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EYE MOVEMENTS IN A REINFORCEMENT LEARNING CONTEXT 

 

Abstract 

The present thesis experimentally set out to try to answer if there was a correlation between 

reinforcement learning and eye-movements and what the implications of such a correlation 

might be. An important experimental factor here was the decision to do this online, to see if it 

was possible to get valid and reliable results, and furthermore perhaps reach out to a more 

diverse group of people than a typical in-lab study would, making the results more 

generalizable.  

38 people were recruited via the website prolific.co. The participants then performed a 

learning test, where they were shown two symbols on the screen, and the objective was to find 

the symbol with the highest value out of the pair, with three different symbol pairs. After each 

presentation of a pair, the participant had to choose one symbol, which were then followed by 

a rewarding or non-rewarding feedback. Each symbol pair had a different ratio of positive 

relative to negative feedback. The participants eye-movements were tracked via their web-

camera, to see if they fixated more on the most rewarding symbol. The results showed that the 

participants reliably learned to choose the higher value symbol, comparable in validity to that 

of in-lab studies. We also found a statistically significant correlation between learning and 

fixating on the most rewarding symbol, although the quality of the eye-tracking was of too 

poor quality to draw any conclusions about this correlation.  

The present experiment reached a diverse group of people from all over the world and 

proved that it is possible to perform a reinforcement learning experiment online, although the 

technology of eye-tracking cannot match an in-lab study. Further online research is needed in 

many areas to determine what type of experiments can produce valid and reliable data, which 

is especially relevant to the generalizability of research, and the present situation of a global 

pandemic which limits the in-lab approach.  

 

Keywords: Reinforcement learning, reward, eye-tracking, eye-movements,  

web-study, online, generalizability, validity, reliability, Q-learning  
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Introduction 

Humans have evolved to adapt to our environment by interpreting and learn from 

experience and our immediate surroundings what actions will maximize reward. These basic 

and fundamental behaviors and mechanisms are crucial to survival, and therefore have an 

evolutionary basis rooted in the brain (Schultz, 2015). To understand and predict human 

behavior has been a topic of study since the beginning of psychological research (Leahey, 

1991) with increasingly complex theories and algorithms that seek to accomplish this. 

In this context, reinforcement learning has been an area of keen interest to many 

psychological researchers, especially in neuropsychology (and many other fields, such as AI, 

statistical economics etc.) as it has become a more and more sophisticated area of which to 

understand how the brain works in decision making (Shteingart & Loewenstein, 2014). 

Reinforcement learning is a theory about how humans make decisions, and has also become a 

branch of machine learning, in which to understand and predict how an “agent” make options 

which leads to the most valued outcome. In a human context this can be understood as being 

relevant in most decision-making contexts, considering the paradigm that the goal in learning 

is to maximize reward and avoid negative outcomes, and that this learning process takes place 

all the time, continuously updating the brain´s representation of value, learning from mistakes 

(i.e., penalty) and reward (Lee, Seo & Jung, 2012).  

Reinforcement learning can be tested in experimental settings, where a specific choice 

or behavior that leads to a more favorable outcome will be integrated and thus influence 

which action is taken next based on learned reinforcements. The prediction error, which is the 

hypothetical representation of the discrepancies between expected and actual rewards or 

punishments is continuously updated and is a basis for understanding the underlying 

mechanism regarding motivated behaviour (Chase, Kumar, Eickhoff & Dombrovski, 2015). 

Reinforcement learning is divided into two different methods for learning in decision 

making (Dayan & Berridge, 2014). One, called the model-free strategy is based on the notion 

that the agent makes decisions based on the previously learned outcomes of their actions or 

observations, where these values are progressively updated depending on the outcome of the 

observation/action (reward or punishment) and therefore the person becomes more and more 

efficient in making the more favorable choice based on cumulative knowledge. The other 

method, called model-based learning, is based on the person´s orientation of the environment, 

expectations and predictions and calculations in order to make cognitive judgement about 

what might be the best choice to maximize reward.  
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 These preference in choice and learning from experience have a neural basis in the 

brain, such as in the ventral striatum, which is composed of the nucleus accumbens and the 

olfactory tubercle, where the nucleus accumbens plays a crucial part regarding reward and 

reinforcement. It is a part of the basal ganglia, with dopaminergic neurons being released 

from the mesolimbic pathway to the ventral striatum. Dopamine is projected from the ventral 

tegmental area, to the mesolimbic pathway, and this is essential in the processes of mediating 

reinforcement learning, motivation and reward.  

