

Faculty of Engineering Science and Technology

Department of Computer Science and Computational Engineering

Exploring auction based energy trade with the

support of MAS and blockchain technology

Nikita Shvetsov

Thesis for Master of Science in Computer Science - June 2017

Master thesis: Exploring auction based energy trade

with the support of MAS and blockchain technology

Nikita Shvetsov

June 6, 2017

Acknowledgment

I want to thank my supervisor Bernt A. Bremdal for valuable insights and
experience in this field and also encouragement and opportunity to work on
such interesting research area. I also want to thank my family and friends
for supporting me throughout this Master’s degree and Master thesis.

Abstract

This document describes a simulation of the local energy market with sup-
port of multi-agent approach and blockchain technology. The investigated
points include blockchain technology and its applications, Ethereum plat-
form and smart contracts as a tool for storing data of operations and creating
assets, multi-agent approach to model the local energy market. The doc-
ument explores building a solution for proposed problem with blockchain
technology, agent interactions on the simulated market and auction models,
that provide sustainability and profit for the local energy market overall.

Contents

1 Introduction 6
1.1 Local energy markets . 7
1.2 Current projects . 8

2 Problem description 12
2.1 Challenges . 12
2.2 Project goal . 13

3 State-of-the-art 15
3.1 Analysis of problem area . 15
3.2 Blockchain technology . 17

3.2.1 Blockchain . 17
3.2.2 Ethereum platform . 21
3.2.3 Smart contracts and oracles 25
3.2.4 Ethereum applications 26

3.3 Multi-agent systems . 28
3.4 Possible issues . 29
3.5 Ways of implementation . 30

4 Method 33
4.1 Choosing approach . 33
4.2 Concepts testing . 35
4.3 Prototyping entities . 38

4.3.1 Creating smart contracts 41
4.3.2 Multi-agent system implementation 43
4.3.3 Utility functions . 50

4.4 Auction interactions . 51
4.5 Q-learning . 55

1

5 Results 58
5.1 Tools and testing . 58

5.1.1 Preparation phase . 58
5.1.2 Simulation parameters 58

5.2 Experiment 1 . 60
5.3 Experiment 2 . 62
5.4 Experiment 3 . 65
5.5 Experiment 4 . 69

6 Discussion 73
6.1 Results interpretation . 73
6.2 Encountered problems . 76

6.2.1 Blockchain issues . 76
6.2.2 Learning agents . 78
6.2.3 Smart contracts issues 79

6.3 Real-world appliance . 80

7 Further development 82
7.1 Possible improvements . 82
7.2 Future of DApps and blockchain solutions in energy sector . . 85

7.2.1 DApps and Ethereum 85
7.2.2 Other areas of application 85

8 Conclusion 87

A Source code

B Thesis description

C Intermediate report

2

List of Figures

3.1 Transaction models for centralized and decentralized archi-
tecture . 17

3.2 Merkle trees concept . 18
3.3 Simplified block structure in blockchain 19
3.4 Longest chain rule principle 20
3.5 Nodes interactions . 20
3.6 Typical DApp structure . 27
3.7 web3, clients and Ethereum interactions 32

4.1 Transaction verification process in blockchain 35
4.2 UML diagram of test smart contracts 36
4.3 Blockchain project architecture scheme 38
4.4 Proposed entities interaction 39
4.5 UML diagram of House and RulerAgent classes 40
4.6 UML diagram of ServiceProvider class and simulation 41
4.7 UML diagram of smart contracts 42
4.8 Consumption-production principle 44
4.9 Home status probability graph 45
4.10 PDF and CDF for beta function 47
4.11 Agents decision process . 49
4.12 Agents and smart contract interaction 50
4.13 Supply-demand curves . 53
4.14 Reinforcement learning process 55

5.1 Experiment 1 - Consumption profiles 61
5.2 Experiment 1 - Production profiles 61
5.3 Experiment 2 - Battery balance dynamics 62
5.4 Experiment 2 - Average auction utility 63
5.5 Experiment 2 - Coin balance 63
5.6 Experiment 2 - Money balance 64

3

5.7 Experiment 2 - Price distribution 64
5.8 Experiment 3 - Battery balance dynamics 66
5.9 Experiment 3 - Average auction utility 66
5.10 Experiment 3 - Coin balance 67
5.11 Experiment 3 - Money balance 67
5.12 Experiment 3 - Price distribution 68
5.13 Experiment 3 - Loyalty values 68
5.14 Experiment 4 - Average auction utility 70
5.15 Experiment 4 - Coin balance 70
5.16 Experiment 4 - Money balance 71
5.17 Experiment 4 - Price distribution 71
5.18 Experiment 4 - Loyalty values 72

4

List of Tables

3.1 Cryprocurrencies comparison 23

4.1 Auction orders list . 52
4.2 Range of equilibrium prices 53

5.1 Simulation variables . 59
5.2 Experiment 2 - Energy print 65
5.3 Experiment 3 - Energy print 69
5.4 Experiment 4 - Energy print 72

7.1 Community market model round 83

5

Chapter 1

Introduction

This master thesis is a research project about local energy markets, blockchain
technology and machine learning applications. The thesis investigates cre-
ated simulation of local energy market and its data flows in time. Data in-
cludes production/consumption rates, financial balance and energy balance.
Data is manipulated by the auctioneer. Blockchain technology supports the
simulation with data storage.

The starting point of the study is H2020 project EMPOWER under-
taken by the Norwegian Centre of Expertise of Smart Energy Markets (NCE)
and paper EMPOWER: Technical specification for software development [1].
Main idea of the project is to leverage citizen energy management in smart
grids. The main focus of this thesis project is to create a local grid sim-
ulation with house-agents with the support of blockchain technology and
simulate transactions between consumers and prosumers using internal cur-
rency, investigate the results of the simulation and check the viability of
using blockchain technology in this particular area of application.

From this we can derive major goals with the emphasis on the third one:

1. Develop and test the simulation on a one season time-line in order to
get valuable results.

2. Evaluate results and adjust the parameters.

3. Make recommendations for further use of multi-agent system and blockchain
technology in appliance to local energy markets.

Apart from these goals, a lot of emphasis was done on investigating
blockchain technology: how it works (simple blockchain net was developed),
principles of cryptoeconomics, smart contracts and oracles, decentralized

6

applications (DApps) and different frameworks for deploying DApps. Some
of these points are covered in Chapter 3.

1.1 Local energy markets

Key concepts of this thesis are smart grids and local energy markets. The
overall goal of the electricity market is to provide electricity in an efficient
way while meeting the demands of the consumers. The competition and reg-
ulations are the different ways to achieve this goal. The traditional electricity
market is facing challenges in integrating the new sources of generation of
electricity, technology, infrastructure, increasing demand and the consumer-
oriented market. It has shifted the paradigm towards new market design
which will be able to fit in existing market structure. One of such electricity
market is local electricity market. The benefits of local power generation,
storage and demand response all cooperate together and peer-to-peer model
enables the participation of all participants of the market. It uses infor-
mation and communication technology (ICT) for sustainable and efficiently
transfer of electricity to the consumers. It integrates the distributed gener-
ation, microgrid, and smart grid into one electricity market at distribution
side [2]. Local energy markets and smart grids are inextricably linked.

A smart grid is an electrical grid which includes a variety of operational
and energy measures including smart meters, smart appliances, renewable
energy resources, and energy efficient resources. Electronic power condition-
ing and control of the production and distribution of electricity are impor-
tant aspects of the smart grid [3].

Due to depleting fossil fuels, increasing exponential demand of electricity
and liberalization of energy market has given birth to Smart Grid concept.
Smart grid technologies emerged from earlier attempts at using electronic
control, metering, and monitoring. Smart meters add continuous commu-
nications so that monitoring can be done in real time. So definition of
smart homes appeared. With this data to manipulate, new algorithms of
balancing the grid appear. Smart grid technologies offer more control and
transparency into the distribution grid. Information sharing is an immediate
benefit. Continued government focus on climate issues and emission goals,
along with a steady price decrease on small-scale generators and panels have
created a surge for local production situated at the leaf nodes of the dis-
tribution grid. Prosumers have emerged. When dealing with solar energy,
there is usually an excess of energy than can be sold back to the electricity
provider or outer grid. But some people would like to help out neighbors

7

with their excess solar energy and get some profit, and it would make sense
to enable local energy trade within neighborhood market to facilitate this
type of exchange between prosumer and consumer.

In some places excess surplus from these has become a reason for con-
cern. Government programs for non-fossil heating have been introduced too,
and electric vehicles have since long made their entry into many European
driveways and city traffic. Because of such developments power loads con-
centrated in short periods are increasing and tend to threaten grid capacity.
Solving problems like these as close to their source is often a good strat-
egy [4]. This recommends that these issues should be dealt with locally. A
local energy market approach is suitable for this situation. This market type
can negate the problem of renewable energy and create local community that
can sustain themselves.

Current, centralized energy markets seek settlements on partial equi-
libriums and tend disregard externalities that push costs on a third party.
Local markets can better seek a general equilibrium i.e. for both energy and
flexibility. The advent of Internet of Things and the influx Home Automa-
tion Systems (HAS) are creating a new platform for energy management
that suggest more active users and a less centralized energy management
concept [4].

All of the items listed above are arguments that provide a rationale for
studying the potential of local energy markets in terms of local peer-to-peer
clean energy trading.

1.2 Current projects

There are several projects, that directly relates to the investigated topic.
Due to blockchain is a hot topic nowadays a lot of energy companies would
like to try it out and enroll their own researches. In order to improve local
energy market schemes some projects were started, including EMPOWER,
Solar Coin, Brooklyn MicroGrid/Transactive Grid, Scanergy, Smart Solar.

• EMPOWER

Main goal of EMPOWER project is to develop and verify a local mar-
ket place and innovative business models including operational meth-
ods to encourage micro-generation and active participation of pro-
sumers exploiting the flexibility created for the benefit of all connected
to the local grid. In order to do it main objectives are full grid con-
trol by participants, renewable energy supply for the grid, sustainable

8

profits for the participants. System architecture includes such enti-
ties as smart energy service provider (SESP) and software agents for
each participant. SESP plays a “controller” role: it provides an arena
for local exchange of energy and flexibility and provides set of utility
services, like forecasting loads, grid balancing, demand management
and optimization. Personal agents are needed to reduce complexity
for users and increase response frequencies and for further develop-
ment they could possess low intelligence in order to make decisions or
choose policies. EMPOWER project facilitates all energy flows locally
in order to form its own ecosystem, with houses, charging stations,
Photovoltaic stations (PVs), windmills etc. The most descriptive el-
ements of the EMPOWER model are: smart energy service provider
(SESP), community principles, network-like market/ hybrid market,
trades using contracts, market reinforcement (as a consequence of net-
work effects), scalability. This project is under ongoing development
and has a solid descriptive model base for implementation.

• SolarCoin

The SolarChange project was created to financially reward producers
of solar energy via a blockchain. SolarCoin is a cryptocurrency for
SolarChange project, launched in January 2014 and implemented to
incentivize global solar electricity generation [5]. For every megawatt
of solar energy fed into the grid the producer is awarded one SolarCoin.
SolarCoin can be claimed by individuals living in homes with Solar
Energy panels on their roof or large solar electricity farms. Nowadays,
SolarCoin removed proof of work algorithm in favor to proof-of-stake-
time (PoST), which is more environmentally energy friendly. This
results in slight increase of its price and mining is now only via the
production of solar energy.

• Brooklyn Microgrid (Transactive Grid)

The Brooklyn Microgrid project is currently being developed in the
USA by TransactiveGrid, a joint venture between LO3 Energy and
ConsenSys [6]. The aim of the project is to test how blockchain tech-
nology can be used to effect direct neighbor-to-neighbor sales of solar
energy. The technology used in the project builds on the Ethereum
blockchain. Since April 2016, an initial pilot project run in Brook-
lyn has been exploring how to integrate buildings equipped with dis-
tributed energy resource systems (solar energy) in a decentralized peer-
to-peer power grid. Implementation of the project requires both smart

9

meter technology and blockchain software with integrated smart con-
tract functionality: smart meters are needed to record the quantity
of energy produced, blockchain software is needed to effect transac-
tions between the neighbors, and smart contracts are needed to carry
out and record these transactions automatically and securely. This
is an opportunity for prosumers that allows them to no longer just
feed their excess energy into the grid against payment of a fixed fee,
but to market it individually and be an active participant in a local
community market. Currently price formation and transaction are
performed manually, but later it is stated, that it will be automated
with user-defined policies.

• Scanergy

The principle that lies beyond Scanergy project is similar to previous
ones. It facilitates prosumers who put energy back into the network
from domestic wind turbines and solar panels. Premise for the starting
this project was the fact that the European Union is aiming for an 80
percent reduction in greenhouse gases [7]. In order to achieve that they
need to reform how energy distribution grids works now. More and
more consumers are becoming prosumers, who produce part or all of
their own energies with renewable “green” technologies such as solar
energy, and are willing to trade energy with their peers. One more
issue was that they need to “localize” the peer-to-peer trade, due to
the fact that European energy distribution networks would become
inefficient and waste significant amounts of green energy, if prosumers
trade energy globally. In order to do it the European power grids need
to be turned into “smart grids” that permit producing and consuming
energy locally, cutting down on the transmission loss which occurs
over longer distances. Scanergy is a scalable and modular system for
energy trading between prosumers. It is based on an intelligent multi-
agent system that can manage the electricity produced and consumed
both on a lower level (neighborhoods) as well as on a higher level
(cities). The Scanergy project includes a real-time automated market
trading system. This exchange system checks the supply of renewables
and the overall demand for electricity in a given neighborhood via its
smart meters every 15 minutes, then automatically brokers trades with
other neighborhoods for any excess or shortfall. It pays a Bitcoin-like
digital currency NRGcoin to those, who feed energy back into the grid
according to actual electricity usage rather than predicted usage.

10

• Smart Solar

Also there is one interesting project, related to energy transforma-
tion. In previously seen project Scanergy, internal currency NRGcoin
offers numerous advantages over fiat currency, but, unlike Bitcoin, it
is generated by injecting energy into the grid, rather than spending
energy on computational power. More in depth generation process
relates to Smart Solar project [8]. Basically goal of Smart Solar is
to design a blockchain-connected solar panel that tracks its own en-
ergy and can create and transact its own renewable energy certificates
(RECs) autonomously, so anyone can prove they’ve produced renew-
able energy. This provides greater transparency and accountability in
the REC market and creates incentives to generate renewable energy
to trade on energy markets. This project is noteworthy in that RECs
can be traded on exchanges globally. In comparison TransactiveGrid
tokens by design stay local.

11

Chapter 2

Problem description

2.1 Challenges

There are a lot of challenges, connected with designing local energy markets.
Local energy markets deals with the linking and connecting energy, economy,
and environment. The electricity market and the system are interlinked. So
we can distinguish 4 areas that need to be considered: technical, economic,
environmental, policy [2].

• Technical

Technical problems include the design, installation, availability of lo-
cal source and infrastructure. Smart meters, PVs, batteries, service
provider and connections are the necessary minimum for market func-
tioning. Monitoring is necessary for appropriate market data flow,
checking and controlling the data needed for taking decisions in the
global operations of local energy markets, which later can be auto-
mated. The outer grid connection for distribution network should be
considered as well as possible connections to neighbor local markets.
Also the whole system is dynamic, so we need relatively low time
frames for updating information. In real-world system this timeframe
should be around 0.5-5 minutes. Data security is also an issue, that
has high priority to consider in real-world application.

• Economic

Energy and economy are interlinked. Technology and structure can
meet energy demand which is driven by the level of revenue and fi-
nance. The financial mechanism is required to reduce the initial cost

12

of the market integration. Long run power purchase may cause un-
expected results during the market evolution. Various business and
financial models are required for the creation and participation of co-
operative, local community. Trust or loyalty mechanisms of members
should be considered to support the economics of the local energy
markets.

• Environmental

Although local energy market operates with clean energy from PVs
or windmills, there are some issues with environment we should take
into consideration. The easily accessible storage option for prosumer
is the battery. The toxic properties of the battery during dumping and
decomposition make a hazardous effect on the ecosystem. Geographi-
cal dependency and land requirement for PV station are concern issue
during the establishment of local energy market. For some seasonal
time periods, production can go to extremely low numbers, so the need
of mechanism of smoothing down consequences is needed.

• Policy

Planning of local energy market includes participants, objectives, poli-
cies, tools, procedures, and strategies needed during implementation
of the local energy market in the proposed scenario. Prediction error
can also appear in some situations. Consequences may include wrong
load scheduling based on weather and electricity prices. Prediction
errors may lead to errors in balancing the grid or needed energy for
the next time period.

