
 

 

Department of Mathematics and Statistics 

Killing Tensors in Koutras—McIntosh Spacetimes 
Wijnand Steneker 

Master’s thesis in Mathematics, May 15 2022 



 

 

 



Contents

Introduction 1

1 Integrability of Hamiltonian Systems and Geodesic Flow 5
1.1 Hamiltonian Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Integrable Systems and the Liouville–Mineur–Arnold Theorem . . . . . . . . 13
1.3 Geodesic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Basics of Pseudo-Riemannian Geometry . . . . . . . . . . . . . . . . . 15
1.3.2 Geodesic Flow and Noether’s Theorem . . . . . . . . . . . . . . . . . . 18
1.3.3 Killing Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Geometric Theory of Partial Differential Equations 23
2.1 Basics of Jet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Jet Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Cartan’s Prolongation–Projection Method . . . . . . . . . . . . . . . . . . . . 31
2.3 Prolongation-Projection for the Geodesic Flow . . . . . . . . . . . . . . . . . 37

2.3.1 Computer Implementation of Cartan’s Method . . . . . . . . . . . . . 39

3 Metrics in General Relativity 45
3.1 Classifying Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Integrability in General Relativity . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Killing Tensors of Conformally Flat pp-Waves 51
4.1 Dimensions of Space of Killing Tensors . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Relations and Irreducible Killing Tensors . . . . . . . . . . . . . . . . . . . . 57
4.3 The Isometry Algebra of Conformally Flat pp-Waves . . . . . . . . . . . . . . 60
4.4 Integrability of Conformally Flat pp-Waves . . . . . . . . . . . . . . . . . . . 63
4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Absence of Killing Tensors in Wils Metric 65
5.1 Dimensions of Killing Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Nonexistence of Killing Tensors in General Case . . . . . . . . . . . . . . . . 69

5.2.1 Linear Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Quadratic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Outlook 73





Introduction

In general relativity we often want to solve the geodesic equations

d2xk

dλ2
+ Γkij

dxi

dλ

dxj

dλ
= 0 (1)

in a given spacetime Mn with metric g = gijdx
idxj . These equations describe the motion

of free-falling particles. It turns out that the dynamics of geodesics can be encoded as a
Hamiltonian system by passing to the cotangent bundle T ∗M . Given canonical coordinates
(x, p), we define the Hamiltonian

H(x, p) =
1

2
gij(x)pipj where gij = (gij)

−1. (2)

Hamilton’s equations of motion read

ẋi =
∂H

∂pi
= gij(x)pj and ṗi = −

∂H

∂xi
= −1

2
∂i(g

jk)(x)pjpk. (3)

It is well-known that the solutions of Hamilton’s equations project onto geodesics in the
spacetime. In order to integrate the geodesic equations it is beneficial to have integrals of mo-
tion, quantities which are conserved along the geodesic motion. A function I ∈ C∞(T ∗M)
is an integral of motion if it satisfies

{H, I} =
n∑
i=1

(
∂H

∂pi

∂I

∂xi
− ∂H

∂xi
∂I

∂pi

)
= 0. (4)

We restrict our attention to integrals of motion that are polynomial in momenta, i.e.

I =

n∑
i1,...,in=1

ai1···id(x) pi1 · · · pid . (5)

This assumption is not very restrictive in principle: if there is an integral analytic in mo-
menta, then there is a polynomial integral. Also integrals in well-known examples are
polynomial in momenta. Polynomial integrals of degree d in momenta are in one-to-one
correspondence with Killing d-tensors. A Killing tensor of degree d is a symmetric d-tensor
T whose symmetrized covariant-derivative vanishes:

∇(iTj1...jd) = 0. (6)

At the order d = 1 this correspondence is essentially Noether’s theorem: symmetries (Killing
vectors) are equivalent to conserved quantities (linear integrals). The Schouten–Nijenhuis
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bracket for symmetric tensors extends this to a correspondence between Killing tensors and
polynomial integrals.

The key observation is that equation (4) defines an overdetermined first order linear par-
tial differential equation on the coefficient functions ai1···id(x). We shall study this PDE
using the geometric theory of PDEs. In the paper Nonexistence of an integral of the 6th
degree in momenta for the Zipoy–Voorhees metric [KM12], Boris Kruglikov and Vladimir
Matveev demonstrated for the first time nonexistence of integrals using Cartan’s prolonga-
tion method. Cartan’s prolongation method is an algorithm that allows us to compute the
number of linearly independent integrals (equivalently Killing tensors) in a spacetime.

In this thesis we shall implement Cartan’s prolongation method in the computer algebra
software Maple and apply it to the Koutras–McIntosh metrics. Subcases of the Koutras–
McIntosh metric include a conformally flat pp-wave,

g = 2dx3dx4 + 2f(x3) ((x1)2 + (x2)2) (dx3)2 − (dx1)2 − (dx2)2 (7)

and the Wils metric,

gWils = 2 x1dx3dx4−2x4dx1dx3+{2f(x3)x1((x1)2+(x2)2)−(x4)2}(dx3)2−(dx1)2−(dx2)2.
(8)

Cartan’s prolongation method turns the problem into a linear algebraic one. In this way we
are able to (rigorously!) prove the (non)-existence of Killing tensors up to degree 4.

The relevance of this result is that Cartan’s prolongation method is a feasible method to
prove the (non-)existence of higher order Killing tensors. There is a connection between
existence of Killing 2-tensors and separation of the Hamilton–Jacobi method, which has
been demonstrated by [Car68] for the Kerr metric. However, such methods cannot be
applied to find Killing tensors of degree d ≥ 3. The hope is that Cartan’s prolongation
method can advance the study of higher order Killing tensors.

Structure of thesis

• In Chapter 1 we discuss the required background from the theory of Hamiltonian
dynamics and pseudo-Riemannian geometry. The main theorem here is the corre-
spondence between polynomial integrals of the geodesic flow and Killing tensors.

• Chapter 2 is the core of the thesis, here we discuss the geometric theory of PDEs and
develop the algorithms (coming from Cartan’s prolongation method) that we shall
apply in Chapters 4 and 5.

• Chapter 3 is a short detour to general relativity. We discuss the relevance of the
Koutras–McIntosh metric, several approaches to classifying spacetimes and Hamilton–
Jacobi method for Kerr metric following Carter.

• Chapter 4: Results for conformally flat pp-waves.

• Chapter 5: Results for Wils metrics.
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New results

We prove using Cartan’s prolongation method that there are no irreducible Killing tensors
of degree 3 and 4 in several conformally flat pp-waves, in particular those with constant
wave profile (f(x3) = constant). We also deduce the existence of an irreducible Killing
2-tensor, but this Killing tensor was already obtained by Keane and Tupper [KT10] using
the Koutras algorithm.

In Chapter 5 we prove for several Wils metrics the nonexistence of Killing tensors of degree
3 and 4. Moreover, we obtain explicitly the form of the function f(x3) for which the Wils
metric has a Killing vector. We also show that the only Killing 2-tensors in the Wils metric
are the metric and the symmetric product of this Killing vector (when it exists). A corollary
of these results is that the Wils metric admits no irreducible Killing 2-tensors (apart from
the metric).
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Chapter 1

Integrability of Hamiltonian
Systems and Geodesic Flow

1.1 Hamiltonian Formalism

We discuss the Hamiltonian formalism of mechanics with an emphasis on symmetries. This
section has benefited greatly from the references [Dui04], [Hec13], [Aud04], [Mei00], [Sil08].

Symplectic Manifolds

Definition 1.1.1. A symplectic manifold is a pair (M,ω) consisting of a smooth mani-
fold M together with a closed, nondegenerate two-form ω ∈ Ω2(M). We refer to ω as the
symplectic form on (M,ω). Thus, a symplectic form on M assigns to each point p in M a
nondegenerate skew-symmetric bilinear map ωp : TpM×TpM → R whose exterior derivative
vanishes (dω = 0).

Let (M,ω) and (N, σ) be two symplectic manifolds. A symplectomorphism is a diffeomor-
phism φ :M → N which pulls back the symplectic form σ ∈ Ω2(N) to the symplectic form
ω ∈ Ω2(M), that is, F ∗σ = ω. In this case (M,ω) and (N, ρ) are said to be symplectomor-
phic. We denote the group of symplectomorphisms from a symplectic manifold (M,ω) to
itself by

Symp(M,ω) := {φ ∈ Diff(M) : φ∗ω = ω}.

By linear algebraic considerations it follows that any symplectic manifold (M,ω) is neces-
sarily even-dimensional, say 2n. Since the symplectic form ω is nondegenerate, it follows
that the n-fold wedge product ω∧n is a volume form giving M an orientation.

We now describe a symplectic structure on the cotangent bundle of any manifold. Cotangent
bundles are important examples of symplectic manifolds, because they represent the phase
spaces of mechanical systems. A phase space consists of all possible values for the positions
and momenta of the dynamical system in consideration. (For example, if we consider a
particle which is constrained to move along a manifold, then its phase space will be the
cotangent bundle of that manifold.)
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Example 1.1.2 (Cotangent Bundle as a Symplectic Manifold). Let Q be a smooth
manifold with cotangent bundle π : T ∗Q → Q. A point ξ ∈ T ∗Q is a linear map ξ :
Tπ(ξ)Q → R. Note that differentiating the projection π at the point ξ gives a linear map
dπξ : Tξ(T

∗Q)→ Tπ(ξ). Composing these maps allows us to define a one-form λ ∈ Ω1(T ∗Q)
by the formula

λ : T ∗Q→ T ∗(T ∗Q), ξ 7→ ξ ◦ dπξ = dπ∗
ξ ξ.

Define ω ∈ Ω2(T ∗Q) by ω = −dλ. Clearly, ω is a closed as the exterior derivative squares
to zero. We now show that ω is nondegenerate. To this end, let (U, q1, . . . , qn) be local
coordinates on Q and consider the natural chart on π−1(U) ⊆ T ∗Q given by

π−1(U)→ R2n, ξ =

n∑
i=1

pi dq
i 7→ (q1, . . . , qn, p1, . . . , pn). (1.1)

In these coordinates we have

λ =

n∑
i=1

pi dq
i (1.2)

and so

ω =

n∑
i=1

dqi ∧ dpi. (1.3)

In view of this coordinate expression it is readily checked that ω is nondegenerate. Thus
the cotangent bundle (T ∗Q,ω = −dλ) is an exact symplectic manifold. The forms λ and
ω defined above are called the canonical forms on T ∗Q. The one-form λ is called the
tautological one-form, because λ ∈ Ω1(T ∗Q) is uniquely characterized by the following
property: given any one-form α ∈ Ω1(Q), viewed as a section α : Q→ T ∗Q, we have

α∗λ = α. (1.4)

We now describe a natural group homomorphism Lift : Diff(Q)→ Symp(T ∗Q,ω). If f : Q→
Q is a diffeomorphism, then its differential df : TQ→ TQ is a vector bundle isomorphism.
Dualizing gives a bundle isomorphism F =: Lift(f), called the cotangent lift of f , given by

F := d(f−1)∗ : T ∗Q→ T ∗Q, ξ 7→ ξ ◦ d(f−1)f(π(ξ)) = d(f−1)∗f(π(ξ))ξ (1.5)

By checking that F ∗λ satisfies the unique property Equation (1.4), we find that F preserves
the canonical one-form and thus also the symplectic form.