 Furthermore, the orbitofrontal cortex in the ventromedial prefrontal cortex, which also 

projects to the nucleus accumbens, is involved in decision making relating to the evaluation of 

value, learning and inhibition (Schultz, Tremblay & Hollerman, 2000). Further relevant to our 

study is also the fact that is has been showed that visual brain regions, the lateral occipital 

cortex, is active in the widespread networks that predicts forthcoming reward (Apitz & 

Bunzeck, 2012). 

 

Eye-movements and reward 

Ongoing cognitive processes related to reward is not only visible in brain imaging 

studies but can also be shown in our eyes. Both pupil size as measured by pupillometry and 

eye movements are strongly linked to our attention, where reward plays a crucial role. For 

example, Pietrock et al., (2019) found a significantly stronger increase in pupil diameter, 

longer gaze fixation time and shorter blinks was linked to reward-predicting cues in contrast 

to a control cue.  

In relation to eye-movements it has for example previously been documented that 

irrelevant stimuli that is learned to be associated with reward captures the gaze more than just 

the physical salience of an object (Krajbich, Armel, & Rangel, 2010). In a different study, 

Liao & Anderson (2020) found that participants that had to fixate on a peripheral target, 

before fixating on one of four disks than then appeared in each cardinal position. This was 

then followed by a reward feedback depending on the direction the participant chose to look 

(not the actual target position). One specific direction gave a higher reward consistently, the 

participants learned to choose the target with the highest reward.  

After learning the direction with the highest reward, a different visual trial was 

performed in extinction (i.e. the subsequent test was a visual task where the goal was to find 

the correct item on different locations on the screen, which then turned green to indicate the 

correct target was found. No rewarding stimuli was given in this extinction task. This was in 

order to remove the previously conditioned reward response of the first task). They observed 
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that the eye movements of the participants where reliably biased in the direction previously 

linked to the high-reward in the former task, suggesting that eye-movements and attention is 

influenced by a previously learned reward, even after extinction.  

Therefore, the study of how human (and animal) eyes operate in experimental settings 

has thus played an important part in neuropsychology in regards to understanding how reward 

is reflected in, and can be observed and measured in how our eyes behave. With such studies 

as the one mentioned above, arises important questions about how these processes are 

mediated, and if they are under voluntary control, or is more of an automatic response 

phenomena.  

For example, Theeuwes & Belopolsky, (2012) argue that eye-movements is automatic 

and not top-down driven in regards to reward. They found that a task-irrelevant stimuli 

previously associated with high monetary reward captures the eyes much more so than the 

same stimulus when previously associated with low monetary reward. The irrelevant stimuli 

captured the eyes and disrupted goal-directed behavior, and therefore, they argue, that this 

response is beyond voluntary top-down control, but rather is an automatic response effect 

mediated by reward.  

 

Hypotheses 

In the context of representation of value in a reinforcement learning context, we 

expected that the participants would learn which visual stimuli was most rewarding. Based on 

this we ask the question if there is a correlation between fixation time and learning what 

stimuli is most rewarding? And if so, what does that tell us about the role of eye-movements 

in reinforcement learning? Does a fixation time on the more valuable symbol reveal if there is 

an unconscious process of conditioning the gaze to the better symbol, or is it simply a top-

down attentional phenomenon of looking at the symbol the participant learn to choose? 

Although similar experiments involving eye-movements and reward have been conducted in 

the past, the new factor here is how we chose to conduct it, which brings us to the next 

segment:  

 

The Online Approach. The relevance of online studies during the current COVID-19 

pandemic situation has made it an area of which it is important to explore the benefits and 

limitations of such experiments, as such information would be of great significance as there 

may be many potential future similar scenarios where in-lab experiments are limited or not 

possible. 
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It is maybe doubtful that web-based studies involving neurological parameters such as 

eye-movements will be as sophisticated as in a lab in the near future, due to the nature of 

necessary control required in a lab setting to get reliable and valid data. In-lab studies have 

the advantage of controlling every aspect of the experiment, for example being able to 

observe the test subject is an important aspect (Schmidt, 2009). Furthermore, the researchers 

presence makes the process precise in a way where any confounding factors may be removed, 

which would be factors that are very difficult to control for in an online based study. When 

the participant is not observed in a lab, the equipment each individual use can be of varying 

quality (Schmidt, 2009) i.e. computer speed, poor web camera and so on. Also, their behavior 

during testing, with outside distractions or other interferences might make the results less 

valid. That said, advances in technology regarding eye-tracking online has made considerable 

progress, for example with the use of a real-time, web-browser-based webcam eye-tracker 

such as WebGazer (Papoutsaki, Gokaslan, Tompkin, He & Huang, 2018). 

