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Abstract
Numerical simulations of reduced fluid models describing magnetized plasmas
have previously been used to study the boundary of fusion plasmas extensively.
A common approximation applied to these models is the so-called Boussinesq
approximation. One of the requirements for the Boussinesq approximation to
be applicable is that the background particle density is significantly higher
than the fluctuations in the particle density. Experimental measurements have
revealed that at least in the scrape-off layer (SOL) this is not the case, we will
therefore investigate the effects of the Boussinesq approximation in this thesis.
In addition to this, we also investigate the effects of linearizing the logarithmic
density in the drift wave term of the models. To do this we derive four sets
of reduced fluid equations describing the edge and SOL regions of a tokamak
plasma, one for each combination of approximations. These models are then
simulated numerically using the BOUT++ framework. Single point time-series
measurements from the simulations are then analysed using the stochastic
filtered Poisson process in addition to conventional statistical methods. From
the analysis, we observe that there are noticeable differences between the
different models, where the largest difference appears when the Boussinesq
approximation is used. We found that the logarithmic particle density in the
drift wave term generated increased shear flow in the edge region increasing
the confinement of plasma to the edge region reducing the overall particle
density in the SOL. By relaxing the Boussinesq approximation we observed
that structures moving radially outward through the domain have smaller
sizes and that the structures in the Boussinesq approximated case, and that
these structures decrease in size at faster rates. This indicates that the use of
the Boussinesq approximation influences the results of numerical simulation,
and deeper studies into the differences between the two cases need to be
done.
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1
Introduction
In a time when the need for energy increases while we still try to tackle the
ongoing climate crisis, the need for greener and more efficient energy sources
is higher than ever. One of the more promising candidates for such an energy
source is nuclear fusion power. Fusion energy is achieved by fusing lighter
elements creating heavier elements and releasing energy. This is the process
that takes place in the sun and other stars. If one wants to sound poetic it will
be like capturing a star in a box.

One of the major advantages of a potential fusion power reactor is the extreme
energy density of the fuel that is used and its abundance. The choice of fuel
is between different isotopes of hydrogen and helium. The most common fuel
used is a mix between the hydrogen isotopes deuterium H2 (D) and tritium
N3 (T) known as a D-T reaction, this would have an energy density of around
338 · 106MJ/kg. Deuterium can be extracted from water as it naturally occurs
in ocean water and if one used all the deuterium in the ocean there would be
enough fuel to create energy for around 2 · 109 years [1]. While there is no
naturally occurring tritium on earth it is possible to extract from the lithium
isotope Li6 so we are only limited by the total amount of lithium available.
The total amount of lithium should last for around 20 000 years [1], in which
time the development of D-D or other types of reactions could be achieved.
Another advantage of the fusion power plant is the fact that the only byproduct
that would be generated by this process would be radioactive elements with
a half-life [1] much smaller than what is created by the conventional fission
reaction that has byproducts such as Plutonium-239 with a half-life of up to 24
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2 chapter 1 introduction

000 years [2]. The safety of the fusion reactor is also much greater than the
fission reactor, a meltdown event of a fission reactor could be catastrophic as
demonstrated by the Chernobyl accident. In comparison, the most damaging
event that could happen to a fusion reactor would be a loss of the plasma to
the wall which would just ruin the machine, as in a fusion reactor as there is
no possibility for a runaway nuclear process.

The big question now is how we achieve this great act of creating energy
through fusion. The temperature needed to achieve fusion is extreme, as the
natural occurrence of fusion is within the core of a star. Our closest star the
Sun has a core temperature of around 15.7 · 106 Kelvin. This turns out to be
relevant as an estimated temperature for D-T fusion to occur is around 15 · 106
K. To be able to contain something of this temperature we exploit the fact that
at these temperatures the D-T mixture will become ionized and form a plasma.
This allows us to exploit the fact that plasmas can be contained within magnetic
fields. The exploitation of this property is the basis for most fusion reactor
designs. The currently most developed fusion reactor concept is the tokamak.
Developed by Igor Tamm and Andrei Sakharov the name is a translation of
the Russian acronym for toroidal chamber with magnetic coils [3]. The basics
of this concept is in the name, a reactor shaped like a torus (donut) using a
combination of current bearing coils to create magnetic fields that contain the
plasma. A schematic of a general tokamak design can be found in figure 1.1.
The biggest project in fusion reactor research, the ITER experiment, is based
on the tokamak design [4]. And it is with this design of reactor that this thesis
concerns itself.

Figure 1.1 illustrates the electric current and magnetic field configurations of a
tokamak plasma. The blue coils in figure 1.1 induce the toroidal magnetic field
and are capable of creating fields with strengths of several teslas. They achieve
this using superconductors, which in the case of ITER must be cooled to around
4 K. A newer superconductor technology that is currently in testing can operate
at higher temperatures and created a record-breaking field strength of 20 T in
the autumn of 2021 [6]. For comparison the Earths magnetic field is around
25 − 64𝜇T [7]. In addition to the magnetic coils, the green central beam in
figure 1.1 is a solenoid inducing a toroidal current in the plasma creating a
poloidal magnetic field. These two components create the main parts of the
magnetic field for the reactor. The gray magnets in figure 1.1 create vertical
magnetic fields which limit the plasmas’ tendency to move outwards toward
the wall of the reactor. This configuration of coils splits the plasma into three
main regions: the core, the scrape-off layer (SOL) and the wall shadow. The
core and SOL regions can is depicted in figure 1.2. Firstly, the core region
contains most of the plasma, the magnetic field lines lie on flux surfaces of
constant pressure and are closed in on themselves creating the main body of
the magnetic field. Secondly, the SOL contains magnetic field lines that do not
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Figure 1.1: The basic concept behind a tokamaks magnetic fields. [5]

close in on themselves but intersect material surfaces called divertor plates.
Thirdly, the wall shadow in which the magnetic fields intersect with the main
chamber walls of the reactor. The boundary between the core and the SOL is
indicated by the commonly called last closed flux surface (LCFS) or separatrix
and ideally, all the plasma would be contained within the core. In the event
of plasma exiting the LCFS, the magnetic fields in the SOL would then ideally
redirect the plasma towards the divertor plates which are specifically made to
handle the heat exhaust from the plasma in order to handle plasma interacting
with the wall.

It turns out from both experimental measurements and numerical simula-
tions [9–12] that not all the plasma leaving the core is diverted. There have
been observed coherent structures of plasma, with particle densities much
higher than the mean density of the SOL, moving out of the core region and
reaching the reactor walls. This does not only damage the walls by erosion and
melting, it also introduces impurities into the plasma making fusion harder to
achieve. As these events will have an important effect on both the longevity and
viability of any reactor, there has been put major efforts into understanding the
mechanisms behind these so-called filaments. In figure 1.3 we can see images
from a fusion reactor where a filament of plasma leaves the last closed flux
surface and move through the SOL.
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Figure 1.2: Illustration of the basic magnetic field structure of a tokamak. With the
core region marked in red and the scrape of layer marked in yellow. [8]

The main mechanism behind the transport is attributed to the interchange
instability [11]. This instability is driven by the occurrence of curvature and
gradient-B drifts due to the non-uniform magnetic field of the reactor. If there is
a local build-up of plasma density these drifts will create a region with charge
separation in the plasma. The separation of electrons and ions will create an
electric field which then induces an electric drift of the plasma. This will then
make the filament move out towards the walls of the reactor. A schematic
representation of this process is depicted in figure 1.4.

As these filaments lead to transport of plasma throughout the SOL there have
been multiple attempts to model this transport. The first examples of this was
trying to model the transport by using a simple diffusion model [15]. Using just
a diffusive process gave results that did not compare well to what was observed
in experiments. This led to the introduction of an advective-diffusive model
where in addition to a diffusive process an advection term was added. This as
well does not give results in agreement with experimental measurements. [16].
Therefore another model has been introduced where instead of modeling the
transport as a diffusion or advection process the transport is modeled using a
stochastic statistical model to describe the fluctuations of plasma caused by the
plasma filaments [17]. This statistical model is referred to as a Filtered Poisson
Process (FPP) and we will be using this model for the basis of our statistical
analyses.

The data that will be analysed in this thesis will all be from numerical sim-
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Figure 1.3: Plasma moving trough the SOL of the NSTX experiment in the form of
blob-like structures. The image captures the cross field view of the rector
near the outer midplane, where the solid line is the estimated position
of the separatrix and the dotted line shows the shadow of a RF antenna.
Camera captures area of (23𝑐𝑚)2 with 10𝜇𝑠 between each frame. Image
from Princeton Plasma Physics Laboratory [13]

ulations. To describe the transport of the plasma trough the SOL we will be
doing full turbulence simulations of the SOL and the edge regions. The edge
region is the part of the core closest to the separatrix, and will therefore have
an effect on the turbulence in the SOL. Doing full turbulence simulations the
accuracy of our results will be mostly determined by the accuracy of the model
and the simulation code. As it is not feasible to run numerical models for
an indefinite amount of time, approximations are used to lower the computa-
tional cost. One such approximation that is in common use in plasma physics
is the Boussinesq approximation. We will therefore investigate if the use of
this approximation has significant effects on the results from analysis. This
will be tested by applying different approximations to the simulations we are
doing.

As it is hard to distinguish between differences in turbulence visually, the
method of comparison between different simulations will be the statistics
properties of the fluctuations. While mean, relative fluctuations, skewness
and flatness moments at different radial positions would be the most know
statistics, there are others, mainly fluctuation statistics, which are the basis
of the FPP model. This focuses on time series measured over long periods of
time and allows other insight into the statistical properties of the turbulence.
Fluctuation statistics consist of power spectra, conditionally averaged waveform
and probability density functions. This will give even more ways of comparing
the numerical simulations and might give greater insight into the potential
differences between the models and dependence on model parameters
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Figure 1.4: Illustration showing buildup of density leading to charge separation by
gradient and curvature drifts, inducing an electric field and therefore an
electric drift. Here 𝜿 = 𝒃 · ∇𝒃 is the curvature vector with 𝒃 being a unit
vector pointing in the direction of the magnetic field and ∇ ln𝐵 show the
gradient of the magnetic field [14]

The rest of the thesis is structured as follows. In Chapter 2 we will derive model
equations describing the edge and SOL regions, discuss the Boussinesq approx-
imation, and present the final equation that will be the basis for our numerical
simulations. Then in Chapter 3 we will introduce and give an overview of how
the numerical simulations of the equations are done and how the output of
the data are analyzed. In Chapter 4 we will present the statistical analysis
methods and present the results of these methods applied to the data from
the simulations. We will then in Chapter 5 discuss the results for the previous
chapters and in Chapter 6 we will present the conclusions and outlook for
future work.



2
Model equations
In this chapter, we are going to derive the reduced fluid equations that are the
basis for the numerical simulations later in this thesis.

2.1 Fluid equations

The fundamental movement of a charged particle in a magnetic field is its
perpendicular gyration around what is called its guiding centre. This gyration
is described by a particle’s gyro-frequency𝜔𝑠 ,which for a singly charged particle
𝑠 is given as 𝜔𝑠 = 𝑒𝐵/𝑚𝑠 , where 𝑒 is the elementary charge,𝑚𝑠 is the and
mass of the particle and 𝐵 is the magnetic field it is exposed to. The radius of
this gyrating motion is captured by the gyro-radius 𝜌𝑠 given as 𝜌𝑠 =𝑚𝑠𝑣⊥/𝑒𝐵,
where 𝑣⊥ is the velocity in which the particle gyrates around the magnetic
field lines. From the definitions of the gyro-radius and gyro-frequency, it is
apparent that an increase in the strength of the magnetic field will increase
the gyro-frequency and decrease the gyro-radius. We can for strong enough
magnetic fields the following will hold

𝜌𝑠 ≪ 𝜆mfp, (2.1)

and

𝜔𝑠 ≫ 𝜈𝑠 . (2.2)

7
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Here 𝜆mfp is the mean free path for the particle, or in other words, the length
a particle travels before it collides with another particle and 𝜈𝑠 is the collision
frequency i.e. the time between each collision. These are the conditions for a
fully magnetized plasma and with these conditions the movement of a single
particle becomes less significant to the entire system, thus using single particle
motion to describe the entire system becomes an exercise of patience and
extreme computing power. A system that also has the property where the
motion of a single particle is insignificant to the wider system is fluids. With
the similarities in mind, one can therefore construct equations for a plasma
resembling the equations for a fluid.

To construct the equations for a fluid out of the particle motion of a collection of
charged particle we transform the usual kinematic description by considering
a 6-dimensional phase space of position and momentum. One can then by the
use of the Boiltzmann equation derive an infinite set of equations that describes
the plasma as a fluid. The first two moments of the kinetic equation are the
particle continuity equation and the momentum equation for any species 𝑠
given as

𝜕𝑛𝑠

𝜕𝑡
+ ∇ · (𝑛𝑠𝒖𝑠) = 0 (2.3a)

𝑚𝑠𝑛𝑠

(
𝜕

𝜕𝑡
+ 𝒖𝑠 · ∇

)
𝒖𝑠 = −∇ · 𝝅𝑠 − ∇𝑝𝑠 + 𝑞𝑠𝑛𝑠 (𝑬 + 𝒖𝑠 × 𝑩) (2.3b)

+
∑︁
𝑠′
𝑚𝑠𝑛𝑠𝜈𝑠𝑠′ (𝒖𝑠′ − 𝒖𝑠)

where 𝑛𝑠,𝑚𝑠, 𝒖𝑠, 𝑞𝑠 is the particle density, mass, velocity and charge for the
respective species 𝑠. 𝑬 and 𝑩 are the electric and magnetic fields; 𝝅𝑠 is the
viscous stress tensor, 𝑝𝑠 is the pressure and 𝜈𝑠𝑠′ is the collisional frequency
between species 𝑠 and 𝑠 ′, where 𝑠 ′ denotes all other particle species present in
the plasma. We denote electrons by a subscript e and ions by subscript i such
that 𝑞𝑒 = −𝑒 is the charge for an electron and 𝑞𝑖 = 𝑒 is the charge for a singly
charged ion. As the magnetic field is an important part of all the dynamics of
a plasma it is usual to define the coordinate system with this in mind, thus we
introduce the unit vector 𝒃 = 𝑩/𝐵. We will also use the subscripts ∥ and ⊥
such that a general vector 𝑨∥ = (𝒃 · 𝑨)𝒃 is parallel to the magnetic field and
𝑨⊥ = 𝒃 × (𝑨 × 𝒃) = 𝑨 − 𝑨∥ to indicate vector components perpendicular to
the magnetic field, respectively.

As an infinite set of equations are hard to do anything with, it is necessary
to impose a closure to the fluid equations. This will allow us to reduce the
number of equations in use, thus allowing for analytical treatment. One of the
more common closures is the drift ordering, which will be the closure that we
will utilize.
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Figure 2.1: Illustration of the cross section of a tokamak plasma with the main toroidal
magnetic field pointing out of the figure. The rectangular area illustrates
where the the slab approximation is applied. 𝜿 = 𝒃 · ∇𝒃 is the curvature of
the magnetic field and ∇ ln𝐵 show the gradient of the magnetic field. [18]

The geometry of the system we are modelling plays an important role in how
the equation will turn out. As a tokamak is in the shape of a torus it is then
natural to apply a toroidal geometry to the equations, this however can be
quite tricky to deal with. A system with a cartesian coordinate system would be
easier to deal with and we will therefore impose the so-called slab geometry on
our equations. In the slab geometry, we only consider a small part of the entire
torus, namely a rectangular area around the outboard mid-plane. In a small
domain around this point, toroidal geometry is approximately cartesian such
that the 𝑥 -coordinate points along the 𝑅 axis and 𝑦-coordinate points along
the bi-normal 𝒓 × 𝒃. A not-to-scale illustration of this can be seen in figure 2.1.
The arrow at the centre of the figure illustrates the direction of the curvature
𝜿 = 𝒃 · ∇𝒃 and the gradient of the magnetic field ∇ ln𝐵. For the slab geometry,
both of these will point inwards towards the centre of the tokamak. For the
derivations of the model, we will first look at more general coordinates, and
then later introduce this specific slab geometry.