It is a natural question to ask whether a symplectic manifold has local invariants. The
answer to this question is negative, Gaston Darboux has shown at the end of the nineteenth
century that all symplectic manifolds of the same dimension are symplectomorphic.

Theorem 1.1.3 (Darboux). Let (M,ω) be a 2n-dimensional symplectic manifold. For
every point p ∈ M there exists a chart (U, q1, . . . , qn, p1, . . . , pn) centered at p on which we
have

ω =

n∑
i=1

dqi ∧ dpi. (1.6)

Local coordinates as in Darboux’s Theorem are called Darboux coordinates. We have seen
that local coordinates on a manifold Q induce Darboux coordinates on the cotangent bundle
(T ∗Q,ω).
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Poisson Brackets

Suppose (M,ω) is a symplectic manifold. The flow ϕtV of a vector field V ∈ X(M) is said to
preserve the symplectic form if (ϕtV )

∗ω = ω is satisfied. Pulling back the symplectic form
along the flow and differentiating yields

d

dt
(ϕtV )

∗ω = (ϕtV )
∗LV ω = (ϕtV )

∗(diV ω + iV dω) = (ϕtV )
∗(diV ω). (1.7)

Here we have used the link between flows and Lie derivatives in the first equality, Cartan’s
homotopy formula in the second equality and closedness of the symplectic form in the final
equality. Since the flow ϕ0V at time t = 0 equals the identity map the above computation
shows that the flow of V preserves the symplectic form if and only if the one-form iV ω is
closed. A vector field V such that diV ω = 0 is called a symplectic vector field. By virtue of
the Poincaré lemma we have that a closed form is locally exact. Thus, if V is a symplectic
vector field we obtain around each point on M a locally defined function f : U → R such
that

iV ω = df.

A special class of symplectic vector fields are those coming from a globally defined function.

Definition 1.1.4. Let (M,ω) be a symplectic manifold and H :M → R a smooth function
on M . The unique vector field XH ∈ X(M) satisfying

iXH
ω = dH (1.8)

is called the Hamiltonian vector field associated to the Hamiltonian H. (Note that XH

exists by nondegeneracy of ω.) We call (M,ω,XH) the Hamiltonian system defined by H.

The Lie bracket of symplectic vector fields is Hamiltonian.

Proposition 1.1.5. Let V,W be symplectic vector fields on (M,ω). Then the Lie bracket
[V,W ] ∈ X(M) is a Hamiltonian vector field with Hamiltonian function ω(W,V ).

Let (M2n, ω,XH) be a Hamiltonian system. The Hamiltonian formulation of classical me-
chanics can aid our intuition for Hamiltonian systems as follows. Suppose that (M,ω)
represents the phase space of a physical particle with the Hamiltonian H describing the
total energy of the particle in question. Hamilton’s principle can then be formulated by
the assertion that the traversed trajectory of the particle in (momentum) phase space is an
integral curve of the Hamiltonian vector field XH . The Hamiltonian vector field XH can be
written in Darboux coordinates (q, p) as

XH =

n∑
i=1

∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
. (1.9)

The condition that a curve γ(t) = (q(t), p(t)) is an integral curve for XH now reads as

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
, i = 1, . . . , n, (1.10)

which we recognize as Hamilton’s equations of motion.

The notion of a Hamiltonian vector field leads to an important binary operation on the
algebra of smooth functions.
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Definition 1.1.6. Let (M,ω) be a symplectic manifold. We define the Poisson bracket
{·, ·} on C∞(M) by the following skew-symmetric bilinear map

{·, ·} : C∞(M)× C∞(M)→ C∞(M), {f, g} := ω(Xf , Xg) (1.11)

It is readily seen that

{f, g} = ω(Xf , Xg) = df(Xg) = Xgf = −Xfg. (1.12)

Thus we can think of the Poisson bracket {f, g} as measuring the infinitesimal change of f
under the flow of the Hamiltonian vector field Xg.

In Darboux coordinates the Poisson bracket is given by

{f, g} =
n∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi

)
(1.13)

Note that the Darboux coordinates satisfy

{qi, qj} = 0 = {pi, pj}, {pi, qj} = δji , for all i, j = 1, . . . , n. (1.14)

We summarize the main properties of the Poisson bracket in the following proposition.

Proposition 1.1.7. The algebra of smooth functions (C∞(M), {·, ·}) together with the
Poisson bracket is a Lie algebra. The map C∞(M) → X(M) sending a function to its
Hamiltonian vector field is a Lie algebra anti-homomorphism. Moreover, the Poisson bracket
satisfies the Leibniz identity.

Suppose that (M,ω,XH) is a Hamiltonian system and consider the flow ϕtH of XH . By
application of the link between flows and Lie derivatives, we obtain

d

dt
f ◦ ϕtH = (ϕtH)∗LXH

f = (ϕtH)∗{f,H}. (1.15)

Thus, f is constant along the integral curves of XH if and only if {f,H} = 0 (if and only if
H is constant along the integral curves of Xf ). This motivates the following definition.

Definition 1.1.8. Let (M,ω,XH) be a Hamiltonian system. A function f ∈ C∞(M) is an
integral of motion if f and H Poisson commute, that is, {f,H} = 0.

Let (M,ω,XH) be a Hamiltonian system. Skew-symmetry of the Poisson bracket implies
that H is an integral of motion and so H is constant on the integral curves of XH , which
we can think of as conservation of total energy.

More generally, let f be an integral of motion and consider the flow ϕtf of its Hamiltonian
vector field Xf . For simplicity, we assume that the flow is complete. By the above, we have
that

H ◦ ϕtf = H for all t ∈ R. (1.16)

The flow t 7→ ϕtf defines a Lie group action of the additive group (R,+) on the symplectic

manifold (M,ω). Since LXf
ω = 0 we have that ϕtf is a symplectomorphism for all t ∈ R, so

the action can be encoded as a group homomorphism

R→ Symp(M,ω), t 7→ ϕtf . (1.17)

8



Since this action preserves both the symplectic structure and the Hamiltonian H, we call
this action a “symmetry” of the Hamiltonian system (M,ω,XH). A crucial feature is that
the vector field generated by this R-action is a Hamiltonian vector field, namely the one
defined by f . This is an example of Noether’s principle, which (informally) states that there
is a correspondence between symmetries and conserved quantities. In this case we started
with a conserved quantity (the integral f) and deduced a symmetry (the R-action).

Symmetries of Hamiltonian Systems

We would like to answer the following question:

How do we find integrals of a Hamiltonian system?

We take Noether’s principle as our guiding philosophy and look for integrals by considering
actions of Lie groups.

Suppose that ψ : G→ Diff(M) is a smooth action of a Lie group G on a manifold M . The
infinitesimal generator assigns to each element X in the Lie algebra g of G its fundamental

vector field XM on M , which is defined pointwise by (XM ) : x 7→ d
dt

∣∣∣
t=0

ψexp(tX)(x). The

map X 7→ XM defines a Lie algebra anti-homomorphism from g to X(M), that is, we have
[X,Y ]M = −[XM , YM ] for all X,Y ∈ X(M).

Let (M,ω,XH) be a Hamiltonian system, and suppose that ψ : G → Symp(M,ω) is a
symplectic action of a Lie group G on which preserves the Hamiltonian H. Let X be an
element of the Lie algebra g and consider the curve t 7→ exp(tX) in G. By invariance of H
under the action, we have that

H ◦ ψexp(tX) = H.

Differentiating this expression with respect to t gives

LXM
H = dH(XM ) = 0.

Supposing that the fundamental vector field XM is Hamiltonian, then there exists by defi-
nition a function, say µX , such that

iXM
ω = dµX .

It follows that µX is an integral of motion, as {H,µX} = LXM
H = 0. Ideally, we can find

a Hamiltonian function for all X ∈ g, in which case we obtain a linear map

µ : g→ C∞(M), X 7→ µX .

By Proposition 1.1.5 we have that d(µ[X,Y ] − {µX , µY }) = 0. We shall require that µ :
g → C∞(M) is a Lie algebra homomorphism. For actions of connected Lie groups G, this
condition is equivalent to the condition that µ : M → g∗ is equivariant with respect to the
coadjoint action on the dual g∗. Here we identified HomR(g, C

∞(M)) ∼= C∞(M, g∗) to view
µ as a map M → g∗. This discussion leads to the following definition.
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Definition 1.1.9. A symplectic action ψ : G → Symp(M,ω) is a Hamiltonian action if
there exists a smooth map µ :M → g∗ satisfying the following properties:

• For every X in the Lie algebra g the smooth function µX = ⟨µ,X⟩ is a Hamiltonian
for the fundamental vector field X on M :

iXω = dµX . (1.18)

• The map µ : M → g∗ is equivariant with respect to the action of G on M and the
coadjoint action of G on g∗:

µ(g · x) = Ad∗g · µ(x), for all g ∈ G, x ∈M. (1.19)

The map µ :M → g∗ is said to be a momentum map for the Hamiltonian action.

We can now make Noether’s principle precise.

Theorem 1.1.10 (Noether). Let (M,ω,XH) be a Hamiltonian system. Suppose that
ψ : G→ Symp(M,ω) is a Hamiltonian action with momentum map µ : M → g∗. Then the
Hamiltonian H is invariant under the action of G if and only if the momentum mapping µ
is an integral of motion, that is, {µX , H} = 0 for all X ∈ g.

Example 1.1.11. Let Q be a manifold equipped with a Lie group action ψ : G→ Diff(Q).
The cotangent lift map induces a symplectic action G → Symp(T ∗Q,ω = −dλ) which
preserves the canonical one-form λ:

g · ξ := ξ ◦ d(ψg−1)ψg(π(ξ)), (g ∈ G, ξ ∈ T ∗Q).

This action on (T ∗Q, ω = −dλ) is Hamiltonian and

µX = iXT∗Q
λ (X ∈ g). (1.20)

defines a momentum map. Equivalently, we can write the momentum map as

µX(ξ) = ⟨ξ,XQ⟩ = ξ(XQ) (ξ ∈ T ∗Q), (1.21)

which in practice is better suited for explicit computations. In cotangent coordinates this
momentum map is linear in momenta.

Theorem 1.1.12 (Symplectic Reduction). Let (M,ω, µ) be a Hamiltonian G-space and
let ξ ∈ g∗. Suppose that the stabilizer Gξ of the coadjoint action acts freely and properly on
the level set µ−1(ξ). Then the reduced space Mξ := µ−1(ξ)/Gξ is a smooth manifold and
there exists a symplectic form ωξ on Mξ satisfying

π∗
ξωξ = i∗ξω,

where ιξ : µ−1(ξ) ↪→ M and πξ : µ−1(ξ) → Mξ denote the inclusion and projection map,
respectively.