2.2 Project goal

The overall project goal is to check if multi-agent system and blockchain
technology is applicable to local energy trading. Studying of MAS and
local energy markets were discussed in EMPOWER project specification
papers [9] [10] [11] [1], article about MAS and electricity trading [12] and
multi-agent model of smart home investigation [13]. These articles give
a representation how local energy market should operate in a smart grid,
give specifications for market and models of performing trading, storing and
producing energy. Our task is to simulate our model, get similar results with
our simulation, check how blockchain technology will influence the model
and apply different parameters to see how the model reacts.

13

The second goal is to make recommendations for further blockchain tech-
nology in appliance to local energy markets and check if learning agents are
of useful in this system compared to zero-intelligence agents.

14

Chapter 3

State-of-the-art

3.1 Analysis of problem area

Despite sustainable development of intelligent networks (smart grids) in the
energy sector, the services of retail electricity market are still awaiting mod-
ernization. Key problems include:

• How to provide customers with reliable information on costs and con-
sumption so that they can assess the new opportunities for a fully
integrated energy market

• How to stimulate active participation, simplify transition to new con-
tracts and manage demand-supply category in terms of changing prices

• How to ensure integration in the market of residential energy services,
expand the scope of consumer choice, demonstrate the advantages of
independent power generation and energy consumption, as well as local
energy generation

In this context, distributed registries can act as catalysts for the tran-
sition to a new level of integration and development of the retail energy
market. One of the valuable mechanisms here is energy generation with PV
systems. Micro-generation implies the possibility of independent generation
of electricity for consumers within a single home or local community. The
concept of “market” indicates the possibility of selling energy generated in
conditions of microgeneration to consumers by prosumers. Traditionally,
this market has worked on the basis of pre-arranged bilateral agreements
between prosumers and retail energy suppliers. Until now, prosumers did

15

not have full access to the energy market, which remains a privileged plat-
form for big energy suppliers. This significantly limits the economic benefits
of microgeneration for end users. Distributed registers, in combination with
systems and smart metering and new generation batteries (for local energy
storage), in the future can open access for consumers to the energy market.
Intelligent counters can be used to record and register self-generated energy
in a distributed registry. Self-generated electricity can be used for domestic
needs, accumulated in a new generation of batteries for later use, or trans-
ferred to the network. Another way is using the distributed and ubiquitous
nature of the registry, to exchange the generated energy as a commodity
elsewhere, for example, while charging an electric vehicle abroad. One more
possibility is to sell it through the register to the most profitable buyer,
using a mechanism similar to the mechanism of the exchange market.

Another mechanism is energy contracts. A consumer planning to switch
to another energy supplier must close the current contract with the current
supplier and enter into a contract with the new supplier and examine the
terms of the contract for all additional energy services provided by third
parties. Managing a variety of administrative processes in performing such
operations is a real obstacle to the further development of a competitive
retail energy services market and provide high costs for energy suppliers and
distributors. The use of distributed registers for the online registration of
energy contracts would greatly simplify these operations. Consumers could
make the transition from one supplier to another in just a few clicks on a
computer or mobile device. Similarly, energy suppliers and energy service
providers could save significant resources for these operations. The issues of
scalability, security and stability of such applications have not been solved
yet. Nevertheless, the advantages of this technology are rather promising
and our task is to show that this concept is viable.

This project is about implementing a system which will be decentral-
ized, autonomous, smart and transparent at the same time. This can
be achieved using blockchain technology with smart contracts and multi-
ple software agents, which takes care about energy auctions between pro-
sumer agents. In order to do that we have investigated scientific papers
and articles. Through literature study we have covered main topics such
as blockchain technology, Ethereum platform, smart contracts and oracles,
current blockchain projects, multi-agent systems and simulations, learning
techniques for multi-agent systems. First we will cover the basic technology
for secure, decentralized and transparent transactions - blockchain.

16

3.2 Blockchain technology

3.2.1 Blockchain

A blockchain is a shared digital decentralized ledger (registry) that records
transactions across a peer-to-peer network. Transactions are formed to
blocks. Every block then connects to the next one with use of cryptographic
signature. The block header includes its hash, hash of the previous block,
hash of transactions and additional service information. Transactions are
the key technology in blockchain. The only way to change the state of the
registry is to use transactions. Records can be added to registry only with
consensus of majority of the network. One important property of the registry
in blockchain is immutability. This means that you cannot change trans-
actions or blocks, cannot delete or insert in a random place. Immutability
property is provided by cryptography mechanisms. Two most simple cryp-
tography algorithms that lie in the core of blockchain are hash-functions and
digital signatures, which provide transaction integrity and authorization.

Each transaction is encrypted and sent to many individual peers, each
of which stores the data locally. The members of the network automati-
cally verify the transactions stored on the nodes. Transaction models for
centralized and decentralized architecture are shown on figure 3.2.

Figure 3.1: Transaction models for centralized and decentralized
architecture

Globally blockchain is a network for transaction processing with protocol
rules, which are used by participants in order to interpret the transaction
registry to get the state of the network. With this said, blockchain is de-
centralized: even if some nodes will fail or be compromised, system will

17

still work. Decentralized, open and mathematically grounded nature of the
blockchain allows people and organizations to minimize the risks of interac-
tion between themselves and conduct peer-to-peer transactions, excluding
intermediaries. This also has a positive effect on safety.

Hash functions in blockchain guarantee the immutability of the entire
transaction chain. In Bitcoin SHA-256 function is used to calculate hashes.
One more feature connected to optimization of blockchain performance is
Merkle trees concept shown on figure 3.2.

Figure 3.2: Merkle trees concept

Merkle tree is a data structure, also known as binary hash tree. A list of
transaction hashes is fed to the function input. At each stage of the calcu-
lation, successive pairs of hashes are glued together using a hash function.
If the hash is an odd number, then the latest is duplicated. The result is a
single hash, which is the final hash value for the entire list. This algorithm
enables the existence of “light client” as they only verify and synchronize
headers of the blocks without transaction. This principle enables to cut the
memory space of blockchain data significantly and called Simplified Payment
Verification (SPV).

The purpose of the verification process is to achieve consensus on the
content of the distributed ledger. Consensus-based verification is a decen-

18

tralized and automated process. The following two mechanisms are most
commonly used to establish consensus: proof-of-work (PoW) and proof-of
stake (PoS). In PoW users (verification users or miners) are continuously
verifying the hashes of transactions through the mining process in order to
update the current status of the blockchain assets. It is highly demanding
process in terms of computational power. PoS on the other hand is not so
demanding. PoS requires users to repeatedly prove ownership of their own
share (stake) in the underlying currency. This approach reduces the com-
plexity of the decentralized verification process and can thus deliver large
savings on energy and operating costs. In most blockchain systems hybrid
consensus protocols are used as PoW and PoS have their own strengths
and weaknesses. The first relevant blockchain application was Bitcoin, a so-
called “cryptocurrency”. Over recent years, Bitcoin has become the basis
for other blockchain applications, most of which are currently being devel-
oped in finance. A number of businesses and initiatives have recently been
launched that apply the blockchain principle to other industries, among
them the energy sector. Blockchain applications are generally considered
to be a very promising technology but they are still at an early stage of
development. In order to check the basic blockchain concepts, simple pro-
gram was developed. Block class, hashing function for blocks, function for
block generation, checks for block integrity and pick longest chain rule were
implemented. Basic schemes of developed chain are shown: block structure
on figure 3.3, longest chain rule on figure 3.4 and system interactions on fig-
ure 3.5. Some aspects of real blockchain systems were intentionally omitted
(like mining or nonce number for forming blocks).

Figure 3.3: Simplified block structure in blockchain

19

Figure 3.4: Longest chain rule principle

Figure 3.5: Nodes interactions

During literature study phase and state-of-the-art investigation a lot
of literature, concerning blockchain was analyzed. Studied the origins of
Bitcoin system, history of development, its philosophy of peer-to-peer inter-

20

actions, how it works in general and solutions to overcome blockchain prob-
lems, such as light clients for portable nodes [14]. Explored the principles
of blockchain technology, checked questions regarding consensus and valida-
tion techniques, noted possible security issues [15]. Got familiar with the
latest blockchain projects in financial and nonfinancial sector, got the idea
how blockchain transaction are verified [16]. Explored information about
decentralized applications, their ecosystem, introduces peering networks for
application, gives examples of successful applications like OpenBazaar (de-
centralized market), Lighthouse (decentralized crowdfunding), La’Zooz (on-
line taxi) [17]. Checked different types of chain interoperability (Notaries,
Relays, Hash-locking), potential use-cases it can be achieved and give com-
parative characteristics for these types. Also got an idea for interoperable
application development and recommendations for dealing with possible is-
sues [18].

Blockchain technology itself needs ecosystem to operate. It includes
solutions for storing data, creating communications and performing calcu-
lations. Examples of such projects are Storj (distributed saving and stor-
ing files), IPFS (file service, link management, file management), Miad-
safe and Ethereum (storing, communications, file management). Applying
blockchain to the task at hand we can select several platforms that provide
necessary blockchain functionality. They are Stellar, BigchainDB, Hyper-
ledger and Ethereum.

The most fast developing, promising and interesting platform was chosen
for further investigation - Ethereum.

3.2.2 Ethereum platform

Ethereum is a decentralized platform that runs smart contracts: applications
that run exactly as programmed without any possibility of downtime, cen-
sorship, fraud or third party interference. These applications run on a cus-
tom built blockchain, an enormously powerful shared global infrastructure
that can move value around and represent the ownership of property. This
enables developers to create markets, store registries of debts or promises,
move funds in accordance with instructions given long in the past (like a will
or a futures contract) and many other things that have not been invented
yet, all without a middle man or counterparty risk [19].

On traditional server architectures, every application has to set up its
own servers that run their own code in isolated threads, making sharing of
data hard. If a single application is compromised or goes offline, many users
and other applications are affected. On a blockchain, anyone can set up a

21

node that replicates the necessary data for all nodes to reach an agreement
and be compensated by users and application developers. This allows user
data to remain private and applications to be decentralized like the Internet
was supposed to work.

In common, Ethereum is software running on a network of computers
that ensures that data and small computer programs called smart contracts
are replicated and processed on all the computers on the network, without
a central coordinator. The vision is to create an unstoppable censorship-
resistant self-sustaining decentralized world computer with states.

The prerequisites for the emergence of the platform stemmed from the
shortcomings of Bitcoin in appliance to creating of decentralized applica-
tions. Major important limitations of Bitcoin were:

• Lack of Turing-completeness

Though Bitcoin supports scripting language on top of it and provides
some computational capabilities, it does not provide everything what
was needed. Main problem were missing loops. This was done to
avoid infinite loops during transaction verification. Though, in order to
implement alternative elliptic curve signature algorithm would require
256 repeated multiplication rounds.

• Value-blindness

Bitcoin scripting language has a problem with providing fine-grained
control over the amount that can be withdrawn.

• Lack of state

There are no possibilities for multi-stage contracts with Bitcoin. It
only has simple data manipulation operations.

• Blockchain-blindness

Bitcoin scripting language is blind to certain blockchain data such as
the nonce and previous block hash. This severely limits some types of
applications.

The point of Ethereum was to eradicate these limitations and provide
more for decentralized applications. The intent of Ethereum is to create
an alternative protocol for building decentralized applications, providing a
different set of features that are useful for a large class of decentralized ap-
plications, with particular emphasis on situations where rapid development
time and solid security. Ethereum implements it with a blockchain with a

22

Characteristics Ethereum Bitcoin

Time block 10 s 10 min

Value for block mine 5 12,5

Created blocks >1400000 >400000

Transactions in one block >30000 >1200

Nodes in network >6000 7000

Currency value ∼10$ ∼420$

Table 3.1: Cryprocurrencies comparison

built-in Turing-complete programming language, allowing anyone to write
smart contracts and decentralized applications where they can create their
own arbitrary rules for ownership, transaction formats and state transition
functions.

Ethereum extends the blockchain concepts from Bitcoin which validates,
stores, and replicates transaction data on numerous computers. It takes this
one step further by running code on multiple machines.

Ethereum does not only play the role of distributed data storage, it also
provides computations. The computer programs being run are called smart
contracts (which we will cover further), and the contracts are run by partici-
pants on their machines using a virtual operating system called a “Ethereum
Virtual Machine” (EVM). The design, features and inner implementation of
EVM is described extensively in Ethereum Yellow Paper [20].

Basic concepts of EVM are ether, accounts, messages, transactions, gas
and code execution [21]. The Ethereum network includes its own built-in
currency, ether, which serves the dual purpose of providing exchange be-
tween various types of digital assets and, more importantly, of providing a
mechanism for paying transaction fees. The most used denominations: 1 -
wei, 1012 - szabo, 1015 - finney, 1018 - ether. In the near future, ether is ex-
pected to be used for ordinary transactions, finney for microtransactions and
szabo and wei for technical discussions around fees and protocol implemen-
tation, the remaining denominations may become useful later. Comparison
table for cryprocurrencies of Bitcoin and Ethereum is shown in table 3.1.

In Ethereum, the state is made up of objects called “accounts”, with
each account having a 20-byte address and state transitions being direct
transfers of value and information between accounts. An Ethereum account
contains four fields: nonce (for one-time possessed transaction), accounts
ether balance, account’s contract code and account’s storage. Accounts also
play a role of a public key for digital signature algorithm. There are 2 type

23

of accounts: user and contract. In user account contract code field is empty.
Transactions are used in Ethereum transfer signed data package that

stores a message to be sent from an externally owned account. Transac-
tions contain: the recipient of the message, signature identifying the sender,
amount of ether to transfer from the sender to the recipient, optional data
field, STARTGAS value, representing the maximum number of computa-
tional steps the transaction execution is allowed to take and GASPRICE
value, representing the fee the sender pays per computational step.

When you activate a smart contract, you perform the calculations within
it. This costs time and energy, and gas is the mechanism to pay them for
service. The payment is a small amount of ether. General formula for that
is shown in equation (3.1).

Payment (in ether) = gas amount(in gas) ∗GASPRICE(in ether/gas)
(3.1)

The more complex the smart contract (the number and type of compu-
tational steps, memory used for storage), the more gas the contract requires
to run and complete.

Whereas the STARTGAS is used to run a contract is fixed for any
specific contract, as determined by the complexity of the contract, the
GASPRICE is specified by the person who wants the contract to run. This
is a competitive mechanism that allows running the contract by miners of the
net. The STARTGAS and GASPRICE fields are crucial for Ethereum’s
anti-denial of service model. In order to prevent accidental or hostile infinite
loops or other computational wastage in code, each transaction is required
to set a limit to how many computational steps of code execution it can use.
The intent of the fee system is to require an attacker to pay proportionately
for every resource that they consume, including computation, bandwidth
and storage. Contracts have the ability to send “messages” to other con-
tracts. Messages are virtual objects that are never serialized and exist only
in the Ethereum execution environment. Essentially, a message is like a
transaction, except it is produced by a contract and not an external actor.

In terms of code execution in Ethereum contracts, code is written in a
low-level, stack-based bytecode language, referred to as “Ethereum virtual
machine code” or “EVM code”. The code consists of a series of bytes, where
each byte represents an operation. In general, code execution is an infinite
loop that consists of repeatedly carrying out the operation at the current
program counter (which begins at zero) and then incrementing the program
counter by one, until the end of the code is reached or an error or STOP

24

or RETURN instruction is detected. The operations have access to stack,
memory and contact’s long-term storage. While EVM is running, its full
computational state can be defined by the values, which defined as block
state, transactions, memory, stack, messages, code, gas.

Concerning consensus algorithm in Ethereum now PoW is used. Though
it works fine with Bitcoin, it has several issues like consuming tremendous
amounts of energy and now Ethereum developers seek alternative, “greener”
solution. The starting point is PoS. After several years of development, it
became clear that alteration of PoS is needed for Ethereum, due to specifics
of the platform [22].

After some development iterations an idea known as Casper appeared,
which is described as “consensus by bet”. The development process involves
heavy exploration of both economic and game-theoretic considerations and
Byzantine-fault-tolerant protocols, trying to create a protocol that satisfies
one of several constraints simultaneously. What separates Casper (and other
more recent versions) from traditional PoS, is that it punishes participants
who don’t play by the rules. The development is still on-going and expected
to be finished in late 2017 [23] [24].

Although Ethereum is still work in progress, it is already censorship-
resistant self-sustaining decentralized world computer that can perform cal-
culations, store data, and allow communications. There is a public permis-
sionless open source version, and forks of this have been taken and adapted
for private network use. The public and private versions are attempting to
solve different problems.The technology is currently immature, but as more
people use it, test it, develop it and build on it, it will improve and become
more robust.