 A web-based approach could be a very useful tool in general, as it has the advantage 

of potentially reaching hundreds or thousands of participants in matter of minutes, performing 

studies that would take weeks or months in the lab, just over the course of minutes or hours 

(Riva, Teruzzi & Anolli, 2003). An online also study also has the potential advantage of 

reaching a much more diverse group of people from different cultures and socio-economic 

environments (Riva et al., 2003). As such, it can be an important area if interest to replicate 

and confirm data from an in-lab experiment, to have a larger degree of generalizability to the 

general population. 

Regarding the generalizability of many small in-lab studies that often recruits people 

from western, educated, industrialized, rich, democratic societies, where a large proportion is 

university students, is then often generalized to other populations (Henrich, Heine & 

Norenzayan, 2010). As participants from the group just mentioned often are outliers 

compared to the rest of the population (Tiokhin, Hackman, Munira, Jesmin, & Hruschka, 

2019), it can clearly be problematic to accept the notion that data acquired from these types of 

studies can be applied as completely relevant to the whole population. That said, people from 

less privileged backgrounds without the resources to access online experiments may be 

excluded from participation to a degree (Lourenco & Tasimi, 2020), so its generalizability 

comes with some limitations. Besides its potential pitfalls in interpreting the generalizability, 

studies involving less complex variables, such as questionnaires or the like would be less 

liable to be confounded by the limitations of more complex measurements such as in 

neurological testing. 
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 As eye-tracking as mentioned is one area where neurological variables actually can be 

tested online, in this experiment we sought out to see if it was possible to conduct this type of 

experiment in a web-based manner, and if the experiment would provide valid and reliable 

data, and if so, if both the eye-tracking- and reinforcement learning data could be of value in a 

generalizable way. 

 

Methods 

Participants 

40 participants of both genders (18 men and 22 women) were recruited via the website 

Prolific.co. The participants were between 18 to 50 years of age  (Mage = 28.5)  from all over 

the world; including 4 different countries in Africa, 9 different in Europe, 1 in Asia and 2 

different in South-America. 11 were in full time jobs, 1 was unemployed, 13 were students (2 

with full time- and 4 with part time jobs on the side, 7 unemployed 2 identified as “other”). 

The rest was either “other” or had not answered. 

The requirements for participation where that they were between 18 to 50 years of age, 

where fluent in English, had no mental impairments, no mental illness and intact eye vision 

and had access to a computer equipped with a web camera.  

We excluded participants that had 3 stops or more, i.e. where the participant did not 

choose a symbol before the trial time of 3.3 seconds run out (see figure 1 for visual 

illustration). We did not set an absolute exclusion criteria for times exiting the test window, 

but rather made the decision if they should be included based on number of times exiting in 

addition to being outside the test window for several seconds, which would be indicating they 

were not focusing on the experiment, making the data unreliable. 

Two participants were excluded from the study due to stopping too many times, where 

the two whom were excluded stopped 3 and 6 times, respectively.   

 

Study Setup 

The website Prolific.co is a website dedicated to online research, where people from 

all over the world can register on the site, where their identity is confirmed via picture of their 

passport, e-mail and phone number. They then can answer different question about 

themselves, such as land of origin, age, gender, ethnicity etc. such that researchers can filter 

their participants on certain criteria in order to focus the group in a manner that best serves the 

experiment.  
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The participants gets paid a certain amount of money for participating in research 

projects of their own choosing, as long as they are within the eligible group chosen by the 

researcher. Besides the information provided, the participants identity remains completely 

anonymous to the researcher.  

The researcher sets up a server site to their experiment where the participant is then sent to via 

prolific, and upon completing the study, gets a code which they then enter in prolific to 

confirm completion of the study. In this experiment, the data was sent to the server JATOS 

(https://www.jatos.org) where we then could immediately see the total time spent, time spent 

on reading the instructions, how many times the participant did not choose a symbol, when 

they entered full screen mode, how long they were in full screen mode, how many times they 

switched windows and for how long they had been in a different window after switching.  

 

Experimental Design. The online task was adapted from (Turi et al., 2015), originally 

from Frank, Seeberger, and O`Reilly (2004), and was written in jsPsych 

(https://www.jspsych.org). As in Turi et al. (2015), the experiment had a training phase before 

the main test, in order to familiarize the participants with the structure of the test (see figure 1) 

borrowed from Turi et al. (2015), with some alteration regarding the timeframes. Three pairs 

of Japanese symbols were presented together, the same pairs as used in the experiment by 

Turi et al. (2015), one pair at a time, in a random order. Here labeled pair AB, CD and EF, 

where each pair contained one symbol connected to a higher reward than the other.  