2.2 Deriving the drift velocities

We also for the sake of simplicity only consider a two-species plasma, with
electrons and singly charged ions. We will also be neglecting viscosity and



10 chapter 2 model equations

collisionality for now, as dealing with them self-consistently can be quite finicky
at best, they will be introduced later on in the derivations. Starting form the
momentum equation for a particle species 𝑠, we can rewrite the perpendicular
fluid velocity by crossing the equation with the unit vector along the magnetic
field 𝒃

𝒃 ×

����𝑚𝑠𝑛𝑠

(
𝜕

𝜕𝑡
+ 𝒖𝑠 · ∇

)
𝒖𝑠 = −∇𝑝 + 𝑞𝑠𝑛𝑠 (𝑬 + 𝒖𝑠 × 𝑩) (2.4)

𝒃 ×𝑚𝑠𝑛𝑠

(
𝜕

𝜕𝑡
+ 𝒖𝑠 · ∇

)
𝒖𝑠 = −𝒃 × ∇𝑝 + 𝑞𝑠𝑛𝑠𝒃 × 𝑬 + 𝑞𝑠𝑛𝑠𝒖𝑠⊥𝐵 (2.5)

here we have used the fact that 𝒃 × (𝒖𝑠 × 𝒃) = (𝒖𝑠 − 𝒖𝑠 ∥) = 𝒖𝑠⊥. Sorting the
terms we get the equation for the velocity of the particle species 𝑠

𝒖𝑠⊥ =
𝑬 × 𝒃

𝐵
+ 𝒃

𝑞𝑠𝑛𝑠𝐵
× ∇𝑝 + 𝑚𝑠

𝑞𝑠𝐵
𝒃 ×

(
𝜕

𝜕𝑡
+ 𝒖𝑠 · ∇

)
𝒖𝑠 . (2.6)

From this equation we can isolate the different drifts that makes up the total
velocity for the species

𝒖𝐸 =
𝑬 × 𝒃

𝐵
=

1
𝐵
𝒃 × ∇𝜙 (2.7a)

𝒖𝑑𝑠 =
𝒃

𝑞𝑠𝑛𝑠𝐵
× ∇𝑝 (2.7b)

𝒖𝑝𝑠 =
𝑚𝑠

𝑞𝑠𝐵
𝒃 ×

(
𝜕

𝜕𝑡
+ 𝒖𝑠 · ∇

)
𝒖𝑠 . (2.7c)

From top to bottom these are the E cross B (ExB) drift, diamagnetic drift and
polarisation drift, respectively.

The ExB drift is the main mechanism behind any sort of bulk movement in
plasmas. It is also of interest to note that it is independent of the charge of
the particle, thus any time there is an electric field present in the plasma this
drift will be present for all particle species. The second equality in the ExB drift
comes from using the electrostatic approximation ,𝑬 = −∇𝜙 , where 𝜙 is the
electrostatic potential.

The diamagnetic drift occurs due to a pressure difference in the plasma. It is
important to understand that this is an apparent drift resulting from the fact
that there are more gyrating particles in the area with higher pressure and
therefore the plasma fluid will appear to move, even if there is no actual move-
ment of the guiding centres of the particles. There is however a relationship
between this drift and the gradient and curvature drifts of a single particle
that occur due to the unfavourable magnetic field present in tokamaks. There
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are also additional drifts such as the drift of particles along the magnetic field
which will get further exploration later.

In the polarisation drift given by equation (2.7c) we observe the dependence of
the entire species velocity. To solve this problem we introduce the drift ordering.
We do this by first analysing the scale of the different drifts. Introducing
a reference scale for our equations 𝛿 ≡ 𝜌𝑠/𝐿, where 𝜌𝑠 = 𝑚𝐶𝑠/𝑒𝐵 is the
gyroradius and 𝐿 is the typical length scale of the plasma parameters. Here 𝐶𝑠
is the thermal velocity also called the acoustic speed defined as𝐶𝑠 = (𝑇𝑠/𝑚𝑠)2.
We also introduce the normalisation 𝑛 = 𝑛/𝑛0, 𝒖̂ = 𝒖/𝑈 , 𝑝 = 𝑝/𝑚𝑛𝑜𝐶2

𝑠 , and
𝒙 = 𝒙/𝐿, 𝑡 = 𝑡𝐿/𝑈 . Where 𝑛0 is the background density, 𝑈 is the typical
velocity of the system. Using this normalisation into our equation we get

𝑛𝑠

(
𝜕

𝜕𝑡
+ 𝒖𝑠 · ∇

)
𝒖̂𝑠 = −𝐶

2
𝑠

𝑈 2 ∇̂𝑝 + 𝑛𝑠
𝐿

𝜌𝑐

𝐶𝑠

𝑈

(
𝑬

𝑈𝐵
+ 𝒖̂𝑠 × 𝒃

)
(2.8)

(2.9)

Now we can consider two different sizes to decide the ordering. The ratio
between the thermal velocity and the fluid velocity as well as their relation to
the scale of the system. In the case of drift ordering, we assume that the fluid
velocity is smaller than the thermal velocity and we get

𝑈

𝐶𝑠
∼ 𝜌𝑠

𝐿
≪ 1. (2.10)

This relation tells us that to lowest order we have just the pressure and the
Lorentz force terms left. Taking the cross product of these terms with 𝒃 we get
the drifts

𝑛𝑠𝒖𝑠⊥ = 𝑛𝒖𝐸 + 𝒃 × ∇̂𝑝𝑠 .

The first term on the RHS of the expression can be identified as the normalized
ExB drift 𝒖𝐸 = 𝒖𝐸/𝑈 and the second is the diamagnetic drift. As these are the
lowest order drifts and therefore most important we use these as the velocity
in the polarisation drift and equation (2.7c) becomes

𝒖𝑝𝑠 =
𝑚𝑠

𝑞𝑠𝐵
𝒃 ×

[
𝜕

𝜕𝑡
+
(
𝒖𝐸 + 𝒖𝑑𝑠 + 𝒖𝑠 ∥

)
· ∇

] (
𝒖𝐸 + 𝒖𝑑𝑠 + 𝒖𝑠 ∥

)
.

We now have the velocities for both particle species and we insert them into
our density equation,

𝜕𝑛𝑠

𝜕𝑡
+ ∇ ·

[
𝑛𝑠

(
𝒖𝐸 + 𝒖𝑑𝑠 + 𝒖𝑝𝑠

) ]
+ ∇ ·

[
𝑛𝑠

(
𝒖 ∥𝑠 + 𝒖𝜈𝑠 + 𝒖𝜋𝑠

) ]
= 0 (2.11)

where we have chosen to write the parallel drifts 𝒖 ∥𝑠 on their own as the choice
of closure for the drift is highly dependent on the chosen ordering. We have
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also at this point added the collisional drift 𝒖𝜈𝑠 and the viscosity drift 𝒖𝜋𝑠 ,
they are included together with the parallel drift as their closure is also highly
involved.

The equation above will then be the basis for any further modelling we
do.

2.3 Particle and charge conservation

We first need to derive an equation for the evolution of the particle densities.
We start with the electrons, assuming that they are isothermal, also since the
mass of an electron is orders of magnitude smaller than the mass of an ion the
polarisation drift for electrons will have an inconsequential effect on the overall
plasma dynamics and can therefor be neglected. Not considering the collisional,
parallel and viscous terms, the equation for the electrons becomes

𝜕𝑛𝑒

𝜕𝑡
+ ∇ · [𝑛𝑒 (𝒖𝐸 + 𝒖𝑑𝑒)] = 0

d𝑛𝑒
d𝑡

+ 𝑛𝑒∇ · 𝒖𝐸 + ∇ · (𝑛𝑒𝒖𝑑𝑒) = 0

where we have defined the advective derivative with the ExB drift as 𝑑/𝑑𝑡 =
𝜕𝑡 + ∇ · 𝒖𝐸 .

Taking a closer look at the ExB term we can define a useful operator

∇ · 𝒖𝐸 = ∇ ·
(
1
𝐵
𝒃 × ∇𝜙

)
=

1
𝐵
(∇ × 𝒃 + ∇ ln𝐵 × 𝒃) · ∇𝜙

= K (𝜙)
where K (·) indicates the curvature operator, see appendix A.1 for further
detail. Observe also that the diamagnetic term can be written in terms of the
curvature operator

∇ · (𝑛𝑒𝒖𝑑𝑒) =
𝑇𝑒

𝑞𝑒
∇ ·

(
1
𝐵
𝒃 × ∇𝑛𝑒

)
=
𝑇𝑒

𝑞𝑒
K (𝑛𝐸)

and we end up with an equation for the electron density that becomes
d𝑛𝑒
d𝑡

+ 𝑛𝑒K (𝜙) + 𝑇𝑒
𝑞𝑒

K (𝑛𝑒) = 0 (2.12)

d𝑛𝑒
d𝑡

+ 𝑛𝑒K (𝜙) + 𝑇𝑒
𝑞𝑒

K (𝑛𝑒) = −∇ ·
[
𝑛
(
𝒖𝑒 ∥ + 𝒖𝜈𝑒

) ]
. (2.13)
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where we in the last step have added the parallel and colissional terms, neg-
electing electron viscosity as it is approximately zero.

To get an equation for the evolution of both plasma species we invoke the
quasi-neutrality condition of a plasma. As long as we look at spatial scales
larger than one Debye-length this is valid, as Debye-shielding will neutralize
any charge buildup. This then gives us 𝑛 = 𝑛𝑒 ≈ 𝑛𝑖 and we only need one
equation for the evolution of the density.

To get an evolution equation for the velocities we introduce the equation of
charge conservation given by

𝜕𝜌

𝜕𝑡
+ ∇ · 𝒋 = 0 (2.14)

where 𝜌 is the spatial charge density summed over all species. Given the quasi-
neutrality condition 𝜌 is neglected and we get an equation for conservation of
charge. We then have ∇ · 𝒋 = 0 where 𝒋 = 𝑒𝑛(𝒖𝑖 − 𝒖𝑒) and this gives us

∇ ·
[
𝑒𝑛

(
𝒖𝐸 + 𝒖𝑑𝑖 + 𝒖𝑝𝑖 − 𝒖𝐸 − 𝒖𝑑𝑒 − 𝒖𝑝𝑖

) ]
= −∇ ·

[
𝑒𝑛

(
𝒖𝑖 ∥ − 𝒖𝑒 ∥ + 𝒖𝜈𝑖 − 𝒖𝜈𝑒 + 𝒖𝜋𝑖

) ]
,

where we have included the parallel, collisional and viscosity drifts for them
selves. Again neglecting electron inertia and also invoking the cold ion approx-
imation we can reduce this equation into

∇ ·
[
𝑒𝑛

(
𝒖𝑝𝑖 − 𝒖𝑑𝑒

) ]
= −∇ ·

[
𝑒𝑛

(
𝒖𝑖 ∥ − 𝒖𝑒 ∥ + 𝒖𝜈𝑖 − 𝒖𝜈𝑒 − 𝑒∇ (𝑛𝒖𝜋𝑖)

) ]
𝑒∇ ·

(
𝑛𝒖𝑝𝑖

)
+𝑇𝑒K (𝑛) = −𝑒∇ ·

(
𝑛𝒖𝑖 ∥ − 𝑛𝒖𝑒 ∥

)
− 𝑒∇ (𝑛𝒖𝜋𝑖) . (2.15)

here we have removed the collsional term as the momentum conservation
implies that the two cancel each other out. While using the cold ion approx-
imation there technically is no viscosity the ion viscous term is needed for
numerical stability in our simulations and is therefor included.

We again get the curvature operator of the diamagnetic drift for the electrons.
The polarisation term as well as the terms on the RHS requires some more
investigation.

2.4 Polarisation equation

In this section, we treat the polarisation equation and also discuss and derive
a requirement for the Boussinesq approximation to be applicable.
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The polarisation term can be expanded as follows

∇ · (𝑛𝒖𝑝𝑖) = ∇ ·
(
𝑛𝑚𝑖

𝑞𝑖𝐵
𝒃 ×

d𝒖𝐸
d𝑡

)
(2.16)

=
𝑚𝑖

𝑞𝑖

(
∇𝑛
𝐵

· 𝒃 ×
d𝒖𝐸
d𝑡

− 𝑛∇ ln𝐵
𝐵

· 𝒃 ×
d𝒖𝐸
d𝑡

)
+ 𝑚𝑖𝑛

𝑞𝑖𝐵

[
(∇ × 𝒃) · d𝒖𝑒

d𝑡
− 𝒃 ·

(
∇ ×

d𝒖𝑒
d𝑡

)]
. (2.17)

For tokamak plasmas the main magnetic field varies on a much larger scale than
for the dynamic scale we are interested in, such that O(∇ ln𝐵) ∼ O(∇×𝐵) ≪
O(∇𝜙). Therefore we can neglect the second and third terms in equation 2.17.
Also using the vector identity 𝒃 ×

(
𝒃 × ∇𝜙

)
= −∇⊥𝜙 we can transform the

equations into

∇ · (𝑛𝒖𝑝) = −𝑚𝑖𝑛

𝑞𝑖𝐵
2

(
∇ ln𝑛 · d

d𝑡
∇⊥𝜙 + d

d𝑡
∇2
⊥𝜙

)
. (2.18)

We can simplify the polarisation drift even further by applying the Boussinesq
approximation. The Boussinesq approximation [19] first appeared in the context
of fluid dynamics in a paper by Oberbeck [20], and so the approximation is also
called the Oberbeck-Boussinesq approximation. Its original use was to reduce
the complexity of fluid equations by assuming that the particle density of a fluid
only had a spacial variance. This allows one to break the particle density into a
background density such that the spatial variance is a small fluctuation around
this background. We will use this same argument to reduce the polarisation
equation. Applying the Boussinesq approximation to equation 2.18 the ∇ ln𝑛
term will become negligibly small and we thus reduce the polarisation drift to
be

∇ · (𝑛𝑢𝑝) = − 𝑚𝑖

𝑞𝑖𝐵
2

(
𝑛
d
d𝑡
∇2
⊥𝜙

)
. (2.19)

This approximation is useful in multiple ways. This neglects a cubic nonlinearity
which makes analytical and numerical treatment of the term simpler. This
reduction of complexity makes simulations run faster which is why it is in
common use.

In order to find when the Boussinesq approximation is applicable we expand
the density into a background 𝑛0 and a fluctuation part 𝑛 as 𝑛 = 𝑛0 + 𝑛. This
allows us to expand the first term of equating 2.18 into[

∇ ln𝑛0 + ∇ ln
(
1 + 𝑛

𝑛0

)]
· d
d𝑡
∇⊥𝜙 (2.20)
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where the two terms in the square bracket scale as

∇ ln𝑛0 ∼
1
𝐿𝑛

∇ ln
(
1 + 𝑛

𝑛0

)
∼ 𝑘⊥

𝑛

𝑛0

where 𝑘⊥ is a characteristic perpendicular wave number for the particle density
fluctuations.

Writing out the order of magnitude for each of the terms in the polarisation
equation 2.45 and requiring that the last term is greater than the two others
we get

1
𝐿𝑛

+ 𝑘⊥
𝑛

𝑛0
≪ 𝑘⊥

1
𝑘⊥𝐿𝑛

+ 𝑛

𝑛0
≪ 1.

From here we get the requirements that need to be fulfilled. We need to be in
a scenario where the characteristic length of the equilibrium particle density is
larger than the perpendicular wavelength of the particle density fluctuations.
Moreover, the particle density fluctuation amplitude 𝑛 has to be smaller than
the background density 𝑛0. Neither of the requirement is shown to hold in the
SOL as there have been observed order unity fluctuations in density in that
region [11, 13], and thus this approximation should not hold in our case.

This will be part of the investigation done in this thesis, to see which effect
including this approximation has on the statistical properties of the plasma
fluctuations.

2.5 Parallel and collisional closure

We will now look at the collisional and parallel closures for the model. Let us
start by considering the parallel closure.

In the SOL the plasma will interact with the walls and divertor targets of the
fusion reactor. We describe this interaction with the divertors in our parallel
closure. As the fusion reactor is starting up the wall has neutral charge, further
on in the process it will start to receive an influx of particles. There will be
a larger amount of electrons that will interact with the wall first owing to
their greater velocity thus making the walls gain negative charge. This will
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create a potential barrier called the sheath, giving us the sheath boundary
condition [21]: 〈

∇ ·
(
𝑛𝒖𝑒 ∥

)〉
∥ =

𝑛

𝐿∥
𝑢𝑒 ∥ =

𝑛

𝐿∥
𝐶𝑠 exp

(
Λ𝑠ℎ −

𝑒𝜙

𝑇𝑒

)
, (2.21)

where we take the parallel average over the field lines such that𝐿∥ is the parallel
connection length defined as the distance between the divertors following the
magnetic field lines. 𝐶𝑠 is the acoustic speed and Λ𝑠ℎ = ln

√︁
𝑚𝑖/2𝜋𝑚𝑒 is the

potential that is induced by the sheath, called the sheath potential. As the wall
is negatively charged this does not impede the ions which is assumed to move
with acoustic speed 〈

∇ ·
(
𝑛𝒖𝑖 ∥

)〉
∥ =

𝑛

𝐿∥
𝐶𝑠 . (2.22)

This assumes that we have flute modes, meaning that there is no perpendicular
change in plasma parameters while following the magnetic field lines from
divertor to divertor.