We can use symplectic reduction to reduce the number of variables in a Hamiltonian system,
as follows.
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Theorem 1.1.13 (Reduced Dynamics). Let (M,ω,XH) be a Hamiltonian system and
suppose that the flow ϕtH of XH is complete. Suppose that a Lie group G acts on (M,ω) in
a Hamiltonian way with momentum map µ :M → g∗ and preserves the Hamiltonian H. In
addition, suppose that ξ ∈ g∗ is a regular value of µ and that its stabilizer Gξ acts freely on
the level set µ−1(ξ). Then H descends to a unique function Hξ on the symplectic reduced
space (Mξ, ωξ) satisfying

Hξ ◦ πξ = H ◦ iξ.
The vector field (XH)|µ−1(ξ) ∈ X(µ−1(ξ)) is well-defined and is πξ-related to the Hamiltonian
vector field XHξ

∈ X(Mξ).

Under the assumptions of the Reduced Dynamics Theorem, we have for all t ∈ R, a com-
mutative diagram

µ−1(ξ) µ−1(ξ)

Mξ Mξ.

ϕt
H

πξ πξ

ϕHt
ξ

Here ϕtHξ
denotes the flow of the Hamiltonian vector field XHξ

∈ X(Mξ). We would like to

solve the dynamics on the reduced space (Mξ, ωξ), which entails computing the flow ϕtHξ

explicitly. If we know the action of Gξ explicitly, we can construct the flow ϕtH on µ−1(ξ)
using the flow of the reduced Hamiltonian (See [AM08, Section 4.3]). Following [Mei00],
[AKN07], [GPS02] we outline such a procedure for the Kepler problem.

Example 1.1.14 (Kepler Problem). Let Q = R2(q1, q2) be the configuration space and
consider its cotangent bundle T ∗R2 = R2(q1, q2)× R2(p1, p2) with the standard symplectic
form ω = dq1∧dp1+dq2∧dp2 ∈ Ω2(T ∗Q). The Hamiltonian of the Kepler problem is given
by

H(q1, q2, p1, p2) =
p21 + p22

2
+ V (q), (1.22)

with potential V (q) = −1
∥q∥ . This Hamiltonian describes the two-body problem where the

force between the two bodies is an inverse square law. A physical example of a Kepler
problem is the motion of the Earth with respect to the Sun under the effect of gravity. We
derive the Kepler orbits with the point of view of symplectic reduction.

The circle group SO(2) = S1 acts on the configuration space Q by rotations. By using the
cotangent lift we obtain a symplectic action of SO(2) on the cotangent bundle T ∗Q which
preserves the Hamiltonian. This action is Hamiltonian with momentum map

µ : T ∗Q→ R ∼= so(2)∗, µ(q1, q2, p1, p2) = p2q
1 − q2p1 = (q1, q2, 0)× (p1, p2, 0), (1.23)

where (· × ·) denotes the cross-product. We recognize this momentum map as the angular
momentum. In view of the rotational symmetry, we change to polar coordinates on Q:

q1 = r cos(φ), q2 = r sin(φ). (1.24)

Using the transformation law for one-forms, we find the following relation for the momenta
pr, pφ conjugate to r, φ:

p1 = pr cosφ−
pφ
r

sinφ, p2 = pr sinφ+
pφ
r

cosφ. (1.25)
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The symplectic form in polar coordinates equals

ω = dr ∧ dpr + dφ ∧ dpφ ∈ Ω2(T ∗Q). (1.26)

and the Hamiltonian reads

H =
p2r
2

+
p2φ
2r2
− 1

r
∈ C∞(T ∗Q). (1.27)

The momentum map is given by µ = pφ = r2φ̇, which is indeed a conserved quantity of
the system because the Hamiltonian does not depend on φ. Let ξ ̸= 0 be a nonzero value.
It is readily seen that SO(2) acts freely on the level set µ−1(ξ) = {pφ = ξ} ⊆ T ∗Q. Let
iξ : µ

−1(ξ) ↪→ T ∗Q denote the inclusion map. Since the angular momentum pφ is conserved
(on µ−1(ξ)), we have dpφ = 0 and it follows that

i∗ξω = dr ∧ dpr ∈ Ω2(µ−1(ξ)). (1.28)

The two-form i∗ξω is of constant rank and its kernel is the tangent bundle of the SO(2)-

orbit. It follows that the reduced phase space Mξ = µ−1(ξ))/SO(2) is diffeomorphic to
R>0(r) × R(pr) and under this identification the reduced symplectic form equals ωξ =
dr ∧ dpr ∈ Ω2(Mξ). The reduced Hamiltonian is given by

Hξ(r, pr) =
p2r
2

+

(
ξ2

2r2
− 1

r

)
=
p2r
2

+ Vξ(r) ∈ C∞(Mξ). (1.29)

Here we think of the second term Vξ(r) =
(
ξ2

2r2 −
1
r

)
as a reduced potential.

Hamilton’s equations of motion on the reduced phase space (Mξ, ωξ) imply

ṙ =
∂Hξ

∂pr
= pr (1.30)

On a hypersurface H−1
ξ (E) ⊆Mξ of constant energy E we obtain

ṙ =
√
2(E − Vξ(r)) (1.31)

Lifting this up to µ−1(ξ) gives

dr

dφ
= ṙ

dt

dφ
= ṙ

r2

ξ
=
r2
√
2(E − Vξ(r))

ξ
. (1.32)

Here we have used that ξ = r2φ̇ on µ−1(ξ). Applying separation of variables to the above
differential equation yields

φ− φ0 =

∫ r

r0

ξ dr

r2
√
2(E − Vξ(r))

. (1.33)

This integral can be solved by means of the substitution u = 1
r and after some algebraic

manipulations we get the Kepler orbits:

r(φ) =
ξ2

1 + e cos(φ− φ0)
(1.34)

where e :=
√
1 + 2Eξ2 is the eccentricity of the orbit.
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1.2 Integrable Systems and the Liouville–Mineur–Arnold
Theorem

In this section we consider integrable systems. Informally, these are Hamiltonian systems
with “enough” symmetries. To an integrable system one can associate action-angle coordi-
nate in which Hamilton’s equations can be readily integrated. The exposition follows Zung’s
paper A conceptual approach to action-angle variables [Zun18] and Duistermaat’s On global
action-angle variables [Dui80]. The philosophy is that there is a correspondence between
integrable systems with compact fibers and Hamiltonian torus spaces. On the one hand, a
Hamiltonian torus space gives an integrable system by its momentum map. On the other
hand, an integrable system has a semilocal (i.e. in a neighborhood of a fiber) torus action
which is Hamiltonian. The benefit of this approach is that we can construct the action-angle
coordinates as a straightforward consequence from this Hamiltonian torus action.

Definition 1.2.1. Let (M2n, ω) be a symplectic manifold. An integrable system is a collec-
tion of n Poisson commuting smooth functions (f1, . . . , fn) on (M2n, ω) whose differentials
df1, . . . , dfn ∈ Ω1(M) are linearly independent on a dense open subset. A Hamiltonian sys-
tem (M,ω,XH) is called integrable if there is an integrable system F = (f1, . . . , fn) on M
with f1 = H.

Let F = (f1, . . . , fn) : (M2n, ω) → Rn be an integrable system. By Sard’s theorem, any
integrable system has a regular value in its image. Let c ∈ F (M) be a regular value of F .
We show that the level set

F−1(c) = f−1
1 (c1) ∩ · · · ∩ f−1

n (cn) (1.35)

is a Lagrangian submanifold of M . By the regular value theorem we have that F−1(c) is a
submanifold of M of dimension n with tangent bundle given by T (F−1(c)) = ker dF |F−1(c).
We denote by ϕti the flow of the Hamiltonian vector field Xfi . By assumption, we have that

ω(Xfi , Xfj ) = {fi, fj} = 0, for all i, j = 1, . . . , n, (1.36)

so the flow ϕti preserves the level set F
−1(c). In particular, the Hamiltonian vector fields Xfi

are tangent to the level set F−1(c). By linear independence of the differentials df1, . . . , dfn
on F−1(c), it follows that the tangent bundle F−1(c) is spanned by the Hamiltonian vector
fields Xf1 , . . . , Xfn . This proves together with (1.36) that F−1(c) is Lagrangian.

Now suppose in addition that F−1(c) is compact and connected. The flows ϕti are complete
on F−1(c) by compactness. Since

[Xfi , Xfj ] = −X{fi,fj} = 0 (1.37)

the flows ϕtii , ϕ
tj
j commute. Consequently, the joint flow defined by

Rn × F−1(c)→ F−1(c), ((t1, . . . , tn), x) 7→ ϕt11 ◦ · · · ◦ ϕtnn (x). (1.38)

defines a smooth action of (Rn,+) on the fiber F−1(c). By linear independence ofXf1 , . . . , Xfn

the orbit map Φx : Rn → F−1(c) is a local diffeomorphism. This means that the isotropy
subgroup Rnx of the joint flow through a point x ∈ F−1(c) is discrete, and so the orbit is open
in F−1(c). In turn the connectedness of the fiber implies that the action is transitive. Hence
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we obtain a diffeomorphism from Rn/Rnx ∼= F−1(c). The fiber is compact, so the isotropy
subgroup is isomorphic to the lattice Zn. We conclude that the fiber is diffeomorphic to
the n-torus Tn and is equipped with a free Tn-action induced by the joint flow. Liouville’s
theorem extends this action to a tubular neighborhood of the fiber ([Zun18], [Aud04, p.91]).

Theorem 1.2.2 (Liouville). Let F = (f1, . . . , fn) be an integrable system on a symplectic
manifold (M2n, ω). Suppose that c ∈ F (M) is a regular value and that the level set T :=
F−1(c) is compact and connected. There exists a tubular neighborhood U(T ) of T on which
the joint flow induces a free torus action

Φ : Tn × U(T )→ U(T ), (1.39)

satisfying the following properties:

• The orbits of the torus action are regular level sets of F .

• There exists a diffeomorphism

χ : U(T )→ Dn × Tn (1.40)

which maps each orbit in U(T ) diffeomorphically onto a corresponding torus {p}×Tn
in the image.

Accordingly, we call the level set T a Liouville torus, the action Φ the Liouville torus action
and the diffeomorphism χ Liouville coordinates.

It is a nice exercise in de Rham cohomology to show that the Liouville torus action on
U(T ) is Hamiltonian [Aud04, p.93]. Using the momentum map one can readily obtain the
Liouville–Mineur–Arnold theorem cf [Zun18], [Aud04, p.96]. The classical proofs can be
found in [Arn13], [Min37], [Lio55].

Theorem 1.2.3 (Liouville–Mineur–Arnold). Let F = (f1, . . . , fn) : M → Rn be an
integrable system on a symplectic manifold (M2n, ω). Suppose that c ∈ F (M) is a regular
value of F and that the level set T := F−1(c) is compact and connected. There exists a
neighborhood U(T ) of the Liouville torus T and a symplectomorphism

Ψ : (U(T ), ω)→ (Dn × Tn,
n∑
i=1

dθi ∧ dxi) (xi ∈ Dn, θi ∈ Tn)

such that the coordinate representation F ◦Ψ−1 : Tn × Dn → Rn only depends on x ∈ Dn.