As shown in figure 1, the symbol A was the “better” choice with the reward of a happy 

face in 80 % of the times it appeared on the screen, and 20 % a sad face emoji. Vice versa, 

symbol B had the same reward 20 % of the time, and 80 % the sad emoji. As with the symbol 

pair AB, the other pairs also had a percentage of reward probability of one symbol over the 

other, albeit a different one, where CD had a balance of CD 70% and 30% respectively, and 

EF 60 % reward for E and 40 % for F.  

As adopted from (Turi et al., 2015) the training phase had 1 block where the 3 symbol 

pairs were shown a total of 15 times, 5 trials for each symbol. With each presentation of a 

pair, one symbol was placed on the left and the other on the right of the screen. The “better” 

symbol was randomly presented on either the left or right side of the screen. The main test 

consisted of 3 blocks with 60 trials in each block (with 180 presentations in total). 

 Between each block the participant could take a short brake. Each block had a new set 

of symbol pairs. Each trial lasted for a total of 3.3 seconds, where it started with showing of a 

fixation cross placed in the middle of the screen with a timeframe of randomly chosen either 
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200, 400 or 800 milliseconds. The symbol pair then appeared on the screen for 1700 

milliseconds where the participant had to choose one of the symbols using the key “F” on the 

keyboard for the left symbol or the key “J” for the right one. The chosen symbol was then 

highlighted for 200 milliseconds. If the participant had not made a choice within the given 

timeframe the trial was terminated, followed by a feedback symbol representing a “confused” 

face for 200 milliseconds. If a symbol was chosen, the feedback was either a “happy” or a 

“sad” face. The feedback faces were designed in a typical emoji fashion and shown for 200 

milliseconds before moving on to the next trial (for reference, see figure 1). 

 

 
Figure 1  Visual presentation of one block of the main test 

  

 Before starting the experiment the participants were provided detailed instructions on 

how to perform the experiment. They were given 2 GPB (pound sterling) if they performed 

the task correctly. As an incentive to motivate the participants to focus and be motivated to do 

well on the test, they were informed that if they performed well, they would be given a bonus 

of 1 GBP in addition to the original payment. They were also notified that we measured the 

keypresses, eye-movements and switching between windows, and given a upper limit time 

frame of completion of the test of 30 minutes (M = 17.9, SD = 2.04) Furthermore, upon data 
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analysis we would make the decision whether they had followed the instructions correctly, 

and if not, they would not get the payment.  

 

Eye-Tracking. After the instructions and information on the test where given, an eye 

calibration was performed using the software WebGazer (Papoutsaki et al., 2016) paired with 

the participants web camera. They were then given the task of holding their head still within a 

green box and then instructed to look at 5 little black dots on the screen and click on them 

using their mouse. After this, the calibration continued with the participant looking at the dots 

again, this time without clicking on them. This was performed to get the most reliable data 

from the eye tracking during the experiment.  

 

Reinforcement Learning. As detailed in Turi et al. (2015), processes and behaviour 

can be described, modeled and in retrospect fitted to the behavoiural data from the experiment 

using specific reinforcement learning algorithms, in this case, Q-learning. We used here the 

same modified version of the Rescorla-Wagner algorithm as in Turi et al. (2015): Qt+1(i) = 

Qt(i) + a(rt – Qt(i)) for iÎ{A,B,C, D; E, F}, where t represents the trial number. The so-called 

action values Q for each single item where initialized to zero and then updated progressively. 

Furthermore, the prediction error defined as rt – Qt(i), as the difference between the given and 

expected feedback, and rt meaning the reward given on trial t. 

As further described in Turi et al. (2015), retrieved from Frank, Moustafa, Haughey, 

Curran & Hutchison (2007) & Jocham, Klein & Ullsperger (2011). Q-learning involves a 

learning rate parameter; a, which represents the “the difference between the previous outcome 

estimate and the actual estimate after a certain action” and where a higher a-value indicates 

a more irregular shifting pattern between the choices made, and a lower a-value indicates a 

more “gradual value integration and more stable value estimation” (Turi et al., 2015), with 

reference to Frank et al. (2007). Furthermore, in the Q-learning algorithm used here (Frank et 

al., 2007; Jocham, et al., 2011) the b-value parameter points to the test-subjects leaning 

towards either choosing a strategy either towards exploitation or exploration, where higher b-

values indicates choosing more randomly, whereas lower ones indicate exploitation, where 

the better option is chosen.   