As we also need to model the edge region we need to handle a parallel closure
here as well. In the edge region we assume that ions are stationary compared
to the fast moving electrons and following the magnetic field lines electrons
are isothermal and in force balance such that

𝒖𝑖 ∥ = 0 (2.23)
d𝒖𝑒
d𝑡

= 0 (2.24)

this then allows us to get an expression for the parallel electron velocity:

𝒃 ·
����𝑚𝑒𝑛𝑒

(
𝜕

𝜕𝑡
+ 𝒖𝑒 · ∇

)
𝒖𝑒 = −𝑇𝑒∇𝑛 + 𝑛𝑒𝑞𝑒 (𝑬 + 𝒖𝑒 × 𝑩)

−𝑚𝑒𝑛𝑒𝜈𝑒𝑖𝒖𝑒

𝒖𝑒 ∥ =
𝑒∇∥𝜙 −𝑇𝑒∇∥ ln𝑛

𝑚𝑒𝜈𝑒𝑖
, (2.25)

notice the inclusion of the collisional term in the momentum equation. By
including the collisional term we get an equation for parallel velocity, by not
including it we would get an equation relating density with potential. Using
this velocity in our expression for the parallel term we get:

∇ ·
(
𝑛𝒖𝑒 ∥

)
= ∇ ·

(
𝑛𝑇𝑒

𝑚𝑒𝜈𝑒𝑖
∇∥

(
𝑒𝜙

𝑇𝑒
− ln𝑛

))
=

𝑛𝑇𝑒

𝑚𝑒𝜈𝑒𝑖
∇2

∥

(
𝑒𝜙

𝑇𝑒
− ln𝑛

)
, (2.26)
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here the collision frequency defined as

𝜈𝑒𝑖 =
logΛ𝑐𝑒4𝑛

6
√
2𝜋3/2𝜖20

√
𝑚𝑒𝑇

3/2
𝑒

(2.27)

where logΛ𝑐 is the Coulomb logarithm and 𝜖0 is the vacuum permittivity
[22].

We will now consider the effect of perpendicular friction. The collisional drift
between two fluid species can be derived to be:

𝒖𝜈𝑠⊥ =
𝑚𝑠

𝑞𝑠𝐵
𝒃 × 𝜈𝑠𝑠′ (𝒖𝑠 − 𝒖𝑠′) (2.28)

where 𝑠 ′ is the particle spices the particles 𝑠 collides with. As we can see
the collisional drift dependents on the velocities both particle species. To
tackle this we consider only the lowest order drifts, again using the cold ion
approximation and neglecting polarization drifts to lowest order we get for the
electron collisions

𝒖𝜈𝑒⊥ =
𝑚𝑒𝜈𝑒𝑖

𝑞𝑒𝐵
𝒃 × (𝒖𝑒 − 𝒖𝑖)

=
𝑚𝑒𝜈𝑒𝑖

𝑞𝑒𝐵
𝒃 × (𝒖𝐸 + 𝒖𝑑𝑒 − 𝒖𝐸)

=
𝑚𝑒𝜈𝑒𝑖

𝑞𝑒𝐵
𝒃 × 𝒖𝑑𝑒 . (2.29)

Using this as our collisional drift we then get that the collisional diffusion is
given by

∇ · (𝑛𝒖𝜈𝑒) = ∇ ·
(
𝑛
𝑚𝑒𝜈𝑒𝑖

𝑞𝑒𝐵
𝒃 ×

𝑇𝑒

𝑞𝑒𝑛𝑒𝐵
𝒃 × ∇𝑛

)
≈ −𝜈𝑒𝑖𝑚𝑒𝑇𝑒

𝑞2𝑒𝐵
2

∇2
⊥𝑛 = −𝜈𝑒𝑖𝑚𝑒𝐶

2
𝑠

𝜔2
𝑐𝑚𝑖

∇2
⊥𝑛. (2.30)

where 𝜔𝑐 is the ion gyro-frequency. To preserve momentum the collisional
drifts must cancel each other out an is therefore not present in the current
conservation equation.

The viscosity term is one of the most complicated terms to deal with, we will
therefore use the approximation

∇ · 𝝅 ≈ 𝜂⊥∇2
⊥𝒖𝑒 + 𝜂 ∥∇2

∥𝒖𝑒

where 𝜂⊥ and 𝜂 ∥ is the perpendicular and parallel viscosity constants. A more
proper discussion of viscosity is highly involved and can be found in [22].
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Using the above mentioned approximation we can find an expression for the
viscous diffusion term

∇ · (𝑛𝒖𝜋𝑖) = ∇ ·
(
𝑚𝑖𝑛

𝑞𝑖𝐵
𝒃 × ∇ · 𝝅 𝑖

)
≈ 𝑚𝑖𝑛

𝑞𝑖𝐵
𝜂⊥∇4

⊥𝜙, (2.31)

where we again use flute modes to neglect the parallel part of the viscous
term.

2.6 Normalization

Combining the equations 2.13, 2.15, 2.30, 2.31 and the parallel closure from 2.26
we get the set of equations for the edge region:

d𝑛
d𝑡

+ 𝑛K (𝜙) − 𝑇𝑒
𝑒
K (𝑛) = 𝑇𝑒𝑛

𝑚𝑒𝜈𝑒,𝑖
∇2

∥

(
ln𝑛 − 𝑒𝜙

𝑇𝑒

)
+ 𝜈𝑒𝑖𝑚𝑒𝐶

2
𝑠

𝜔2
𝑐𝑚𝑖

∇2
⊥𝑛

(2.32a)
𝑚𝑖𝑛

𝑒𝐵2 (∇ ln𝑛 + ∇) · d
d𝑡
∇⊥𝜙 − 𝑇𝑒

𝑒
K (𝑛) = 𝑇𝑒𝑛

𝑚𝑒𝜈𝑒,𝑖
∇2

∥

(
ln𝑛 − 𝑒𝜙

𝑇𝑒

)
+ 𝑚𝑖𝑛

𝑒𝐵
𝜂⊥∇4

⊥𝜙,

(2.32b)

Again using the same equations except for now utilizing the parallel clo-
sure from equations 2.21 and 2.22 we get the set of equations describing the
SOL:

d𝑛
d𝑡

+ 𝑛K (𝜙) − 𝑇𝑒
𝑒
K (𝑛) = − 𝑛

𝐿∥
𝐶𝑠 exp

(
Λ𝑠ℎ −

𝑒𝜙

𝑇𝑒

)
+ 𝜈𝑒𝑖𝑚𝑒𝐶

2
𝑠

𝜔2
𝑐𝑚𝑖

∇2
⊥𝑛

(2.33a)
𝑚𝑖𝑛

𝑒𝐵2 (∇ ln𝑛 + ∇) · d
d𝑡
∇⊥𝜙 − 𝑇𝑒

𝑒
K (𝑛) = 𝑛

𝐿∥
𝐶𝑠

[
1 − exp

(
Λ𝑠ℎ −

𝑒𝜙

𝑇𝑒

)]
+ 𝑚𝑖𝑛

𝑒𝐵
𝜂⊥∇4

⊥𝜙

(2.33b)

As it stands the equations above are given in any arbitrary coordinate system.
As mentioned earlier we are looking at at the outboard mid-plane with slab
coordinates. To transform our equations into this geometry let us first consider
a purely radial magnetic field in toroidal coordinates:

𝑩 =
𝐵0𝑅0

𝑅
𝒃 . (2.34)
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Here 𝐵0 and 𝑅0 are the magnetic field strength at the midpoint of the plasma
and the distance form the center of the torus to the middle of the confined
plasma. Putting this into equation for the curvature operator we then get for
the outboard mid-plane:

K(𝑓 ) = − 2
𝐵0𝑅0

𝜕𝑓

𝜕𝑦
. (2.35)

We will also introduce a commonly used quantity in fluid dynamics called
vorticity. This is used to describe the rotation of fluids, and for a plasma, it is
commonly defined as:

Ω = 𝒃 · ∇ × 𝒖𝐸

= 𝒃 ·
[
𝒃

𝐵
(∇ · ∇⊥𝜙) − ∇⊥𝜙

(
∇ · 𝒃

𝐵

)
+ (∇⊥𝜙 · ∇) 𝒃

𝐵
−
(
𝒃

𝐵
· ∇

)
∇⊥𝜙

]
≈ 1
𝐵
∇2
⊥𝜙, (2.36)

where the last approximation holds in cases where the magnetic field changes
on larger scales than the electrostatic potential giving us O(∇𝐵) ≪ O(∇𝜙)
allowing us to neglect the terms involving the gradient of the magnetic
field.

With these two changes the equations 2.32 and 2.33 becomes

d𝑛
d𝑡

− 2𝑛
𝐵0𝑅0

𝜕𝜙

𝜕𝑦
+ 2𝑇𝑒
𝑒𝐵0𝑅0

𝜕𝑛

𝜕𝑦
=

𝑇𝑒𝑛

𝑚𝑒𝜈𝑒,𝑖
∇2

∥

(
ln𝑛 − 𝑒𝜙

𝑇𝑒

)
+ 𝜈𝑒𝑖𝑚𝑒𝐶

2
𝑠

𝜔2
𝑐𝑚𝑖

∇2
⊥𝑛

(2.37a)
𝑚𝑖𝑛

𝑒𝐵2

(
∇ ln𝑛 · d

d𝑡
∇⊥𝜙 + dΩ

d𝑡

)
+ 2𝑇𝑒
𝑒𝐵0𝑅0

𝜕𝑛

𝜕𝑦
=

𝑇𝑒𝑛

𝑚𝑒𝜈𝑒,𝑖
∇2

∥

(
ln𝑛 − 𝑒𝜙

𝑇𝑒

)
+ 𝑚𝑖𝑛

𝑒𝐵
𝜂⊥∇2

⊥Ω,

(2.37b)

and

d𝑛
d𝑡

− 2𝑛
𝐵0𝑅0

𝜕𝜙

𝜕𝑦
+ 2𝑇𝑒
𝑒𝐵0𝑅0

𝜕𝑛

𝜕𝑦
= − 𝑛

𝐿∥
𝐶𝑠 exp

(
Λ𝑠ℎ −

𝑒𝜙

𝑇𝑒

)
+ 𝜈𝑒𝑖𝑚𝑒𝐶

2
𝑠

𝜔2
𝑐𝑚𝑖

∇2
⊥𝑛

(2.38a)
𝑚𝑖𝑛

𝑒𝐵2

(
∇ ln𝑛 · d

d𝑡
∇⊥𝜙 + dΩ

d𝑡

)
+ 2𝑇𝑒
𝑒𝐵0𝑅0

𝜕𝑛

𝜕𝑦
=
𝑛

𝐿∥
𝐶𝑠

[
1 − exp

(
Λ𝑠ℎ −

𝑒𝜙

𝑇𝑒

)]
+ 𝑚𝑖𝑛

𝑒𝐵
𝜂⊥∇2

⊥Ω.

(2.38b)

For the purposes of numerical simulation we would like to have the equa-
tions in a non-dimensional form we will therefore apply the so-called Bohm
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normalization to the equations. Using the following normalization:

𝜔𝑐𝑡 → 𝑡,
𝑇𝑒

𝑇0
→ 𝑇

𝑒𝜙

𝑇0
→ 𝜙,

𝑥

𝜌𝑠
→ 𝑥,

𝑛

𝑛0
→ 𝑛,

where 𝜌𝑠 =
√
𝑚𝑖𝑇0/𝑒𝐵, then the the above equation become

d𝑛
d𝑡

+ 𝑔
(
𝜕𝑛

𝜕𝑦
− 𝑛 𝜕𝜙

𝜕𝑦

)
= 𝜒0 (𝜙 − ln𝑛) + 𝐷⊥∇2

⊥𝑛 (2.39a)

∇ ln𝑛 · d
d𝑡
∇⊥𝜙 + dΩ

d𝑡
+ 𝑔
𝑛

𝜕𝑛

𝜕𝑦
= 𝜒0 (𝜙 − ln𝑛) + 𝜈⊥∇2

⊥Ω, (2.39b)

and
d𝑛
d𝑡

+ 𝑔
(
𝜕𝑛

𝜕𝑦
− 𝑛 𝜕𝜙

𝜕𝑦

)
= −𝜎0𝑛 exp(Λ𝑠ℎ − 𝜙) + 𝐷⊥∇2

⊥𝑛 (2.40a)

∇ ln𝑛 · d
d𝑡
∇⊥𝜙 + dΩ

d𝑡
+ 𝑔
𝑛

𝜕𝑛

𝜕𝑦
= 𝜎0 [1 − exp(Λ𝑠ℎ − 𝜙)] + 𝜈⊥∇2

⊥Ω. (2.40b)

where we have dropped the hat as all values are normalized and defined
𝑔 = 2𝜌𝑠/𝑅, commonly referred to as effective gravity. This is because the
curvature of the magnetic field will in this case act as something similar to
a gravitational field wanting to drag particles inward. In addition we have
introduced the sheath parameter 𝜎0 as

𝜎0 =
𝜌𝑠

𝐿∥
, (2.41)

and the conductivity 𝜒0 as

𝜒0 =

(
𝜌𝑠

𝐿∥

)2
𝑚𝑖

𝑚𝑒

𝜔𝑐

𝜈𝑒𝑖
, (2.42)

where the we have used ∇2
∥ → −𝑘2∥ ≈ −𝐿−2∥ . We also defined the collisional

diffusion of 𝐷⊥ = 𝜈𝑒𝑖𝑚𝑒/𝜔𝑐𝜌2𝑠𝑚𝑖 and collisional diffusion due to viscosity as
𝜈⊥ = 𝜂⊥/𝜔𝑐𝜌2𝑠 .

2.7 Model Equations

To combine the two sets of equations into one set of equation we redefine the
sheath parameter and the conductivity parameter to have a radial dependence
such that

𝜎 (𝑥) = 𝜎0

2
{1 + tanh [𝑤 (𝑥 − 𝑥SOL)]} , (2.43)

𝜒 (𝑥) = 𝜒0

(
1 − 1

2
{1 + tanh [𝑤 (𝑥 − 𝑥SOL)]}

)
. (2.44)
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This will create two regions separated by the LCFS whose location is defined
by 𝑥SOL, where the width of the transition between the two regions is decided
by the 𝑤 parameter. Adding this transition to the parameters allows us to
define one set of equations, this will be one of the main models used in our
simulations and throughout the thesis, we will refer to it as the Full n model
given as:

d𝑛
d𝑡

+ 𝑔
(
𝜕𝑛

𝜕𝑦
− 𝑛 𝜕𝜙

𝜕𝑦

)
= Σ𝑛 (𝑥) + 𝐷⊥∇2

⊥𝑛 − 𝜎 (𝑥)𝑛 exp (Λ𝑠ℎ − 𝜙)

+ 𝜒 (𝑥)
(
𝜙 − ln(𝑛)

)
(2.45a)

d∇2
⊥𝜙

d𝑡
+ ∇ ln𝑛 · d

d𝑡
∇⊥𝜙 + 𝑔

𝑛

𝜕𝑛

𝜕𝑦
= 𝜈⊥∇4

⊥𝜙 + 𝜎 (𝑥) [1 − exp (Λ𝑠ℎ − 𝜙)]

+ 𝜒 (𝑥)
(
𝜙 − ln(𝑛)

)
. (2.45b)

The first term on the right hand side of equation 2.45a is the plasma source
term defined as

Σ𝑛 (𝑥) = Σ0 exp
(
− (𝑥 − 𝑥0)2

𝜆2𝑠

)
, (2.46)

where Σ0 is the amplitude of the source, 𝑥0 the location and 𝜆𝑠 is the 𝑒-folding
length of the source. The values 𝜙 and 𝑛 is the fluctuating part of the plasma
potential and electron density defined by𝜓 = 𝜓 − ⟨𝜓 ⟩𝑦 where ⟨𝜓 ⟩𝑦 is the flux
surface average.

