP docking. All values are shown in percentage

Ligand of target
kinase

Actives identified as
hits

Decoys identified as
hits EF1% EF5% EF10%

ABL1-wt ABL1-T315I ABL1-wt ABL1-T315I ABL1-wt ABL1-T315I ABL1-wt ABL1-T315I
ABL
1-wt

ABL
1-T315I

Danusertib – 100 79 – 21 – 50 – 61
PPY-A 100 100 80 80 37 37 39 47 53 61
SX7 100 100 80 80 11 26 58 68 74 84
DCC-2036 97 95 70 51 65 61 86 86 92 97
Ponatinib 95 89 55 30 67 47 86 82 94 87

EF, enrichment factor; SP, standard precision.

Table 5: ROC AUC and early enrichments by MM-GBSA energies on SP docked poses

Ligand of target kinase

ABL1-wt ABL1-T315I

ROC AUC EF1% EF5% EF10% ROC AUC EF1% EF5% EF10%

Danusertib – – – – 0.82 13 55 63
PPY-A 0.83 27.78 50 61.11 0.81 21 47 50
SX7 0.91 26.32 60.53 76.32 0.91 42 52 66
DCC-2036 0.82 45.95 45.95 54.05 0.91 19 52 64
Ponatinib 0.85 47.22 55.56 61.11 0.92 50 56 71

AUC, area under the curve; EF, enrichment factor; MM-GBSA, molecular mechanics – generalized Born surface area; ROC, receiver oper-
ating characteristic; SP, standard precision.
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of the receptor. Key variations are seen in the positions of
the activation and the glycine-rich loops, which are of a
scale too large for automated receptor flexibility algorithms
to have a chance of correct prediction. However, they do
cluster into clearly distinct groups (Figure 8), and represen-
tatives of the groups may be selected for use in drug dis-
covery tasks. The extent of knowledge of drug target

plasticity depends on extensive crystallography research,
something not available for relatively new targets. On the
other hand, for key target classes, such as protein kinas-
es, it is quickly becoming the norm to have significant
information regarding structural plasticity of the target in
drug discovery programs.

By itself, knowledge of target plasticity is not sufficient for
good predictivity of inhibitor binding properties. For exam-
ple, the energy costs of reorganization must be taken
into account, and these are not generally accessible to
theoretical methods. Instead, one increasingly has
recourse to databases of ligand binding energies. As
these databases grow, the prediction of binding energies
from known binding data and explicit consideration of the
plasticity of target structures will improve. At some point,
the size and diversity of the binding data alone may
become sufficient for predictivity when used in ‘high-
data-volume’ 3D-QSAR-type approaches. At present, as
can be seen here and elsewhere in the literature, ligand-
alone data are not adequate for binding predictivity, out-
side of narrowly proscribed boundaries, and drug design
methods benefit greatly from consideration of target
structures explicitly.

For tyrosine kinases, notably including ABL, the distinction
between ‘DFG-in’ and ‘DGF-out’ states arises from the
conformation of the activation loop and generates the
major classification of inhibitor types (I and II, respectively)
Among the type I conformations, substantial variations can
be found, especially concerning the glycine-rich loop and
the conformation of the DFG motif, such that the classifi-
cation becomes less clear. For example, the SX7 structure
shows the DFG motif to occupy a conformation intermedi-
ate between ‘DFG-in’ and ‘DGF-out’ (Figure 7). Also, the
danusertib-bound structure (PDB: 2v7a) shows the gly-
cine-rich loop in an extended conformation, whereas the
other eight structures show the loop in a shared bent
conformation in close contact with inhibitors.