3.2.3 Smart contracts and oracles

Smart contracts are account holding objects on the Ethereum blockchain.
They contain code functions and can interact with other contracts, make
decisions, store data, and send ether to others. Contracts are defined by
their creators, but their execution, and by extension the services they offer, is
provided by the Ethereum network itself. They will exist and be executable
as long as the whole network exists, and will only disappear if they were
programmed to self-destruct.

To deploy a contract two things needed: the compiled code and the
Application Binary Interface (ABI). Compiled code is needed for EVM and
ABI is used for calling these contracts. Contracts are typically written in
some high level language such as Solidity, Serpent or LLL, and then compiled

25

into byte code to be uploaded on the blockchain.
Using smart contracts can simplify work in many areas of life, including

logistics, management, internet of things (IoT), law and even in elections.
Main advantages of smart contracts are: independence of 3rd party, safety
(stored encrypted on blockchain), reliability (using blockchain principles),
economy (no fees for 3rd parties), accuracy (no need in forms registration).
There are also some problems associated with smart contract: contract reg-
ulations, taxes and code dependence. These problems have high impact on
usage rate of smart contracts nowadays, but in time it is possible to resolve
all problems connected with them.

Oracles are the extensions of the contracts. Smart contracts, by their
nature, are able to run algorithmic calculations and store and retrieve data.
Because every node runs every calculation, its not practical (and presently
impossible) to make arbitrary network requests from an Ethereum contract.
Oracles fill this void by watching the blockchain for events and responding
to them by publishing the results of a query back to the contract. In this
way, contracts can interact with the off-chain world. The example of an
oracle can be “Proof-of-phone”, which will provide information if particular
address in Ethereum system is associated with specific phone number. This
is rather useful technology, but has trust issues that should be resolved.

3.2.4 Ethereum applications

Generally, all Ethereum applications have the following properties:

• Cryptographically Secure

Uses public/private signature technology. Blockchain applies this tech-
nology to create transactions that are impervious to fraud and estab-
lishes a shared truth.

• Decentralized

There are many replicas of the blockchain database and no one par-
ticipant can tamper it.

• Data and Smart Contracts

The Ethereum blockchain can store both data and Smart Contracts
in the blockchain.

• Immutable Ledger

Blockchain is a write-once database so it records an immutable record
of every transaction that occurs.

26

In general, there are three types of applications on top of Ethereum.
The first category is financial applications, providing users with more pow-
erful ways of managing and entering into contracts using their money. This
includes sub-currencies, financial derivatives, hedging contracts, savings wal-
lets, wills, and ultimately even some classes of full-scale employment con-
tracts. The second category is semi-financial applications, where money is
involved but there is also a heavy non-monetary side to what is being done;
a perfect example is self-enforcing bounties for solutions to computational
problems. Finally, there are applications such as online voting and decen-
tralized governance.

The statistics regarding the Ethereum blockchain make it apparent that
the project has attracted a lot of attention. There are already a number of
decentralized applications and concepts built on top of Ethereum, some of
which show great potential. The typical decentralized application architec-
ture is shown on figure 3.6.

Figure 3.6: Typical DApp structure

Decentralized Applications or DApps (called in the Ethereum commu-
nity) are the type of applications built using smart contracts and Ethereum
platform. The goal of a DApp is to have a nice UI to smart contracts system
plus any extra improvements. While DApps can be run from a central server

27

if that server can talk to an Ethereum node, they can also be run locally
on top of any Ethereum node peer. They may use the blockchain to submit
transactions and retrieve data rather than a central database. Instead of a
typical user login system, users may be represented by a wallet addresses
and keep any user data local.

3.3 Multi-agent systems

Multi-agent system (MAS) is a system formed by several interacting intel-
lectual or zero-intelligence agents. Multi-agent systems can be used to solve
problems that are difficult or impossible to solve with a single agent or a
monolithic system. Examples of such tasks are online trading, the elimina-
tion of emergencies, and the modeling of social structures.

In a multi-agent system, agents have several important characteristics:

• Autonomy: agents, at least partially, are independent

• Limited representation: none of the agents has an idea of the whole
system, or the system is too complex for knowledge of it to have prac-
tical application for the agent.

• Decentralization: there are no same level agents controlling the entire
system

Agents can exchange received knowledge using special methods or by
third party.

Considering peer-to-peer application in a blockchain environment, we
identify nodes with agents. An autonomous agent is defined as a reactive,
proactive, and social entity. Autonomous agents interact with each other ac-
cording to the protocol specified for the P2P network containing the nodes.
Agents may enter with each other into smart contracts that are mechanisms
involving digital assets and two or more parties where some or all parties
put assets in and assets are automatically redistributed among those parties
according to a formula based on certain data or event that is not known at
the time the contract is initiated. Autonomous agents together with smart
contracts regulating the relationship between them make up decentralized
system. In a multi-agent system a solution to the problem to be solved is
delivered through autonomous actions by and interactions between agents
and environment. During investigating state of the art stage several articles
were studied and analyzed: explored formal models for agent-based systems
in electricity markets and got the idea of energy flows in the ecosystem of

28

smart grids [25]; investigated how double action principle works in the mar-
ket, refreshed knowledge about Nash equilibrium and explored experimental
results [26]; got familiar with EMPOWER project and its general concepts,
regarding multi-agent systems and zero-intelligent agents, rules of trading,
process and requirements [10]; checked the real implementation of MAS with
auction principle in Python, how it is programmed and organized [27]; re-
viewed recent implications and trends for MAS technology in controlling of
the smart grid scenario[28]; explored the multi-agent system, priorities of
the agents, real case studies with loads in system and its performance [13].

In our work we use zero-intelligence agents with predefined policy. In
order to improve the results of agent behavior machine learning algorithms
can be used, especially some modifications of reinforcement learning with
dynamic programming principles.

3.4 Possible issues

Though Blockchain technology provide a lot of capabilities for effective or-
ganization of energy trading, some of the features can be a problem for
developing such system. Possible issues with this project may include:

• Speed

In order to store transactions in a blockchain, first, they should be
formed into blocks and then verified. This process takes time. In
public blockchain it will probably be a greater issue due to 10 seconds
block formation. If time discretization of the system will be more than
10 seconds, system will handle this.

• Lack of standardization in DApps and smart contracts

Currently DApps are in early development stage, as well as Ethereum
with smart contracts. There are no standards for writing specific types
of contracts or building an application. Also there is no long-term
experience with this technology, which implies to develop with caution.

• Security issues

These problems are referred to blockchain integrity and smart con-
tracts design. These exploits already had place with one of the first
Ethereum project The DAO. Smart contract error inside The DAO
allowed hackers to steal ether from a crowdfunding pool, which eventu-
ally led to a community split of Ethereum to Ethereum and Ethereum

29

Classic, which continued the version of chain after stealing (hard-
forked). Ethereum reversed changes and continue to operate. More
information can be found in article [6] [29].

• Need to relocate the logic and computations

Smart contracts and Solidity language are powerful instruments. In
order to create fully distributed and decentralized application all logic
and computations should be written in smart contracts. But due to
Ethereum platform functionality enormous amounts of gas are needed
in order to operate with these smart contracts. Also real Ethereum
chains are rather slow, so hard commutations will be difficult to han-
dle. This can be avoided in our case by choosing private chain con-
figurations and distributing logic and computations to other program
elements. This process is defined in detail in Chapter 4.

3.5 Ways of implementation

In this thesis we are developing a solution to let neighbors sell excess solar
energy among each other on a local marketplace. Using blockchain is really
natural and obvious solution if we consider all advantages mentioned above.
The blockchain makes the whole process a lot simpler and more transparent
and will allow for secure transactions that can easily be verified in real-time.

All of the trades designed platform should be executed through smart
contracts, a technology which is natively supported by the Ethereum blockchain.
Using a smart contract ensures no one can modify the data of the agreement
once it has been recorded on the blockchain, which is the most valuable fea-
ture in using blockchain technology. There are multiple advantages to this
type of solution, as buyers and sellers know exactly who they are dealing
with and where the solar energy is coming from. Smart contracts are a good
fit for these types of transactions, as they make the boundaries of the agree-
ment between parties clear and tamper-proof. Wielding this technology on
top of the Ethereum blockchain can be of great value to local neighborhood.
In order to implement this, there are some ways to do it effectively, without
scalability issues and with ability to add depth to the system. We have
investigated 3 major ways:

• Python programming language with frameworks: pyethereum, web3.py,
populus, testrpc.

• JavaScript programming language with frameworks: ethereum-js, web3.js,
Truffle, Embark ; Microsoft Azure web-server.

30

• Python programming language with BigchainDB technology

These ways of creating a blockchain solution uses a lot of state-of-the-art
technology starting from platforms and drivers and ending with frameworks.
Geth is the official client software provided by the Ethereum Foundation.
It is written in the Go programming language. Other clients are pyethapp,
written in Python, eth, written in C++ and Parity, written in Rust. When
Geth starts its client daemon, it connects to other clients (also called nodes)
in the network and downloads a copy of the blockchain. It will constantly
communicate with other nodes to keep it’s copy of the blockchain up to date.
It also has the ability to mine blocks and add transactions to the blockchain,
validate the transactions in the block and also execute the transactions. It
also acts as a server by exposing APIs you can interact with through RPC.
A command line tool called geth, allows to connect to the running node
and perform various actions like creating and managing accounts, query the
blockchain, sign and submit transactions to the blockchain. pyethereum
and ethereumjs are frameworks that provides core Ethereum functionality
on Python and JavaScript respectively. They include modules for work
with EVM, Blockchain, blocks and data, transactions, accounts, hashing
functions. Microsoft Azure is a cloud based solution that can be used to
deploy the Ethereum MultiMember Network. Network consists of a subnet
for mining, a subnet for transaction processing, load balancer and regulator
module. The main regulator module allows adding, deleting or changing
the parameters of the participants. API application is necessary for working
with a smart contract to identify customers. An application written on
NodeJS can access smart contracts with GET and POST requests, which
greatly facilitate the work with smart contracts. Subnets in turn consist of
one or more Ethereum nodes.

Truffle and Embark are the two most popular frameworks used to de-
velop DApps. They abstract away lot of the complexities of compiling and
deploying your contract on the blockchain. It provides functions for creating,
testing and deploying of the contracts easily, create customizable chains and
perform diagnostics. For Python implementation this type of framework is
populus.

Testrpc is a Python client that doesn’t support real blockchain mining, so
it’s not a full client, but mining can be simulated for testing and development
purposes, if needed.

With populus it is possible to run a test network using geth, or another
fast way of getting a testnet running is using testrpc. Testrpc will create a
bunch of pre-funded accounts for the testing when it starts up.

31

BigChainDB is a blockchain implementation, written in Python, which
is often referred to as a solution to all problems with the data storing.
BigChainDB has a very high transaction speed (1 million/sec), a huge stor-
age capacity (due to distributed storage with partial replication). BigChainDB
gets these benefits through a simplified consensus when building blocks, and
by storing all the blocks and transactions in the existing NoSQL implemen-
tation of the database (RethinkDB or MongoDB).

To communicate with the Ethereum node, there is a JavaScript library
called Web3.js which can be used to interact with a node. Web3 object
communicates to a local node through RPC calls. Since it is a JavaScript
library, you can use it to build web based DApps. Communication principle
is shown on figure 3.7.

Figure 3.7: web3, clients and Ethereum interactions

As of date of writing this thesis, practically all developments, except on
Go language and JavaScript, have been stopped. Due to this JavaScript
based frameworks are one of the best ways to start building web-service
based DApps. Still it is possible to perform development with other ways.

32

Chapter 4

Method

4.1 Choosing approach

In Chapter 3 we have stated 3 possible ways of developing local energy mar-
ket application with multi-agent technology and blockchain support. In or-
der to choose the most appropriate way the feature analysis was performed.
All mentioned above methods were tested on simple test application and
investigated for their advantages and disadvantages.

• Python and BigChainDB

This approach have a solid background as BigchainDB provides only
data storage for the records. It can be deployed with various types
of nodes (test, production, development), using local server or deploy
a test cluster with AWS or Microsoft Azure. It can be easily pro-
grammed in any way which good documented API for Python. Speed
and data storage is rather good, compared to NoSQL databases. De-
veloper has full control of block data and assets in the system.

This architecture has a significant drawback - each node has full rights
to write to a common data storage, which means that the system
as a whole is unstable to the problem of “Byzantine generals” [30].
Such an easy approach to the fundamental problem causes community
criticism of the project, because the high speed and bulk characteristics
of BigChainDB in the absence of BFT (Byzantine Fault Tolerance)
are not so different from those demonstrated by the noSql databases
RethinkDB and MongoDB, which are used for data storage. Thus, the
actual use of BigChainDB is limited to private networks. For public
networks, it does not fit.

33

• JavaScript, ethereum-js, web3.js, Truffle, Embark, Microsoft Azure
web-server

This way of deploying blockchain is highly effective, but also demands
funding. Microsoft Azure services are not free. Ethereum community
now relies on JavaScript implementation of Ethereum platform and
made a lot of decentralized application based on it. Truffle and Em-
bark are the best instruments for creating, deploying and testing smart
contracts. They have a solid code base and allow to create chain pro-
files for testing and production. Truffle and Embark allow to create a
page template with contract functions already deployed and integrated
to the page.

This function is very convenient, especially with plugin MetaMask,
which allow to test Ethereum in Internet browser. A lot of companies
use this approach, for example, Russian bank “Alpha-bank” made a
letter of credit system on a blockchain with Microsoft Azure, with
frameworks: NodeJS, React, Redux.

• Python, pyethereum, web3.py, populus, testrpc

Python and pyethereum duplicate previous method in many ways.
Populus is analog for Truffle framework, with some additions to chain
management. populus framework allows to customize chains, perform
smart contracts deployment process and provides useful utility func-
tions for development process. Earlier, Python and Serpent (smart
contract programming language) were the way-to-go in developing
DApps. Now there is a Solidity compiler for Python, so contracts
can be still written in Solidity, rather than Serpent, which is less func-
tional in terms of contract design. Testing with this approach is rather
convenient and does not require a web server. Also it is rather easy
to run a simulation and plot results with Python libraries. Main dis-
advantage that can be assigned is that the resulting application will
not be truly DApp. A lot of functionality will be transfered to server
side, which includes transaction management and value computations.
Though, this approach will allow to program simulation system as it
should be working in a test environment.

In order to choose best way we need to identify blockchain configuration
for our application. Blockchain can be divided into 2 configurations: private
and public blockchains.

Public blockchains are trustless due to consensus algorithm enabling any-
one to join as a participant. It must be expensive and difficult to publish

34

a block to prevent fraud and spam (proof of work/mining), global digital
currency (e.g. Ether) are used to pay to process transactions and smart
contracts. Developing in public chains is not an effective strategy, due to
stated reasons.

Private blockchains or Sandboxes designed for rapid application devel-
opment and instant deployment, suited for single enterprise solutions that
can be configured for high throughput, does not require digital currency for
transaction processing, but tokens could be useful for internal currency.

Ethereum supports both configurations and BigchainDB, as stated ear-
lier, is good with private blockchains. So the speed of development and ease
of use of frameworks is the crucial factor. So the Python with Ethereum
frameworks approach was chosen.

4.2 Concepts testing

In order to test core functions of blockchain interaction simple blockchain
program was developed. It is not directly included into simulation, but it
helped to understand the underlying concepts. Though it ignored several
features like mining, it helped to derive the basic work flow for blockchain
transactions. The features of the developed program were described in Chap-
ter 3. The work flow is shown on figure 4.1.

Figure 4.1: Transaction verification process in blockchain

35

With pyethereum, implementation of Ethereum platform with Python,
utility functions were tested. These functions include creating a new test
blockchain configuration with a custom genesis block, sending a transaction
using the private key and returning value of the contract, creating a contract
with given Serpent file, sending transactions with raw EVM code, mining
simulation, block manipulation (getting addresses, hashes, timestamps, gas
values).

With built in Ethereum tester, unit-tests were created. Scenarios include
sending ether to address, simple token exchange, token buy/sell procedures
and utility contract calls. Also utility functions were tested: sha3() - hashes
a pass phrase to a private key value with SHA-3 (Secure Hash Algorithm
3) cryptographic hash function, and privtoaddr() - gets an address from
private key.

During designing of smart contracts Serpent and Solidity smart contract
programming languages were studied and analyzed. With Solidity several
contracts were implemented like standard coin, safe purchase, open auction,
blind auction. UML diagrams for these contracts are shown on figure 4.2.

Figure 4.2: UML diagram of test smart contracts

The general idea of the simple open auction contract is that everyone
can send their bids during a bidding period. Sending ether bind the bidders

36

to their bid. If the highest bid is raised, the previously highest bidder gets
money back. After the end of the bidding period, the contract has to be
called manually for the beneficiary to receive his money - contracts cannot
activate themselves.