In addition to this base model, we will also be exploring some variations on
this model. One such variation is linearizing the density in edge term, such
that the driftwave term now becomes:

𝜒 (𝑥)
(
𝜙 − 𝑛

)
. (2.47)

Applying the linearization we then have the model we will refer to as the non
Bussinesq model:

d𝑛
d𝑡

+ 𝑔
(
𝜕𝑛

𝜕𝑦
− 𝑛 𝜕𝜙

𝜕𝑦

)
= Σ𝑛 (𝑥) + 𝐷⊥∇2

⊥𝑛 − 𝜎 (𝑥)𝑛 exp (Λ𝑠ℎ − 𝜙)

+ 𝜒 (𝑥)
(
𝜙 − 𝑛

)
(2.48a)

d∇2
⊥𝜙

d𝑡
+ ∇ ln𝑛 · d

d𝑡
∇⊥𝜙 + 𝑔

𝑛

𝜕𝑛

𝜕𝑦
= 𝜈⊥∇4

⊥𝜙 + 𝜎 (𝑥) [1 − exp (Λ𝑠ℎ − 𝜙)]

+ 𝜒 (𝑥)
(
𝜙 − 𝑛

)
, (2.48b)



22 chapter 2 model equations

The second variation we can do to the equations is applying the Boussinesq
approximation. This will neglect the term

∇ ln𝑛 · d
d𝑡
∇⊥𝜙, (2.49)

that originates from the polarization equation. Applying just the Boussinesq
approximation give us the Boussinesq log dw model:

d𝑛
d𝑡

+ 𝑔
(
𝜕𝑛

𝜕𝑦
− 𝑛 𝜕𝜙

𝜕𝑦

)
= Σ𝑛 (𝑥) + 𝐷⊥∇2

⊥𝑛 − 𝜎 (𝑥)𝑛 exp (Λ𝑠ℎ − 𝜙)

+ 𝜒 (𝑥)
(
𝜙 − ln(𝑛)

)
(2.50a)

d∇2
⊥𝜙

d𝑡
+ 𝑔
𝑛

𝜕𝑛

𝜕𝑦
= 𝜈⊥∇4

⊥𝜙 + 𝜎 (𝑥) [1 − exp (Λ𝑠ℎ − 𝜙)]

+ 𝜒 (𝑥)
(
𝜙 − ln(𝑛)

)
, (2.50b)

this uses the Boussinesq approximation but keeps the logarithm of the density
in the drift wave term.

Finally if we apply the Boussinesq approximation and linearize the density
term inside the drift wave term we end up with a model that has previously
been used to simulate an edge plus SOL plasma by Sarazin et al. [23–25], Garcia
et al. [26–28], Myra et al. [29–31], Bisai et al. [32–34], Nielsen et al. [35–37],
and Decristoforo et al. [38]. This will be referred to as the Boussinesq model:

d𝑛
d𝑡

+ 𝑔
(
𝜕𝑛

𝜕𝑦
− 𝑛 𝜕𝜙

𝜕𝑦

)
= Σ𝑛 (𝑥) + 𝐷⊥∇2

⊥𝑛 − 𝜎 (𝑥)𝑛 exp (Λ𝑠ℎ − 𝜙) + 𝜒 (𝑥)
(
𝜙 − 𝑛

)
(2.51a)

d∇2
⊥𝜙

d𝑡
+ 𝑔
𝑛

𝜕𝑛

𝜕𝑦
= 𝜈⊥∇4

⊥𝜙 + 𝜎 (𝑥) [1 − exp (Λ𝑠ℎ − 𝜙)] + 𝜒 (𝑥)
(
𝜙 − 𝑛

)
.

(2.51b)

These will be the four main models used throughout the thesis and will be
referred to by the same name as given above.



3
Numerical simulations
In this chapter,wewill introduce anddiscuss the different numerical simulations
done for this thesis.

3.1 The BOUT++ code

In this section, we will introduce the numerical framework used for the sim-
ulations that have been done for this thesis. All the simulations that will be
presented in this thesis have used BOUT++ [39]. BOUT++ (BOUndary Tur-
bulence in C++) is a framework for solving non-linear equations in 2D and 3D
curvelinear coordinate systems. It is primarily used for plasma fluid simulations
but can be used to solve general time-dependent equations as well. The code is
open source and can be found at https://github.com/boutproject/BOUT-dev.
The advantage of using a preexisting library is the reduction of significant
development time that has to go into creating a new and usable code for
simulation purposes. BOUT++ already contains various methods and solvers
that already have been tested for parallel processing, numerical stability and
convergence. Adding on the fact that it has a large user base most potential
issues have likely been identified and solved.

The usage of BOUT++ is also quite simple, once you have a compiled version
of the software you require one main file in which the code initialisation and
equations of the simulation are given and a directory /data with a file that
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gives the input parameters. This is also where the output from the simulations
is stored. The syntax for equations in the main file is made so that is as easy
as possible to implement. For example:

ddt ( vor t ) = −bracket ( phi , vort ,bm) + (1.0/n) ∗ g0 ∗ DDZ(n ) ;

describes the equation

dΩ
d𝑡

= −{𝜙,Ω} + 𝑔0
𝑛

𝜕𝑛

𝜕𝑧
(3.1)

where the last input in the bracket function can be used to decide which solver
should be used for the poisson bracket.

This independent choice of solver also extends to solving the entirety of equa-
tions, as BOUT++ allows for a choice in spatial solver, time integrator, and
even how the scheme for differentiation works independent of coordinates.
This allows for systems in which there is a centre-difference scheme of order
2 in one coordinate direction and an order 4 scheme in another direction.
This freedom of choice is quite useful as different problems require different
solvers. For instance, in our simulations to solve for the electric potential us-
ing Laplacian inversion, we use the BOUT++ cyclic solver for the Bousinessq
approximated cases and the BOUT++ implementation of PETSc solvers for
the non-Bousinessq case. Also changing which solver you use only requires a
change in the input file so there is no need to rewrite the whole code if the
initially chosen solvers are unfit. The model used in our simulations is a version
of the STORM module for BOUT++, it has previously been used to simulate
turbulence in an edge plus SOL domain [38,40]. To solve our specific system
we use a finite difference method in the radial direction and a spectral method
in the poloidal direction.

As an example of how a setup for a BOUT++ main file looks, we will take a
look at the main file for the simulations that we are going to run.

1 #include <bout / physicsmodel . hxx>
2 #include <der i v s . hxx>
3 #include <inv e r t _ l a p l a c e . hxx>
4 #include <bout / cons tan t s . hxx>
5 #include <i n i t i a l p r o f i l e s . hxx>
6 #include " f a s t _ou tpu t . hxx "

This first part imports all the necessary libraries that will be in use. The
first line includes the main functionality of the BOUT++ library, such as the
PhysicsModel class. The rest of the lines include useful functionality. Of note
here is the fast_output.hxxwhich is a nonstandard library but part of the STORM
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model of BOUT++. This defines the functionality for the virtual probes that
are implemented.

The next part will initialize the physics model as a child of the PhysicsModel
class. Lines 12 and 13 initialise the functions that will be used in the class, while
14-24 does error handling on the probe method. The lines of interest in this first
section come at 27-54, here we define the variables that are going to be used in
the simulation. Lines 56-62 are some switches to change the physics that are
included in the model, of interest to us is the Boussinesq and dw_logn terms.
These change whether we use the Boussinesq approximation in our model or
not and if the resistive term contains a linear or logarithmic density.

8 c lass Dr i f tF lu idMode l : public PhysicsModel
9 {

10
11 protected :
12 in t i n i t (bool r e s t a r t i n g ) ;
13 in t rhs ( BoutReal t ) ;
14 in t t imestepMonitor ( BoutReal simtime ,
15 BoutReal UNUSED( dt ))
16 {
17 in t r e t = 0;
18 i f ( f a s t _ou tpu t . enable_t imestep )
19 {
20 r e t = fa s t _ou tpu t . monitor_method ( simtime ) ;
21 i f ( r e t )
22 // r e tu rn i f r e t i s non−zero ( i n d i c a t i n g e r r o r )
23 return r e t ;
24 }
25 return r e t ;
26 }
27
28 private :
29 // Evo l v i ng den s i t y , v o r t i c i t y and p o t e n t i a l
30 Field3D n , vort , logn , phi ;
31 // Ca l c u l a t i n g r a d i a l and p o l o i d a l v e l o c i t y
32 Field3D vx , vz ;
33 // Den s i t y s ou r c e s
34 Field2D S ;
35 Field3D dw;
36 // Communicated v a r i a b l e s
37 FieldGroup comms;
38 // Bracke t method f o r adv e c t i on terms
39 BRACKET_METHOD bm;
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40 // sheath d i s s i p a t i o n parameter
41 BoutReal lambda_n , lambda_vort , L ;
42 // Seed f o r t u r bu l en c e i n i t i a l i z a t i o n
43 in t turbulence_seed ;
44 // S e t s l o c a t i o n o f s e p a r a t r i x
45 BoutReal i x sep ;
46 // r e p r e s e n t s s i z e o f d i s s i p a t i o n terms
47 Field2D l o s s ;
48 // width o f t r a n s i t i o n r eg i on between co r e and SOL
49 BoutReal t rans_width ;
50
51 // Va r i a b l e s and f u n c t i o n s used f o r p a r a l l e l l o s s terms
52 BoutReal mu_n , mu_vort , g0 , m_i , u , m_e , mu_0 , alpha_dw ;
53 // f l o a t i n g p o t e n t i a l f o r the noni so thermal sheath l o s s terms
54 BoutReal mu, V_ f l oa t ;
55 // sw i t ch to add random no i s e to d e n s i t y and v o r t i c i t y
56 bool i n i t i a l _ n o i s e ;
57 // sw i t ch to i n c l u d e term r e p r e s e n t i n g d r i f t −wave ph y s i c s in co r e
58 bool dr i f twaves ;
59 // use the Bous s in e sq approximat ion in v o r t i c i t y
60 bool bouss inesq ;
61 // use logn i n s t e a d o f n in Hasegawa−Wakatani term
62 bool dw_logn ;
63
64 // Lap la c ian s o l v e r f o r v o r t −> phi
65 c lass Lap lac ian ∗ ph iSo lver ;
66
67 // Ob j e c t to handle f a s t output
68 FastOutput f a s t _ou tpu t ;
69 } ;

In this code block, we define what will happens when the simulation is ini-
tialized. The OPTION keyword in lines 77-90 looks up the values of the given
name in the input file, if none is found the default value given as the last
parameter is used. Lines 105-128 set the transition between the edge region
and the scrape-off layer. Then in lines 137-145, we define first the values that
are going to be solved for, in this case: logarithmic density and vorticity, then
we also set up for which other values are going to be saved into the output files.
SAVE_REPEAT writes every time step while SAVE_ONCE writes the values at
initialization. Lines 148-160 set the solver used for getting the potential from
the vorticity depending on whether the Boussinesq approximation is used or
not. The rest of the lines initialize the density noise for instability and the
handling of the probes.
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71 in t Dr i f tF lu idMode l : : i n i t (bool UNUSED( r e s t a r t ) )
72 {
73
74 Options ∗ opt ions = Options : : getRoot ()
75 −>getSec t ion ( "model " ) ;
76
77 OPTION( opt ions , mu_n , −1.0);
78 OPTION( opt ions , mu_vort , −1.0);
79 OPTION( opt ions , g0 , −1.0);
80 OPTION( opt ions , m_i , 2) ; // Atomic Un i t s
81 OPTION( opt ions , lambda_n , 5e−4);
82 OPTION( opt ions , lambda_vort , 5e−4);
83
84 OPTION( opt ions , ixsep , −1);
85 OPTION( opt ions , i n i t i a l _ n o i s e , f a l se ) ;
86 OPTION( opt ions , dr i f twaves , f a l se ) ;
87 OPTION( opt ions , dw_logn , f a l se ) ;
88 OPTION( opt ions , boussinesq , true ) ;
89 OPTION( opt ions , alpha_dw , 1e−4);
90 OPTION( opt ions , turbulence_seed , 0) ;
91
92 // S p e c i f y Cons tant s
93 u = 1.66053892e−27; // kg
94 m_e = 9.10938291e−31; // kg
95 mu_0 = 4. ∗ PI ∗ 1 . e−7;
96
97 // Conver t Parameters to SI un i t s
98 m_i = m_i ∗ u ; // kg
99

100 // F l o a t i n g p o t e n t i a l ( on ly used f o r non i so thermal c a s e s )
101 mu = m_i / m_e ;
102 V_ f l oa t = 0.5 ∗ log (TWOPI / mu) ;
103
104 // I n c l ud e p o s i t i o n o f s e p a r a t r i x by we igh t ing e f f e c t o f SOL c l o s u r e terms
105 i f ( i x sep > −1)
106 {
107 l o s s . a l l o c a t e ( ) ;
108 // Se t width o f t r a n s i t i o n r eg i on from co r e to SOL
109 trans_width = 2.0 ∗ mesh−>getCoord inates ()
110 −>dx(mesh−>xs t a r t , mesh−>y s t a r t ) ;
111 for ( in t i x = 0; i x < mesh−>LocalNx ; i x++)
112 {
113 for ( in t i y = 0; i y < mesh−>LocalNy ; i y++)
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114 {
115 for ( in t i z = 0; i z < mesh−>LocalNz ; i z++)
116 {
117 l o s s ( ix , iy , i z ) = (0.5 ∗ (1 .0
118 + tanh ( trans_width
119 ∗ (mesh−>getGlobalXIndex ( i x )
120 − ixsep − 0 . 5 ) ) ) ) ;
121 }
122 }
123 }
124 }
125 else
126 { // Whole domain i s SOL
127 l o s s = 1 .0 ;
128 }
129
130 i n i t i a l _ p r o f i l e ( " S " , S ) ;
131
132 // Po i s s on b r a c k e t s : b_hat x Grad ( f ) dot Grad ( g ) / B = [ f , g ]
133 // Method to use : BRACKET_ARAKAWA
134 // Choose method to use f o r Po i s s on b ra ck e t adv e c t i on terms
135 bm = BRACKET_ARAKAWA;
136
137 SOLVE_FOR2( logn , vor t ) ;
138 SAVE_REPEAT(n ) ;
139 SAVE_REPEAT( phi ) ;
140 SAVE_REPEAT( vx ) ;
141 SAVE_REPEAT( vz ) ;
142 SAVE_ONCE(S ) ;
143 SAVE_ONCE( l o s s ) ;
144 SAVE_ONCE(mu_n) ;
145 SAVE_ONCE(mu_vort ) ;
146
147
148 i f ( bouss inesq )
149 {
150 // BOUT . inp s e c t i o n " ph iBou s s i n e sq "
151 ph iSo lver = Laplac ian : : c r ea t e ( Options : : getRoot ()
152 −>getSec t ion ( " phiBouss inesq " ) ) ;
153 }
154 else
155 {
156 // BOUT . inp s e c t i o n " ph i S o l v e r "
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157 ph iSo lver = Laplac ian : : c r ea t e ( Options : : getRoot ()
158 −>getSec t ion ( " ph iSo lver " ) ) ;
159 }
160 phi = 0 .0 ; // S t a r t i n g gue s s f o r f i r s t s o l v e ( i f i t e r a t i v e )
161
162 // I n i t i a l i s e the f i e l d s
163 i n i t i a l _ p r o f i l e ( " n " , n ) ;
164
165 comms . add( logn ) ;
166 comms . add( vor t ) ;
167
168 // Seed tu r bu l en c e with random no i s e
169 i f ( i n i t i a l _ n o i s e )
170 {
171 output << " \ tSeeding random noise
172 fo r t r i g g e r i n g tu rbu len t i n s t a b i l i t i e s \n " ;
173 output . wr i te ( " \ tAdded %i as seed \n " , turbulence_seed ) ;
174 srand ( turbulence_seed ) ;
175 //mpisrand ( t u r bu l e n c e _ s e e d ) ;
176 for ( in t i = 0; i < mesh−>LocalNx ; i++)
177 {
178 for ( in t k = 0; k < mesh−>LocalNz ; k++)
179 {
180 n( i , 0 , k ) += 2. ∗ ( ( ( double ) rand ()
181 /(RAND_MAX)) − 0.5) ∗ 0.0001;
182 // vo r t ( i , 0 , k ) += 2.*((( double ) rand ()/ (RAND_MAX)) − 0.5)*0.00001;
183 }
184 }
185 }
186
187 // Read boundary c o nd i t i o n s
188 logn . setBoundary ( " n " ) ;
189
190 logn = log (n ) ;
191
192 // Se t up output f o r s y n t h e t i c Langmuir probe t r a c e
193 i f ( f a s t _ou tpu t . enabled )
194 {
195
196 // Add monitor i f n e c e s s a r y
197 i f ( f a s t _ou tpu t . enable_monitor )
198 {
199 so lver−>addMonitor(& fa s t _ou tpu t ) ;
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200 }
201
202 // Add po i n t s from the input f i l e
203 in t i = 0;
204 BoutReal xpos , zpos ;
205 in t ix , iy , i z ;
206 Options ∗ f a s t _ou tpu t_op t i on s = Options : : getRoot ()
207 −>getSec t ion ( " f a s t _ou tpu t " ) ;
208 while ( true )
209 {
210 // Add more po i n t s i f e x p l i c i t l y s e t in input f i l e
211 fas t_ou tpu t_op t ions−>get ( " xpos " + std : : t o _ s t r i n g ( i ) , xpos , −1.);
212 fas t_ou tpu t_op t ions−>get ( " zpos " + std : : t o _ s t r i n g ( i ) , zpos , −1.);
213 i f ( xpos < 0. || zpos < 0 . )
214 {
215 output . wr i te ( " \ tAdded %i f a s t _ou tpu t po in t s \n " , i ) ;
216 break ;
217 }
218 i x = in t ( xpos ∗ mesh−>GlobalNx ) ;
219 i y = mesh−>y s t a r t ; a
220 i z = in t ( zpos ∗ mesh−>GlobalNz ) ;
221
222 fa s t _ou tpu t . add( " n " + std : : t o _ s t r i n g ( i ) , n , ix , iy , i z ) ;
223 fa s t _ou tpu t . add( " phi " + s td : : t o _ s t r i n g ( i ) , phi , ix , iy , i z ) ;
224 fa s t _ou tpu t . add( " vx "+std : : t o _ s t r i n g ( i ) , vx , ix , iy , i z ) ;
225 fa s t _ou tpu t . add( " vz "+std : : t o _ s t r i n g ( i ) , vz , ix , iy , i z ) ;
226 i++;
227 }
228 }
229
230 return 0;
231 }

In this code block, we set up the right-hand side, more precisely the equations
that will be evolved by the solvers. This function is called every time step. To
avoid any problems with potential negative density from numerics we evolve
the logarithm of the density so in line 239 we regain the true density. Then lines
241-254 we calculate the potential from the vorticity, using different solvers
which again is dependent on if we use the Boussinesq approximation or not.
Then lines 259-297 set up all the equations that will be evolved, the equations
themselves are written using the intuitive syntax specific to BOUT++. Lines
273-286 change if the resistivity term is linear or logarithmic. In the last two
lines 295 and 296, we calculate the velocities from the potential, this is done
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as the fast outputs lack the spacial resolution to calculate the velocities from
the output data. The last line calls the BOUT++ main routine that handles
the actual backend of the simulation.