The ‘DFG-in’ conformation corresponds to the active state
of the kinase, whereby the loop is extended and open,

Table 6: Virtual screening (VS) with glide decoys and weak inhibitors of ABL1. The ponatinib-bound ABL1-315I conformation was used
for VS runs

Ligand of target kinase Scoring function Decoys identified as hits (%) ROC AUC EF1% EF5% EF10%

Glide decoys SP 14.4 0.99 3 24 50
SP:MM-GBSA 0.96 3 24 50
SP:MM-GBSA12 0.92 3 24 47

ABL1 weak inhibitors (100–1000 nM) SP 42.36 0.65 3 9 12
SP:MM-GBSA 0.70 3 9 12
SP:MM-GBSA12 0.59 0 9 9
XP 17.24 0.58 0 0 5
XP:MM-GBSA 0.64 5 10 20
XP:MM-GBSA12 0.63 0 0 15

AUC, area under the curve; EF, enrichment factor; MM-GBSA, molecular mechanics – generalized Born surface; ROC, receiver operating
characteristic; SP, standard precision; XP, extra precision.

Figure 6: Chemical spaces occupied by active inhibitor and
decoys. About 40 molecular properties were summarized to eight
principal components (PCs), and three major PCs were mapped
in three-axes of Cartesian coordinates. (A) Color coded as blue is
for randomly selected potent kinase inhibitors, green is for
Directory of Useful Decoys (DUD) decoys, and red is for highly
potent dual activity ABL1 inhibitors. (B) Blue is for ABL1-wt and
red for ABL1-T315I. PC1, which is predominantly size, shape, and
polarizability, distinguishes DUD decoys and inhibitors most.
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the phenylalanine residue of DFG occupies a hydrophobic-
aromat binding site at the core of the kinase domain, and
the aspartic acid is poised to coordinate a magnesium ion

which in turn coordinates the beta and gamma phosphate
groups of ATP. In the DFG-in conformation, the kinase
domain can bind both ATP and protein substrate, and the
adenine ring of the ATP can form hydrogen bonds to
the hinge region of the kinase domain (24). In contrast, the
‘DFG-out’ conformation represents an inactive form of
the kinase (Figure 1C) and is generally incompatible with
both nucleotide and protein substrate binding. This confor-
mation was first seen in an ABL1 complex with imatinib
(25), but has since been found for many inhibitors and
many kinases. In this conformation, the DFG segment is
rotated, removing the DFG aromat from its binding site
and creating a cavity, which can tightly accommodate
inhibitors. The phenylalanine side chain can also partially
occlude the ATP binding pocket. ABL inhibitor complex
structures in the PDB show both DFG-in and DFG-out
conformations, for both wild-type and T315I forms, as
described above. Type II inhibitors (DFG-out binders) block
the conformational change to the DFG-in state and so
bind only to the DFG-out conformation. Type I inhibitors
may bind both DFG-in and DFG-out conformations. These
two conformations do not define two distinct and rigid
states for the protein, and a new pharmacophore type I 1/
2 has been proposed recently, which includes inhibitors
with all type I but few type II interactions (26). Although no
inhibition data are publically available for SX7, the KKB
shows a few congeners of SX7 that weakly inhibit FLT1,
FGFR1, and Aurora kinase A. But four other ligands are
highly potent inhibitors of both forms of ABL1 kinase.
Therefore, the nine publicly available PDB structures form
complete representative set for a thorough VS study. A
similar study has been published recently that used several
crystal structures of p38c to investigate the effects of com-
bining hit lists from different crystal structures of the same
target (27).

Figure 7: Neural network–based prediction of pIC50 values of the
active inhibitors from their molecular properties.