Definition 1.2.4. The Darboux coordinates Ψ = (I1, . . . , In, φ1, . . . , φn) constructed in the
Liouville–Mineur–Arnold Theorem are called action-angle variables.

Action-angle coordinates allow us to explicitly integrate the solutions of a Hamiltonian sys-
tem in a neighborhood of a Liouville torus. Indeed, let F = (f1, . . . , fn) be an integrable
system. In action-angle coordinates the Hamiltonian f1 only depends on the action coordi-
nates (I1, . . . , In), so Hamilton’s equations read

İi = −
∂f1
∂φi

= 0 and φ̇i =
∂f1
∂Ii

= ci(I1, . . . , In). (1.41)

Integrating these equations yields

Ii(t) = Ii(0) and φi(t) = ci(I1(0), . . . , In(0)) · t+ φi(0), (1.42)

which shows that the angle variables are linear in time.
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1.3 Geodesic Flow

This section serves to introduce our main object of study, which are geodesic flows of pseudo-
Riemannian manifolds. As we shall see, the geodesic flow allows us to study geodesic motion
from a Hamiltonian perspective. By applying tools from Hamiltonian dynamics we can study
the behavior of a geodesic flow. We can pose the question if a geodesic flow is integrable or
admits chaotic behavior.

1.3.1 Basics of Pseudo-Riemannian Geometry

Definition 1.3.1. Let M be a smooth manifold. A metric on M is a nondegenerate sym-
metric (0, 2)-tensor field g on M of constant signature. A pseudo-Riemannian manifold
is a pair (M, g) consisting of a smooth manifold M together with a metric g ∈ T 0

2 (M). A
pseudo-Riemannian manifold whose metric has signature (−,+, . . . ,+) is called a Lorentzian
manifold.

Let (M, gM ) and (N, gN ) be pseudo-Riemannian manifolds. An isometry from M to N is
a diffeomorphism φ : M → N which pulls back the metric gN to the metric gM , that is,
φ∗gN = gM . In this case, the pseudo-Riemannian manifolds (M, gM ) and (N, gN ) are said
to be isometric.

We denote the group of isometries from a pseudo-Riemannian manifold (M, g) to itself by

Iso(M, g) := {φ ∈ Diff(M) : φ∗g = g}. (1.43)

The isometry group describes the symmetries of the pseudo-Riemannian manifold.

On a pseudo-Riemannian manifold (M, g) we can use a local frame (E1, . . . , En) of the
tangent bundle TM with dual coframe (σ1, . . . , σn) to write the metric locally as

g = gij σ
i ⊗ σj .

Typically, we use the coordinate vector fields of some smooth chart as a local frame or
construct an orthonormal frame using the Gram-Schmidt algorithm. As is customary, we
employ the Einstein summation convention which means that summation over indices that

appear both up and down is implied. In view of the symmetry gij = gji, we obtain n(n+1)
2

functions gij . On the domain of the frame the metric acts on tangent vectors v = viEi, w =

wjEj by the formula
g(v, w) = gijσ

i(v)σj(w) = gijv
iwj . (1.44)

Similarly, a tensor (r, s)-tensor T ∈ T rs (M) is written as

T = T i1···irj1···jsEi1 ⊗ · · · ⊗ Eir ⊗ σ
j1 ⊗ · · · ⊗ σjs . (1.45)

so that its component functions equal

T i1···irj1···js = T (σi1 , . . . , σir , Ej1 , . . . , Ejs). (1.46)

Since the metric is nondegenerate the assignment X 7→ g(X, ·) defines an isomorphism from
the space of vector fields X(M) to the space of one-forms Ω1(M). This isomorphism is
explicitly given by declaring

(·)♭ : Ei 7→ gijσ
j (1.47)
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and requiring it to be C∞(M)-linear. If we denote by gij the entries of the inverse matrix
(gij)

−1 the inverse of the above isomorphism equals

(·)♯ : σj 7→ gijEi. (1.48)

Using Equation (1.47) and Equation (1.48) we can change the tensor (r, s)-tensor T into a
(r − k, s+ k)-tensor (r − k, s+ k ≥ 0), as follows. For simplicitly, we apply this process of
type change to turn T into a (r− 1, s+1)-tensor. Given (r− 1) one-forms ω1, . . . , ωr−1 and
(s+ 1) vector fields X1, . . . , Xs+1, we convert the vector field X1 into a one-form using the
map (·)♭ and subsequently apply T . In formula, we have

(ω1, . . . , ωr−1, X1, . . . , Xs+1) 7→ T (ω1, . . . , ωr−1, X♭
1, X2, . . . , Xs+1). (1.49)

We also denote this type-changed tensor by the symbol T . The components of T after type
change are related to the original components by

T i1···irj1···js = gj1kT
i1···ir−1k
j2···js+1

. (1.50)

Given a (0, n)-tensor T , we can use the symmetric group Sn to symmetrize and skew-
symmetrize T . In tensor notation, symmetrization is denoted by round brackets

T(j1···jn) :=
1

n!

∑
σ∈Sn

Tσ(i1)···σ(in) (1.51)

and skew-symmetrization is denoted by square brackets

T[j1···jn] :=
1

n!

∑
σ∈Sn

sign(σ) Tσ(i1)···σ(in). (1.52)

We call T(j1···jn) and T[j1···jn] the symmetric part and skew-symmetric part of T , respec-
tively. Note that in this notation a differential n-form is a (0, n)-tensor T which satisfies
T[j1···jn] = Tj1···jn .

In order to define the acceleration of a curve in a manifold we would like to differentiate the
velocity vector field defined by the curve, just as in Euclidean space. However, a problem
with this approach is that we cannot subtract two tangent vectors which live in different
tangent spaces. Introducing a connection in the tangent bundle allows us to resolve this
problem. A connection amounts to a method of taking derivatives of vector fields (or
more generally, derivatives of sections of vector bundles). We need the following theorem,
which asserts that on a pseudo-Riemannian manifold there is a canonical way of choosing a
connection after requiring that the connection is compatible with the metric and Lie bracket.

Theorem 1.3.2 (Fundamental Theorem of Pseudo-Riemannian Geometry). Let
(M, g) be a pseudo-Riemannian manifold. There exists a unique R-bilinear map

∇ : X(M)× X(M)→ X(M), (X,Y ) 7→ ∇XY (1.53)

satisfying the following properties:

• The assignment X 7→ ∇XY is tensorial:

∇fXY = f∇XY, (1.54)

for all f ∈ C∞(M).
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• The assignment Y 7→ ∇XY satisfies the Leibniz rule:

∇X(fY ) = f · ∇XY +X(f) · Y, (1.55)

for all f ∈ C∞(M).

• The map ∇ is torsion-free:

∇XY −∇YX = [X,Y ]. (1.56)

• The map ∇ is compatible with the metric:

LZ(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ). (1.57)

We call ∇ the Levi-Civita connection associated to the metric g and ∇XY is said to be
the covariant derivative of Y in the direction X.

Let (M, g) be a pseudo-Riemannian manifold, and consider the (Levi-Civita) connection ∇
on M . Since the connection is tensorial, the covariant derivative ∇vY of Y ∈ X(M) in the
direction of a tangent vector v ∈ TM is well-defined. Given a local frame (E1, . . . , En) of
the tangent bundle TM , the functions Γkij defined by the formula

∇Ei
Ej = ΓkijEk. (1.58)

are called the Christoffel symbols of the connection with respect to the chosen frame. If
the vector fields of the local frame commute, the vanishing of the torsion of ∇ is equivalent
to the Christoffel symbols Γkij being symmetric in the lower two indices. The covariant
derivative ∇XY can be computed in the local frame as

∇XY = (XiLEi
(Y k) + ΓkijX

iY j) Ek. (1.59)

Here we have used properties Equation (1.54), Equation (1.55) of the connection together
with the definition of the Christoffel symbols. The local expression of ∇XY shows that the
value of ∇XY at a point only depends on the values of Y along a curve passing through
that point. This motivates the following definition.

Definition 1.3.3. Let (Mn, g) be a pseudo-Riemannian manifold with Levi-Civita connec-
tion ∇. A curve γ in M is called a geodesic if the covariant derivative of the velocity vector
field γ̇ along itself vanishes, that is,

∇γ̇ γ̇ = 0. (1.60)

If (x1, . . . , xn) are coordinates, then the condition for γ : t 7→ (x1(t), . . . , xn(t)) to be a
geodesic becomes

d2xk

dt2
+ Γkij

dxi

dt

dxj

dt
= 0 (1 ≤ i, j, k ≤ n). (1.61)

We call either of the above equations the geodesic equations.

We now define the covariant derivative of any tensor on M along a vector field X. For
f ∈ C∞(M) we let ∇Xf := LXf be the Lie derivative. There exists a unique tensor
derivation∇X onM which restricts to the Lie derivative on functions and the usual covariant
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derivative on vector fields (cf [O’N83, p.45]). Indeed, the covariant derivative ∇XT of a
tensor T must necessarily be given by the formula

(∇XT )(ω1, . . . , ωr, Y1, . . . , Ys) = ∇X(T (ω1, . . . , ωr, Y1, . . . , Ys)))

−
n∑
i=1

T (ω1, . . . , ωr, Y1, . . . ,∇XYi, . . . , Yr)

−
n∑
j=1

T (ω1, . . . ,∇Xωj , . . . , ωr, Y1, . . . , Ys).

(1.62)

We emphasize that the first term on the right hand side is a Lie derivative.

Let (E1, . . . , En) be a local frame of (M, g) with dual coframe (σ1, . . . , σn). We write the
covariant derivative of a tensor T ∈ T rs (Mn) as

∇T = ∇jT i1···irj1···js σ
j ⊗ Ei1 ⊗ · · · ⊗ Eir ⊗ σj1 ⊗ · · · ⊗ σjs (1.63)

where the component functions are defined by

∇jT i1···irj1···js := (∇EjT )(σ
i1 , . . . , σir , Ej1 , . . . , Ejs). (1.64)

1.3.2 Geodesic Flow and Noether’s Theorem

Definition 1.3.4 (Geodesic Flow). Let (M, g) be a pseudo-Riemannian manifold. The
Hamiltonian system on the cotangent bundle (T ∗M,ω) defined by

H(q, p) =
1

2
gij(q) pipj ∈ C∞(T ∗M) (1.65)

is called the geodesic flow of the metric g. Note that H can be written in a coordinate-
independent way as H : ξ 7→ 1

2g(ξ
♯, ξ♯).

The following proposition explains why it is called the geodesic flow.

Proposition 1.3.5. The geodesic flow of a pseudo-Riemannian manifold (Mn, g) projects
onto geodesics. This means that if γ is an integral curve of the Hamiltonian vector field
XH defined by H = 1

2g
ijpipj and π : T ∗M →M is the canonical projection, then π ◦ γ is a

geodesic.