To sum up; as detailed in Turi et al. (2015), the relationship between a and b 

represents a model thought to show the a-value as to what degree the test-subject learn from 

previous choices and therefore predicts and chooses the most optimal choice. We then used 
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the soft-max rule to calculate the probability of choosing one symbol in the pair presented, as 

in for example choosing A when the pair AB was shown: Pt(A)  = exp(Qt(A)/b)/[exp(Qt(A)/b) 

+ exp(Qt(B)/b)]. 

 

Results 

Participants used an average of 17 minutes and 9 seconds on the test  

(SD = 2.04) including eye calibration, pauses between blocks and reading the instructions. 

Number of stops (where the participant did not choose a symbol before the trial time of 3.3 

seconds run out)  was overall few (M = 0.18, SD = 0.6). We also recorded how often 

participants switched windows on their computers. The number of times switching into a 

different window than the test had an average of 2.2 switching times (SD = 1.58), but the time 

being spent opening/switching windows was short with the longest time averagely spent 

outside the test window was 0.28 seconds (SD =0.58).   

We calculated the accuracy of choosing the right symbol for each participant. To see if 

there was a learning effect, we split each block in two parts of equal size, to compare if there 

was a difference in accuracy in the first and second 30 trials of each block. If participants 

learned the correct stimulus values over time, they should choose the higher-valued symbol 

more often in the second compared to the first part.  

We used a 2 (parts: first half vs. second half) x 3 (symbol pairs: AB, CD and EF) 

repeated measures ANOVA, with accuracy as the dependent variable (see table 1 for 

descriptive statistics). Accuracy is here defined as when the symbol with a higher percentage 

of reward feedback was picked, therefore it was also defined as correct also when the 

feedback was negative, and vica versa when the wrong symbol was chosen but positive 

feedback was given, it was labeled as the wrong choice.  Assumption of sphericity was tested 

using Mauchly´s test of sphericity, which were violated, therefore the Greenhouse-Geiser 

correction was used. Significance level was set a level of p <.05.  
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Table 1  

Accuracy for choosing the right symbol, comparing the first and second half of each of the 3 

blocks, where each block was 60 trials. 30 trials in the first half and 30 in the second half of 

one block was compared, with 3 blocks with a total of 180 trials.  

 First  Second 

Variable M SD  M SD 

AB .59 .17  .67 .15 

CD .53 .17  .66 .13 

EF .50 .17  .53 .19 

Note. M and SD represent mean and standard deviation, respectively. (N = 38) 

 

There was a learning effect observed, where the participants learned which symbol 

had the highest probability of reward (see table 1). The repeated measures ANOVA revealed 

a main significant learning effect in general between the first and second half of the blocks 

(F(1.37) = 21.8 p < .001, ηp2 = .37). Furthermore, there was a statistical significant difference 

between the symbol pairs (F(1.9,69.2) = 9.2 p < .001, ηp2 = .2). There was also a statistical 

significant interaction, indicating that the difference in learning effect when comparing the 

different symbol pairs between the first and second half of the three blocks was not uniform 

(F(1.9,73.9) = 3.78 p < .028, ηp2 = .09), (see figure 2).  

 

 
Figure 2.  Shows the three symbol pairs, with the mean of each participant´s accuracy 

between first and second half of the three blocks 
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Reinforcement Learning  

As detailed in (Turi et al., 2015), processes and behaviour can be described, modeled 

and in retrospect fitted to the behavioral data from the experiment using specific 

reinforcement learning algorithms, in this case, Q-learning. We used here the same modified 

version of the Rescorla-Wagner algorithm as in (Turi et al., 2015): Qt+1(i) = Qt(i) + a(rt – 

Qt(i)) for iÎ{A,B,C, D; E, F}, where t represents the trial number. The so-called action values 

Q for each single item were initialized to zero and then updated progressively. Furthermore, 

the prediction error defined as rt – Qt(i), as the difference between the given and expected 

feedback, and rt meaning the reward given on trial t. 

As further described in (Turi et al., 2015), retrieved from Frank, Moustafa, Haughey, 

Curran & Hutchison (2007); Jocham, Klein & Ullsperger (2011), Q-learning involves a 

learning rate parameter; a, which represents the “the difference between the previous outcome  

estimate and the actual estimate after a certain action” and where a higher a-value indicates 

a more irregular shifting pattern between the choices made, and a lower a-value indicates a 

more “gradual value integration and more stable value estimation” (Turi et al., 2015), with 

reference to Frank et al. (2007). 

Furthermore, in the Q-learning algorithm used here, (Frank et al., 2007; Jocham, et al., 

2011) the b-value parameter points to the test-subjects leaning towards either choosing a 

strategy either towards exploitation or exploration, where higher b-values indicates choosing 

more randomly, whereas lower ones indicates exploitation, where the better option is chosen.  