Blind auction is an extension to previously described open auction. The
advantage of a blind auction is that there is no time pressure towards the end
of the bidding period. During the bidding period, a bidder does not actually
send bid, but only a hashed version of it. This is done due to transparency
of the system - one of the basic principles of public blockchains in Ethereum.
Since it is currently considered practically impossible to find two (sufficiently
long) values whose hash values are equal, the bidder commits to the bid by
that. After the end of the bidding period, the bidders have to reveal their
bids. Bidders send their values unencrypted and the contract checks that
the hash value is the same as the one provided during the bidding period.
Due to the fact that the auction should allow binding and be blind at the
same time, the bidder should send actual ether with the encrypted bid. The
contract solves this problem by accepting any value that is at least as large
as the bid for preventing bidders from messing with auction mechanism.

These auction does not include solid computations, so the cost of de-
ployment (in gas) is rather low.

Safe purchase contract allowed to test contract states for safe transition
of the asset. It is done with the help of modifiers and conditions combined
with states.

In order to deploy these contracts and get their ABI for the program to
interact, solc compiler for solidity language was used. py-solc is a wrapper
around solc compiler, providing to use API for compiling contracts. py-solc
provides the high level compile files() and compile sources() functions for
Solidity compilation from within python code. It also provides a link code()
function to handle library linking.

Web3.py and populus are frameworks that provide API for contract com-
pilation, deployment, testing, test chain management and analyzing. With
this frameworks a testing project environment for smart contract function-
ality was created. The profile for the chain was testrpc.

After testing all components, needed to build a blockchain simulation
system, we need to assemble the system, using all checked technology. Blockchain
is the core environment and store valuable data. As we mentioned above
we moved from classical DApp architecture in favor to centralized comput-
ing. So our simulation python code will provide computations and actions
to blockchain for smart contract interactions. With web3 API we will inter-
act with Ethereum network. DApps, written as pure HTML/JS/CSS can

37

be completely serverless and can interact directly with Ethereum platform
using web3 RPC. Typical blockchain project architecture scheme is shown
on figure 4.3.

Figure 4.3: Blockchain project architecture scheme

4.3 Prototyping entities

As was stated before, creating local energy market and microgrid, which
reside on top of existing infrastructure is the priority goal. The market
should be transparent, effective and secure. Main feature list should include
decentralization, locality, renewable energy production, sharing economy.
Customers should have reliable and actual information on costs and con-
sumption rates, market prices should be flexible and sustain the market
status, local prosumers should be able to sell surplus to their neighborhood
and make profit from it. All energy, generated by prosumers should be either
spent on domestic needs, stored in the battery or sold on the market.

Blueprint of the entities interaction is shown on figure 4.4.
So our system should include prosumers and consumers entities with

some sort of environment area, where all agent actions would take place -
service provider. Service provider will be directly connected to blockchain
and smart contracts. For our simulation this concept is necessary due to
computations for different types of auction and transactions. Summing up,
we should have houses entities that have basic information about a house-

38

Figure 4.4: Proposed entities interaction

hold, ruler agents that will perform computations and make decisions about
what should be done in the current hour. Prosumers and consumers are
represented as houses (House). Each house have a ruler agent (RulerAgent)
instance for data flow control and decision making. UML diagrams for House
and RulerAgent classes are shown on figure 4.5.

Outer grid will also be present in a system as it should have a backup
plan if our microgrid energy balance will be close to minimum. It also
should be a tool, which prosumer agents will utilize for sell surplus energy,
if no buyers are available at the moment. This is regulated with the battery
capacity value. If it goes over some threshold value, agent will sell produced
energy.

For testing the concept, simulation approach was chosen. Due to Ethereum
limitations discretizing the timeline in simulation should not be high. Sim-
ulation will also be run on a rather high amount of days, so a lot of com-
putations will be needed, so hourly simulation was tested. With hourly
simulation it will run for a various ranges of days. Simulation will provided
state results for each our. This state will inlcude hour, consumption and
production data, monetary balance and energy balance. Also, using simula-
tion approach we can perform learning procedure on agents or collect their
experiences for future use.

Environmental parameters will be computed with various methods based
on probability curves and internal parameters. Seasonal variables were taken
from real data, and include summer temperature, production and consump-

39

Figure 4.5: UML diagram of House and RulerAgent classes

tion profile values averaged throughout summer season. Data for production
and consumption was provided by Kristoffer Tangrand. Before processing
consumption data included values for a set of homes in Hvaler, Norway from
2013, and production data - values for solar panel installations in Scandi-
navia between 2013 and 2016.

Trading concept is the key in this system. Energy trading will be per-
formed by prosumers and consumers, with the help of outer grid in extreme
situations. Trading will be held using different types of auction, mostly with
double auction mechanism. Service provider will handle auction process and
send transactions to the blockchain.

UML diagrams for ServiceProvider class and Simulation are shown on
figure 4.6.

Smart contracts are the interface to interact with blockchain and data.
Smart contracts interactions are held after every auction instance, for ful-
filling the need for energy for consumers or wish of selling for prosumers.

Thus, we should design our system and simulation with all these points
in mind.

40

Figure 4.6: UML diagram of ServiceProvider class and simulation

4.3.1 Creating smart contracts

A contract in the sense of Solidity is a collection of code (its functions) and
data (its state) that resides at a specific address on the Ethereum blockchain.
Compiled solidity file consists of 2 contracts. eToken contract is used for
internal currency for buying/selling energy. EthEnergyMarketH contract is
used for market manipulation processes. eToken has data for contract owner
address (which allows using administrative functions), for naming and sym-
bol, decimal units, total supply of tokens (also known as initial distribution),
sell and buy price for tokens, account balances and statuses. Functions for
this contract include transferring tokens from sender to receiver, generating
more tokens, buy and sell functions for the token currency and setting prices
for sell/buy operations. EthEnergyMarketH contract data includes energy
production, consumption, balance, money spend on energy and token price
rates. Functions for this contract include money transferring, setting rates,
sending coins, energy consuming and producing, functions to buy and sell
from outer grid, initial energy balance distribution and getters for data in
the contract. Designed contracts were kept as simple as possible in order
to avoid issues with computations on EVM and for token ERC20 Token

41

Standard was used. UML diagram for contracts is shown on figure 4.7.

Figure 4.7: UML diagram of smart contracts

Creating final version of contracts was performed using Solidity. Usual
work flow for contracts includes the following steps:

1. Start an Ethereum node (with geth/testrpc/ethersim)

2. Compile Solidity smart contract using solc or py-solc. Get back the
binary.

3. Deploy compiled contract to the network. Get the contracts blockchain
address and ABI - a file in JSON format that represent all of compiled
contracts variables, events and methods that can be called.

42

4. Call the contract methods or data using web3 API to interact with it,
updating the state of the program and contract.

After contracts were created we can move to the next step - integrate
contracts and multi-agent system for our program.

4.3.2 Multi-agent system implementation

In the designed system there are 2 types of agents: ruler agents and service
provider agents. Ruler agents interacts with different agents by means of
service provider, which is presented as a “blackboard” for interactions and
provides auction functions for ruler agents.

Ruler agents gets information form house entities and manipulate with
it, forming bids or sells for service provider agent. As in this work we only
investigate energy trade, only trading interaction are presented, though sys-
tem can be expanded in favor of other types of interactions, like knowledge
exchange (for learning algorithms), loyalty attribute or consumption/pro-
duction rates. Ruler agents mostly operate with house information, regard-
ing consumption calculation, production simulation and battery balance.
They also have a copy of data for money balance, energy token balance.

Service provider agent is an information “aggregator”, it possess all nec-
essary information for trading and auctions. It tries to stabilize auction and
takes no fees for this, though there is a possibility for functionality expansion
for it, as it has address in Ethereum system, wallet, energy tokens and ether
as any house entity in the system for market and auction operations. For
this project it also possess table of successful auctions for further process-
ing by learning algorithms. Functions for service provider will be described
further in section 4.4.

In designed simulation ruler agents provide information for service provider
every hour. The info contains buy/sell label and the amount of energy, which
is to be bought or sold. For specific auction needs, service provider can re-
quest addition information from ruler agent, for example, loyalty value for
loyalty double auction scheme. If agent will have sufficient energy for the
next hour and no surplus (this value is corrected via threshold value) then
the auction round will be skipped for current hour.

Consumption and production are the key functions for deciding if agent is
participating in the auction round. The time frame of calculation is including
previous hour, next hour and current hour timelines. For the close to real
situation simulation we chose this type of time frame calculations. if we are
observing hour ti Consumption function refers to ti+1 hour and production

43

function - ti−1. Consumption-production principle for the current time ti is
shown on figure 4.8.

Figure 4.8: Consumption-production principle

Production function in the simulation is calculated every simulation
round before production. This function simulates the amount of energy
produced by house with PV, considering information about PV, size of the
PV, weather type for the hour and a stochastic value. This value refers
to the previous hour and is added to the total battery balance only next
hour (the simulated hour). This is measured in (Wh). Multiplication by
100 is needed, concerning minimal energy unit for the system. Production
calculation formula is shown in (4.1).{

0 if 5 < hour < 21

100 ∗ PVarea ∗Kweather ∗Khour if 5 ≥ hour ≥ 21
(4.1)

Consumption function is a sort of prediction function. This function is
calculated after production calculation is performed. Ruler agent predict
the energy need for the next hour. It uses information about home status,
which is a probabilistic function. The total result is calculated with Monte-
Carlo approach. It uses predefined probability graph and stochastic value.
randomHigh() and randomLow() are random generators for high and low
profile. These profiles were constructed using real data for consumption
mentioned in section 4.3. Multiplication by 100 is also needed here for the
same reason as for production calculation function. Consumption calcula-
tion formula is shown in (4.2).{

randomHigh ∗ 100 if statusHome = True

randomLow ∗ 100 ifstatusHome = False
(4.2)

Probability graph data is used for triggering Home/Away status for the
ruler agent. It utilizes this info for calculating simulated consumption for
the next hour. The probability graph is shown on figure 4.9.

Depending on the values of (production+batteryBalance) and batteryCapacity
outer grid is involved. So we sell excess energy straight away before auction,

44

Figure 4.9: Home status probability graph

due to storage capacity. Alternatively we can use service provider storage,
if we introduce battery for it.

After both values are computed, the balance after consumption is cal-
culated, which later is processed and based on this information application
for the auction is formed. After production value is added to the total en-
ergy balance and consumption for the next hour is calculated, balance after
consumption value is observed. Depending on this value, the further action
is taken. If this value is positive then this is trigger for “sell” action or
“do nothing” action. If negative - trigger for “buy” action. The amount
for selling is calculated with threshold value, which is showing the critical
energy level for this house. Critical level is showing how much energy should
be stored before auction process for the next day. It is usually assigned de-
pending on average rate of consumed energy per hour and battery capacity
of the observed household. If the value is under critical mark - then the
household skips the auction round for the current hour and proceeds to the
next hour of simulation. The amount for buying is calculated using values
of consumption and battery balance. After this round of computation, we
form an application as (buy, amount) or (sell, amount). Next step is adding
a price for this application.

In order to form buy/sell transaction for auction we need a price to
be formed. Function for price formation uses predefined price range as
(min,max). Maximum price is close to the outer grid usual rate and mini-

45

mum is chosen by market administrator. Also it depends on amount, which
is being sold or bought. In order to form a price a Monte-Carlo approach
and beta-function probabilistic distribution is used.

Beta distribution is a family of continuous probability distributions de-
fined on the interval [0, 1] parametrized by two positive shape parameters,
denoted by α and β, that appear as exponents of the random variable and
control the shape of the distribution. Beta distribution has been applied to
model the behavior of random variables limited to intervals of finite length.

The Beta distribution is a special case of the Dirichlet distribution, and
is related to the Gamma distribution. It has the probability distribution
function (4.3):

f(x, α, β) =
1

B(α, β)
xα−1(1− x)β−1 (4.3)

where the normalization, B, is the beta function (4.4):

B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt (4.4)

The probability density function for beta distribution through gamma
function can be described by (4.5):

betaPDF (x, α, β) =
gamma(α+ β) ∗ xα−1 ∗ (1− x)β−1

gamma(α) ∗ gamma(β)
, (4.5)

for 0 < x < 1, α > 0, β > 0, where gamma() is the gamma function, α
and β are the shape parameters for beta function.

To form beta distribution we use list of prices, α and β parameters.
After beta distribution is defined, we get sample from the parameterized
beta distribution to compare with stochastic value. Depending on amount
of energy and type of action (buy or sell), samples from list of possible prices
is drawn in specific order. Beta function also redefined with new parameters
α and β. These parameters were chosen in favor of usual market interactions.

• For “sell” action (4.6):


if amount < midRange reversed(priceList), α = 2, β = 4

if amount > midRange priceList, α = 4, β = 2

if amount = midRange priceList, α = 8, β = 8

(4.6)

46

• For “buy” action (4.7):


if amount < midRange priceList, α = 2, β = 4

if amount > midRange reversed(priceList), α = 4, β = 2

if amount = midRange reversed(priceList), α = 8, β = 8

(4.7)

Probability density function (PDF) and cumulative distribution function
(CDF) are shown on figure 4.10.

Figure 4.10: PDF and CDF for beta function

Price formation is a continuous operation. While price is not formed it
iterates through prices list and generate a number with the help of Beta func-
tion. Then using Monte-Carlo approach it checks if price is acquired. When
price is acquired is it assigned to previously constructed application and
formed as (actiontype, amount, price) and sent further for service provider
agent to perform auction process, which is described in section 4.4. After
auction is complete and transactions are processed, info is updated, con-
sumption process is performed and simulation moves to the next hour. The
whole decision process and auction for agents is shown on figure 4.11.

Evaluation process include analyzing of the auction work. All performed
transactions are noted and after evaluation have learning values in Q-table
updated, according to states and action on the auction. For loyalty type
of auction successful transactions get a loyalty value increase, rejected - get
decrease. Returned transactions stays with starting values of loyalty. After
this procedure, we need to handle rejected and returned applications.

Rejected status get an application if the price was too high for seller or
too low for buyer. This process is done by auction cleaning process, which
will be described in next section. If rejected application is with sell label,

47

then it is checked if unsold energy is exceeding battery cap. If it is overflow
then energy is sold to outer grid, else it stays in battery. If application is
with buy label, ruler agent buys energy from outer grid.

Returned status gets an application with sell or buy tag, which was not
cleared by auction, but there are not enough buyers or sellers respectively.
The need is covered as with rejected status, but without loyalty decrease or
negative reward signal for ruler agent.

Ruler agents interact with blockchain through service provider agent.
Service provider also perform logging and gather data for analysis. Service
provider interact with smart contracts using calls and transactions methods
for interacting with blockchain. Interfaces were developed for each function
of the contract in order to interact with contracts from simulation process.
After each transaction method, ensuring that transaction is complete and
data is stored, was implemented. It slows a simulation thread a bit, but pro-
vides error free flow. Call methods can only get the state or variable value
from smart contracts, but it cannot change the state of the blockchain.
Transact methods can change the state of the blockchain and perform com-
putational functions in smart contracts.

Agents interactions with smart contracts are shown on on figure 4.12.

48

Figure 4.11: Agents decision process

49

Figure 4.12: Agents and smart contract interaction

4.3.3 Utility functions

Utility functions include helpful service functions from pyethereum (Ethereum
platform written on Python), which allows to manipulate with test chain,
send transactions and manipulate with block information and address trans-
formations. Simulation utility functions include:

• Current hour weather generation

Due to the simulation is set for summer season, there are 3 types of
weather for the simulation: sunny, cloudy, raining. Sunny weather
profile implies lesser consumption profile and bigger production val-
ues. Cloudy weather profile sets to standard rates of consumption and
production. Raining weather profile shifts consumption to higher and
production to lower rate. The choosing of the current profile is done
with Monte-Carlo approach. The probability distribution is described

50

with the following cases (4.8) (4.9) (4.10):
S P (′sunny′) = 0.35

C P (′cloudy′) = 0.5

R P (′rainy′) = 0.15

(4.8)


S Consumption ∗ 0.95

C Consumption ∗ 1.0

R Consumption ∗ 1.3

(4.9)


S Production ∗ 1.3

C Production ∗ 0.8

R Production ∗ 0.2

(4.10)

• Building graphs

Building graph function allows to have a more convenient interface for
plotting function in matplotlib.

• Logging

Logging method is used for more readable output from EVM. It cuts
the information about testrpc connections timestamps through ports.

4.4 Auction interactions

Auction is a market mechanism in which an object, service or set of objects,
is exchanged on the basis of bids submitted by participants. An auction
provides a specific set of rules that will govern the sale or purchase of an
object to the submitter of the most favorable bid.