We wish to determine conserved quantities of the geodesic flow in a systematic manner. The
isometries represent symmetries in the dynamics of geodesics. Noether’s theorem serves as
a computational tool to find integrals of motion of the geodesic flow. We start by looking
at the infinitesimal notion of an isometry.

Definition 1.3.6 (Killing Vector Field). Let (M, g) be a pseudo-Riemannnian manifold
with Levi-Civita connection ∇. A vector field X ∈ X(M) is said to be a Killing field if its
corresponding flow preserves the metric, that is,

LXg = 0. (1.66)

Since the Levi-Civita connection is compatible with the metric, the condition for a vector
field X to be a Killing field becomes the Killing equation

∇(iXj) =
1

2
(∇iXj +∇jXi) = 0. (1.67)

We denote by iso(M, g) the Lie algebra of Killing fields.
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It turns out that the isometry group Iso(M, g) is actually a finite-dimensional Lie group
[Pet16, Theorem 8.1.6] and that its Lie algebra can be identified with iso(M, g). The ex-
ponential map of the isometry group is given by the “flow at t = 1” map, exp : X 7→ ϕ1X
whenever defined.

Clearly, we have a Lie group action of the isometry group on the pseudo-Riemannian man-
ifold (M, g)

Iso(M, g)×M →M, (φ, p) 7→ φ(p). (1.68)

Following example 1.1.11 , this action lifts to a symplectic action of the isometry group on
the cotangent bundle T ∗M which leaves the Hamiltonian H = gijpipj invariant. This action
is Hamiltonian with momentum map given by

µ : iso(M, g)→ C∞(T ∗M), µX(ξ) = ξ(X). (1.69)

By Noether’s theorem, the momentum map is a conserved quantity of the geodesic flow. In
cotangent coordinates (q1, . . . , qn, p1, . . . , pn) the momentum map equals µX = Xipi.

Definition 1.3.7. Let (T ∗M,ω,XH) be a Hamiltonian system on the cotangent bundle
defined by a Hamiltonian H, and let (q1, . . . , qn, p1, . . . , pn) denote cotangent coordinates.
A polynomial integral of degree d is an integral I : T ∗M → R whose expression is a homo-
geneous polynomial of degree d in momenta:

I =

n∑
i1,...,in=1

ai1···id(q1, . . . , qn) pi1 · · · pid (1.70)

The smooth functions ai1···in may only depend on the position coordinates (q1, . . . , qn).
Polynomial integrals of degree 1,2,3,4,. . . are called linear, quadratic, cubic and quartic in-
tegrals, etc.

For example, the Hamiltonian of the geodesic flow is a quadratic integral.

Proposition 1.3.8. Consider the geodesic flow of a pseudo-Riemannian manifold (M, g).
Then the map

iso(M, g)→ ({linear integrals}, {·, ·}), X 7→ Xipi (1.71)

is a Lie algebra isomorphism.

Proof. This map is a Lie algebra homomorphism being the corestriction of the momentum
map (which is a Lie algebra homomorphism). Clearly, the map in consideration is injective.
To prove surjectivity, let I := ai(q1, . . . , qn) pi be a linear integral of the geodesic flow. We
must show that Z := ai(q1, . . . , qn)∂qi is a Killing field. The condition that Z is a Killing
field is equivalent to the assertion that the Lie derivative of the inverse metric vanishes, in
formula,

LZ(gij ∂i ⊗ ∂j) =
(
LZ(gij)− gjk∂k(a

i)− gik∂k(a
j)
)
∂i ⊗ ∂j = 0. (1.72)

By assumption, we have that {H, I} = 0. By applying the Leibniz rule to H = gijpipj and
I = aipi repeatedly, we obtain

0 = {H, I} = {gij pipj , akpk}
= −gijpiak{pj , pk}+ gijpipk{pj , ak}
− gijpja

k{pi, pk}+ gijpjpk{pi, ak}
− pipjpk{gij , ak}+ pipja

k{gij , pk}.

(1.73)
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Using that the momenta variables Poisson commute together with {gij , ak} = 0, Equa-
tion (1.73) reduces to

0 = −gij∂j(ak)pipk − gij∂i(a
k)pjpk + ak∂k(g

ij)pipj . (1.74)

Relabeling the indices and recognizing that ak∂k(g
ij) = LZ(gij) leads to

0 =
(
LZ(gij)− gjk∂k(a

i)− gik∂k(a
j)
)
pipj (1.75)

It follows that Z satisfies Equation (1.72) and so is a Killing field. This proves that the
assignment X 7→ Xipi is surjective.

Thus Noether’s theorem can be restated in this setting as:

The symmetries of the geodesic flow coming from isometries generate linear integrals.

Ideally we can prove integrability of a geodesic flow using only linear integrals. This is not
always possible, a necessary condition is that iso(M, g) contains a commutative subalgebra
of dimension n− 1. So it is of importance to have alternative methods of finding integrals.
We can use methods from Lie theory to find additional integrals, as the following example
demonstrates.

Example 1.3.9 (Integrability of the Geodesic Flow of the Schwarzschild Met-
ric). Consider the Schwarzschild metric of a spherically symmetric massive body with
Schwarzschild radius r0.

gSchw = −
(
1− r0

r

)
dt2 +

(
1− r0

r

)−1

dr2 + r2(dθ2 + sin2(θ) dφ2). (1.76)

This spacetime has four Killing fields (with corresponding linear integrals) given by

Xt = ∂t It = pt

X1 = sin(φ) ∂θ +
cos(θ) cos(φ)

sin(θ)
∂φ I1 = sin(φ) pθ +

cos(θ) cos(φ)

sin(θ)
pφ

X2 = cos(φ) ∂θ −
cos(θ) sin(φ)

sin(θ)
∂φ I2 = cos(φ) pθ −

cos(θ) sin(φ)

sin(θ)
pφ

X3 = ∂φ I3 = pφ.

(1.77)

It is readily verified that the nonzero Lie brackets of iso(M, g) are given by

{I1, I2} = I3, {I1, I3} = −I2, {I2, I3} = I1. (1.78)

Hence, the Lie algebra decomposes as iso(M, g) = R ⊕ so(3), where the center is given by
R = ⟨It⟩ and so(3) = ⟨I1, I2, I3⟩.
In view of the Lie brackets and the Leibniz rule, it is readily seen that the function ICas :=
I21 + I22 + I23 is a Casimir function in R[I1, I2, I3] ⊆ (C∞(T ∗M), {·, ·}), that is, the integral
ICas Poisson commutes with I1, I2 and I3. The functions H, I1, I3, ICas are four Poisson-
commuting independent integrals. We conclude that the geodesic flow of the Schwarzschild
metric is integrable.
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1.3.3 Killing Tensors

In the previous section we have seen that the symmetries of the geodesic flow coming from
the isometry group are in a bijective correspondence with linear integrals of motion. So-
called hidden symmetries of the system are responsible for higher order polynomial integrals.
These hidden symmetries are most conveniently encoded in an algebraic object which satisfy
a generalization of the Killing equation.

Definition 1.3.10 (Killing Tensor). Let (Mn, g) be a pseudo-Riemannian manifold. A
symmetric d-tensor K ∈ T 0

d (M) is a Killing tensor of rank d if the symmetric part of its
covariant derivative vanishes:

∇(iKj1...jd) = 0 (1.79)

Let Kd denote the vector space of Killing d-tensors.

Note that the metric tensor is trivially a Killing 2-tensor.

Theorem 1.3.11 (Correspondence Killing Tensors and Polynomial Integrals).
Consider the geodesic flow of a pseudo-Riemannian manifold (M, g). There is a one-to-
one correspondence

Kd → {Polynomial integrals of degree d} (1.80)

which assigns to a Killing d-tensor K the function Ki1···idpi1 · · · pid ∈ C∞(T ∗M).

Proof. Following Woodhouse’ article [Woo75], we sketch a proof.
Let Sd(M) := Γ(SdTM) be the symmetric (0, p)-tensors on M . We have a linear isomor-
phism

(̂·) : Sd(M)→ {Homogeneous polynomial in momenta of degree d}, T 7→ (ξ 7→ T (ξ, . . . , ξ))
(1.81)

The Lie bracket [·, ·] on S1(M) = X(M) extends to a Lie bracket on S(M) called the
Schouten–Nijenhuis bracket. GivenA ∈ Sd(M), B ∈ Se(M) we have that [A,B] ∈ Sd+e−1(M).
We have

[̂A,B] = {Â, B̂}. (1.82)

Taking B = g, we find that Â ∈ C∞(T ∗M) is an integral if and only if [A, g] = 0. The
condition [A, g] = 0 is equivalent to ∇(iKj1...jd) = 0. Since a connection commutes with
type change, this proves the claim.

We mention that polynomial integrals can be reconstructed from its values on an arbitrarily
small neighborhood of the cotangent bundle (cf. [KM16]). The argument uses the fact
that any two points can be joined by a broken geodesic. Since integrals are constant along
geodesics, this provides a way of determining the values of the integral outside the given
neighborhood. As polynomials are determined by a finite number of values, this approach
is constructive.
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Graded structure of Killing Tensors
By the above theorem the Poisson bracket on functions corresponds to the Lie bracket
for symmetric tensors. The pointwise product on functions corresponds to the symmetric
product for tensors, which gives rise to a grading on the space of Killing tensors: K∗ =

⊕
k∈N

Kd1 ⊗Kd2 7→ Kd1+d2 , cl,m αl ⊗ βm 7→ cl,mα
l · βm. (1.83)

Definition 1.3.12 (Relation among Killing Tensors.). A relation (syzygy) among
Killing tensors of rank d1 and d2 with d1 ̸= d2 is an element of the kernel of the map

Kd1 ⊗Kd2 → Kd1+d2 . (1.84)

If d1 = d2 =: d, a relation is given by an element in the kernel of the map S2Kd → K2d.

Definition 1.3.13 (Irreducible Killing Tensor). A Killing d-tensor (d ≥ 2) is irreducible
if it cannot be written as the symmetric product of lower rank Killing tensors.

The space of irreducible Killing 2-tensors can be identified with the cokernel of map ι2 :
S2K1 → K2, it fits into a short exact sequence

0 −→ Ker ι2 −→ S2K1 → K2 −→ Coker ι2 −→ 0. (1.85)

The space of irreducible Killing 3-tensors can be identified with the cokernel of the map
ι3 : K1 ⊗K2 → K3, etc.
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Chapter 2

Geometric Theory of Partial
Differential Equations

The main goal of this thesis is to determine the dimension of the space Kd of Killing d-
tensors. In the previous chapter we have seen that this problem is equivalent to completely
integrating a linear partial differential equation obtained from the Poisson bracket. To this
end, we shall study partial differential equations from the geometric point of view. This
approach amounts to solving a PDE up to a given order k and determining whether this
potential solution can be extended to a solution up to order k + 1, etc. If we can continue
this process indefinitely we have constructed a formal solution of the PDE, which essentially
is the Taylor series of a potential solution. In order to formalize this approach, we dive into
the language of jet theory. The advantage of jet theory is that we can apply methods of
differential geometry and cohomology to study PDE’s.