To sum up; as detailed in Turi et al. (2015), the relationship between a and b represents a 

model thought to show to what degree the test-subject learn from previous choices and 

therefore predicts and chooses the most optimal choice. 

 We then used the soft-max rule to calculate the probability of choosing one symbol in 

the pair presented, as in for example choosing A when the pair AB was shown:  Pt(A)  =  

exp(Qt(A)/b)/[exp(Qt(A)/b) + exp(Qt(B)/b)].  
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Table 2 

Average a and b values for the participants, N=38 

Variable M SD  

a  value   .15 .11  

b  value .32 .05  

Note. M=Mean, SD=Standard deviation. 

 

The average a and b values for all the participants is presented in table 2. An example 

of the Q-values for one individual participant across the blocks (see figure 3) shows that the 

participant learned to identify the most rewarding symbols, as represented in the Q-values 

(and the mean a and b values) representing the internal, accumulated value associated with 

each symbol. The Q-value for the most rewarding symbol went up, and Q-values for the less 

rewarding symbols went down. This demonstrates a reinforcement learning effect, where the 

cumulative knowledge given from reward feedback gradually updated the individual’s 

representation of value, and therefore gradually choosing the higher valued symbol more 

often (for Q-values for all the participants, see Appendix). 

 

 

Figure 3. Q-values for one participant, showing each symbol pair across the three blocks. 

Average a and b value for this individual displayed at the top. Grey dots indicated individual 

decisions, with correct decisions at y=1 and incorrect decisions at y=0. 
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Eye-Tracking  

Regarding the eye-tracking calibration, the results varied quite a bit in accuracy where 

around 21 participants had an acceptable calibration (evaluated subjectively by the analyst, 

see figure 4 left for an example), 7 were of poorer quality but nevertheless mostly acceptable 

to determine in what direction the participant had fixated, and 10 were of poor quality. Our 

main analysis quantified the percentage of time our participants spent looking at either the left 

or the right part of their screen. Hence, it was most important that they looked in the direction 

of the dots presented on the screen during calibration (or the symbols during trials) while the 

absolute accuracy of fixation (especially in the vertical direction) was less important. 10 

participants had poor quality eye tracking, as shown in the figure 4 (right), where one can 

infer that something was not optimal to track the eyes, thus making the eye-movement data of 

this participant less valid in the analysis compared to the one to the left with much more 

precise data. The main analysis was nevertheless run on the full dataset including all subjects' 

data. 

 

 
Figure 4. The calibration on the left has clear and defined fixations on the dots that appeared 

on the screen, whereas the one to the right has an almost random pattern. 

 

Q-Values and Eye-Movements. We calculated the percentage of time our 

participants focused on the left vs. the right side of the stimulus display during the time the 

stimulus was displayed on the screen and correlated it to the Q-value derived from fitting the 

computational model to the response data. 
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Figure 5 shows the average correlation (correlations were transformed using Fisher's 

Z-transformation) between these quantities for intervals of increasing duration (i.e., the 

percentage of time participants focused on the left side was calculated based on data 

collection during the interval from stimulus onset to 100 ms, 200 ms, 300 ms and so on).  

The rationale behind this analysis was to identify the time window during which the higher-

valued stimulus was openly attended to (viewed). The confidence interval for the average, 

transformed correlation coefficient excludes zero for intervals up to [0, 800] ms. From 900 ms 

onwards, the correlation is significantly different from zero, Z=0.09, 95% CI=[0.01, 0.16], 

indicating that the higher-valued symbol (that was also more likely to be chosen) received a 

higher percentage of viewing time. 

 

Figure 5. Each point represents percentage of gaze of all participants (N=38) with the 

intervals from 100 to 1100 millisecond and the Fischer´s Z-transformation on Y-axis. The 

lines in bold are the standard error and the thinner lines are the confidence interval. 
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Discussion 

In this study we found that participants reliably learned to pick the higher value 

symbol, and that the higher the percentage of reward/accurate feedback in a symbol pair, the 

higher the percentage of choosing the most valued symbol when comparing the first and 

second half of the three learning blocks. The AB-pair had a higher percentage accuracy than 

the CD-pair, and the CD- higher than the EF-pair. We further found that these results were 

statistical significant, both in the main learning effect between the first and second half of the 

three blocks and the difference between the symbol pairs throughout the study. Furthermore, 

we also found that the learning effect between the pairs from the first half to the second half 

of the three blocks were statistically significant. The highest valued symbol pair AB received 

a higher mean total number of correct answers than the higher valued symbol pairs CD and 

EF in the three pairs, respectively, between the first and second half of the blocks. These 

effects are well-known and established in similar studies using the same task in a lab-based 

setting (Turi et al., 2015). 