A call auction is an order driven facility which, in contrast with continu-
ous trading, batches multiple orders together for simultaneous execution in
a multilateral trade, at a single price, at a predetermined point in time, by
a predetermined matching algorithm. In our work we investigated double
call auction, as the most suitable for our simulation setup with fixed hourly
time frame. Continuous action is not possible with this time discretization
in a simulation.

Double auction is a process of buying and selling goods, when potential
buyers submit their bids and potential sellers simultaneously submit their
ask prices to an auctioneer and then an auctioneer chooses some price p that

51

Auction orders list

Avg.price = p avg, volume sell = v sell, volume buy = v buy

Buy orders Sell orders

Buyer Volume Price Seller Volume Price

0x1 v1 p1 0x5 v5 p5

0x2 v2 p2 0x6 v6 p6

0x3 v3 p3 0x7 v7 p7

0x4 v4 p4 0x8 v8 p8

Table 4.1: Auction orders list

clears the market: all sellers who asked less than p and all buyers who bid
more than p buy at this price p.

Taking about double auction, we should mention three important points:
market demand curve, market supply curve and equilibrium. Every time
frame we have certain number of sellers and buyers that participate in auc-
tion. They constitute a auction order list which is shown in table 4.1.

Each record in this table is of form (Buy/Sell, Volume, Price). These
applications are formed by agents based on environment and household in-
formation. No agent know the internal information about the others. After
agents formed them, they send their applications to service provider, which
perform auctioneer role.

If we plot this in a 2-D graph with Price and Volume as dimensions we
get the supply and demand curves for the current time frame. Acquired
graph is shown on figure 4.13.

The point of intersection between these 2 curves is the equilibrium point
- a situation in which the supply equals the demand. In this point the
perfectly liquid, frictionless market solution exists. This point is also the
price P that clears the market. In article [31] similar type of price clearing
was presented and was called The Quote-Accepting Policy.

In order to find this point and clear price we need to do natural ordering
process with auction order list, which includes 3 steps:

• Order the buyers in decreasing order of their bid: b1 ≥ b2 ≥ ... ≥ bn
• Order the sellers in increasing order of their bid: s1 ≤ s2 ≤ ... ≤ sn
• Let k be the largest index such that bk ≥ sk (the “breakeven index”)

Every price in the range [max(sk, bk+1),min(bk, sk+1)] is an equilibrium
price, since both demand and supply are k. It is easier to see this by con-

52

Figure 4.13: Supply-demand curves

sk+1 > bk sk+1 ≤ bk
bk+1 < sk [sk, bk] [sk, sk+1]

bk+1 ≥ sk [bk+1, bk] [bk+1, sk+1]

Table 4.2: Range of equilibrium prices

sidering the range of equilibrium prices in each of the 4 possible cases (note
that by definition of k, bk+1 < sk+1) shown in table 4.2 [32].

For the price formation for deals averaging mechanism was chosen as it
provide such properties as Individual Rationality (IR) - no person should
lose from joining the auction and Economic efficiency (EE) - the total social
welfare (the sum of the values of all players) should be the best possible.
This mechanism include finding k and set the price at the average of the
kth values: p = (bk + sk)/2. The first k sellers sell the good to the first k
buyers. This is a standard mechanism, which was implemented first. Dif-
ferent mechanisms were studied with article about double auction schemes
and their properties [33].

Other price formation mechanism includes household parameter, to which
ruler agent have access to - loyalty. This parameter plays the role of rep-
utation system within the community. It provides more profitable auction
prices within equilibrium range for loyal participants and less profitable for
those who have low rate of loyalty value. Loyalty - is the price formation

53

and sorting parameter. Price formation for “loyal” type of auction include
formulas 4.11, 4.12, 4.13.

wbuy =
Pbuy
lb + ls

(4.11)

wsell =
Psell
lb + ls

(4.12)

Pformed = pmin,sell ∗ wbuy + pmax,buy ∗ wsell (4.13)

With these formulas we define what weight in price formation have seller
and buyer. If seller have more loyalty value, the price will incline towards
higher end in equilibrium price range. Else, price will incline to the lower
end of range, making beneficial price depending on loyalty parameter.

Also order amount splitting to the least divisible value (100 Wh) take
place, in order to exclude amount variable for transactions and provide max-
imal buyer-seller matching. After transactions are collected list is summed
up. After transactions are executed, participated buyers and sellers get
boost for loyalty parameter. Those, who does not get a supplier or buyer,
but had appropriate price, get slight loyalty parameter increase. Those, who
was cut from the auction by clearing price get decrease in loyalty parameter.

Marginal scenarios that should be mentioned are:

• No buyers, approved sellers

Approved sellers sell their surplus, over battery capacity to outer grid
at stable fixed rate. They do not get penalized in loyal type of auction.

• No sellers, approved buyers

Approved buyers buy from outer grid at stable fixed rate. They do
not get penalized in loyal type of auction.

Evaluation of the auctions can be performed in many ways. We use 2
types: evaluating the utility of the buyers and seller in equilibrium range
and evaluating rejected and approved auctions. The evaluation results will
be shown in Chapter 5.

In order to improve the utility and improve the effectiveness of the mar-
ket we use machine learning technique called reinforcement learning and in
particular simplified Q-learning algorithm.

54

4.5 Q-learning

Q-learning is a model-free reinforcement learning technique. Specifically, Q-
learning can be used to find an optimal action-selection policy for any given
(finite) Markov decision process (MDP). It works by learning an action-
value function that ultimately gives the expected utility of taking a given
action in a given state and following the optimal policy thereafter. A policy
is a rule that the agent follows in selecting actions, given the state it is in.
When such an action-value function is learned, the optimal policy can be
constructed by simply selecting the action with the highest value in each
state. One of the strengths of Q-learning is that it is able to compare
the expected utility of the available actions without requiring a model of
the environment. Reinforcement learning scheme is shown on figure 4.14.
Additionally, Q-learning can handle problems with stochastic transitions
and rewards, without requiring any adaptations. It has been proven that
for any finite MDP, Q-learning eventually finds an optimal policy, in the
sense that the expected value of the total reward return over all successive
steps, starting from the current state, is the maximum achievable [34].

Figure 4.14: Reinforcement learning process

Basic entities of Q-learning algorithm are R-matrix and Q-matrix. R-
matrix provide reward values for calculating Q-matrix. Q-matrix is a state-
action matrix, which is used to record experience. Calculation of Q-matrix
is performed using the formula 4.14.

Q(s, a) = R(s, a) + γ ∗max(Q(next state, all actions)) (4.14)

55

Learning with this algorithm implies that in the model there is an agent,
which explores environment. As it goes, it learns the value of different state
changes in different conditions. These values uniform subsequent behavior
of the agent. Once environment has been explored algorithm provides fast
performance.

The general learning process in Q-learning algorithm implies going through
the following steps:

1. Initialize Q-matrix

2. Choose action from Q-matrix

3. Perform action

4. Measure reward

5. Update Q

6. Go to step 2

In our work we use simplified modification of Q-learning algorithm, due
to the states construction. Also one of the major problems - exploration vs
exploitation - is not an issue in our case.

After investigating our environment and dependencies, we decided to use
Q-table, with state-action records. Our environment does not posses multi-
ple state sequences, so we have multiple one-state records. In order to de-
scribe it we used such parameters as current hour, battery level percentage,
average consumption with predefined calculation window, price transferred
from agent to auctioneer and buy/sell (0 or 1) action. The record scheme is
shown in formula 4.15.

Q(state, action) = Q((hour, battery%, avgCons), ([0, 1], price)) (4.15)

Due to the states construction Q-values are calculated with only reward
value. Reward value is determined by evaluation of the results of auction.
If auction was successful Q-value have a significant increase for the current
state-action pair. If there is not enough energy provided for the auction but
it’s price was approved - Q-value have a slight boost. Else, if auctioneer
returned price offer as not appropriate, Q-value receive a decrease. Also
“loyal” auction have a multiplier for the reward calculation and have an
impact on Q-value.

56

After predefined number of simulation iteration, discount factor is ap-
plied to all Q-values in the table in order to provide smother experience
records.

This process take place for a certain period of time. For our simulation
this takes 100 days. This ensures that there is enough experience records
for the price evaluation decision process.

When learning process is finished, price formation process of an agent is
using the acquired Q-table, instead of Bayesian probability principle. Cur-
rent state of agent is analyzed and weighted euclidean distance 4.17 on high
dimensional space is calculated. Weights for the distance were chosen em-
pirically. Weight shows the “importance” of the value in a state 4.16.

dx,y =

√√√√ n∑
i=1

wi(xi − yi)2, 0 < wi < 1 (4.16)

With this value we are looking for the record in a table. In ideal algo-
rithm there should be a trade-off between euclidean distance and Q-value:
Q-value should be maximized and euclidean distance minimized. In our im-
plementation Q-value should be positive and euclidean distance minimized.
Then the price of the previous most relevant record is chosen for the offered
auction price for the auctioneer.

hour w1 = 0.5

battery w2 = 0.5

avgCons w3 = 0.4

action w4 = 1.0

(4.17)

On the early stages of development principle component analysis (PCA)
and unsupervised learning model was used. PCA was used to lower the
feature vector (states) and then applied to Density-Based Spatial Clustering
of Applications with Noise clustering algorithm (DBSCAN). Acquired model
was used to analyze new feature vectors and assign them to appropriate price
value. DBSCAN was chosen due to the fact that we do not know the number
of clusters and it performs well on large number of samples. Though this
approach good approximations, it was not as fast and efficient as weighted
euclidean distance.

57

Chapter 5

Results

5.1 Tools and testing

5.1.1 Preparation phase

In order to create suitable environment for testing a virtual Linux machine
was created in Oracle VM Virtual Box. The code was written in Python
2.7 and used built-in interpreter in Ubuntu 16.04 LTS to provide running
program. pyethereum and testrpc are used to create Ethereum node and a
private blockchain. pyethereum testing tools were tried in the first program
developing iteration in order to check the viability. testrpc library provides
fast and safe environment for testing contracts and account interactions in
Ethereum environment. For the first versions some test contracts were writ-
ten on Serpent language, and then moved to Solidity contracts. py-solc
library provides compilation to binary code of Solidity contracts to Python
version of Ethereum. populus is a python based framework focused on con-
tract development and testing. populus’s command line interface provides
tools for compiling, testing, and deploying contracts. web3 add missing
functionality to populus and allow to interact with Ethereum blockchain
directly.

5.1.2 Simulation parameters

In order to test our entities and their dependences simulation process was
created. The initial simulation depends on several parameters, which need
to be specified. Parameters, that were used for the simulation are listed in
table 5.1.

divNum - assigns the minimum energy value for the system. In order

58

Parameter Default value

divNum 100

priceRange [2,...,8]

batteryTH 0.2

auctionType loyal

rulerCap 15000

numOfHouseholds 1

initEnergy 8000

initCoins 2000

daysToSimulate 1

Table 5.1: Simulation variables

to avoid rounding issues or use floating point calculation if financial areas
this parameter should be defined. By default this parameter is equal to 100
(Wh). priceRange is a range in which the agents can pick prices for bids
and sells in energy coins. The lower side is bounded by 2 as minimal price,
maximum can be defined as lesser that price of energy in outer grid. This
makes deals on the market profitable and buying or selling from outer grid is
performed only in case of last resort. By default it is 9. batteryTH or battery
threshold is a parameter involved in initial policy of agent. This parameter
defines if it is appropriate to sell energy or to skip the trades. By default it
is 0.1 or 10% of the total battery cap. rulerCap is a parameter which defines
the battery capacity. In initialize functions it is used to assign maximum of
the energy that can be stored for use or trading purposes. By default it is
15000 (Wh). auctionType allows to choose what auction can be run for the
simulation. Available types are simple’ for simple averaging double auction,
loyal’ for maximum fit double auction with loyalty parameter. By default
loyal’ is chosen. numOfHouseholds is a parameter for providing necessary
number of houses into local grid. Ethereum uses it for providing necessary
amount of accounts to testrpc chain. This parameter does not include service
provider. By default it is equal to 1. initEnergy and initCoins are the values
for initial energy and coins distribution. Service provider allocates given
values to all houses in local grid, using smart contract functions. daysToSim
is the parameter that defines number of days simulation will run. By default
number of days to be simulated is equal to 1.

Other utility parameters are influencing performance of the system:
averageConsumtionWindow is used for calculating average consumption for
past hours and decayFactor is used for Q-learning procedure.

59

For providing simulation results we use data and plot it on graphs. For
graph representation several methods were developed, such as buildGraph().
Libraries for building graphs include matplotlib and seaborn. matplotlib is a
Python 2D plotting library which produces publication quality figures in a
variety of hardcopy formats and interactive environments across platforms
and pyplot module provides a MATLAB -like interface for building graphs.
seaborn is a Python visualization library based on matplotlib. It provides
a high-level interface for drawing attractive statistical graphics. For easier
usage of Ethereum functions, interfaces for every interaction were designed.

Adjusted simulation parameters, which we will take for all experiments
by default:

• initialCoin = [C1, ..., Cn], Ci = 2000, ∀ i

• initEnergy = [E1, ..., En], Ei = randomize(500− 80000) ∀ i

• averageConsumtionWindow = 5

• decayFactor = 0.99

Due to number of simulation parameters, stochastic nature of rates cal-
culation and time needed for simulation to run, we decided to pick 4 exper-
iments for our results. Based on these results discussions and conclusions
will be carried in Chapter 6.

5.2 Experiment 1

First we are will take a look at base entities and their interactions within
three days. We consider two households. One is prosumer - it has have solar
panel available and other is consumer - without any sources of generation.
During this experiment we will check production and consumption rates
within three days, to check if generation and consumption patterns are right
and behave as intended.

Changed parameters for the simulation cycle include:

• daysToSimulate = 3

• numOfHouseholds = 2

The acquired results is shown on figures 5.1 5.2.

60

Figure 5.1: Experiment 1 - Consumption profiles

Figure 5.2: Experiment 1 - Production profiles

61

5.3 Experiment 2

The second experiment (and the next two) is directed towards overall market
interactions, transactions held by auctions, balances (energy, coins, money)
of households. In this experiment we are investigating simple averaging
auction schemes and price formation. Auction is evaluated by calculating
total utility for seller and buyer within equilibrium range. Also we get an
idea of the carbon/solar energy print for the time period. Time period for
this experiment is 1 month.

Changed parameters for the simulation cycle include:

• daysToSimulate = 30

• auctionType = simple

• numOfHouseholds = 20

The acquired results for battery balance dynamics 5.3, auction evalua-
tion 5.4, coin balance 5.5, money balance 5.6 and price values distribution 5.7
are shown on figures below.

Figure 5.3: Experiment 2 - Battery balance dynamics

62

Figure 5.4: Experiment 2 - Average auction utility

Figure 5.5: Experiment 2 - Coin balance

63

Figure 5.6: Experiment 2 - Money balance

Figure 5.7: Experiment 2 - Price distribution

Total energy print for this experiment is shown in table 5.2.

64

Total energy 11271.4 (kWh)

Solar energy print 34.31%

Carbon energy print 65.69%

Table 5.2: Experiment 2 - Energy print

5.4 Experiment 3

The third experiment investigates the loyal auction scheme and the impact
of loyal parameter. Though the importance can be clearly seen with longer
simulation times and Q-learning enabled (see chapter 6) still this form of
auction scheme provides solid results. In order to do it we check the same
parameters as in experiment 5.3: market interactions, transactions held by
auctions, balances (energy, coins, money) of households. Loyalty parameter
serves as reputation indicator for the local energy market community. It is
applied to price formation mechanism in double auction scheme. The higher
amount of loyalty compared with other side of the deal you have, the more
profitable the deal would be. Time period for this experiment is 1 month.

Changed parameters for the simulation cycle include:

• daysToSimulate = 30

• auctionType = loyal

• numOfHouseholds = 20

• startLoyalty = 1.0

The acquired results for battery balance dynamics 5.8, auction evalua-
tion 5.9, coin balance 5.10, money balance 5.11, price values distribution 5.12
and loyalty values 5.13 are shown on figures below.

65

Figure 5.8: Experiment 3 - Battery balance dynamics

Figure 5.9: Experiment 3 - Average auction utility

66

Figure 5.10: Experiment 3 - Coin balance

Figure 5.11: Experiment 3 - Money balance

67

Figure 5.12: Experiment 3 - Price distribution

Figure 5.13: Experiment 3 - Loyalty values

Total energy print for this experiment is shown in table 5.3.

68

Total energy 11166.0 (kWh)

Solar energy print 57.98%

Carbon energy print 42.02%

Table 5.3: Experiment 3 - Energy print

5.5 Experiment 4

The last experiment investigates the loyal auction scheme in the long run and
Q-learning impact on price formation. Total time period for this experiment
is 170 days. Due to loyalty value has an impact on Q-learning process we
check double auction with loyalty parameters.