2.1 Basics of Jet Theory

In this section we discuss the required background from the theory of jets and PDEs, it has
profited a lot from the references [Sau89], [Olv95], [Boc+99], [KL08], [Sei10], [Yud16].

2.1.1 Jet Bundles

Definition 2.1.1. Let E,B and F be manifolds. A smooth surjection π : E → B is a fiber
bundle with fiber F over B if there exists an open covering U = (Ui)i∈I of B together with
diffeomorphisms φUi

: π−1(Ui)→ Ui × F such that the following diagram commutes:

π−1(Ui) Ui × F

Ui.

φUi

π prUi

Here prUi
: Ui × F → Ui is the projection onto the first factor. We say that φUi are local

trivializations of the fiber bundle π : E → B. The map π is called the projection, the
manifold E is called the total space, and B is called the base space.
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Given a fiber bundle π : E → B, the existence of local trivializations imply that the projec-
tion π is a submersion. Another consequence of the local triviality property prUi

◦ φUi = π
is that each fiber of π is diffeomorphic to F . A local trivialization allows us to construct
coordinate charts on the total space E compatible with the fiber bundle structure, as fol-
lows. Let (x1, . . . , xn) and (u1, . . . , um) denote coordinates on the base B and fiber F ,
respectively. By restricting their coordinate domains (if necessary) and composing with the
local trivialization, we obtain coordinates (x1, . . . , xn, u1, . . . , um) on the total space. We
call such coordinates on the total space adapted to π.

Let π : E → M be a fiber bundle. A section of π is a smooth map σ : B → E satisfying
π ◦σ = IdB . Thus, a section σ maps a point x ∈ E to an element of the corresponding fiber
Ep := π−1(p) above x. We shall also consider local sections, i.e., a smooth map σ : U → E
defined on an open U =: Dom(σ) ⊆ B satisfying π◦σ = IdU . We denote the space of (global)
sections and local sections by Γ(E) and Γloc(E), respectively. Moreover, let Γloc(E)p denote
the space of local sections whose domain contains the point p ∈ B. In contrast to vector
bundles, a fiber bundle does not always admit a global section. Using a local trivialization
of π, it is readily seen that for any e ∈ E and x ∈ B there exists a local section σ such that
σ(x) = e.

If σ ∈ Γloc(E) is a local section and (x, u) = (x1, . . . , xn, u1, . . . , um) are adapted coordi-
nates, then locally we have σ(x) = (x, σ1(x), . . . , σm(x)) where σj := uj ◦ σ are called the
component functions of σ. Hence, we think of the x-coordinates on the base as the inde-
pendent variables and the u-coordinates in the fibers as the dependent variables. We now
want to define the k-jet of a local section σ : x 7→ (x, σ1(x), . . . , σm(x)). It should encode all
the partial derivatives of σ up to order k, or equivalently its k’th order Taylor polynomial.
Given a multi-index α = (α1, . . . , αn) ∈ Nn0 of length |α| := α1 + · · · + αn, we define the
operator

∂αp :=
∂|α|

∂xα

∣∣∣
x=p

:=
∂|α|

∂xα1
1 · · · ∂x

αn
n

∣∣∣
x=p

. (2.1)

We define an equivalence relation ∼kp on Γloc(E, p) as follows. Two local sections σ1, σ2 ∈
are said to be k-equivalent at p if

∂αp (σ
j
1) = ∂αp (σ

j
2) (2.2)

for all 1 ≤ j ≤ m and all multi-indices α with |α| ≤ k. One should verify that this
construction is independent of the choice of coordinate chart (see [Sau89, Lemma 6.2.1.] ).
The resulting equivalence class of a section σ ∈ Γloc(E)p is called the k-jet at p of σ and
is denoted by jkpσ. In other words, two sections have the same k-jet if and only if their
k-th order Taylor polynomials in one (and hence any) trivialization coincide. By taking the
quotient of Γloc(E)p under this equivalence relation, we obtain the k-th jet space at p:

Jk(E)p := Γloc(E)p/ ∼kp = {jkpσ : σ ∈ Γloc(E)p}. (2.3)

Next, we construct the k-th jet bundle of π : E → B by setting

JkE :=
⊔
p∈B

Jk(E)p. (2.4)

The space JkE is naturally endowed with a smooth structure turning JkE into a manifold
of dimension dim JkE = n+m

(
n+k
k

)
. If (x, u) are adapted coordinates for the fiber bundle
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π, then we obtain coordinates on JkE which assigns to a k-jet jkpσ the coordinates of the
basepoint p together with all its partials up to order k. In formula, this assignment equals

jkpσ 7→ (x(p), ∂αp (σ
j))1≤j≤m, 0≤|α|≤k. (2.5)

We denote these coordinates on JkE by (x, uα), which emphasizes that these coordinates
are induced by some adapted coordinates on the total space E.

There are several natural projections associated to the jet bundle JkE. Firstly, we have the
projection to the base,

πk : JkE →M, jkpσ 7→ p (2.6)

Moreover, we obtain a projection πk,l of J
kE onto a jet bundle J lE of lower order l by

“forgetting” all partial derivatives of order greater than l, that is,

πk,l : J
kE → J lE, jkpσ 7→ jlpσ (k ≥ l). (2.7)

Under the identification J0E = E through the map j0pσ 7→ σ(p) we have that πk,0 : JkE → E
is the projection to the total space. The maps πk,l and πk are smooth fiber bundles, which
justifies naming JkE a jet bundle. Even more is true, if additionally π is a vector bundle
then the maps πk are vector bundles as well. Local sections of π : E → B give rise to local
sections of πk : JkE → B. We define the k-jet of a local section σ ∈ Γ(E)loc to be the
section jkσ : p 7→ jkpσ of JkE → B. The converse is not true, a local section of JkE is
generally not a k-jet of a local section of E.

These maps fit into a sequence of fiber bundles

· · · −→ JkE
πk,k−1−−−−→ Jk−1E

πk−1,k−2−−−−−−→ . . .
π2,1−−→ J1E

π1,0−−→ E
π−→M, (2.8)

which in its inverse limit yields the infinite jet bundle J∞E := lim←− J
kE. It turns out that

the infinite jet bundle is actually an infinite-dimensional manifold modelled on a Frechét
space. An element of J∞E can be thought of as a formal infinite Taylor series, as this series
does not converge in general (give a citation). However, by Borel’s theorem (citation), we
do have that for any z ∈ J∞E there exists a local section σ ∈ Γloc(E) such that its infinite
prolongation j∞σ equals z.

2.1.2 Partial Differential Equations

Definition 2.1.2 (Geometric PDE). A (geometric) partial differential equation of pure
order k on a fiber bundle π : E → B is a submanifold E ⊆ JkE with the property that the
restriction π|E : E → B is a fiber bundle. A solution of the PDE is defined to be a local
section σ of π such that its k-jet jkσ takes values in E , that is,

jkpσ ∈ E for all p ∈ Dom(σ). (2.9)

We denote by Sol(E) the space of all solutions of the PDE.

Let us look into this definition with more detail. Suppose that E ⊆ JkE is a PDE. Since
E is a submanifold, we can find around any point in the PDE an open U ⊆ JkE and a
submersion F : U → Rcodim(E) such that locally E is the level set of F :

U ∩ E = F−1(0). (2.10)
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This means that a point jkp τ ∈ U is an element of the PDE if and only

F (jkp τ) = 0. (2.11)

If σ ∈ Sol(E) is a solution of the PDE, then clearly we have

F (jkpσ) = 0. (2.12)

Comparing Equation (2.11) and Equation (2.12) leads to an interpretation of E in terms of
its solutions:

“Elements of a k’th order geometric PDE E ⊆ JkE are solutions up to order k.”

Example 2.1.3. We can identify a k-jet jkpσ with the Taylor polynomial of σ about p in
adapted coordinates (x, u) through the map

jkpσ 7→ (Taylor(σ1, p, k), . . . ,Taylor(σm, p, k)) (2.13)

where m is the number of dependent variables.

Of course, we would then like to find the solutions of the PDE E up to order k+1 (then up
to order k + 2, and so on). This is done by differentiating the system Equation (2.11) with
respect to the base variables and imposing the resulting constraints. To this end, suppose
that σ(x) = (x, u(x)) is a solution of the PDE E . We can write its k-jet as (jkσ)(x) =
(x, uα(x)). Now differentiating and applying the chain rule yields

∂

∂xi
(F (x, uα(x)) =

∂F

∂xi
(x, uα(x)) +

∑
0≤|α|≤k

∂F

∂uα
(x, uα(x))

∂uα

∂xi
(x) = 0. (2.14)

We introduce the notation α + 1i to be the multi-index obtained by adding 1 to the i’th
entry of α. In view of the expression (2.14) we define the i’th total derivative of F at a
point (x, uα) by

(DiF )(x, u
α) :=

∂F

∂xi
(x, uα) +

∑
0≤|α|≤k

∂F

∂uα
(x, uα) uα+1i (2.15)

Now, a point (x, uα) ∈ Jk+1E is said to be a solution of E up to order k + 1 if it satisfies
the following system of equations:{

F (x, uα) = 0

(DiF )(x, u
α) = 0 for all i = 1, . . . , n.

(2.16)

The resulting system of equations is called the first prolongation of E . By construction, a
solution of E is still a solution of the prolongation E(1). In the language of jet theory, we
can phrase this prolongation procedure as follows.

Definition 2.1.4 (Prolongation of a PDE). Let E be a PDE of order k on a fiber bundle
π : E → B. The (first) prolongation of E is defined to be

E(1) := J1(E) ∩ Jk+1E. (2.17)

(Note that since E ⊆ JkE we have J1(E) ⊆ J1(JkE). However, J1(JkE) consists of 1-jets
of sections of πk : JkE → B, so we intersect J1(E) with the jet bundle Jk+1E.)
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It is instructive to check that the definition Equation (2.17) written in jet coordinates (x, uα)
is equivalent to Equation (2.16).

Example 2.1.5. We work out the procedure of prolongation for a simple PDE. Consider
on the bundle R3 → R2, (x, y, u) 7→ (x, y) the first-order PDE defined by

E =

{
ux = yu

uy = u.
(2.18)

(Here ux denotes the partial derivative of a section u = u(x, y) with respect to x, etc.)
Differentiating the equations of E with respect to x, y and applying the product rule once
yields the first prolongation:

E(1) =


uxx = yuxx, ux = yu

uxy = u+ yuy

uxy = ux, uy = u

uyy = uy.

(2.19)

Note that we can rewrite the equation from the second row as

uxy = u+ yu = (1 + y)u. (2.20)

On the other hand, combining the equation from the third row shows and the second equa-
tion from the third row shows that

uxy = ux = yu. (2.21)

Comparing Equation (2.20) and Equation (2.21), we obtain that u = 0. Thus, by prolonging
the PDE we were able to deduce that the only solution of the PDE E is given by the trivial
solution u = 0.