Furthermore, the Q-learning algorithms fitted to the data set confirmed the general 

learning across the group, where the participants reliably seemed to update (learn) the 

representation of value of the symbols, as reflected in the Q-values and the mean of the a- and 

b values, confirming a reinforcement learning effect. The estimated parameters are very 

similar in magnitude to those estimated in previous studies (Turi et al., 2015) establishing the 

general ability of our web-based study to capture the same phenomenon measured in the lab. 

The Q-value derived from fitting the computational model to the response data in 

regards to the correlation between the reinforcement learning and eye-movements; more 

specifically, the time to fixation in milliseconds and its correlation to the actual key press of 

choosing the right symbol: We found a significant correlation between the time to fixation at 

the higher value symbol and the reinforcement learning of choosing the right symbol being at 

the same mean millisecond interval for which the participants made a choice.  

The eye-calibration and general eye-tracking data was of varying quality, where we 

found that the quality of the eye-tracking was good enough to track where the participant had 

fixated in the majority of participants, but there was however a significant number of 

participants where the eye-tracking data was in the range of poor to very poor quality.  
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As expected, the participants learned to pick the higher value symbol progressively, 

and we expected the participants ending up in the end of each block with a percentage of 

correct answers close to the percentage of the positive feedback percentage for each pair, 

which was also the case (i.e. for example in the AB pair ending closer and closer to 80 % 

accuracy in the end of the block, because that was the percentage positive feedback for A in 

the pair). Surprisingly, the CD-pair had a higher-than-expected percentage of right answers 

relative to its feedback, compared to the AB-pair, given the higher accuracy in feedback in 

AB. The reason for this remains unclear. Even the EF pair had a learning effect, although as 

expected, with a lower mean learning accuracy compared to the two other pairs.  

The reinforcement learning parameters reliably confirmed the hypotheses that the 

participants continuously updated the representation of value and making inferences based on 

the previously learned values in which symbol to choose next. The correlation between 

reinforcement learning and eye-movements found at 900 ms and later could hypothetically 

point to a top-down driven process and being just a natural response to shifting the attention 

to the symbol chosen. Theeuwes & Belopolsky (2012) points to the fact that attentional 

capture and holding of attention are bottom-up and top-down driven respectively, and is two 

different processes, where one is salience-driven and the other following exogenous capture 

of attention.  

Their study was based on the notion that stimuli previously associated with reward 

captured the eyes in favor of a top-down and goal-oriented task of looking for a target. In our 

study the time of eye-fixation and answering was coincident, and in addition, the target to 

look for was also the stimuli with the highest reward. So, in order to answer the question if 

there was an unconscious and more automatic response to the more rewarding symbol would 

maybe have to be based on whether the eye-fixation preceded the choice, which our results 

show that it didn´t. Another way would be to have more accurate reading of fast saccades, as 

fast saccades are more predictive of an automatic response than just a fixation (Theeuwes & 

Belopolsky, 2012). The time to fixation co-occuring with choice may just mean these 

fixations are just part of the top-down decision process.  

That said, since the eye-data was of much less valid quality than the reinforcement 

learning data, where there was a significant amount of participants where the eye tracking was 

either completely scrambled or of very poor quality, one could hypothesize that if the 
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experiment only included the participants with optimal eye-tracking, this result would maybe 

be different. Though these hypotheses are pure speculation, it could also be that the if the eye-

movements were measured in a lab and analyzed with the reinforcement learning data from 

our experiment, we would get a completely different result in correlation.  

The reasons for the shortcomings in eye-movement data could be due to many factors. 

For example, in the participants where the eye-tracking/calibration was poor, one could also 

see the lower sample rate of the camera, simply by the difference in how much fewer fixation 

points were recorded (as seen in the difference between the two calibrations in figure 4). This 

could be due to an old or slow computer, poor quality web camera etc. Although interesting 

that we did find a correlation, it nevertheless cannot compare to the results found in a lab with 

more advanced eye-tracking equipment where the sampling rate is so much higher that 

saccades can be measured accurately. So as of now, this type of online eye-tracking 

experiment is not something that can replace any in-lab experiment or give valid and reliable 

data. Here one could not compensate for poor measurements with a larger sample size either, 

as the technology just is not there yet to get the data results needed for such complex 

measurements. As mentioned before, measuring eye-movements requires a large degree of 

control of the experiment situation, which is not possible as of now in a web-situation, as we 

experienced in this study. 