Changed parameters for the simulation cycle include:

• daysToSimulate = 170

• auctionType = loyal

• numOfHouseholds = 30

• startLoyalty = 1.0

The acquired results for auction evaluation 5.14, coin balance 5.15, money
balance 5.16, price values distribution 5.17 and loyalty values 5.18 are shown
on figures below.

69

Figure 5.14: Experiment 4 - Average auction utility

Figure 5.15: Experiment 4 - Coin balance

70

Figure 5.16: Experiment 4 - Money balance

Figure 5.17: Experiment 4 - Price distribution

71

Figure 5.18: Experiment 4 - Loyalty values

Due to large number of participants, simulated days and Q-learning,
experiment with proposed variables is highly demanding in terms of com-
putations. Full simulation run took about 3 hours to complete.

Total energy print for this experiment is shown in table 5.4.

Total energy 56201.1 (kWh)

Solar energy print 41.78%

Carbon energy print 58.22%

Table 5.4: Experiment 4 - Energy print

72

Chapter 6

Discussion

6.1 Results interpretation

In the introductory chapters of the thesis we took a look of local energy mar-
ket concepts, blockchain technology and multi-agent systems, investigated
state-of-the-art of the current blockchain solutions and DApps for energy in-
dustry, and provided ways for implementing our simulation of local energy
market with support of multiple agents and blockchain platform Ethereum.

The primary objective was to develop this kind of simulation, check if
the concept is viable and investigate possible issues with it.

With chosen way of implementation we managed to design and build a
simulation with benchmark for results evaluation. Such concepts as blockchain,
smart contracts and DApps were tested and applied to the design of simu-
lation. Ethereum platform provided support for our simulation via testrpc
network and smart contracts were used to interact with blockchain. Solidity
smart contract language was used to design and program smart contracts
for Ethereum platform. Python framework populus and web3py provided
necessary environment and functions for interacting, testing and deploying
contracts to the Ethereum blockchain.

Simulation was created for testing of local energy market. Home agents
and service provider entities were designed and programed for the simula-
tion. After we set our simulation benchmark up with blockchain interfaces,
utility methods and multi-agent system interaction, initial parameters were
defined for soft policy of zero-intelligence agents. Mostly they were acquired
empirically with various tests; some were designed as a derivative from the
real data, provided by Kristoffer Tangrand 4.3.

In Chapter 5 we explored methods system implementation and simula-

73

tion flow with various parameters.
The first experiment, presented in section 5.2, aimed at verification of

the simulated data for consumption and production rates. Two households
were used to show the difference: prosumer and consumer. The simulation
ran for 3 days and have patterns similar to the real data, mentioned in
section 4.3. As expected, we observed that consumption and production
rate data is correlated with day/night cycles. The stochastic nature of the
rate per hour is supported with weather changes and home status.

The second experiment, presented in section 5.3, had the goal to check
the validity of the market and the auction process with simple price for-
mation, based on Nash equilibrium and utility values of buyer and seller.
This type of double auction has simple average price formation. As we
observe the experiment results, we can point out that battery balance is
as expected: third of the total households have enough production rate to
have a surplus. They sell as surplus based on current battery percentage,
regulated by threshold value in simulation. Due to relatively low surplus
on the market and high consumption, even producers buy carbon energy
from outer grid. This fact comes from negative balance of all participants.
Though prosumers spent nearly 6 times less money, than consumers. Also
they earn energy coins, depending on production rates and participation in
the market. Auction utility was rather stable, moving average changes in a
certain range. The most used price for transactions is 3-4 (energy coins per
100 Wh). One third of all used (consumed) energy in the system is solar
energy.

The third experiment has the purpose of checking the viability of another
scheme of price formation in double auction - so called “loyalty” double auc-
tion. In this type of auction we introduce a household parameter, accessible
by ruler agent of each household - loyalty rate. The results of this type are
shown in section 5.4. All parameters were duplicated from previous experi-
ment, except for “loyal” type of auction. Average auction utility is slightly
higher, than simple auction type. This results in more variance in auction
and market - more participants are benefiting from it. As price is more liq-
uid in this type of auction, more transactions were performed and the most
used price stays as in previous experiment - 3-4 (energy coins per 100 Wh).
Relatively, more that a half of households have high level of loyalty, which
entail higher energy coins profit and lesser money spent on carbon energy.
Solar energy rate used for consumption is more than a half in this exper-
iment and is equal to 57%. This experiment possess only zero-intelligence
agents with predefined policy and Bayesian probability applied on price for-
mation, due to the time for the run of the simulation. Next experiment will

74

utilize learning process and will use data, acquired from it.
Last provided experiment is shown in section 5.5. The main distinction

from previous experiment is the number of simulated days - 170. This range
of days is divided into 2 parts - learning period and exploitation period.
Also there is an increased number of participants for higher load on a local
grid. Loyalty variable is affecting the Q-learning table construction, not just
a straight reward value, so we have more precision in calculations. Q-table
is updated every 24 hours and multiplied by a decay factor. We need to do
it as we do not have the decay mechanism in direct computation of Q-value.
State for Q-table includes such parameters as hour, battery energy level,
average consumption for past 5 hours. Action include buy/sell indicator and
a price. We use Q-values and distance metrics to get the appropriate price.
Average auction utility have a slight boost on exploitation time period,
as agents possess information about all history records. Coin balance and
money balance models saved the tendency on a exploitation time period and
distribution of price have it’s common range increased to 3-5 (energy coins
per 100 Wh). With loyalty rates results we can observe that 6 households
possess very high amounts of loyalty, compared to others. This happened
because of initial trades, which boosted this value further. Solar energy print
is at lower rate for this experiment compared to the previous one, but still
is rather high - 41.78%. Also, increased number of participants (prosumers
and consumers), as suspected, increase the overall stability of the market
and increase the auction utility.

As we see learning agents produce slight boost compared to zero-intelligence
agents with predefined policy, though computational and time expenses in-
creased. Loyalty mechanism showed a lot of promise for this type of local
market. It can be developed further in two separate ways: profits maximized
or community stability prioritized.

Although we get rather stable and solid results, that shows us that the
concept is working successfully, some weaknesses of the simulation were
detected.

The overall weakness of simulation is that it depends on several initial
parameters and stochastic values of defined entities. Also battery capacity
indirectly influence money balance - only if surplus is overfilling the battery,
the energy is sold to the outer grid. But, due to frequent auctions, high
consumption profiles and low production rates this is rarely encountered.
This fact actually is not disturbing the simulation as energy coins are the
currency for internal asset - solar energy and outer grid is only a last resort
tool to smooth extremal conditions. Though we can convert coin balance to
money balance to see overall profit if needed.

75

As was mentioned in section 5.5, experiment with learning agents is
highly demanding in terms of computations and time. More on other prob-
lems, we have encountered, concerning the design and development of the
simulation and system is described in the section 6.2. However, we address
these issues as a potential for improvement in Chapter 7.

6.2 Encountered problems

6.2.1 Blockchain issues

Many problems connected with blockchain technology outflow from a fact
that blockchain technology offer more control and efficiency at the cost of
higher personal responsibility. The most noticeable problems during devel-
opment process were:

• Block formation time and transaction verification

In our simulation every transaction was handled by 1 computation
thread, no parallel threading or alternative computational nodes were
introduced. This implies that time of handling transaction is increased
significantly and if number of participating nodes is quite high, the
transaction processing time will increase even more, in our case lin-
early. In order to improve this multi-threading technique can be used.
Other way is to transfer computations and transaction handling to
client nodes, which is the DApp design by default. In real world
project, this is the best way to handle this problem. For the simu-
lation it is not critical as we discretized time by hours.

Also transaction verification adds value to total time spent, as we want
to check every transaction. In real world scenario, this wont be a prob-
lem, due to parallel architecture or decentralized nodes computations.

• Usage of testrpc net

Testrpc network is virtual network, created by a framework. It is faster
and allows to ignore some fundamental principles like mining and gas.
Though it is perfect for development, for real project geth node should
be used. If we use private network, we will still be ignoring some
concepts, but we will encounter issues like slower network processing
and security. For public configuration we will use real money or ether
in order to run our contracts and transactions. Also gas values should
be reconsidered, as this is fundamental for Ethereum. This can be

76

done after total checks and tests of smart contracts and web code on
testnet configuration, as any fails will cost significantly. The example
of typical failure this is The DAO, mentioned before. In the blockchain
ecosystem, there is a constant risk of new types of attacks. This aspect
of the issue has been studied much worse than any other aspects of
this technology.

• Lack of standards

Developing smart contracts is not an easy task. It requires to know all
features of Ethereum platform as well as downsides of blockchain tech-
nology. Nowadays standards for smart contracts are in development
phase. Standards are key to assessing the long-term benefits of open
distributed systems. The lack of standards or successful application of
technology in practice, indicates that it is still at an early stage of its
development. Thus, in the case of blockchain, there is a risk that the
implemented solution will not be effective.

Though, it worth mentioning, that some companies are in stage of ac-
tive standard development for blockchain technology and smart con-
tracts. Such companies as Eris (now Monax) [35] are developing frame-
works for developing specific type of contracts and expanding Solidity
for more functionality and security.

• Customizability and scaling

Scalability is often ignored, when we talk about blockchain, but it
is rather important. As peer-to-peer technology, blockchain is high
demanding structure. Given the extremely fast rate of data growth,
the sheer data volumes accumulating after several years of operating
a blockchain place high demands in terms of security, speed and costs.
It is partially solved with the creating of intermediate nodes, which
have only the part of blockchain and was described in original Bitcoin
paper [14]. So we ensured that technology still have issues for solving
tasks such as working with high-speed or volumetric operations, the
need to record information in real time or store large amounts of data.
Customizability is also a big issue, as ready to operate smart con-
tracts, when deployed in real private or public net cannot be changed
anymore. The only solution for it is to upload other contract for a
different account or address.

• Usability problems

77

Due to lack of long-term experience with blockchain technology, some
customers may not be willing to participate in this type of interactions.
Classical database approach is still solid on the market, despite of its
obvious disadvantages. Though, with right policies and incentives it
is possible to show the effective side of blockchain technologies.

Other minor issue comes from public-private key cryptography prin-
ciple associated with Ethereum and blockchain in particular. If keys
are managed by users, losing private key will lead to total data loss
for this account. This is not a big issue but states that this technology
implies higher rate of responsibility from users.

The issue of lack of central authority is controversial. Usually in classic
blockchain environment all controversies are solved by consensus, but
sometimes it is preferable by solving with central authority. Though,
this could be done using smart contract modifiers for some type of
disputes.

• Crosschain interoperability

This is an issue, concerning the whole architecture. If we have a struc-
ture of several private chains, we need a tool to operate between chains
for the whole trade system to work. This technology is still under de-
velopment for Ethereum, but already has a documented ways of oper-
ating. For now, there are 3 ways to perform cross-chain interactions:
notaries, relays and hash-locking. Relays are the most functional, but
are hard to implement. Hash-locking is the easiest one to implement,
but has some restrictions. Notaries are the golden mean [18].

6.2.2 Learning agents

In our project we used simple variation of Q-learning algorithm. During
learning period zero-intelligence agents were operating, storing the acquired
knowledge. We used simple reward function, instead of R-matrix and Q-
table is rather simple in terms of states. Dynamic programming can help
achieve a lot of valuable and efficient results, but it requires solid learning
model for learning algorithm. If enough time is given for the simulation and
agents to learn, the acquired results will help to identify best policy in a
given state situation, though some parameters need tuning.

Other issue include that the state definition is described with a lot of
variables. Reducing the number of variable in state will allow faster and
more effective learning procedure. For this, aggregating algorithm can be
used, though the quality of learning procedure can be an issue.

78

Another way of handling the process of learning is to use artificial neural
network in combination with Q-learning algorithm [36]. Neural networks can
be used as approximators. For building these approximators, the loss func-
tion Li(θi) (where θi - parameters of approximation) should be consecutively
optimized [37].

6.2.3 Smart contracts issues

Concerning smart contracts developing for this project, we have encountered
numerous problems. Almost all of them were avoided, but still contracts
should be tested in real environment. Those problems can be divided in
several categories:

• Re-Entrancy

It is not recommended to perform external calls in contracts, due to
safety and integrity issues that can be caused by these calls.

• Send can fail

When transacting money or tokens, contract code should always have
trow mechanisms in all branches if function is going to fail.

• Loops can trigger gas limit

Looping over state variables is not a safe, due to the fact that variable
can change and can grow in size, which will make gas consumption hit
the limits.

• Call stack depth limit

It is not recommended to use recursion, and all precautionary measures
must be observed for any call can fail if stack depth limit is reached.

• Timestamp dependency

Timestamps should not be used in critical parts of the code, because
miners can manipulate them.

• Floating point math

As was stated before float/double type is not present in Solidity, due
to possible rounding errors with financial data. In order to avoid it
decimal part can be used and stored separately.

79

This list does not cover everything that should be kept in mind when
developing smart contract. Smart contracts actually operate with real funds
in public networks, so code should be covered with unit test, code reviews
should be part of the development process and code audition should always
take place. Smart contracts and blockchain technology is relatively new,
a work in progress technology, and need standardization of contract code,
which will eventually appear later.

6.3 Real-world appliance

In this section we discuss the results of this thesis in appliance to the real
world scenarios.

As we can observe from our results this type of local energy market with
blockchain technology support can be used as a solution for microgrid, with-
out removing existing infrastructure. Though, some aspects of the proposed
system should be changed. Due to the fact that we checked concepts with
simulation, the structure of the solution should be changed. We should re-
configure it with new additions and tweaks: smart meters are needed to
record the quantity of energy produced, blockchain software is needed to
store transactions between the neighbours, and smart contracts are needed
to carry out and record these transactions automatically and securely, user
interface for more control and managment over the whole process.

First, for smart energy generation and transforming it to the solar coins
we need PV systems and smart meters for home indicators control. These
would register energy production and consumption in most seamless way for
interacting with other entities in the system. This can be used with Arduino
platform.

Arduino is an open-source electronics platform based on easy-to-use
hardware and software. Arduino boards are able to read inputs - for our
case it is generated solar energy - and turn it into an output - update in-
formation in a blockchain. This is done by sending a set of instructions to
the microcontroller on the board. Combined with smart meters it could
be a very powerful technology. This type of interactions can be performed
autonomously, without user interactions adn can be integrated in existing
microgrid environment. Alternative for this is RasberryPi computer, which
can be nicely integrated into the system.

Secondly, for user interface the previously described DApp concept can
be used. The project can be deployed as a JavaScript web service with
Ethereum platform and smart contracts support. Similar technique is used

80

in TransactionGrid project. This enables users to take control over their
expenses, see the production and consumption rates, energy balance and
overall community status on-line. Smart meters would measure the amount
of energy produced and consumed, while energy-trading activities and cryp-
tocurrency payments would be controlled by smart contracts and executed
through the blockchain. Also it is possible to create a mobile application,
with the ability to switch between manual control and automated agent
control with predefined policies and rules for it.

For blockchain technology Ethereum covers practically everything, ex-
cept for consensus protocol and cross-chain interactions. Now consensus
protocol is not energy-efficient and require a lot of computational power.
When “Casper” protocol is introduced, this problem will be solved. Cross-
chain interactions are now in testing phase for Ethereum and soon will be
available. For smart grid infrastructure this is way-to-go solution: connect
all microgrids in one infrastructure, but for small autonomous microgrids
this technology is not necessary.

Smart contracts should also be updated. Most of logic and computa-
tions should be transferred to smart contracts mechanism. Though it would
increase computational costs, it would benefit the local energy market com-
munity with the ability to explore all contracts code and logic and make
system more stable and transparent. Also a framework for resolving issues
should be created for preventing failures and errors.

81

Chapter 7

Further development

7.1 Possible improvements

Further work should be concentrating on real-world appliance and solving
issues, encountered in the project and described in section 6.2. Other way
is to upgrade current simulation solution with other market construction
approaches and larger scale simulation. Main emphasis should be done on
the following points:

1. Smart contract improvements

Smart contracts can be improved by moving calculation and logic in-
side them. For our simulation they only store data and states, per-
form simple calculations and provide interfaces for interacting with
blockchain. In a DApp all logic is stored within a contract. Though
it could take a lot of computational resources, further developments
of Ethereum platform would be able to handle it. This will provide
transparency and control for every participant in a system. Security
for smart contracts should also be updated to the latest standards.
It is relatively easy to test and prevent failures on non-heavy com-
putational and logical contracts, but with increasing complexity, the
testing and security difficulties will arise exponentially.

2. Cooperative economics model and larger time frame

Our market model and auction interaction implies growing personal
profit for each agent regarding other participant by price changing
policies. But it can be done other way, if we pose community profit in
favor. This scheme is developed by TransactiveGrid project [38] [39].