In order to simplify the exposition, we make the following assumption.

Regularity Assumption I. Throughout, we shall assume that the prolongation of a PDE
is again a PDE.

Under this assumption, we can inductively define the l’th prolongation E(l) of a k’th order
PDE E ⊆ JkE by

E(l) := (E(l−1))(1) ⊆ Jk+l+1E. (2.22)

Note that the PDE E(l) is of order k + l. It is readily seen that the l’th prolongation
consists of Equation (2.16) together with the equations obtained by differentiating this
system up to order k with respect to the base variables. Since a solution of a prolongation
is necessarily a solution of the original PDE, the projection πk+1,k restricts to a well-defined
map π : E(1) → E . We say that a solution up to order k, denoted τ ∈ E , can be extended to
a solution up to order k + 1 if there exists τ̃ ∈ E(1) such that π(τ̃) = τ . An element of the
inverse limit of the sequence

. . .
π−→ E(l) π−→ E(l−1) π−→ . . .

π−→ E(1) π−→ E (2.23)
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is called a formal solution of E . The ∞-jet of a solution always defines a formal solution,
but the converse is not necessarily true.

The condition that any solution up to order k can be extended to a solution up to order
k+1 is equivalent to the assertion that π : E(1) → E is surjective. This line of thought leads
to the following definition.

Definition 2.1.6 (Formal Integrability). A PDE E is formally integrable if π : E(l) →
E(l−1) is surjective for all l ≥ 1.

Put differently, formal integrability means that any solution up to order k can be extended
to a formal solution. There exist examples of formally integrable PDEs that do not allow
smooth solutions, see Lewy example [Lew57].

As a mathematical curiosity, we mention that criteria for formal integrability can be de-
scribed in terms of a cohomology theory called Spencer cohomology due to the works by
Bott, Goldschmidt, Guillemin, Quillen, Spencer, Sternberg ([Gol67]).

Cartan Distribution.
We now discuss an important geometric structure associated to PDEs called the Cartan dis-
tribution. The integral submanifolds of this distribution are solutions of the PDE. Frobenius’
theorem on the integrability of distributions will allow us to deduce some local solvability
results of PDEs later.

Definition 2.1.7. Let Mn be a manifold. A distribution of rank d is a subbundle D of the
tangent bundle TM .

A distribution D of rank d can be specified in several ways [Lee13]:

• There exist d locally defined vector fields X1, . . . , Xd that span the distribution:

D = ⟨X1, . . . , Xd⟩ := span{X1, . . . , Xd}. (2.24)

• There exist n− d locally defined one-forms ω1, . . . , ωn−d such that for each point p on
this neighborhood we have

Dp = kerω1|p ∩ · · · ∩ kerωn−d|p. (2.25)

Definition 2.1.8. Let D be a distribution of rank d on a manifold M . An integral sub-
manifold of D is a connected, immersed d-dimensional submanifold S ⊆M such that

TpS = Dp for all p ∈ S. (2.26)

A distribution is said to be involutive if Γ(D) is closed under the Lie bracket, that is,
[X,Y ] ∈ Γ(D) for vector fields X,Y ∈ Γ(D).

Theorem 2.1.9 (Frobenius’ Theorem). An involutive distribution is completely inte-
grable, that is, the manifold can be foliated by integral submanifolds.
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Let π : E → Bn be a fiber bundle, and let xk+1 = jk+1
p σ ∈ Jk+1E be a point in its (k+1)’th

jet bundle for some representative local section σ. Denote xk = πk+1,k(xk+1) = jkpσ. We
define L(xk+1) to be the n-dimensional tangent plane at xk by the image of the k-jet of σ:

L(xk+1) := Txk
(Im(jkσ)) ⊆ Txk

JkE. (2.27)

This is well-defined, because the plane Lxk+1
is independent of the local section σ represent-

ing the equivalence class xk+1. Next, we define the subspace C(xk) at xk by

Cxk
:= span{L(xk+1) : xk+1 ∈ π−1

k+1,k(xk))} = (dπk,k−1)
−1(L(xk)) ⊆ Txk

(JkE). (2.28)

Definition 2.1.10 (Cartan Distribution). Let π : E → Bn be a fiber bundle. The
Cartan distribution C in JkE is the distribution given by

C : xk 7→ C(xk). (2.29)

If E ⊆ JkE is a PDE of order k on π, then

C(E) := C ∩ TE ⊆ TE . (2.30)

is called the Cartan distribution of the PDE E .

There might be some singular behavior of the Cartan distribution (in the sense that the
rank is not constant), so we assume the following.

Regularity Asssumption II. The Cartan distribution C(E) of a PDE E is a smooth sub-
distribution of C.

We can locally describe the Cartan distribution on JkE, as follows.

• The Cartan distribution C is locally spanned by vector fields

Xi :=
∂

∂xi
+

∑
0≤|α|≤k−1

m∑
j=1

uα+1i
j

∂

∂uαj
(2.31)

for all 1 ≤ i ≤ n and the coordinate vector fields ∂
∂uα

j
for all 1 ≤ j ≤ m and multi-

indices α satisfying |α| = k. In particular, the rank of the Cartan distribution is given
by rank(C) = n+m

(
n+k−1

k

)
.

• Dually, the Cartan distribution can be described by the common kernel of the Cartan
forms, which are defined by

ωαj := duαj −
n∑
i=1

uα+1i
j dxi (2.32)

for all 1 ≤ j ≤ m and 0 ≤ |α| ≤ k − 1.

The Cartan distribution C on a jet bundle JkE is not involutive. For example, using the
coordinate formula for Lie derivative, we have[

∂

∂uα+1i
j

, Xi

]
=

∂

∂uαj
(2.33)
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where α is a multi-index of length |α| = k − 1. Thus, we cannot guarantee the existence of
integral manifolds for the Cartan distribution using Frobenius’ theorem. However, we have
the following. The Cartan distribution distinguishes (graphs of) solutions from arbitrary
submanifolds of a jet bundle in the following way.

Proposition 2.1.11. Let π : E → Bn be a fiber bundle, and let E ⊆ JkE be a PDE. The
image of a section of πk : JkE → B is an integral submanifold of the Cartan distribution
if and only if it comes from the k-jet of a section of π : E → B. Moreover, the image of a
section of π : E → B is an integral submanifold of the Cartan distribution C(E) if and only
if it comes from the k-jet of a solution of E .

Proof. Let jkσ be the k-jet of a section σ of π : E → B, and write (jkσ)(x) = (x, uαj (x))

in adapted coordinates. On the image of jkσ we have duαj =
∑n
i=1(

∂uα
j

∂xi )dx
i, which implies

that the Cartan forms vanish. We conclude that the image of jkσ is an integral submanifold
for the Cartan distribution.

Conversely, suppose that τ : B → JkE is a section such that the image S := Imτ is an
integral submanifold. We write τ(x) = (x, τj(x), τ

α
j (x)) where 1 ≤ |α| ≤ k. As S is integral,

the Cartan forms are identically zero on S. It follows that

∂ταj
∂xi

= τα+1i
j (2.34)

for all 1 ≤ j ≤ m and 1 ≤ |α| ≤ k. This shows that the higher order jets of τ are the
derivatives of the 0-jets τj . In other words, τ is the k-jet of the section B → E, x 7→
(x, τj(x)).

Motivated by this proposition, one can also define generalized solutions as arbitrary integral
manifolds of the Cartan distribution. [Boc+99].

Note that the integral manifolds S of C(E) that come from k-jets of solutions are horizontal
with respect to the projection π : E → B (i.e. : S → TB is an isomorphism). Conversely,
π-horizontal integral manifolds are locally of this form [Boc+99, p.81]. For a generalized
solution the integral submanifold is not assumed to be horizontal, so it may be multi-valued.

The above proposition also suggests a method to find solutions of a PDE. First, we look for
horizontal integral submanifolds of the Cartan distribution. (These are guaranteed if the
horizontal part of the distribution is involutive.) If the integral submanifolds are horizontal
with respect to the projection π : E → B, then locally it is the graph of a k-jet of a solution!
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2.2 Cartan’s Prolongation–Projection Method

Cartan’s prolongation–projection method is an algorithm which can be applied to turn PDEs
from a special class into a formally integrable PDE. The goal of this section is to explain
this method, as well as find such a special class of PDEs on which the method is applicable.
This method involves the interaction between two geometric operations: prolongation and
projection, which we now briefly sketch. Suppose we have a PDE E ⊆ JkE of order k.
As mentioned before, we think of an element in E as a solution up to order k. Then by
prolonging the PDE to E(1) we obtain all solutions up to order k + 1. Consider the map
π : E(1) → E . A natural question we can ask is whether the map π is surjective. If it is
surjective, then every solution up to order k can be extended. Intuitively, this means that
the (local) equations defining E(1) do not impose any additional constraints on solutions up
to order k. However, if π is not surjective, then we have found new equations, satisfied by
solutions, which shrink the subspace of E consisting of elements that potentially come from
formal solutions. In this case, projecting E(1) gives a strict inclusion π(E(1)) ⊂ E . So we
shall use the procedure of projection to test if we obtain (essentially) new equations after
prolongation. We will now discuss these principles in more detail.

Prolongation.

We have seen that prolonging a PDE E raises the order by one; these higher order equations
being obtained from differentiating the equations defining E with respect to the independent
variables. In practice, the prolongation of a PDE is easily computed starting from a local
representation of the PDE. Ideally, we can then extract useful information about the PDE
from its prolongations. One class of PDEs for which this works are called PDEs of finite
type.

Definition 2.2.1 (Finite Type). Let E ⊆ JkE be a PDE. A PDE is called of finite type
l if after l prolongations all the highest order derivatives of the dependent variables can be
expressed algebraically in terms of the lower order derivatives. A PDE is called of Frobenius
type if it is of finite type 0.

Given a PDE E of finite type, it is readily seen that the space of formal solutions E(∞)

is necessarily finite-dimensional (under some regularity conditions, see [Kru11]). Since any
solution is a formal solution, we find in particular that the solution space Sol(E) is finite-
dimensional.

We examine some examples of PDE and check whether they are of finite type or not.

Example 2.2.2. Consider the bundle R4 → R2, (x, y, a, b) 7→ (x, y). The first-order PDE
E given by

E =


ax = 0

ay + bx = 0

by = 0

(2.35)
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is of finite type 1. Indeed, prolonging the PDE yields

E(1) =



axx = 0, ax = 0

axy = 0

axy + bxx = 0, ay + bx = 0

ayy + bxy = 0

bxy = 0, by = 0

byy = 0.

(2.36)

We can rewrite the first equation from the third row to bxx = 0 using the equation from
the second row. Similarly, the fourth equation reduces to ayy = 0. Thus, all highest order
derivatives are expressed.

The condition that a PDE is Frobenius type (or finite type) can also be interpreted geomet-
rically in terms of its symbol, as we now discuss.