 All that said, eye-tracking can still be used as measurements in studies as a way of 

ensuring participant compliance. For example, if we conducted this experiment only in 

regards to reinforcement learning, the eye-tracking data could help in determining whether the 

person is actually paying attention or not, as this does not require the same sample rate needed 

in a correlation study such as this, to just monitor if someone has an eye-movement pattern 

compatible with the experiment.  

Regarding the demographic data, the participants were a highly diverse group in terms 

of ethnicity, country of origin and occupation. Although a small sample size, this suggest that 

this type of online testing can be of high value in terms of a higher degree of generalizability, 

especially if used in conjunction with in-lab studies, when attributing test results to the 

general population, although as pointed out earlier, with some limitations (Lourenco & 

Tasimi, 2020), regarding for example people from third-world countries with poor living 

conditions without access to the internet. But still, the fact that we were able of being able to 
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reach such a diverse group in this small study, where many did not belong to a typical group 

of people from Western, Educated, Industrialized, Rich, and Democratic (WEIRD) societies 

(Henrich et al., 2010), may have important implications regarding the results of future studies, 

where more and more are conducted online. 

Furthermore, the learning effect and high compliance in this experiment was seen in 

most of the participants. As pointed out, that there was a learning effect even in the EF-pair 

points to the fact that the participants were clearly focusing during the test, as one would 

expect it to be difficult to learn the higher value symbol with a ratio of 60/40 % reward. This 

compliance is proven by the fact that most of the participants followed the instructions; the 

data results shows that most of them answered in every trial, and that the times they exited the 

test window were for such a brief time that it most likely was due to maybe clicking away 

incoming messages, by mistake, or other smaller interferences.  

The reasons for this compliance may be due to the fact that the design of the 

experiment was pretty simple and straight forward in its task principles, combined with the 

salient and simple layout of the test together with the visual feedback of emojis which have 

been shown to elicit affective arousal (Fischer & Herbert, 2021), making it user friendly and 

maybe even entertaining. We hypothesize that these factors contributed to the learning effect 

and the motivational focus seen in most of the individuals who participated in the study. 

Furthermore, the motivation for doing well on these tests is most likely also mediated 

by the fact that they get paid for participation, and maybe more importantly, gets extra paid 

for doing well. The implication of this is that giving monetary rewards for participation and 

extra rewards for doing well modulates the degree of involvement and focus and may be a 

necessary prerequisite to ensure that the data is reliable and valid, as people probably would 

not just use 20 minutes on an online experiment without these incentives. 

 

Further Research/Ethical Considerations 

Considering ethical issues that might arise from web-based studies, it doesn´t require 

much imagination to think of a scenario were personal information in a study done online is 

misused or even susceptible to hacking attempts, so the privacy of the individual is a 

consideration which is of utmost importance if the website ensures anonymity, especially if 

the study involves information about the individual that is of a sensitive character or 
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something that can be taken advantage of, so the importance of using serious websites cannot 

be overstated enough. That said, the data from the video during eye-tracking is sent to our 

server are just meaningless coordinates, not the actual images of people, since the video is 

stored only on the individual’s own computer, hacking would have to take place on that 

individual’s computer (which the website obviously would not be responsible for). 

New research technology develops continuously, building upon experience, just as the 

reinforcement learning in this experiment. The limitations of some of the data collection we 

encountered might not necessarily be one of the areas which will develop enough in the near 

future to discard of the lab just yet (if that for some reason was someone’s goal). And 

although it may not be a revolutionary discovery that rewarding stimuli is reinforcing (Pavlov, 

1928), the value of knowing that such experiments can be done online sets the stage for 

further exploration of how web-based research can be further developed. Taken together, 

although the limitations of the eye-tracking makes the hypotheses regarding eye-movements 

in this experiment less valid and thus less informative than the learning part, that is precisely 

also the reason for doing such experiments, as it gives very valuable information about what 

kinds of experiments are possible to conduct at this point in time. 

 

Conclusion 

The online eye-tracking part of the experiment is not valid due to the limitations of 

technology as of now. In conclusion, to do an experiment such as ours, trying to find a 

correlation between reinforcement learning and eye-movements must be performed in a lab. 

That said, regarding reinforcement learning, the total learning effect of the participants 

suggests that a web-based experiment measuring these parameters gives valid and reliable 

data if the experiment is set up in a user-friendly way and is conducted through serious and 

secure websites. All in all, with such a diverse demographic group of people, experiments 

such as this have a generalizability (with some limitations) that exceeds that of most in-lab 

studies performed in western, educated, industrialized, rich democratic societies. And even in 

a relatively small sample such as ours (disregarding the eye-movement part) the behavioral 

and modeling results were similar to that which is observed in lab studies 
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Appendix  

 

The Q-learning plots for all participants in this study. 
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