82

Address
Production

(kWh)
Consumption

(kWh)
Community

credit/debit (kWh)
After

settlement (kWh)
Calculation

Balance
after round (eCoins)

0x1 0 50 -50 0 -50 -50

0x2 75 20 55 0 50+5 +55

0x3 0 20 -20 0 -5-15 -20

0x4 100 60 40 5 15+20 +35

0x5 10 30 -20 0 -20 -20

Table 7.1: Community market model round

Community members produce their own renewable energy, and incen-
tive each other to purchase any excess, creating a local marketplace.
The community can exist in a state of credits and debits to one an-
other, without needing the instantaneous transactions - larger time
frame for settling. A community comes together and agrees that their
solar production and consumption will constitute a bank. The smart
contracts on the blockchain record the transactions, and credit or debit
member accounts. At that quarterly time period there will be a net-
ting of accounts. The necessary payments will be issued at that time,
and the community members can come up with their own protocol of
payments. Several rules can be applied to this scheme:

• Prosumer production rate defines selling order

The more prosumer produce, the higher is his priority in settling
transactions.

• Common selling/buying rate

For example 1kWh is equal 1 energy coin. Price rate changing
can be done through consensus.

• Reputation system

Each successful transaction increase reputation value. If no penal-
ties are in the system decay factor may be introduced.

The example of the market regulation round is shown in table 7.1.

This process can be improved, but the trusted and transparent ledger
is the foundation for cooperative economics.

Since no money is required to be exchanged at the moment of a trans-
action, the system incentives a greater degree of trust that builds over
time. This mutual credit system has been tried and tested in commu-
nities worldwide over time without blockchain [40]. If trust is present
in the community, there is no need for an additional reputation system
to penalize people who break rules. However, for larger communities

83

there will be a need for a reputation system that will limit or block
the participation of members who do not pay their amounts or break
rules.

Also, we can apply and test different auction schemes. In our work,
we have explored call auctions, as we have hour time frame. Different
forms of continuous auctions can be also viable. Different auction types
can be investigated, depending on prevailing factor: social effectiveness
or revenue.

3. Code improvements

During developing our simulation we used Python environment, as
it provides fast and efficient prototyping of the system. In order to
boost performance of the simulation, C++ should be used. If pro-
gramed right it will utilize memory handling features, fast-handling
data structures and algorithms for efficient resource allocation and
improved performance overall. Threading should also be used, as our
simulation was single-threaded and all operations were handled succes-
sively. Some optimization techniques can be applied to our program
such as code and compiler optimization.

4. DApp, client interface

A rough draft of code and system improvments were mentioned in 6.3.
Main idea here is to change the format of the system to DApp. A
blueprint of an application are proposed in section 6.3 and subsec-
tion 3.2.4. This is decentralized application that allow to check the
state of the contracts and interact with them by transaction. This is
done as a web service with various information about current status,
like consumption/production rates, energy balance and coins. Also
manual and auto profiles should be added for the user convenience.
Auto profile will choose the most appropriate price formation strategy
in terms of market stability and production/consumption difference
handling.

5. Integrate and test system

Testing system in real microgrid is an important matter. In this the-
sis we showed that in theory that the simulation works, but we lack
experience with this technology and real grid. We need smart meter
technology, local grid and our system integration, which was described
in section 6.3. Once we have the system set up, real time and real load
tests should be held.

84

This thesis provides an insight and example of what is the general direc-
tion of improvement and what issues should be solved. Solving mentioned
problems will make a solid and robust system in terms of local market econ-
omy, transaction handling transparency and stable community economical
model.

7.2 Future of DApps and blockchain solutions in
energy sector

7.2.1 DApps and Ethereum

There are a lot of different types of DApps already. Area of application is re-
ally impressive: social networks, decentralized super computers, prediction
markets, distributed decision-making, games, insurance, renting, transporta-
tion. Smart contracts when deployed can provide many different use cases.
Evidently, Ethereum has the vast potential to reach many parts of society.
Further developments by the Ethereum Foundation like Casper [24] and
Sharding concept [41] allows for the scaling of the platform, ensuring suffi-
cient capacity to manage future growth in users and transactions. DApps
is a new concept which seems to have lots of applications so Ethereum will
likely to grow with time. The initial targeted areas will be academia, star-
tups, venture capital firms, tech companies, companies already experiment-
ing with Ethereum and blockchain, followed by the wider community. This
has the potential to dramatically increase the adoption rate of Ethereum
platform.

7.2.2 Other areas of application

There are a lot of areas, in which blockchain is perfectly fit. For example:
digital securities trading, foreign exchange, data storage, delivery of digital
content, digital identity, proof-of-ownership. Other newly developed areas
that worth mentioning are automobile leasing, insurance and IoT.

Automobile companies ensure their clients that automobile leasing is an
easy and clear procedure, but on practice it can turn a complicated mat-
ter. The main problem which is encountered by leasing chain participants
is that with a single supply chain, the system for sharing the accompanying
information remains fragmented. However, blocking technology allows you
to monitor, access and share coherent and up-to-date information through-
out the life cycle of the vehicle, regardless of its location. With blockchain
automobiles can have a personal registry with concerted and comprehensive

85

information. This will improve service, warranty and recall costs. While
going through supply chain information will be constantly updated in most
efficient and transparent way. With smart contracts and consensus mecha-
nisms security, integrity and validity of the whole system is preserved. Also
transaction costs and time cost of operations, connected with intermediary
agents, will be significantly reduced.

Other perspective industry of appliance, that is developing nowadays is
blockchain insurance and IoT.

In insurance context the application of smart contracts, in conjunction
with the blockchain, they offer a number of advantages: they automate the
satisfaction of claims on insurance payments, offer a reliable and transparent
payment mechanism for all parties and can be used for individual terms
tuning of each individual contract. For example, in the case of an automobile
accident, a smart contract can guarantee that the payment will be made only
if the car is repaired in a preselected technical service. It also guarantees
increased transparency and trust from customers through decentralization,
automation of reconciliation and data validation and reduced costs on all
stages.

IoT application of decentralized technologies will allow machines and
electronic devices to obtain their own insurance policies, registered and
managed through smart contracts in the blockchain network. This will au-
tomatically determine the amount of damage caused to them and initiate
the repair process and insurance payments.

86

Chapter 8

Conclusion

The objective of this thesis was to explore and solve issues with local energy
markets, multi-agent systems and blockchain technology. We managed to
combine these concepts and create a simulation of local energy market with
agents and blockchain support, based on the main results and discussion.
With this simulation we were able to analyze different market situations,
prosumer and consumer trade interactions, double auction mechanisms and
justify the incentive for prosumers and consumers to participate in local
energy market. Blockchain technology and Ethereum platform was deeply
analyzed, several solutions for our problem were tested and described.

Through the thesis we constantly ensure that blockchain technology has
all premises to be adopted for local energy trading: lower transaction costs,
market transparency, rise of the prosumer role. Potential and disrupting ef-
fect are enormous. Though, when it comes to blockchain applications for the
energy sector, it’s early days yet. Computational, scalability and security is-
sues are still an issue for blockchain in this area. In order to apply blockchain
technology to local energy markets and microgrid systems, several points
should be covered, including: developing user-friendly applications for man-
ual and automated monitoring and trading, moving to lesser-computational
verification processes, applying hybrid model of blockchain and centralized
authority model. With all these additions and with further developments of
Ethereum platform and blockchain technology, blockchain and local energy
markets can overcome all minor issues and become dominant technology in
this field.

87

Bibliography

[1] SmartIO, Bernt Bremdal, Pol Olivella-Rosell, and Jayaprakash Ra-
jasekharan. Empower - d6.4 - technical specifications for software de-
velopment. H2020 project, September 2016.

[2] Falti Teotia and Rohit Bhakar. Local energy markets concept, design
and operation. SMIEEE Center for Energy and Environment, 2017.

[3] Smart grid. https://en.wikipedia.org/wiki/Smart_grid, 2017.
Online; accessed: 2017-04-30; Background, features, technology.

[4] Bernt A. Bremdal, Pol Olivella, and Jayaprakash Rajasekharan. Em-
power - a network market approach for local energy trade. May 2017.

[5] Solarcoin. https://en.wikipedia.org/wiki/SolarCoin, 2017. On-
line; accessed: 2017-04-30.

[6] PwC. Blockchain - an opportunity for energy producers and consumers?
Technical report, PwC global power & utilities, 2016.

[7] An energy blockchain for european pro-
sumers. https://bitcoinmagazine.com/articles/

an-energy-blockchain-for-european-prosumers-1462218142,
2017. Online; accessed: 2017-04-30.

[8] Smart solar. http://www.ideocolab.com/prototypes/smartsolar,
2017. Online; accessed: 2017-04-15.

[9] SmartIO, Iliana Ilieva, Bernt Bremdal, Pol Olivella (UPC), Terje
Nilsen, and Stig Odegaard Ottesen (eSmart). Empower - d6.1 - market
design. H2020 project, September 2015.

[10] SmartIO, Iliana Ilieva, Jayaprakash Rajasekharan, and Bernt Bremdal.
Empower - d6.2 - prosumer oriented trade: Exploration of theoretical

88

https://en.wikipedia.org/wiki/Smart_grid
https://en.wikipedia.org/wiki/SolarCoin
https://bitcoinmagazine.com/articles/an-energy-blockchain-for-european-prosumers-1462218142
https://bitcoinmagazine.com/articles/an-energy-blockchain-for-european-prosumers-1462218142
http://www.ideocolab.com/prototypes/smartsolar

and practical solutions for prosumer oriented trade. H2020 project,
January 2016.

[11] SmartIO, Pol Olivella-Rosell, Jayaprakash Rajasekharan, Bernt Brem-
dal, and Iliana Ilieva. Empower - d6.3 - trading concept development.
H2020 project, July 2016.

[12] Salman Kahrobaee, Rasheed A. Rajabzadeh, Leen-Kiat Soh, and
Sohrab Asgarpoor. Multiagent study of smart grid customers with
neighborhood electricity trading. Electric Power Systems Research,
111:123–132, March 2014.

[13] Salman Kahrobaee, Rasheed A. Rajabzadeh andLeen Kiat Soh, and
Sohrab Asgarpoor. A multiagent modeling and investigation of smart
homes with power generation, storage, and trading features. IEEE
Transactions on smart grid, 4:659–668, June 2013.

[14] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. The
Cryptography Mailing list, 2008.

[15] Antony Lewis. A gentle introduction to blockchain technology. Brave-
NewCoin, 2016.

[16] Michael Crosby, Nachiappan, Pradhan Pattanayak, Sanjeev Verma, and
Vignesh Kalyanaraman. Blockchain technology beyond bitcoin. Uni-
versity of California Berkeley, 2015.

[17] Siraj Raval. Decentralized Applications. Harnessing Bitcoin’s
Blockchain Technology. O’Reilly, 2016.

[18] Vitalik Buterin. Chain interoperability. September 2016.

[19] Ethereum project. https://www.ethereum.org, 2017. Online; ac-
cessed: 2017-02-23.

[20] Gavin Wood. Ethereum: A secure decentralized generalized transaction
ledger. Yellow paper, March 2017.

[21] Vitalik Buterin Karthik Gollapudi. Ethereum - next-generation smart
contract and decentralized application platform. https://github.

com/ethereum/wiki/wiki/White-Paper, 2017. Online; accessed:
2017-05-01.

[22] BitFury Group. Proof of stake versus proof of work - white paper.
September 2015.

89

https://www.ethereum.org
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

[23] Alyssa Hertig. Where’s casper? inside ethereum’s race
to reinvent its blockchain. http://www.coindesk.com/

ethereum-casper-proof-stake-rewrite-rules-blockchain,
January 2017. Online; accessed: 2017-04-29.

[24] Vlad Zamfir. Introducing casper the friendly ghost. https://blog.

ethereum.org/2015/08/01/introducing-casper-friendly-ghost,
August 2015. Online; accessed: 2017-04-28.

[25] Sebastian Beer and Hans-Jurgen Appelrath. A formal model for agent-
based coalition formation in electricity markets. IEEE PES Innovative
Smart Grid Technologies Europe, 4, October 2013.

[26] Steven Gjerstad and John Dickhaut. Price formation in double auctions.
GAMES AND ECONOMIC BEHAVIOR, 1995.

[27] Mikko Berggren Ettienne, Steen Vester, and Jorgen Villadsen. Imple-
menting a multi-agent system in python with an auction-based agree-
ment approach. ProMAS 2011, 7217, 2011.

[28] Mahesh S. Narkhede, S.Chatterji, and Smarajit Ghosh. Multi-agent
systems (mas) controlled smart grid a review. International Journal
of Computer Applications, 2013.

[29] Cade Metz. The biggest crowdfunding project ever - the
dao - is kind of a mess. https://www.wired.com/2016/06/

biggest-crowdfunding-project-ever-dao-mess, June 2016. Online;
accessed: 2017-02-23.

[30] Byzantine fault tolerance. https://en.wikipedia.org/wiki/

Byzantine_fault_tolerance, 2017. Online; accessed: 2017-05-05.

[31] Perukrishnen Vytelingum, Sarvapali D. Ramchurn, Thomas D. Voice
andAlex Rogers, and Nicholas R. Jennings. Trading agents for the smart
electricity grid. In Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2010), May 2010.

[32] Double auction. https://en.wikipedia.org/wiki/Double_auction,
2017. Online; accessed: 2017-03-05.

[33] Moshe Babaioff and Noam Nisan. Concurrent auctions across the sup-
ply chain. Journal of Artificial Intelligence Research, 21:595–629, May
2004.

90

http://www.coindesk.com/ethereum-casper-proof-stake-rewrite-rules-blockchain
http://www.coindesk.com/ethereum-casper-proof-stake-rewrite-rules-blockchain
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost
https://www.wired.com/2016/06/biggest-crowdfunding-project-ever-dao-mess
https://www.wired.com/2016/06/biggest-crowdfunding-project-ever-dao-mess
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://en.wikipedia.org/wiki/Double_auction

[34] Q-learning. https://en.wikipedia.org/wiki/Q-learning, 2017.
Online; accessed: 2017-05-10.

[35] Monax - the ecosystem application platform. https://monax.io, 2017.
Online; accessed: 2017-04-09.

[36] Martin Riedmiller. Neural fitted q iteration - first experiences with a
data efficient neural reinforcement learning method. Springer-Verlag
Berlin Heidelberg, pages 317–328, 2005.

[37] Volodymyr Mnig, Koray Kavukcuoglu, David Silver, and Andrei A.
Rusu. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529–533, February 2015.

[38] Peer-to-peer energy transaction & distributed energy resource control.
http://transactivegrid.net, 2017. Online; accessed: 2017-02-30.

[39] Blockchain community solar: the value of a renewable energy repu-
tation. https://medium.com/@ConsenSys/, 2016. Online; accessed:
2017-03-02.

[40] Global community initiatives. http://www.global-community.org,
2017. Online; accessed: 2017-05-15.

[41] Vitalik Buterin. On sharding blockchains. https://github.com/

ethereum/wiki/wiki/Sharding-FAQ, 2017. Online; accessed: 2017-
05-12.

91

https://en.wikipedia.org/wiki/Q-learning
https://monax.io
http://transactivegrid.net
https://medium.com/@ConsenSys/
http://www.global-community.org
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ

Appendix A

Source code

All the source code developed for the needs of this project, including the
Solidity smart contracts as well as Python simulation code is in the fol-
lowing Bitbucket repository (https://bitbucket.org/NikShvetsov/eth_
trading_system).

https://bitbucket.org/NikShvetsov/eth_trading_system
https://bitbucket.org/NikShvetsov/eth_trading_system
https://bitbucket.org/NikShvetsov/eth_trading_system

Appendix B

Thesis description

Faculty of Engineering Science and Technology

Department of Computer Science and Computational Engineering

UiT The Arctic University of Norway

Exploring auction based energy trade with the
support of MAS and blockchain technology

Nikita Shvetsov

Thesis for Master of Science in Computer Science

Problem description

This project will be associated with the H2020 project EMPOWER undertaken by the
Norwegian Centre of Expertise of Smart Energy Markets (NCE). It seeks to explore
the use of Multi-Agent Systems (MAS) and blockchain (BC) technology and consists
of three main parts:

1. Literature study and conceptualization
2. Development of MAS system for local energy trade
3. Conceptualization and implementation of a simple blockchain support for the

energy trade

Part 1 is a prerequisite for the two others. It requires the study of the state-of-the-art
for both MAS and BC related technologies. A study of applications within the energy
domain as well as in related domains beyond the energy field is imperative. Focus
on the EMPOWER H2020 concept for local energy trade is essential. The student
should also acquaint himself with relevant blockchain approaches such as Ethereum
from ConsenSys and digital currencies such as BitCoin and Zcash. The use of smart
contracts and software agents in relation to such are important.