A B

DFG-In

DFG-intermediate

DFG-Out

Glycine
rich loop

Hinge DFG states

Figure 8: Overview of published ABL structures showing the clustering of DFG states at the ATP binding pocket. (A) The location of the
DFG conformation clusters relative to the hinge (front). The positions of the DFG phenylalanine affect the ATP pocket volume most
significantly and cluster into several groups. (B) Detail of the clustering of DFG states including the positions of the C helix: DFG-in (cyan),
DFG-out (dark blue), inactive DFG-intermediate (steel blue), and DFG-’src like’ (turquoise), the latter represented by a single Protein
Databank (PDB) entry (2g1t).
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Ligand selection
The choice of target structures and the choice of ligands
were guided by the aim to represent target plasticity on the
one hand and to preserve desirable high-potency dual inhi-
bition qualities on the other hand. The decoy sets were
chosen to enable testing of the VS methods in general, but
also to test the applicability of different types of decoy sets.
The DUD set was chosen to best match ABL1 inhibitor-like
ligands, and the Glide set is a universal decoy set. The
DUD decoy set has been previously used for enrichment
studies (28). The DUD data set has been shown to include
analog bias in the active ligand set. However, a recent ver-
sion of DUD data set (DUD-E) has been released to
address analog bias by enhancing chemotype diversity by
their Bemis–Murcko atomic frameworks (29). Alternate data
sets are available that also aim to minimize analog bias,
such as Maximum Unbiased Validation (MUV) (30). In this
study, we have replaced the original active ligands from the
DUD data set with the inhibitors retrieved from KKB, so the
analog bias of the DUD active ligands is not present.

One interesting result was the differentiation between the
type II receptor conformations, namely 3ik3 (ponatinib
bound) and 3qrj (DCC-2036 bound). With SP docking,
about 30% of DUD decoys were predicted as hits,
whereas this was more than 50% for 3qrj. The early
enrichment (EF1%) was also different between these con-
formations: 47.37% for 3ik3 and 61.11% for 3qrj. The
enrichment is similar for EF5%. Thus, the type II conforma-
tion represented by the ponatinib-bound ABL1-T315I
structure performed better for enriching active inhibitors;
the large proportion of ponatinib like inhibitors in the dual
active set probably accounts for this.

Directory of Useful Decoys decoy set has been previously
used for enrichment studies (28). Using the Glide universal
decoys, only 14.4% of decoys were predicted as hits. This
is an encouraging indicator, especially during VS with unfo-
cussed ligand library. The early enrichment values between
DUD and Glide decoys are not easily comparable, however,
because of the different total content of decoys in the hit
sets – inclusion of only few decoys in the hit list dramatically
reduces the EF values. Therefore, low early enrichment val-
ues with a small decoy set (such as Glide decoys here)
should be a discouraging indicator in VS.

Using weak ABL1 binders as the decoy set – the most
challenging variety – the Glide XP method was remarkably
able to eliminate some 80% of the decoys, whereas the
SP method eliminated about 60%. After elimination, the
overall enrichment (indicated by ROC AUC) values were
similar.

Chemical space navigation
ABL active inhibitors seem underrepresented in the KKB
data set. More than 23000 ligands are recorded with
IC50 < 100 nM for all forms of kinases, but only 255 are

active against ABL1 (wild-type and mutant forms). This has
been shown in a recent study with more than 20 000 com-
pounds against a 402-kinase panel (31). Of the 182 dual
activity inhibitors, 38 showed high activity (IC50 < 100 nM)
for both the receptor forms. But 90 high-activity ABL1-wt
receptor showed medium (IC50 = 100–299 nM) or low
(IC50 = 300–1000 nM) activity for ABL1-T315I. A few inhibi-
tors – less than 10 – showed high activity for ABL1-T315I,
but medium to low activity for ABL1-wt.

Conclusion

In this study, VS methods were applied to test their ability
to identify inhibitors of leukemia target kinase ABL1 and its
drug-resistant mutant form T315I. Nine PDB structures of
the ABL1 kinase domain, with and without the mutation,
and representing different activation forms, were used for
GLIDE docking. ABL1 inhibitors were retrieved from Kinase
Knowledge Base (KKB) database and combined with
decoy compounds from the DUD database. Enrichment
factor and receiver operating characteristic (ROC) values
calculated from the VS studies show the importance of
selecting appropriate receptor structure(s) during VS,
especially to achieve early enrichment.

In addition to the VS studies, chemical descriptors of the
inhibitors were used to test the predictivity of activity and
to explore the ability to distinguish different sets of com-
pounds by their distributions in chemical space. We show
that VS and ligand-based studies are complementary in
understanding the features that should be considered dur-
ing in silico studies.
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