233 in t Dr i f tF lu idMode l : : rhs ( BoutReal UNUSED( time ))
234 {
235
236 // Communicate v a r i a b l e s
237 mesh−>communicate (comms) ;
238
239 n = exp ( logn ) ;
240
241 i f ( ! bouss inesq )
242 {
243 // I n c l ud i n g f u l l d e n s i t y in v o r t i c i t i n v e r s i o n
244 phiSolver−>setCoefC (n ) ;
245 phi = phiSolver−>so lve ( vor t / n , phi ) ; // Use p r e v i ou s s o l u t i o n as gue s s
246 }
247 else
248 {
249 // Background d en s i t y on ly (1 in normal i s ed un i t s )
250 phi = phiSolver−>so lve ( vort , phi ) ;
251 }
252
253 // Communicate phi
254 mesh−>communicate ( phi ) ;
255
256 //****************** Equat ions o f the model **************************
257
258 // Con t i nu i t y equat ion :
259 ddt ( logn ) = −bracket ( phi , logn , bm) − g0 ∗ DDZ( phi )
260 + g0 ∗ DDZ(n) / n + S / n ;
261
262 // P a r t i c l e d i f f u s i o n
263 ddt ( logn ) += mu_n ∗ Delp2 (n) / n ;
264
265 // P a r a l l e l d e n s i t y l o s s
266 ddt ( logn ) −= lambda_n ∗ l o s s ∗ n ∗ exp ( V_ f l oa t − phi ) / n ;
267
268 // V o r t i c i t y equat ion :
269 ddt ( vor t ) = −bracket ( phi , vort , bm) + (1.0 / n) ∗ g0 ∗ DDZ(n ) ;
270
271 // Dr i f t−wave a d i a b a t i c i t y term ( from SOLT)
272 i f ( d r i f twaves )
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273 {
274 i f ( dw_logn )
275 {
276 dw = alpha_dw ∗ (1 − l o s s )
277 ∗ (( phi − DC( phi )) − ( logn − DC( logn ) ) ) ;
278 }
279 else
280 {
281 dw = alpha_dw ∗ (1 − l o s s )
282 ∗ (( phi − DC( phi )) − (n − DC(n ) ) ) ;
283 }
284 ddt ( logn ) += dw / n ;
285 ddt ( vor t ) += dw;
286 }
287
288 // Momentum d i f f u s i o n
289 ddt ( vor t ) += mu_vort ∗ Delp2 ( vor t ) ;
290
291 // Choice o f p a r a l l e l l o s s terms f o r v o r t i c i t y
292 ddt ( vor t ) −= lambda_vort ∗ l o s s ∗ ( exp ( V_ f l oa t − phi ) − 1) ;
293
294 // v e l o c i t y in x and z d i r e c t i o n
295 vx = DDZ( phi ) ;
296 vz = −DDX( phi ) ;
297 return 0;
298 }
299
300 BOUTMAIN( Dr i f tF lu idMode l ) ;

Note that BOUT++ uses by default the y-coordinate as the coordinate along
the magnetic field whereas the standard coordinate in the literature is z.

For further detail, BOUT++ is documented with examples at https://bout-
dev.readthedocs.io/en/latest/index.html

3.1.1 Data analysis tool

As BOUT++ dumps all the outputs from the simulations into multiple files, one
file for each core it runs on, running a simulation overmultiple cores gives many
files to deal with. A tool to easily handle the output files has been developed
called xBOUT [41]. It is a python package built on the xarray [42] package,
with features specific for handling BOUT++ data. Throughout this thesis, all

https://bout-dev.readthedocs.io/en/latest/index.html
https://bout-dev.readthedocs.io/en/latest/index.html
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the data is collected from the output files using xBOUT, which allows retrieval
of the data in a fast and efficient way for further analysis using python.

3.2 Numerical setup

In this section will go over the setup for the simulations done in the thesis.

The simulations will be done using the different variations of equation 2.51 in
a domain of lengths 𝐿𝑥 = 200 and 𝐿𝑦 = 100, where the domain is discretized
into a grid of 512× 256. The location of the separatrix 𝑥SOL is set to 𝑥SOL = 50
where the width of the transition 𝑤 is set to 𝑤 = 25/32. Using the same
numerical values used in [38] we get 𝐷⊥ = 𝜈⊥ = 10−2, 𝑔 = 10−3, 𝜒0 = 6 · 10−4,
Σ0 = 11/2000, 𝜎0 = 5 · 10−4 and Λ = (1/2) ln (2𝜋𝑚𝑖/𝑚𝑒), where the ions
are deuterium such that𝑚𝑖 = 3.34449469 · 10−27kg and𝑚𝑒 = 9.109383632 ·
10−31kg, and finally 𝑥0 = 20 and 𝜆𝑠 = 10. We apply Neumann boundary
condition on both the inner and outer boundary for the density and vorticity,
while for the potential we use a Dirichlet boundary condition for the outer
but a Neumann condition for the inner. Such that the boundary conditions are
given as

𝜕𝑛

𝜕𝑥

����
𝑥=0,𝐿𝑥

=
𝜕Ω

𝜕𝑥

����
𝑥=0,𝐿𝑥

=
𝜕𝜙

𝜕𝑥

����
𝐿𝑥

= 0, (3.2)

𝜙 (𝑥 = 0) = 0. (3.3)

For the poloidal directions, we apply periodic boundary conditions for all the
fields. A schematic of the simulation domain is shown in figure 3.1, it shows the
location of the plasma source, separatrix, and plots of the functions 𝜒 (𝑥) and
𝜎 (𝑥). The radial positions of the probes where data time series of the plasma
parameters are recorded are also shown.

3.2.1 Measurements

We are doing long turbulence simulations to be able to get the required amount
of data points for the statistical analysis. This makes the handling of the full
field of the simulation domain for full time resolution extremely heavy both
in storage and memory. Therefore the physical values from a given simulation
are written out in two parts: the full field and a grid of virtual probes. The full
field is written out at a slower temporal resolution while for the higher time
resolution output we have a grid of 9x9 probes evenly distributed throughout
the simulation domain. This means that in addition to the 9 probes shown in



34 chapter 3 numerical simulations

x

y

Σn

Lx

Ly

0
0

xSOL

edge

drift waves

scrape-off layer

interchange

probe positions

σ(x)
χ(x)

Figure 3.1: Schematic showing the domain used in the simulations. The plasma source
Σ𝑛 is shown as the gray shaded area, the radial variation in conductivity 𝜒
and sheath parameter strength 𝜎 , the location of the separatrix 𝑥SOL and
the radial positions of the virtual probes. [38]

figure 3.1 there are 8 other such rows evenly distributed among the poloidal
direction. The virtual probes write out all the same data as the full field,
but at one specific point in the simulation domain and at a higher temporal
resolution.

3.2.2 Simulations

The main simulations that will be done for this thesis consist of the four main
sets of equations introduced in chapter 2. These simulations will be done
to compare how the different models affect the statistical properties of the
fluctuations in the turbulence. There will be simulations done where we set
𝑥SOL = 0, these simulations will then be pure SOL simulations. This is done
so that one can get a clearer picture of which effects occur because of the
edge region and which are pure SOL effects. As mentioned above we use
parameters form [38], since our model is an extension of the one used in that
paper it will allow us to compare results easier. In table 3.1 we have listed some
more realistic machine parameters for comparison with the ones chosen for
the simulations. We will also be doing a scan for different sheath parameter
strengths 𝜎0 to check more realistic sheath parameter strengths.

In figure 3.2 we show contour plots of the logarithmic electron particle density
for the Full n and Boussinesq model.
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Table 3.1: Estimates for input parameters for different tokamaks [43].

g 𝜎0 𝜒0
MAST 2.4 · 10−3 6.1 · 10−5 2.7 · 10−4
C-Mod 3.4 · 10−3 7.7 · 10−6 1.0 · 10−5
TCV 8.8 · 10−4 3.3 · 10−5 1.9 · 10−4

KSTAR 3.7 · 10−4 1.6 · 10−5 6.8 · 10−4
AUG 3.4 · 10−4 1.5 · 10−5 7.7 · 10−5
JET 1.3 · 10−4 1.1 · 10−5 3.1 · 10−5
NSTX 2.7 · 10−4 1.0 · 10−4 1.1 · 10−4
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Figure 3.2: Contour plots of log(𝑛) in the turbulent state for the Boussinesq model
(top) and the Full n model (bottom).





4
Statistical analysis
In this chapter, we will introduce methods we will use for statistical analysis.
These methods will then be applied to the data from the simulations described
in the previous chapter.

4.1 Consepts

We start by introducing some statistical concepts that we are going to uti-
lize.

For this analysis we are going to utilize the absolute and normalized time series
of the physical quantities that we are investigating. For a given time series Ψ(𝑡)
we introduce the normalized time series Ψ̃(𝑡) by

Ψ̃ =
Ψ − ⟨Ψ⟩
Ψrms

(4.1)

where ⟨Ψ⟩ denotes the time average and Ψrms indicates the root mean square
(RMS) value defined as

Ψrms =
〈
(Ψ − ⟨Ψ⟩)2

〉1/2
. (4.2)

Following this definition, the time series Ψ̃ has zero mean as well as a standard
deviation of one. This will allow us to compare time series from different

37
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Figure 4.1: A part of the normalized electron density time series recorded at 𝑥 = 100
and 𝑦 = 50

simulations better. A normalized time series of electron density is given in
figure 4.1.

We will model each of the time series we analyse as a superposition of uncor-
related pulses with fixed shape and constant duration given by

Ψ𝐾 (𝑡) =
𝐾 (𝑇 )∑︁
𝑘=1

𝐴𝑘𝜓

(
𝑡 − 𝑡𝑘
𝜏d

)
(4.3)

where 𝐾 (𝑇 ) is the total amount of pulses in our time series over its duration𝑇 ,
𝜓 is some pulse function, 𝜏d is the duration of the pulses, 𝑡𝑘 is the arrival time
and 𝐴𝑘 is the amplitude for each pulse 𝑘. This stochastic model is often called
a filtered Poison process (FPP) [44]. The mean of the random variable Ψ𝐾 is
then ⟨Ψ⟩ = (𝜏d/𝜏𝑤) ⟨𝐴⟩, where ⟨𝐴⟩ is the average pulse amplitude and 𝜏𝑤 is
the average waiting time between each pulse. As the name eludes we further
assume that pulses arrive according to a Poisson process. This means that
the waiting times will be independent and exponentially distributed while the
arrival times are independent and uniformly distributed. Then we also assume
that the amplitudes are independent and exponentially distributed such that

𝑃𝐴 (𝐴) =
1
⟨𝐴⟩ exp

(
1
⟨𝐴⟩

)
. (4.4)

This then also give us that
Ψ2
rms =

𝛾

2
⟨𝐴⟩ , (4.5)

where 𝛾 relationship between 𝜏d and 𝜏𝑤 and describes the intermittency of the
prosess and is called the intermittency parameter deffined as:

𝛾 =
𝜏d

𝜏𝑤
. (4.6)
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The intermittency parameter can be used to estimate different statistical mo-
ments for the time series it describes. The estimates for the skewness and the
flatness moments for the time series are given as

𝑆Ψ =

〈
(Ψ − ⟨Ψ⟩)3

〉
Ψ3
rms

=
2
𝛾1/2

, (4.7)

𝐹Ψ =

〈
(Ψ − ⟨Ψ⟩)4

〉
Ψ4
rms

= 3 + 6
𝛾
. (4.8)

We can also use these moments for estimating the intermittency of the time
series. The relative fluctuation level given as Ψrms/⟨Ψ⟩ can also estimate the
intermittency by

Ψrms

⟨Ψ⟩ =
1
𝛾1/2

. (4.9)

Two-sided exponential pulses will be considered as the main pulse shape 𝜙𝑒
as they have been shown to be in agreement with results from experimental
measurements [45–48]. They are defined as:

𝜙𝑒 (𝜃, 𝜆𝑒) =

exp

(
− 𝜃

1−𝜆𝑒

)
, 𝜃 ≥ 0

exp
(
𝜃
𝜆𝑒

)
, 𝜃 < 0

(4.10)

where 𝜃 is a nondimensional variable which in our case is time normalized
by the duration time 𝑡/𝜏𝑒 , and 𝜆𝑒 is called the asymmetry parameter. The
asymmetry parameter describes the rise and fall time for each side of the
exponential tails, where 𝜆𝑒 = 1/2 will be a symmetric pulse shape.

The probability distribution function or PDF describes the probability that a
certain outcome of an event happens. For our case it would be the probabilities
for different fluctuation amplitudes we will be looking at. The shape of the
distribution function tells us how likely the different amplitudes are to occur.
For a symmetric PDF like the normal distribution, there is an equal distribution
of fluctuation amplitudes around the mean, while for a gamma-distributed
normalized time series fluctuation amplitudes will have an uneven distribution
where there the most probable fluctuations still happen around the mean
but there is a possibility for large positive fluctuations but not for negative
fluctuations. For a normalized two-sided exponential pulse shape the PDF is a
gamma distribution given as:

𝑃Φ̃𝑒 ,𝜙𝑒
(Φ̃𝑒) =

𝛾𝛾/2

Γ(𝛾)

(
Φ̃𝑒 + 𝛾1/2

)𝛾−1
exp

(
−𝛾1/2Φ̃𝑒 − 𝛾

)
(4.11)

where 𝛾 the intermittency parameter is the shape parameter.
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To describe the shape of a distribution we can use the previously defined
skewness and flatness. Skewness describes the asymmetry of the distribution, a
distribution with positive skewness will have longer tails in the right direction
and vice versa. Flatness describes the tails of the distribution, a higher flatness
indicates that a distribution has longer tails, while a lower value indicates the
opposite. For a common point of reference, a normal distribution will have a
skewness of 0 as it is symmetric, and has a flatness of 3.

The power spectral density or PSD of a time series describes how the the energy
of the time series is distributed among different frequencies. This allows us to
describe where the energy distribution of the signal is, where low frequencies
will describe the background of the system and high frequencies describe
the energy present in the fluctuations. In the context where we are given a
waveform we can calculate the PSD as the Fourier transform of the waveform
multiplied by it complex conjugate. The Fourier transform of a pulse form𝜓 is
given by

𝜓 (𝜔) = 1
2𝜋

∫ ∞

−∞
𝜓 (𝜃 ) exp(𝑖𝜃𝜔)d𝑡, (4.12)

where 𝜔 is the angular frequency. This gives us the PSD ΩΨ̃,𝜓 (𝜔) for the pulse
shape𝜓 by

ΩΨ̃,𝜓 (𝜔) =
1
𝐼2

���𝜓 (𝜔)���, (4.13)

where 𝐼2 is a normalization factor defined by

𝐼𝑛 =

∫ ∞

−∞
[𝜓 (𝑡)]𝑛 d𝑡 . (4.14)

From this relationship between the pulse function and the PSD we can use a
fit function on one and estimate parameters that should fit both the PSD and
the waveform.