Main emphasizes should be placed on MAS development. This should be pinned on
methods that the student are already familiar with, but associated with the
EMPOWER market concept. The MAS concept should include a market arena that
supports a form of local trade in energy related contracts. The market arena will be
facilitated by an auctioneer, which is also an agent. This auctioneer should support a
so called call auction based on price scanning and a continuous double auction.
Software agents should be constructed so that they interact with the auctioneer.
Agents that wish to buy make a bid, while agents that wants to sell place an ask with
the auctioneer. Equilibrium is reached in accordance with the principles of settlement
defined by the two types of auctions considered. Agents may trade in different types
of contracts, including contracts for sale and procurement of local, renewable energy
or in contracts that are more elaborate and which includes degrees of flexibility and
services. Each of the trading agents represents a household that consume and/or
generate energy. Surplus energy is sold. Imbalance between supply and demand
must be covered by means of an agent that operates a battery and trade in the
central market. The student may capitalize on work that has been produced by
Kristoffer Tangrand and the student’s previous semester assignments. The idea is to
prove for multiple scenarios that the auction reaches Nash Equilibrium and that
energy balance can be reached in the most economical way. The student must
decide whether to use low-intelligence agents that operate and learn together or
agents with an individual and potent form of learning i.e. reinforcement learning.

The student should highlight how the trading arena could be accommodated by a
blockchain solution and explain how it could work. A simple BC demonstrator should
be produced that shows how the MAS system created can operate on top of a
blockchain solution.

References

CIRED 2017: CREATING A LOCAL ENERGY MARKET

Bernt A. BREMDAL
Smart Innovation Østfold & University of Tromsø (UiT) – Norway

Pol OLIVELLA-ROSELL Jayaprakash RAJASEKHARAN Iliana ILIEVA
Smart Innovation Østfold – Norway Smart Innovation Østfold – Norway Smart
Innovation Østfold – Norway

Dates

Date of distributing the task: 20.01.2017

Date for submission (deadline): 06.06.2017

Contact information

Candidate

Advisor at UiT-IVT

Nikita Shvetsov
nsh010@post.uit.no

Bernt Bremdal
bernt.bremdal@uit.no

Co-advisor at UiT-IVT Kristoffer Tangrand

General information

This master thesis should include:

 Preliminary work/literature study related to actual topic
- A state-of-the-art investigation
- An analysis of requirement specifications, definitions, design requirements, given

standards or norms, guidelines and practical experience etc.
- Description concerning limitations and size of the task/project
- Estimated time schedule for the project/ thesis

 Selection & investigation of actual materials
 Development (creating a model or model concept)
 Experimental work (planned in the preliminary work/literature study part)
 Suggestion for future work/development

Preliminary work/literature study

After the task description has been distributed to the candidate a preliminary study
should be completed within 4 weeks. It should include bullet pints 1 and 2 in “The work
shall include”, and a plan of the progress. The preliminary study may be submitted as a
separate report or “natural” incorporated in the main thesis report. A plan of progress
and a deviation report (gap report) can be added as an appendix to the thesis.

In any case the preliminary study report/part must be accepted by the supervisor
before the student can continue with the rest of the master thesis. In the evaluation
of this thesis emphasis will be placed on the thorough documentation of the work
performed.

Reporting requirements

The thesis should be submitted as a research report and could include the following
parts; Abstract, Introduction, Material & Methods, Results & Discussion, Conclusions,
Acknowledgements, Bibliography, References and Appendices. Choices should be well
documented with evidence, references, or logical arguments.

The candidate should in this thesis strive to make the report survey-able, testable,
accessible, well written, and documented.

Materials which are developed during the project (thesis) such as software/codes or
physical equipment are considered to be a part of this paper (thesis). Documentation for
correct use of such information should be added, as far as possible, to this paper (thesis).

The text for this task should be added as an appendix to the report (thesis).

General project requirements

If the tasks or the problems are performed in close cooperation with an external
company, the candidate should follow the guidelines or other directives given by the
management of the company.

The candidate does not have the authority to enter or access external companies’
information system, production equipment or likewise. If such should be necessary for
solving the task in a satisfactory way a detailed permission should be given by the
management in the company before any action are made.

Any travel cost, printing and phone cost must be covered by the candidate themselves, if
and only if, this is not covered by an agreement between the candidate and the
management in the enterprises.

If the candidate enters some unexpected problems or challenges during the work with
the tasks and these will cause changes to the work plan, it should be addressed to the
supervisor at the UiT or the person which is responsible, without any delay in time.

Submission requirements

This thesis should result in a final report with an electronic copy (i.e. CD/DVD, memory
stick) of the report included appendices and necessary software codes, simulations and
calculations. The final report with its appendices will be the basis for the evaluation and
grading of the thesis. The report with all materials should be delivered in one signed
loose leaf copy, together with three bound. If there is an external company that needs a
copy of the thesis, the candidate must arrange this. A standard front page, which can be
found on the UiT internet site, should be used. Otherwise, refer to the “General
guidelines for thesis” and the subject description for master thesis.

The final report with its appendices should be submitted no later than the decided final
date. The final report should be delivered to the adviser at the office of the IVT Faculty at
the UiT.

Appendix C

Intermediate report

First intermediate report on thesis project:

Exploring auction based energy trade with the

support of MAS and blockchain technology

Shvetsov Nikita

February 27, 2017

1 Introduction

In this report we will cover major investigations concerning our main project
topics, show, what we studied to understand current state-of-the-art, show the
early prototype, risks and issues, related to the proposed systemand time sched-
ule for the project.

In order to start the literature analysis, we have stated the most crucial
topics for us to study:

• Local energy market and smart grids for prosumers

• Using multi-agent systems (MAS) technology for energy trading systems

• Blockchain technology and smart contracts

Each of these topics were analyzed and for each topic the literature was
searched. The analysis for the literature is presented in the next section.

2 State-of-the-art investigation

This project is about implementing a system which will be decentralized, au-
tonomous, smart and transparent at the same time. This can be achieved using
blockchain technology with smart contracts and multiple software agents, that
takes care about energy auctions between prosumer agents.

In order to do that we have investigated scientific papers and articles. Through
literature study we have covered main topics mentioned above:

• Blockchain

– Bitcoin: A Peer-to-Peer Electronic Cash System [1]

Studied the origins of Bitcoin system, history of development, its
philosophy of peer-to-peer interactions, how it works in general and
solutions to overcome blockchain problems.

1

– A gentle introduction to blockchain technology [2]

Explored the principles of blockchain technology, checked questions
regarding consensus and validation techniques, noted possible secu-
rity issues.

– Blockchain technology beyond Bitcoin [3]

Got familiar with the latest blockchain projects in financial and non-
financial sector, get the idea how blockchain transaction are verified.

• MAS in energy trading

– A Formal Model for Agent-Based Coalition Formation in Electricity
Markets [4]

Explored formal models for agent-based systems in electricity mar-
kets. Got the idea of energy flows in the ecosystem of smart grids.

– Price Formation in Double Auctions [5]

Studied how double action principle works in the market, refreshed
knowledge about Nash equilibrium and explored experimental re-
sults.

– Prosumer oriented trade: Exploration of theoretical and practical
solutions for prosumer oriented trade [6]

Got familiar with EMPOWER project and its general concepts, re-
garding multi-agent systems and zero-intelligent agents, rules of trad-
ing, process and requirements.

– Implementing a Multi-Agent System in Python with an Auction-
Based Agreement Approach [7]

Checked the real implementation of MAS with auction principle in
Python, how it is programmed and organized.

– Multi-Agent Systems (MAS) controlled Smart Grid A Review [8]

Reviewed recent implications and trends for MAS technology in con-
trolling of the smart grid scenario.

– A Multiagent Modeling and Investigation of Smart Homes With
Power Generation, Storage, and Trading Features [9]

Explored the multi-agent system, priorities of the agents, real case
studies with loads in system. Also performance of such system is
shown in the paper.

• Local energy market and smart grids

– A Survey on Energy Trading in Smart Grid [10]

Explored required frameworks and enabling technologies for func-
tioning of the energy market between microgrids, evaluated various
trading models and described simulation-based solution.

2

– Multiagent study of smart grid customers with neighborhood elec-
tricity trading [11]

Provided schemes for local smart grid trading with description of
entities, flowchart for possible scenarios and described real-case sce-
nario with various parameters, offered several strategies to optimize
the load.

– Agent-based Micro-Storage Management for the Smart Grid [12]

Explored framework to analyze agent-based micro-storage manage-
ment for the smart grid and showed that with certain strategy storage
profile converges towards a Nash equilibrium. Also this provides real
case with UK energy market.

Besides literature mentioned in list above, we have studied such relevant
projects as Ethereum project concept, Brooklyn Microgrid project, Transac-
tiveGrid, Waves platform, SolarCoin, Power Ledger. It should be noted that
GridSingularity project tries to do relevant stuff, but does not open the results
of the work done.

Issues that were explored are PoS(proof-of-stake) vs PoW(proof-of-work),
blockchain scalability, DAO(decentralized autonomous organization), smart con-
tracts, private and public blockchains, cross-chain interactions.

3 System prototyping and expectations

The developing system should possess the following qualities:

• Every node has equal rights

In order for system to be decentralized every node should be treated as
equal.

• Trading platform regulates auctions

All trading operations will go through trading platform with autonomous
auction agent, which will perform energy trade.

• Direct connections between nodes

All nodes are connected to each other and have no third parties involved.

• Storage and computing modules are present in all nodes

In order to secure the system and being able to store and produce energy
each node should have appropriate modules installed.

3.1 Technologies

Used technologies include:

3

• Ethereum platform

Ethereum platform provides a blockchain ecosystem with smart contracts
for creating and testing our system.

• Python environment

With Python and Ethereum implementation (pyethapp) we can create a
simulation for evaluating of the system.

• Solidity

Solidity is a JavaScript - like programming language of the smart contracts.

• EMPOWER concepts

Our project will use some insights of EMPOWER project like SESP(smart
energy service provider), BM(balancing market), DSO(distribution system
operator) [6].

3.2 Prototyping

First stage of building a prototype will include simplified scheme. This will be
used to create a prototype and test it relatively fast. Also testing is important
due to investigation a proper learning procedure for agents in the system.

Proposed scheme is illustrated on fig 1.

Figure 1: Simplified scheme prototype

4

3.3 Testing and evaluation

Main goal for our testing simulation is to check if the concept of our system is
viable.

In order to do that the plan is to create a simulation with a small local grid
with about 10 nodes and outer grid. System will be simulated for a period of 1
year. This time period should give us a clear understanding of the viability of the
concept and local market should converge to equilibrium. With all information
we can analyze the currency flows and energy generation. This will give us an
insight how the energy market will work for prosumers.

The last phase is to compare intelligent and zero intelligent agents perfor-
mance and propose the most profitable one in terms of system stability.

4 Risks and limitations

Introducing this kind of system can be accosiated with certain risks, which are
connected with blockchain technology and relatively new prosumer role in local
energy markets:

• Lack of standardization in this area

• Hard to customize and scale

• Lack of long-term experience with this technology

• Lack of acceptance for some parts of customers

• Possible fraud between software and hardware

• Danger of loosing accounts if requisites are lost

• No central authority in case of disputes

Many of these outflow from a fact that blockchain technology offer more
control and efficiency at the cost of higher personal responsibility.

5 Possible issues

Possible issues for our proposed system include security problems, anonymity
questions, scalability issues, PoW to PoS verification, cross-chain interactions
and token regulations.

Security is a very important matter. The whole system can be compromised
if false data will emerge. So, there should be no weak spots in logic of the system
and it should be transparent for all users.

Anonymity is non-trivial matter if we talk about blockchain. Technically
blockchain assumes that only address can be ties to a person, but on practice

5

through some techniques you can associate it by correctly analyzing transac-
tions. It is also a matter of public vs private blockchains, in which every choice
comes with its pros and cons.

Scalability is often ignored, when we talk about blockchain, but it is rather
important. As peer-to-peer technology, blockchain is high demanding structure.
Given the extremely fast rate of data growth, the sheer data volumes accumu-
lating after several years of operating a blockchain place high demands in terms
of security, speed and costs. It is partially solved with the creating of intermedi-
ate nodes, which have only the part of blockchain and was described in original
Bitcoin paper [1].

PoS and PoW issue is of great importance. Till 2017 Ethereum platform was
on PoW verification algorithm and demanded a lot of computing power from
nodes. Now it is transferred to PoS, which has some advantages over PoW.

Cross-chain and token regulation issues need to be solved in order to make
the whole ecosystem of energy trading work. For now, there are 3 ways to
perform cross-chain interactions: notaries, relays and hash-locking. Relays are
the most functional, but are hard to implement. Hash-locking is the easiest one
to implement, but has some restrictions. Notaries are the golden mean.

6 Development planning

• End of February

Finishing on literature review stage

• March - April

Programming stage:

– Simulation environment and MAS structure

– Integrate blockchain based on Ethereum code

– Introduce smart contracts

– Experiment with learning agents and auction scenarios

– Evaluating results and make further adjustments to the program

• May - Early June

Reporting stage:

– Making a report of the system

– Submitting the finished report

7 Conclusion

At the moment, we are working on Ethereum platform and programming the
environment for our project. Main goal for the month - working prototype of
the test environment with the support of smart contracts.

6

At the same time, we should check all changes for the Ethereum platform
as it is rapidly developing and keep in touch with blockchain technology by
participating in webinars on theme theme.

Moreover, active experience exchange and collaboration is performing with
the researcher from NTNU(Norwegian University of Science and Technology) -
Fredrik Blom, who is studying the same topic.

References

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. The
Cryptography Mailing list, 2008.

[2] Antony Lewis. A gentle introduction to blockchain technology. BraveNew-
Coin.

[3] Michael Crosby, Nachiappan, Pradhan Pattanayak, Sanjeev Verma, and
Vignesh Kalyanaraman. Blockchain technology beyond bitcoin. University
of California Berkeley, 2015.

[4] Sebastian Beer and Hans-Jurgen Appelrath. A formal model for agent-
based coalition formation in electricity markets. 4th IEEE PES Innovative
Smart Grid Technologies Europe (ISGT Europe), 2013.

[5] Steven Gjerstad and John Dickhaut. Price formation in double auctions.
GAMES AND ECONOMIC BEHAVIOR, 1995.

[6] Bernt Bremdal, Pol Olivella-Rosell, and Jayaprakash Rajasekharan. Tech-
nical specifications for software development - empower project. Technical
report, EMPOWER, 2016.

[7] Mikko Berggren Ettienne, Steen Vester, and Jorgen Villadsen. Implement-
ing a multi-agent system in python with an auction-based agreement ap-
proach. 2011.

[8] Mahesh S. Narkhede, S.Chatterji, and Smarajit Ghosh. Multi-agent sys-
tems (mas) controlled smart grid a review. International Journal of Com-
puter Applications, 2013.

[9] Salman Kahrobaee, Rasheed A. Rajabzadeh, Leen-Kiat Soh, and Sohrab
Asgarpoor. A multiagent modeling and investigation of smart homes with
power generation, storage, and trading features. IEEE TRANSACTIONS
ON SMART GRID, 2013.

[10] Safak Bayram, Muhammad Z. Shakir, Mohamed Abdallah, and Khalid
Qaraqe. A survey on energy trading in smart grid. math.OC, 2014.

[11] Salman Kahrobaee, Rasheed A. Rajabzadeh, Leen-Kiat Soh, and Sohrab
Asgarpoor. Multiagent study of smart grid customers with neighborhood
electricity trading. Elsevier, 2014.

7

[12] Perukrishnen Vytelingum, Thomas D. Voice, Sarvapali D. Ramchurn, Alex
Rogers, and Nicholas R. Jennings. Agent-based micro-storage management
for the smart grid. 9th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2010), 2010.

8

	Introduction
	Local energy markets
	Current projects

	Problem description
	Challenges
	Project goal

	State-of-the-art
	Analysis of problem area
	Blockchain technology
	Blockchain
	Ethereum platform
	Smart contracts and oracles
	Ethereum applications

	Multi-agent systems
	Possible issues
	Ways of implementation

	Method
	Choosing approach
	Concepts testing
	Prototyping entities
	Creating smart contracts
	Multi-agent system implementation
	Utility functions

	Auction interactions
	Q-learning

	Results
	Tools and testing
	Preparation phase
	Simulation parameters

	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Discussion
	Results interpretation
	Encountered problems
	Blockchain issues
	Learning agents
	Smart contracts issues

	Real-world appliance

	Further development
	Possible improvements
	Future of DApps and blockchain solutions in energy sector
	DApps and Ethereum
	Other areas of application

	Conclusion
	Source code
	Thesis description
	Intermediate report