For the two-sided exponential pulse, the PSD is given by:

ΩΦ̃𝑒 ,𝜙𝑒
(𝜔; 𝜆𝑒) =

2𝜏𝑒[
1 + (1 − 𝜆𝑒)2𝜏2𝑒𝜔2

] [
1 + 𝜆2𝑒𝜏2𝑒𝜔2

] (4.15)

where the asymmetry parameter 𝜆𝑒 for the two-sided exponential shows up as
the shape parameter.

A two-sided exponential pulse has a discontinuous peak, for high sampling
frequencies we expect the peak of the pulses in the simulation to be continuous.
As a Lorentzian pulse has a continuous peakwe will in addition to the two-sided
exponential pulse shape also consider a convolution between the two-sided
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exponential and a skewed Lorentzian pulse. The Fourier transform of a two-
sided exponential is given by:

𝜙𝑒 =
𝜏𝑒

(1 − 𝑖𝜆𝑒𝜏𝑒𝜔) (1 + 𝑖 (1 − 𝜆𝑒) 𝜏𝑒𝜔)
, (4.16)

and the Fourier transform of a skewed Lorentzian is given as [49]

𝜙𝑙 = 𝜏𝑙𝑒
−𝜏𝑙 |𝜔 | |𝜏𝑙𝜔 |−𝑖2𝜆𝑙𝜏𝑙𝜔/𝜋 , (4.17)

where 𝜆𝑙 again is the asymmetry parameter and 𝜏𝑙 is the duration time. Then
a convolution of the two gives us:

𝜙𝑐 =
𝜏𝑒𝜏𝑙𝑒

−𝜏𝑙 |𝜔 | |𝜏𝑙𝜔 |−𝑖2𝜆𝑙𝜏𝑙𝜔/𝜋
(1 − 𝑖𝜆𝑒𝜏𝑒𝜔) (1 + 𝑖 (1 − 𝜆𝑒) 𝜏𝑒𝜔)

(4.18)

where subscript 𝑒 and 𝑙 refers to the parameters associated with the two sided
exponential and the skewed Lorentzian respectively. The waveform would
be an inverse Fourier transform of the 𝜙𝑐 but no closed analytical expression
is known so it will be calculated by a numerical inverse Fourier transform.
The PSD for this waveform will then be the calculated using this numerical
waveform, and normalized by the integral of itself.

A numerical way to retrieve the waveform of the fluctuations that occur in a
time series is through conditional averaging. As the name implies we apply
a condition 𝐶 to the time series, like requiring a certain magnitude for the
fluctuations. Using this condition we will then pick out time intervals of a time
series Ψ̃(𝑡). The ensemble average of all these subintervals of the time series
then gives us the conditional average

Ψ̃𝐶 =
〈
Ψ̃|𝐶

〉
. (4.19)

The subintervals are selected around the maxima of Ψ̃ that fulfill the condition
𝐶, such that the interval is 𝑡 ∈ (𝑡𝑚 − Δ, 𝑡𝑚 + Δ). Here 𝑡𝑚 is the time where the
maxima occurred and Δ is a window around 𝑡𝑚 such that the total length of
the interval is 2Δ. In addition, we also require that none of the subintervals
overlaps each other. With these requirements in mind,we define the conditional
average of a time series as:

Ψ̃𝐶 =
1
𝑀

𝑀∑︁
𝑚=1

Ψ̃(𝑡 − 𝑡𝑚), 𝑡 − 𝑡𝑚 ∈ (−Δ,Δ) (4.20)

where𝑀 is the total amount of sub intervals. One other use for the conditional
average is the cross conditional average. The cross conditional average of a
time series Φ̃(𝑡) would not be defined around when its maxima fulfills the
condition, but rather when the time series Ψ̃ reaches a maxima that fulfills the
condition. So the cross conditional average would be defined as

Φ̃𝐶𝐶 =
〈
Φ̃|Ψ̃𝐶

〉
. (4.21)
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4.2 Time averaged radial profiles

In this section, we will present radial profiles of the lowest order moments for
the different simulations. All of these profiles are calculated by first taking the
appropriate moment for each of the time series measured with the artificial
probes. Then for each radial position we average over the poloidal direction,
this gives us a set of radial profiles for each of the moments. For the four main
cases, each probe has time series of length 2 · 105time steps.

The time-averaged electron density profile of our main simulations is shown in
the top left of figure 4.2. The density decreases exponentially moving outwards
through the SOL. We can observe that there is a notable difference between the
particle densities of the full 𝑛 model and the rest of the simulations. The fit to
an exponential function to the full n model and the Boussinesq approximated
model with logarithmic density in the drift wave term shows that there is a
difference in both amplitude and scale length of the density profiles. Where the
full n model has a scale length of 𝐿𝑛 = 35.59, and the Boussinesq approximated
model with log density has a scale length of 𝐿𝑛 = 33.76. The biggest difference
between the full 𝑛 and the other models is the magnitude of the density. At
𝑥 = 40 the measured mean density for the full 𝑛 model is ⟨𝑛⟩ = 1.28 while for
the Boussinesq log dw model it measures to be ⟨𝑛⟩ = 2.77.

The top plots in figure 4.2 hint at some interesting physics happening. For the
mean particle density, we see that in the full n case there is a higher peak
density than for the rest of the simulation inside the edge region. Then in the
SOL, the density of the full n model is smaller than the rest of the simulation
cases, hinting at higher confinement of the plasma. One interesting thing to
note is that this high containment only shows up in the model where the
Boussinesq approximation is not present and the drift wave term is logarithmic,
not for either of the cases where just one of them is present hinting at some
type of interplay between these two terms.

The relative electron density fluctuation profile of the four main simulations
is presented in the top right of figure 4.2. For all simulations, we see relative
fluctuation levels of order unity throughout the simulation domain. The two
simulations done with the Boussinesq approximations follow each other in-
creasing outwards in the SOL, while the non-Boussinesq simulations diverge
from them. The non-Boussinesq models seem to follow at the start with a
peak at the approximate location of the separatrix before starting to reduce
in magnitude further out in the SOL. There even is a divergence between the
relative fluctuations of the non-Boussinesq and the full n models.

While the relative fluctuation level for all four simulations seams about the
same in the edge region there is a noticeable difference near the separatrix.
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Figure 4.2: The radial profile of the mean (top left), relative fluctuation (top right),
skewness (bottom right), and flatness (bottom right) of the density for
different simulations. The dashed and the dotted lines represent an ana-
lytical fit to an exponential function for the Boussinesq log dw and full n
simulations.

Here the non-Boussinesq approximated models have an increase much larger
than the Boussinesq approximated models, implying that the area around the
separatrix has more fluctuations in the non-Boussinesq cases. Then after the
initial increase in relative fluctuation levels, the full n model drops in am-
plitude creating a difference in fluctuation magnitude between the two non
Boussinesq approximated cases, again hinting at the increase of confinement
in the full n model. After this initial increase, and drop for the full n case, the
two non-Boussinesq approximated models start to curve downwards, decreas-
ing in relative fluctuation level, while the Boussinesq approximated models
increase. The decrease in relative fluctuation level outward through the SOL
indicates that the term normally neglected in the Boussinesq approximation
has a dampening effect on the fluctuations.

As for the higher-order moments, skewness and flatness, they are plotted in
figure 4.2 bottom left and right respectively. The higher-order moments seem
to follow each other in shape, but with a slight spread. The shape follows what
has previously been observed in pure Boussinesq approximated simulations of
the same model [38].

In figure 4.3 the radial profile of RMS values for the radial velocity have been
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Figure 4.3: The radial profile of 𝑣𝑥 rms for the four main simulation cases.
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Figure 4.4: The radial profile of particle flux (left) and the poloidal velocity (right)
for the four main simulation cases.

plotted. From the plot, we see that the fluctuations of the two non-Boussinesq
approximated cases increase moving radially outwards, while the Boussinesq
approximated cases the has a more stable value throughout the domain. This
indicates an increase in the peak velocity for the fluctuations moving radially
outward meaning as filaments move radially outwards through the domain
they increase in radial velocity.

To see the effect that the edge region has on the profile we plot the radial
profiles for the radial electron flux and the mean poloidal velocity in figure
4.4. In the particle flux, we see an increase around the area where the source
is located in both the Boussinesq approximated cases. In the poloidal velocity,
we observe that there is a strong gradient in the velocities in the edge region.
This strong gradient indicates the presence of zonal flows, and the strength
of the gradient indicates the strength of the flow. Observe the cases with the
logarithmic density in the drift wave term have a greater gradient than the ones
in the cases with the linear drift waves. The fact that for the non-Boussinesq
case we see no increase indicates that there is an important interplay between
both the drift wave term and the polarisation equation.



4.2 time averaged radial profiles 45

0 50 100 150 200

x

10−1

1

〈n
〉

0 50 100 150 200

x

0.0

0.2

0.4

0.6

0.8

1.0

n
rm

s
/
〈n

〉

0 50 100 150 200

x

0

1

2

3

S
n

0 50 100 150 200

x

0

5

10

15

20

F
n

Boussinesq

Full n

Figure 4.5: The radial profile of the mean (top left), relative fluctuation (top right),
skewness (bottom right), and flatness (bottom right) comparing the dif-
ferent models in a pure SOL simulation.

To try to get an even better understanding of the physics underlying the
complex dynamics going on in these simulations we also did runs with the SOL
through the entire simulation domain by setting 𝑥SOL = 0. There are only two
models in this simulation as the difference between two of them is a change
in the drift wave term which only occurs in the edge region and therefore
does not apply in these simulations. The profiles are shown in figure 4.5. The
mean density profile for the two simulations is plotted in the top-left frame.
Comparing the two scale lengths we have for the Boussinesq model 𝐿𝑛 = 34.87,
and for the full n model 𝐿𝑛 = 40.16. For the skewness and the flatness shown
in the bottom two panels there seem to be no significant difference between
the two simulations, the exception being the last two data points in the flatness.
As higher-order moments need more data to converge this might be down to
too short simulations.

While all the other statistics look fairly similar the one standing out is the
relative fluctuation seen in the top right of figure 4.5. Here we observe a
deviation from the Full n model and the Boussinesq approximated models.
The relative fluctuation level decreases with radius for the first after reaching
𝑥 = 100, whereas the latter keeps increasing with radius. The similarity
between the behaviour of the relative fluctuation in the pure SOL and the edge
and SOL simulations indicates that the effect of the Boussinesq approximation
in the SOL is mainly in the fluctuation levels.
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Figure 4.6: The radial profile of the mean (top left), relative fluctuation (top right),
skewness (bottom right), and flatness (bottom right) comparing difference
between a pure SOL simulation and a edge plus SOL simulation in a full
n model.

To compare the differences in the full n model with and without the edge
region we plot the profiles from the simulations done of the full n model in
the edge plus SOL and the pure SOL case against each other in figure 4.6. The
third and fourth-order moments coincide for both simulations. The scale length
of the two density profiles as found previously is 𝐿𝑛 = 40.15 and 𝐿𝑛 = 35.59
for the SOL and edge plus SOL simulations respectively. The density profiles
differ also as the simulation with the edge region has a slightly higher mean
density at the start but lower mean densities going outwards. This is also seen
in the relative fluctuations where there is a higher relative fluctuation level in
the case with just the SOL throughout the entire simulation domain, except for
one point close to where the separatrix would be.

This indicates that the separatrix as one would expect plays a role in the con-
finement of the plasma. Comparing it with the results form [38] where we do
not see this same difference would indicate that the Boussinesq approximation
changes both how the separatrix and the fluctuation in the SOL behave.

In the left part of figure 4.7 we compare the electron flux and the poloidal
velocities of the full n model with the Boussinesq approximated in a pure SOL
simulation domain. There is not a notable difference between the different
models for the particle flux. We also plot the pure SOL and the edge plus SOL
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Figure 4.7: The radial profile of particle flux and poloidal velocity. Comparing the
different models in a pure SOL domain (left), and comparing the full n
model in a pure SOL with the edge and SOL case.

full n models against each other. Here we again observe the steady decrease in
flux for the edge plus SOL case while in the pure SOL case there is an increase
around the source is. In the plot for the poloidal velocities, we observe a peak
near the source, and further outwards into the domain the points lay around
zero. Where the difference in the sign of the velocities can be attributed to slight
differences in how the source term manifests itself. For the plot comparing the
SOL with the edge plus SOL we observe how much of a difference it makes for
the poloidal velocity to have the edge region, this also shows how small the
poloidal velocities are in the pure SOL case compared to the velocities of the
zonal flow in the edge plus SOL case. The plots in figure 4.7 again describe the
importance of the zonal flow barrier between the source of the plasma and the
SOL for sake of confinement.

For completeness, a scan of different sheath parameters has been done for the
full n model the profiles of which are shown in figure 4.8. The profiles for the
densities have a quite pronounced brake for the lower sheath parameters giving
us the broadening of the far SOL seen in experiments for change in plasma
densities [16]. Universally the relative fluctuation levels all decrease outwards
through the simulation domain as we have seen for all the non-Boussinesq
cases. The mean electron density measured at 𝑥 = 80 as well as the length
scale for each of the cases is given in table 4.1. We also plot the scale length
against the sheath parameter strength in figure 4.10, where we have fitted it to
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Figure 4.8: The radial profile of the mean (top left), relative fluctuation (top right),
skewness (bottom right), and flatness (bottom right) of the density for
different sheath parameter 𝜎0 strength.

Table 4.1: The fit parameters for different sheath parameter strengths for the full n
model.

𝜎0 ⟨𝑛⟩ (𝑥 = 80) 𝐿𝑛
5 · 10−4 0.40 35.77
1 · 10−4 2.71 97.72
5 · 10−5 4.87 149.75
1 · 10−5 18.40 359.01

a function of 𝐿𝑛 (𝜎0) = 𝑎𝜎𝑘0 . The values of the fit parameters is then estimated
to be 𝑎 = 0.54, 𝑘 = −0.57.

We have in figure 4.9 plotted the time series for the start of the simulations
of different sheath parameter strengths. The time series is measured at the
middle of the domain, 𝑥 = 100, 𝑧 = 50. As is quite clear from the plot the
transient time of the simulations increases with lower 𝜎0, the amplitude of the
entire time series also increases. We can also see this in the amplitude of the
densities in figure 4.8.
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4.3 Fluctuation statistics

In this section, we will go over the results from analysis using fluctuation
statistics. Again we have multiple probes at different poloidal positions for
each radial position. To be able to reduce the data to just radial positions we
need to average over the time series at all poloidal positions. One subtle part of
this is that we can not just average over the poloidal probes, this will average
out the fluctuations for each of the time series. The trick is to calculate all the
fluctuation statistics for each poloidal position and then average over them. As
we expect the same statistical properties at all poloidal positions this will then
give better convergence for each radial position. All our analysis is done with
the normalized time series Ψ̃.

The PDF for all the different simulations at two radial positions is given in
figure 4.11. The PDF of the different simulations seem to overlay except for the
non Boussinesq approximated case has a higher peak. In figure 4.12 the PDF
at different radial positions for each of the different simulations is presented.
Universally for all of them, we observe a broadening of the distribution towards
high amplitude fluctuations when we move further out into the simulation
domain. We also observe that the peak of the Boussinesq approximated cases
sharpen as we move radially outwards.
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Figure 4.11: The probability distribution function for all the simulation. At position
𝑥 = 100 (left), 𝑥 = 141 (right).

Figures 4.13 and 4.14 shows plots of the PDF for the different simulations at
𝑥 = 100 and 𝑥 = 141 respectively. They are fitted to the PDF of a gamma
distribution with additive Gaussian noise, where 𝛾 is the shape parameter, and
𝜖 is the noise parameter defined as the ratio of the squared root mean square
value for the gamma distribution and the normal distribution. To add noise to
the FPP process you augment the process Φ such that

Ψ(𝑡) = Φ(𝑡) + 𝜎𝑁 (𝑡) (4.22)

here 𝜎 is the strength of the noise and𝑁 (𝑡) is in our case a normally distributed
process. The PDF of this process will then be the convolution of the PDF for the



4.3 fluctuation statist ics 51

−2 0 2 4 6 8 10

ñ
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Figure 4.12: The probability distribution function for the four main simulation cases.
Boussinesq approximated model (top left), Boussinesq approximated
model with logarithmic drift waves (top right), non Boussinesq approxi-
mated model (bottom left), and the full n model (bottom right).

two processes [50]. We have applied two fits to each of the distributions, one
that captures the peak of the distribution but not the tail and one that captures
the tail of the distribution but not the peak. The values of the fit parameters
are given in table 4.2. The tail of the distribution is captured by the shape
parameter, while the noise parameter fits the peak of the distribution. For the
peak fit the shape parameter decreases moving radially outwards and the noise
increases for all simulations. The same holds for the tail fit as well.

The power spectral density for all the simulations at two different radial po-
sitions is shown in figure 4.15. For the case where 𝑥 = 100 there is a good
correspondence between the different simulations, while further out into the
domain at 𝑥 = 141 we see a spread in the tail of the different simulations. In-
dicating that the fluctuations change in shape moving through the SOL. Figure
4.16 shows the PSD at different radial positions, here we observe that there is
little to no change in the power spectra for the two Boussinesq approximated
runs. On the other hand, there is an observable spread in the tails of the runs
where the Boussinesq approximation is not present.

Figures 4.17 and 4.18 show the power spectral density of the different simula-
tions at 𝑥 = 100 and 𝑥 = 141 where we have fitted the analytical expression
for the PSD of a two-sided exponential pulse defined in equation 4.15. The pa-
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Figure 4.13: The probability distribution function for the four main simulation cases at
𝑥 = 100. Boussinesq approximated model (top left), Boussinesq approx-
imated model with logarithmic drift waves (top right), non Boussinesq
approximated model (bottom left), and the full n model (bottom right).
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(ñ

)
F
u
ll
n

x = 141

tail fit

peak fit

Figure 4.14: The probability distribution function for the four main simulation cases at
𝑥 = 141. Boussinesq approximated model (top left), Boussinesq approx-
imated model with logarithmic drift waves (top right), non Boussinesq
approximated model (bottom left), and the full n model (bottom right).
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Table 4.2: The fit parameters for the PDF fits, one set for the peak fit and one for the
tail fit.

Simulation 𝑥 𝛾 (peak) 𝜖 (peak) 𝛾 (tail) 𝜖 (tail)
Boussinesq 100 0.99 0.03 0.74 0.04

140 0.71 0.05 0.35 0.09
Boussinesq log dw 100 0.93 0.04 0.55 0.07

140 0.74 0.04 0.35 0.10
Non Boussinesq 100 0.65 0.03 0.47 0.04

140 0.43 0.04 0.20 0.09
Full n 100 0.89 0.04 0.57 0.06

140 0.59 0.08 0.21 0.12
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Figure 4.15: The power spectral density for the four main simulation cases. At position
𝑥 = 100 (left) and 𝑥 = 141 (right).

rameters from the fit are shown in table 4.3. We observe that the analytical fit is
good for the first 4.5 decades, after which the power-law tail of the analytical fit
diverges from the PSD of the simulations. If we then instead fit to a convolution
of a two-sided exponential and a Lorentzian pulse we obtain a much better
fit. The fit of the convolved pulse has been done using the values for 𝜏𝑒 and
𝜆𝑒 we estimated from the two-sided exponential, such that the only parameter
we fit for is the duration time 𝜏𝑙 of the Lorentzian. The shape parameter of the
Lorentzian pulse does not affect the shape of the PSD and is therefore set to
𝜆𝑙 = 0 assuming a symmetric Lorentzian function. The fit parameters for this
case are presented in table 4.4.

From table 4.3 we see that the Boussinesq approximated simulations do not
have a great change in their parameters when moving further out in the SOL,
where both parameters for the simulations stay in about the same rangewith the
more consistent model changes to a larger degree. Whereas in the simulations
where the Boussinesq approximation is not used we observe a great change
in both parameters when moving radially outwards. Note the large difference
in duration time between the models where the Boussinesq approximation is
present and where it is not. In table 4.4 the parameter of interest is the duration
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Figure 4.16: The power spectral density for the fourmain simulation cases. Boussinesq
approximated model (top left), Boussinesq approximated model with
logarithmic drift waves (top right), non Boussinesq approximated model
(bottom left), and the full n model (bottom right).

time 𝜏𝑙 for the Lorentzian pulse where the Boussinesq approximated cases have
a much higher duration time than both the non-Boussinesq cases. The duration
times for both the two-sided exponential pulse 𝜏𝑒 and the Lorentzian pulse
𝜏𝑙 are smaller for the two non Boussinesq approximated cases have smaller
structures than the Boussinesq cases moving radially though the SOL.

For completeness, we have also plotted the compensated spectra for all simu-
lations at 𝑥 = 100 in figure 4.19. The compensated spectra allow us to check
if there is power-law scaling present in the PSD, this would show up as a flat
plateau over multiple decades in the compensated spectra. As can be observed
in the figures there is no such plateaus present and we can therefore conclude
the PSD is not power-law distributed. This can be attributed to the Lorentzian
peak of the waveform as a Lorentzian pulse have exponential tails in the
PSD [49].

The conditionally averaged waveform for all the simulations at 𝑥 = 100 and
𝑥 = 141 is plotted in figure 4.20, where they have been normalized by the
maximum amplitude for easier comparison. At 𝑥 = 100 we can observe that all
the simulations have a similar pulse shape, the exception here being the full n
model where the duration time of the pulse is noticeably shorter. For 𝑥 = 141
we observe that the waveforms for non-Boussinesq approximated simulations
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ñ
(f

),
x
=

1
0
0

Full n

φe

φc

Figure 4.17: The power spectral density for the four main simulation cases at radial
position 𝑥 = 100. Boussinesq approximated model (top left), Boussinesq
approximated model with logarithmic drift waves (top right), non Boussi-
nesq approximated model (bottom left), and the full n model (bottom
right).
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ñ
(f

),
x
=

1
4
1

Non Boussinesq

φe

φc

10−6 10−5 10−4 10−3 10−2 10−1

f

10−6

10−4

10−2

1

102

104

S
ñ
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Figure 4.18: The power spectral density for the four main simulation cases at radial
position 𝑥 = 140. Boussinesq approximated model (top left), Boussinesq
approximated model with logarithmic drift waves (top right), non Boussi-
nesq approximated model (bottom left), and the full n model (bottom
right).
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Table 4.3: The fit parameters for the PSD of a two-sided exponential fitted to the
simulation data.

Simulation 𝑥 𝜏e 𝜆𝑒
Boussinesq 100 309.64 0.14

140 307.81 0.14
Boussinesq log dw 100 313.03 0.14

140 293.2 0.12
Non Boussinesq 100 264.76 0.14

140 199.16 0.08
Full n 100 184.42 0.14

140 128.64 0.09

Table 4.4: The fit parameters for the PSD of a two-sided exponential pulse convolved
with a Lorentzian pule fitted to the simulation data.

Simulation 𝑥 𝜏e 𝜆𝑒 𝜏l
Boussinesq 100 309.63 0.14 14.33

140 307.80 0.14 14.58
Boussinesq log dw 100 313.02 0.14 15.83

140 293.19 0.11 16.38
Non Boussinesq 100 264.77 0.14 5.85

140 199.15 0.08 5.96
Full n 100 184.43 0.14 4.86

140 128.63 0.10 4.12
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Figure 4.19: The compensated spectra for the four main simulation cases. Boussinesq
approximated model (top left), Boussinesq approximated model with
logarithmic drift waves (top right), non Boussinesq approximated model
(bottom left), and the full n model (bottom right).

diverge from the waveforms for the Boussinesq approximated simulations,
which again seem to overlap each other.
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Figure 4.20: The conditionally averaged waveform for all the simulation. At position
𝑥 = 100 (left), 𝑥 = 141 (right).

The conditional average waveform for each of the simulations at different radial
positions is plotted in figure 4.21. For the two simulations with the Boussinesq
approximation, the change in the waveform is small reducing the duration
time by small amounts, the exception is the ones at low radial positions. The
non-Boussinesq approximated models have a significant change in duration
time, where the model with a linear drift wave term changes the most.
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Figure 4.21: The conditionally averaged waveform for the four main simulation cases.
Boussinesq approximated model (top left), Boussinesq approximated
model with logarithmic drift waves (top right), non Boussinesq approxi-
mated model (bottom left), and the full n model (bottom right).

In figures 4.22 and 4.23 we have plotted the conditional averaged waveform
at 𝑥 = 100 and 𝑥 = 141, respectively. We have fitted them to a two-sided
exponential using the values estimated from the PSD fit form table 4.3, as
well as the convolution of a two-sided exponential with a Lorentzian using the
values form table 4.4. For all cases, the convolved pulse gives a better fit for
the rise and peak of the conditionally averaged waveform while the two-sided
exponential pulse fits the tails better.

The cross conditional waveform of the radial velocity for all the simulation at
𝑥 = 60, 𝑥 = 100, 𝑥 = 141, and 𝑥 = 181 are shown in figure 4.24. The most
distinct part of each of the plots is the noticeable difference in peak velocity. The
difference in velocities seems to be more focused on whether the Boussinesq
approximation is applied or not, with the two simulations where the Boussinesq
approximation is used having the same peak velocity, while the peak velocity
for the non-Boussinesq approximated cases seem to grow radially outwards.
While both of the Boussinesq approximated cases have approximately the same
peak amplitude, for the non-Boussinesq cases the full n model always has a
greater peak than the pure non-Boussinesq case. Notice also that the peak in
velocity is not centred at 𝑡 = 0, this comes from the fact that the peak velocity
is trailing after the density peak.
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Figure 4.22: The conditional averaged waveform for the four main simulation cases at
𝑥 = 100. Boussinesq approximated model (top left), Boussinesq approx-
imated model with logarithmic drift waves (top right), non Boussinesq
approximated model (bottom left), and the full n model (bottom right).
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Figure 4.23: The conditional averaged waveform for the four main simulation cases at
𝑥 = 141. Boussinesq approximated model (top left), Boussinesq approx-
imated model with logarithmic drift waves (top right), non Boussinesq
approximated model (bottom left), and the full n model (bottom right).
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Figure 4.24: Cross conditional average waveform of velocities for all the simulations at
different radial positions: 𝑥 = 60 (top left), 𝑥 = 100 (top right), 𝑥 = 141
(bottom left), and 𝑥 = 181 (bottom right)

As we previously also looked at the profiles for the different values of the sheath
parameter we now in figure plot 4.25 the conditional averaged waveform as
well as the cross conditional averaged waveform at 𝑥 = 100 and 𝑥 = 141. For
the conditional averaged waveform we see that the lower the sheath parameter
is the larger the duration time becomes. For the cross conditional waveform,
the peak velocity decreases for weaker sheath parameters. The delay between
the peak density and the peak velocity increases for weaker sheath parameters,
this is most noticeable in the normalized cross conditional average.
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Figure 4.25: The full n model with four different sheath parameter strengths. The
conditional average at 𝑥 = 100 (top left) and 𝑥 = 141 (top right). The
cross conditional average at 𝑥 = 100 (middle left) and 𝑥 = 141 (middle
right). The normalized cross conditional average at 𝑥 = 100 (bottom
left) and 𝑥 = 141 (bottom right).





5
Discussion
In this chapter, we will discuss and interpret the results we got from the analysis
of the different simulations.

5.1 The effect of non-linear drift wave term

The effect that the logarithmic drift wave term has is most notable in figure 4.4
where we plot both the electron flux and the poloidal velocity. The noticeable
difference in the gradient of the poloidal velocity around the LCFS indicates the
fact that the logarithmic term increases the shear flow. This higher shear flow
will then decrease the amount of transport through the separatrix as it breaks
up any structure wanting to move through it. This is confirmed by the profiles
in figure 4.2 where there is a notable difference in the amplitudes between
the two non Boussinesq approximated cases. The high peak amplitude for the
mean density in the full n model in the edge region and the lower density
throughout the rest of the simulation domain indicates that the logarithmic
density term in the drift waves helps with the containment of the plasma. We
also see this lower density in the relative fluctuation levels. While both non-
Boussinesq cases follow the same shape as each other the amplitude difference
between the two is again noticeable. The containment created by the switch
between regions can also be observed in figure 4.6 where we plot the pure
SOL case and the edge plus SOL case together. The mean density is higher at
𝑥 = 20 for the case with the edge region while the mean density is higher
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throughout the rest of the domain for the case without a separatrix.

Looking at the duration time 𝜏𝑒 of the two-sided exponential for the Boussinesq
cases in tables 4.3 and 4.4, we observe for small 𝑥 a higher value for the
logarithmic case. Then moving radially outwards we observe a decrease in
𝜏𝑒 . This decrease is much larger than the decrease for the linear case. This
decrease is also present in the asymmetry parameter 𝜆𝑒 as we have a decrease
for the logarithmic case but no change in the linear case. Looking at the
duration time 𝜏𝑙 for the Lorentzian pulse the value at 𝑥 = 100 is higher for the
logarithmic case, then moving radially outwards there is an increase for both
Boussinesq cases with a much larger increase for the logarithmic case. For the
non-Boussinesq cases, there is a noticeable difference in the duration time 𝜏𝑒
compared to the Boussinesq cases for the two-sided exponential at 𝑥 = 100.
The change in duration time 𝜏𝑒 when moving radially outward is larger for the
linear case than for the logarithmic case, this is also the case for the change in
asymmetry parameter𝜆𝑒 . For the duration time 𝜆𝑙 of the Lorentzian pulse the
linear case has higher values and increases when moving radially outwards,
while for the logarithmic case the duration has a greater absolute change but
decreases instead of increase. This indicates that including the logarithmic
density in the drift wave term induces differences in how the duration times
and asymmetry parameters change while moving radially outwards. This again
is the product of the fact that the higher containment of plasma in the edge.
As there is less plasma moving outwards through the domain small changes
in properties are more likely to be noticed. This can also be observed in the
parameters for the fit to the PDFs for the different cases in table 4.2. Here we
see that the noise parameter for the cases with logarithmic density is generally
higher than for the cases with linear density.

5.2 The effect of the Boussinesq approximation

The most pronounced difference between the different Boussinesq approxi-
mated cases and the non-Boussinesq approximated cases is the curve that
appears in the radial profile of the relative fluctuations. The relative fluctuation
levels for the non-Boussinesq approximated cases decrease moving radially
outward from 𝑥 = 80 while the Boussinesq approximated cases increase. This
curve can be observed in figures 4.2, 4.5 and 4.6. The fact that this shows up in
all the simulations shows that this curve is an effect of the physics of the SOL
when the Boussinesq approximation is not present and not a consequence of
the combination of the edge and SOL regions.

As shown in tables 4.3 and 4.4 there is a noticeable difference in duration
time for both the two-sided exponential and Lorentzian pulses for the case
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with and the case without the Boussinesq approximation. This indicates that
the sizes of the filaments moving through the simulation domain are affected
by the approximation. The sharper decrease in the duration times indicates
that the structures also break up faster when radially moving outward. This
can also be seen visually from figure 4.20 where both the non Boussinesq
approximated cases have shorter duration time and sharper peaks. This can
then explain the change in the relative fluctuation levels of the density observed
in the non-Boussinesq case. The breaking up of the structures as they travel
radially outwards gives the fluctuations less overall density equating to lower
fluctuations.

The cross conditional averaged waveform for the velocities shown in figure 4.24
indicates a radial change of the peak velocities for each of the non-Boussinesq
cases. Here the peak velocities increase moving radially outwards while for
the Boussinesq approximated cases there is no discernible change in the peak
velocity. This radial change in fluctuation velocity can also be seen in figure 4.3
where 𝑣𝑥rms is plotted. Here both the Boussinesq cases have a radially constant
root mean square value, while both the non Boussinesq approximated cases
increase radially outwards.

From the profiles in figures 4.2 and 4.4 there also seem to be an interplay
between the logarithmic density and the term neglected in the Boussinesq
approximation. For the mean poloidal velocity in figure 4.4, the gradient
increases for both logarithmic cases, but the increase in gradient is larger for the
full n case. We also see a deviation in the full n case from the other simulations
in the particle flux where again there is a difference in the interaction with the
drift wave term. The difference in shear flow strength is also clearly visible in
the density profile of figure 4.2, where the density gradient over the separatrix
is much larger for the full n case compared to the Boussinesq log dw case.
This contribution to the zonal flow strength of the non-Boussinesq term has
also been found in gyro-fluid simulations of a non Boussinesq approximated
modified Hasegawa-Wakatani model [51].

5.3 The effect of the sheath parameter strength

From the scans done of different sheath parameter strengths, we see from
figure 4.9 that for lower sheath parameter strength the signal becomes more
intermittent. In figure 4.25 we also see that the duration time for the lower
sheath strength increases, indicating that the structures broaden. Also from
figure 4.25 we see from the cross conditional average for the lower sheath
parameter strength we have lower fluctuation velocities, as the delay between
the peak velocity and peak density increases this also indicates that the front of
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the moving filament is not as steep as the for higher sheath parameters.

As seen in the radial mean profile in figure 4.8 the lower the sheath parameter is
the broader the profiles become. This can be attributed to a reduction in parallel
density dissipation allowing more of the density to propagate throughout the
domain. A model describing radial profiles in relation to sheath parameter
strength has been derived for the FPP model [43, 44]. As this model requires
that the amplitudes and the velocities are constant we can not apply it directly,
but it predicts that a lower sheath parameter strength will increase the density
profile which agrees with our results.



6
Conclusion and outlook
In this thesis, we investigated how different approximations made to a 2D
plasma fluid model influenced the statistical properties for numerical simula-
tions of the model. In particular, we investigated the effect that the Boussinesq
approximation has on the statistical properties of the turbulence produced, as
well as what effect linearizing the particle density in the drift wave term has on
the same statistics. We derive four sets of reduced fluid equations describing the
evolution of electron density and plasma vorticity for a two-dimensional plane
encapsulating the edge and SOL regions of a tokamak. Each set represented
different combinations of the Boussinesq approximation and linearization of
the drift wave particle density. We also gave a condition that needs to be
fulfilled for the Boussinesq approximation to be applicable. We presented the
simulation code using the BOUT++ framework that was utilized for the simu-
lations. In addition to the simulations of the four main cases, we also did pure
SOL simulations and a scan in sheath parameter strength. To collect the data
from the simulations we used a grid of virtual probes measuring long time
series with high temporal resolution at different radial and poloidal positions.
We then introduced the FPP model which build the main statistical framework
for the analysis we did. We presented plots showing differing radial profiles
dependent on the approximations used. We observe higher confinement with
lower particle density profiles throughout the simulation domain for the full
n case. Additionally, the profiles show differing radial changes in the relative
fluctuation levels of the particle density and differing radial changes for the
RMS values of the velocity dependent on if the Boussinesq approximation
was used or not. The presented radial profiles also show that the logarithmic
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particle density in the drift wave term increased the shear flow in the edge
region. In addition, the profile of varying sheath parameter strength indicates
that the radial particle density profile scale length varies depending on this
strength. We observed that PDFs of the particle density were best fitted by
a gamma distribution with additive Gaussian noise. The plots of the PSDs
show that they fit a convolution between a Lorentzian pulse and a two-sided
exponential, where the duration times where highly effected by the relaxation
of the Boussinesq approximation. We found that the conditionally averaged
waveforms had larger radial change when the Boussinesq approximation was
relaxed. Additionally, we found that the duration times of the conditionally
averaged waveforms increased with lower sheath parameter strength. From
the discussion, we found that having the logarithmic particle density in the
drift wave term induces radial change in the parameters. We also found that
the structures moving radially outwards in the non-Boussinesq case break into
smaller structures at higher rates. We also found that there is an interplay
between the term neglected in the Boussinesq approximation and the loga-
rithmic density in the drift wave term as it increased the strength shear flow
significantly compared to using one of the two terms.

Based on what is presented here it is clear that the Boussinesq approximation
has an effect on the statistical properties of turbulence in the numerical simu-
lations. But a more theoretical understanding of the differences between the
models is desirable. This would give us a better understanding of the effects
non-Boussinesq approximated models have on the radial transport of plasma
and give a better explanation of the phenomena observed in the radial profiles
presented in this thesis. For instance stability analysis of the different regions
with differing degrees of approximations, or how the different approximations
affect the energy integrals.

Some theoretical analysis of the effect of a non-Boussinesq approximated
model [51, 52] has already been done using an altogether different approach
than was presented here, namely using gyro-fluid equations. In a gyro-fluid
model, you construct your equations with the fact that particles gyrate already
in mind. This makes the equations harder to derive but gives innate handling
of properties such as ion temperature, something we neglected due to the high
complexity of dealing with it in a drift fluid model.

In addition to doing analytical studies, one could also investigate the gyro-fluid
model through numerical simulations. The data from the numerical simulations
could then be analysed in the same way as has been done in this thesis. For
numerical simulations, there already exists a numerical framework developed
for gyro-fluid simulations called FELTOR [53,54]. Numerical investigation using
FELTOR was originally also part of the thesis but could not be included due to
numerical stability issues and time constraints. In appendix A.2 we therefore
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present the reduction of a set of gyro-fluid equations into the Boussinesq
approximated model from chapter 2. The advantages of using FELTOR over the
BOUT++ would be that it can compile for bout CPU and GPU without needing
to alter the code. This can then make use of the GPUs greater ability for parallel
processing allowing for shorter simulation times. The FELTOR framework also
handles non Boussinesq approximated models faster in a more efficient way
allowing for longer time series in less time than the BOUT++ code.

In the last part of the discussion, we found that a simple stochastic model
describing the density profile gave results in agreement with our findings.
This model can and is being developed further to include the effects of time-
dependent velocities, as we observed that the velocities of our fluctuations
change over time this might give even better agreement with the results.

To simulate real tokamak plasmas one would like to use as consistent models
as possible. The problem of full tokamak simulations is computation time,
applying the Boussinesq approximation severely reduces this time. Having a
greater understanding of what effects the Boussinesq approximation has on
simulations will then possibly allow one to adjust for these effects afterwards.
This will then still allow for manageable computation time while having more
accurate results.





A
Appendix
A.1 Curvature operator

Deriving the curvature operator using the ExB drift

∇ · 𝒖𝐸 = ∇ ·
(
1
𝐵
𝒃 × ∇𝜙

)
=

1
𝐵
[∇ · (𝒃 × ∇𝜙)] + 𝒃 × ∇𝜙 · ∇ 1

𝐵

=
1
𝐵
(∇ × 𝒃 · ∇𝜙) − 1

𝐵2∇𝐵 · 𝒃 × ∇𝜙

=
1
𝐵
(∇ × 𝒃 · ∇𝜙 − ∇ ln𝐵 · 𝒃 × ∇𝜙)

=
1
𝐵
(∇ × 𝒃 + ∇ ln𝐵 × 𝒃) · ∇𝜙

= K (𝜙)

this then gives us that for a general scalar-field 𝑓 we have

K (𝑓 ) = ∇ ·
(
1
𝐵
𝒃 × ∇𝑓

)
=

1
𝐵
(∇ × 𝒃 + ∇ ln𝐵 × 𝒃) · ∇𝑓 (A.1)
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A.1.1 Slab approximation

In toroidal geometry
(
𝒓 , 𝜽 , 𝜻

)
the gradient and curl operators are given as

∇𝜙 =
𝜕𝜙

𝜕𝑟
𝒓 + 1

𝑟

𝜕𝜙

𝜕𝜃
𝜽 + 1

𝑅

𝜕𝜙

𝜕𝜁
𝜻 , (A.2)

∇ × 𝑭 =
1
𝑟𝑅

(
𝜕

𝜕𝜃

(
𝑅𝐹𝜁

)
− 𝜕

𝜕𝜁
(𝑟𝐹𝜃 )

)
𝒓

+ 1
𝑅

(
𝜕

𝜕𝜁
𝐹𝑟 −

𝜕

𝜕𝑟

(
𝑅𝐹𝜁

) )
𝜽

+ 1
𝑟

(
𝜕

𝜕𝑟
(𝑟𝐹𝜃 ) −

𝜕

𝜕𝜃
𝐹𝑟

)
𝜻 , (A.3)

where 𝑅 = 𝑅0 + 𝑟 cos𝜃 . In a purly toroidal magnetic field

𝑩 =
𝐵0𝑅0

𝑅
𝜻 . (A.4)

the curvature operator then becomes

K (𝑓 ) = 1
𝐵

(
−1
𝑅
sin𝜃 𝒓 − 1

𝑅
cos𝜃𝜽 − 1

𝑅
𝜽

)
· ∇𝑓 (A.5)

then in the outboard mid-plane where 𝜃 ≈ 0 and 𝜽 ≈ 𝑦 we get

K (𝑓 ) = 1
𝐵

(
−1
𝑅
𝒚̂ − 1

𝑅
𝒚̂

)
· ∇𝑓 (A.6)

= − 2
𝐵𝑅

𝜕𝑓

𝜕𝑦
(A.7)

A.2 Gyro-Fluid

A set of gyro-fluid equations in slab coordinates describing the evolution of the
electron density, ion gyro-center density and the polarization equation

𝜕𝑛

𝜕𝑡
+ 𝒖𝐸 · ∇𝑛 = 𝜅𝑛

𝜕𝜙

𝜕𝑦
− 𝜅 𝜕𝑛

𝜕𝑦
+ Λ𝑛, ∥ − 𝜈Δ2

⊥𝑛 (A.8)

𝜕𝑁

𝜕𝑡
+ 𝑼 𝐸 · ∇𝑁 = 𝜅𝑁

𝜕𝜓

𝜕𝑦
+ 𝜏𝜅 𝜕𝑁

𝜕𝑦
+ Λ𝑁, ∥ − 𝜈Δ2

⊥𝑁 (A.9)

∇ · 𝑷2 = Γ1𝑁 − 𝑛, (A.10)

where 𝑛 is the electron density 𝑁 is the ion gyro-centre density, 𝜙 is the
potential 𝜓 is the gyro-fluid potential,Γ1 is the gyro-average operator, 𝜏 is
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the ratio between ion and electron temperature 𝑇𝑖/(𝑇𝑒) , 𝜅 is the curvature
parameter, Λ𝑛, ∥ and Λ𝑁, ∥ is the parallel closure terms for the electrons and ion
gyro-centre density respectively and 𝜈 is the hyper-diffusion coefficient. The
gyro-centre velocity is defined as

𝑼 𝐸 =
1
𝐵
𝒃 × ∇𝜓, (A.11)

where the𝜓 is given to be
𝜓 = Γ1𝜙 +𝜓2, (A.12)

and Γ1 is
Γ1 =

1
1 − 𝜏

2Δ⊥
. (A.13)

For the polarisation equation ∇ · 𝑷 the value of the term is highly dependent
on the model used, for the long wave length limit (lwl) i.e 𝜌𝑠𝑘⊥ ≪ 1 we then
have two values

∇ · 𝑷2 =


−∇ ·

(
𝑁
𝐵2∇⊥𝜙

)
, N-OB

−𝑁0
𝐵2
0
Δ⊥𝜙, OB

where OB signifies the use of the (Oberbeck)-Boussinesq approximation and
N-OB the lack thereof. 𝜓2 is the polarization part of the gyro-fluid potential
and also as two values in the lwl depending on the use of the Boussinesq
approximation

𝜓2 =

{
−1

2
(∇𝜙)2
𝐵2 , N-OB

0, OB
(A.14)

To start deriving our equations we set 𝜏 = 0 and we get the cold ion approxi-
mation and our equations become

𝜕𝑛

𝜕𝑡
+ 𝒖𝐸 · ∇𝑛 = 𝜅𝑛

𝜕𝜙

𝜕𝑦
− 𝜅 𝜕𝑛

𝜕𝑦
+ Λ𝑛, ∥ − 𝜈Δ2

⊥𝑛 (A.15)

𝜕𝑁

𝜕𝑡
+ 𝑼 𝐸 · ∇𝑁 = 𝜅𝑁

𝜕𝜓

𝜕𝑦
+ Λ𝑁, ∥ − 𝜈Δ2

⊥𝑁 (A.16)

∇ · 𝑷2 = 𝑁 − 𝑛 (A.17)

we want to invert the polarization equation so that we get 𝑷2 as a function of
electron density.

𝑁 − 𝑛 = −∇ ·
(
𝑁

𝐵2∇⊥𝜙

)
(A.18)

𝑁 =
𝑛

1 + ∇⊥𝜙 · ∇ 1
𝐵2 + 1

𝐵2∇2
⊥𝜙

(A.19)
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now by assuming the terms in the denominator are close to zero we can do a
first order Taylor-expansion and get

𝑁 = 𝑛 − ∇ ·
( 𝑛
𝐵2∇⊥𝜙

)
(A.20)

Putting this new definition for the gyro-center density into our evolution
equation we get

𝜕𝑛

𝜕𝑡
− 𝜕

𝜕𝑡

[
∇ ·

( 𝑛
𝐵2∇⊥𝜙

)]
+ 𝒖𝐸 · ∇𝑛 − (𝒖𝐸 · ∇) ∇ ·

( 𝑛
𝐵2∇⊥𝜙

)
+𝒖𝜓2 · ∇𝑛 −

(
𝒖𝜓2∇

)
∇ ·

( 𝑛
𝐵2∇⊥𝜙

)
= 𝜅𝑛

𝜕𝜙

𝜕𝑦
+ 𝜅𝑛 𝜕𝜓2

𝜕𝑦
− 𝜅∇ ·

( 𝑛
𝐵2∇⊥𝜙

) 𝜕𝜙
𝜕𝑦

− 𝜅∇ ·
( 𝑛
𝐵2∇⊥𝜙

) 𝜕𝜓2

𝜕𝑦

+Λ𝑁, ∥ − 𝜈Δ2
⊥𝑁

where we also expanded the𝜓 term and defined 𝒖𝜓2 = 𝒃/𝐵 × ∇𝜓2.

Now inserting the terms from the evolution equation for the electron density
and define our vorticity as 𝑤 = ∇ · (𝑛/𝐵2∇⊥𝜙) we obtain

d𝑤
d𝑡

+ 𝜅 𝜕𝑛
𝜕𝑦

− 𝒖𝜓2 · ∇𝑛

= −𝜅𝑛 𝜕𝜓2

𝜕𝑦
+ 𝜅𝑤 𝜕𝜙

𝜕𝑦
+ Λ𝑤, ∥ − 𝜈Δ2

⊥𝑤

where we introduce the advective derivative and define Λ𝑤, ∥ ≡ Λ𝑛, ∥ − Λ𝑁, ∥ ,
as well as use the relation 𝑤 = 𝑛 − 𝑁 . The cross terms between 𝒖𝜓2 and 𝑤 is
neglected as they brake the ordering of our model, and we now have a vorticity
density equation.

We can reduce this to a vorticity equation by invoking the Boussinesq approx-
imation (𝑤 = 𝑛0/𝐵2∇2

⊥𝜙), where we all the terms involving 𝜓2 have to be
removed for energy conservation. This reduces our equation to

d∇2
⊥𝜙

d𝑡
+ 𝐵2𝜅

𝜕 ln𝑛
𝜕𝑦

= 𝜅∇2
⊥𝜙
𝜕𝜙

𝜕𝑦
+ 𝐵

2

𝑛
Λ𝑤, ∥ − 𝜈Δ2

⊥∇2
⊥𝜙

The parallel closure term Λ𝑤, ∥ is the sum of each of the closures that come from
the combination of each of the edge and SOL closures. The parallel closure
terms are given by

Λ𝑛, ∥ = 𝛼
[
𝜙 − ln(𝑛):

]
− 𝑛𝜆 exp(𝜆𝑠ℎ − 𝜙)

Λ𝑁, ∥ = 𝜆𝑛

Λ𝑤, ∥ = 𝛼
[
𝜙 − ln(𝑛):

]
− 𝑛𝜆 [1 − exp(Λ𝑠ℎ − 𝜙)]
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where 𝛼 = 𝑇𝑒𝑘
2
∥/𝜂𝑒

2𝑛Ω0 =
(
𝜌0𝑘 ∥

)2 (𝑚𝑖/𝑚𝑒) (Ω0/𝜈𝑒) (𝑛/𝑛0) is the adiabatic-
ity parameter, 𝜆 = 𝜌0/𝐿∥ is the sheath parameter and Λ𝑠ℎ is the sheath
potential.

This gives combined with the electron continuity equation gives us our model
equations

d𝑛
d𝑡

+ 𝜅
(
𝜕𝑛

𝜕𝑦
− 𝑛 𝜕𝜙

𝜕𝑦

)
= 𝛼

[
𝜙 − ln(𝑛):

]
− 𝑛𝜆 exp(𝜆𝑠ℎ − 𝜙) − 𝜈Δ2

⊥𝑛

d∇2
⊥𝜙

d𝑡
+ 𝐵2𝜅

𝜕 ln𝑛
𝜕𝑦

= 𝜅∇2
⊥𝜙
𝜕𝜙

𝜕𝑦
+ 𝐵

2

𝑛
𝛼

[
𝜙 − ln(𝑛):

]
− 𝐵2𝜆 [1 − exp(Λ𝑠ℎ − 𝜙)] − 𝜈Δ2

⊥∇2
⊥𝜙.

This then shows that one can reduce a gyro-fluid model into the model used
in in this thesis.
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