Definition 2.2.3. Let E ⊆ JkE be a PDE of order k. The symbol g is the subbundle of
the Cartan distribution given by

g := ker(dπk,k−1|TE) ⊆ C(E) (2.37)

Thus, the symbol is the vertical bundle of πk,k−1|E .

If E is defined by the vanishing of a function F , then TE = ker dF . Thus for a tangent
vector v ∈ TE we have that

dF (v) =
∂F

∂xi
dxi(v) +

∑
|α|≤k

m∑
j=1

∂F

∂uαj
d(uαj )(v) = 0. (2.38)

In view of definition (2.37) it is readily seen that

g = {v ∈ TE :
∑
|α|=k

m∑
j=1

∂F

∂uαj
d(uαj )(v) = 0}. (2.39)

Thus the symbol only captures the highest degree part of the differential equation. Under
some regularity conditions a PDE is of Frobenius type if and only if its symbol vanishes.

Definition 2.2.4 (Cartan–Ehresmann Connection). A Cartan–Ehresmann connection
on a PDE E is a subbundle H of the Cartan distribution C(E) such that dπk : H → TB is an
isomorphism. In this way we obtain a direct sum decomposition of the Cartan distribution

C(E) ∼= H ⊕ g (2.40)

into its horizontal and vertical part (cf. [Boc+99, Theorem 2.1]).
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Theorem 2.2.5 (Frobenius Theorem). Let E ⊆ JkE be a PDE of finite type l. The
solutions of E are determined uniquely by their (k + l− 1)-jets. If in addition E is formally
integrable, then for every xk+l ∈ E(l) there exists a solution σ of E satisfying jk+lx σ = xk+l.

Proof. The first assertion holds by definition of finite type and the Picard-Lindelöf funda-
mental theorem for ODEs. Now suppose that E is also formally integrable. Since E is of
finite type l and formally integrable, it follows that π : E(l) → E(l−1) is an isomorphism.
The unique section ξ : E(l−1) → E(l) of π gives rise to a Cartan–Ehresmann connection H
on E(l−1). Explicitly, it is given by the assignment

H : E(l−1) ∋ xk+l−1 7→ L(ξ(xk+l−1)) ⊂ C(E(l−1)), (2.41)

where L(ξ(xk+l−1)) is the horizontal jet plane (2.27) at xk+l−1. The symbol g(l) = ker(dπ|TE(l))
of E(l) vanishes by the finite type assumption. This implies that dπ maps the Cartan distri-
bution C(E(l)) bijectively onto the horizontal subbundle H ⊂ C(E(l−1)). We conclude that
C(E(l)) is horizontal, and so C(E(l)) defines a Cartan–Ehresmann connection on E(l).

Furthermore, this connection is flat as there is no vertical part in C(E(l)). By virtue of
Frobenius’ theorem (2.1.9) there exists through every point xk+l an integral manifold S
of the Cartan distribution C(E(l)). The integral submanifold S is horizontal, so locally it
can be described by the graph of a section σ of the bundle E(l) → Bn ([Boc+99, p.81]).
Application of Proposition (2.1.11) guarantees that σ is a solution of E(l). Since any solution
of E(l) is a solution of E , this proves the second assertion.

Note that if a PDE is of finite type, then all of its prolongations are finite type as well. Thus,
if we can turn a PDE of finite type into a formally integrable one by prolonging enough
times, then we have local existence and uniqueness of solutions.

Projection.

Let E ⊆ JkE be a PDE. Consider its l’th prolongation E(l) ⊆ Jk+l and the map π : E(l) → E .
The projection of E(l) is defined to be the subspace π(E(l)) ⊆ E . So prolongation raises the
order of a PDE, whereas projection lowers the order of a PDE. In general these operations
are not inverses of each other.

If the projection π(E(l)) is strictly contained in E , then we say that we have found compat-
ibility conditions.

Definition 2.2.6 (Compatibility Condition.). Let E ⊆ JkE be a PDE of order k.
Suppose that E = {F (x, uα) = 0} is a local representation of the PDE. A compatibility
condition of E is an equation which is algebraically independent of F and which is satisfied
by all formal solutions.

Compatibility conditions can be interpreted as the obstructions of a PDE to being formally
integrable.

One can obtain a local representation of a projection, as follows. Suppose we have a PDE
of order k with local representation E = {F (x, uα) = 0} . Then the local representation of
its prolongation consists of equations which are affine linear in (k+ 1)-jets. By using solely
Gauss manipulation, we now try to rewrite the equations of order k+1 to equations of lower
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order. If we succeed in rewriting and if in addition the resulting equation is algebraically
independent from the equations defining the PDE, then we have obtained an compatibility
condition. The local representation of the projection is given by the equations F (x, uα) = 0
together with all the compatibility conditions. On the other hand, if none of the highest
order equations can be rewritten in such a way, then the projection is given by π(E(1)) = E .
We demonstrate this technique with the following example.

Example 2.2.7 ([Sei10]). Consider the bundle R4 → R3, (x, y, z, u) 7→ (x, y, z) together
with the PDE E defined by

E =

{
ux + zuy = 0

uz = 0
(2.42)

The prolongation is easily computed:

E(1) =



uxx + zuxy = 0, ux + zuy = 0

uxy + zuyy = 0

uxz + uy + zuyz = 0

uxz = 0, uz = 0

uyz = 0

uzz = 0.

(2.43)

Note that this system is linear in the dependent variables (u, ux, uy, uz, uxx, etc). We can
rewrite the equation in the third row to uy = 0 using the equations from the fourth and fifth
row. The compatibility condition uy = 0 is responsible for the projection π(E1) being strictly
contained in E . We thus obtain the following coordinate representation of the projection:

π(E(1)) =


ux = 0

uy = 0

uz = 0,

(2.44)

from which we read off that the only solutions of E are the constants.

As we see in the above example, the process of projecting after prolongation is essentially a
linear algebraic problem.
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Cartan’s Prolongation–Projection Method.

Algorithm 1. (Cartan’s Prolongation–Projection Method).
(Input: A PDE E of finite type l.)

• Step 1.) Prolong the PDE E to E(l).

Put F0 := E(l) and inductively define FN := (FN−1)
(1).

Now set N := 0.

• Step 2.) Compute the projection of the prolonged PDE FN+1 in FN .

If we have obtained compatibility conditions from this projection, increase N
by 1 and repeat Step 2.

• Step 3.) Return the PDE FN .

(Output: A formally integrable PDE of Frobenius type with the same solutions as
E .)

From the description of Step 2, it is clear that the algorithm terminates after a finite number
of steps. In order to show that the output is actually a formally integrable PDE, it remains
to show that this algorithm finds all compatibility conditions in Step 2. This is guaranteed
by Cartan’s prolongation theorem. By Frobenius’ theorem the PDE obtained from Cartan’s
method enjoys local existence and uniqueness of solutions.

Theorem 2.2.8 (Cartan’s Prolongation Theorem). An overdetermined PDE of finite
type l can be turned into a formally integrable one using Cartan’s prolongation-projection
method. Moreover, we have the following criterion to test if the N ’th prolongation is formally
integrable: if π : E(N) → E(N−1) is surjective for some N > l, then π : E(p) → E(p−1) is
surjective for all p ≥ N .

Proof. By prolonging if necessary, we may assume without loss of generality that E is of
Frobenius type and additionally that π : E(1) → E is surjective. Furthermore, we can reduce
the order of the PDE through the replacing of derivatives by new dependent variables (see
([Sei10, p.519]) for more details on why this reduction respects compatibility conditions).
Hence, we may also assume that the PDE E is of first order.

Thus, let E ⊆ J1E be a first order PDE of Frobenius type such that π : E(1) → E is
surjective. The theorem follows by induction if we can prove that the projection π : E(2) → E
is surjective. Let x = (x1, . . . , xn) denote the independent variables. Since the system is of
Frobenius type, we can write ux = φ(x, u), that is, one equation for each first derivative.
Explicitly, a local representation of E is given by

E =


ux1 = φ1(x, u)

· · ·
uxn

= φn(x, u).

(2.45)

From this local representation, we see that the only compatibility conditions can arise from

35



cross-derivatives. A cross-derivative is of the form

uxixj
− uxjxi

= χij(x, u, ux))

= χij(x, u, φ(x, u))

= χij(x, u) = 0

(2.46)

for some function χij . (Here uxixj is notation for the expression obtained from differentiating
uxj with respect to the base variable xi.) By the assumption that π(E1) = E , it follows that
the functions χij vanish identically on E for all 1 ≤ i, j ≤ n. The compatibility conditions
of the projection E(2) → E can only come from the following cross-derivatives:

uxkxixj − uxkxjxi = νkij(x, u, ux, uxx) = νkij(x, u) = 0. (2.47)

Here we have used the Frobenius type condition to express the higher order jets ux, uxx in
terms of (x, u). In order to show that π(E(2)) = E , it suffices to show that the equation
νkij = 0 is automatically satisfied on E for all 1 ≤ i, j, k ≤ n. By using that χij vanishes on
E , it follows that

νkij(x, u) = Dk(uxixj
− uxjxi

) = Dk(χij) = 0. (2.48)

In other words, the equations νkij = 0 are not compatibility conditions. We conclude that
π : E(2) → E is surjective.

The criterion in Cartan’s theorem can be rephrased as follows. Under the assumptions
of Cartan’s theorem, if after a prolongation (of a Frobenius type PDE) we obtain no new
compatibility conditions, then no more compatibility conditions can be found by subsequent
prolongations. This allows for an effective implementation of the algorithm in computer
algebra systems, which we shall discuss in the next section.
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2.3 Prolongation-Projection for the Geodesic Flow

We now wish to apply the prolongation-projection method to find Killing tensors in an n-
dimensional (Mn, g) be an n-dimensional spacetime (for most purposes n = 4). In Chapter
1 we have seen that a Killing d-tensor corresponds to a degree d polynomial integral of the
geodesic flow. Thus, we search for a nontrivial degree d polynomial

Id := ai1···id(x) pi1 · · · pid . (2.49)

which Poisson commutes with the Hamiltonian H = gijpipj of the geodesic flow, that is,

{H, Id} = 0. (2.50)

Since the Hamiltonian is quadratic in momenta, the Poisson bracket {H, Id} will be of degree
d+1 in momenta. Therefore, we can instead equate the coefficients of {H, Id} with respect
to the momentum variables to zero. On the vector bundle

π : Rn+(
n+d−1

d ) → Rn, (x, ai1···id) 7→ x. (2.51)

this leads to a first order linear PDE given by

E := {F = 0 : F ∈ coeffsp({H, Id})} ⊆ J1. (2.52)

Here we use the notation

coeffsp(P ) = {the coefficients of P with respect to the momentum variables p1, . . . , pn}).
(2.53)

Linearity of the PDE eq. (2.52) means that the resulting system of equations is linear in the
dependent variables ai1···id and its first order derivatives ai1···idα (|α| = 1). We introduce the
notation

Vk,d = {ai1···idα : |α| ≤ k}. (2.54)

It is readily seen that the k’th prolongation Ek ⊆ Jk+1 is also a linear PDE, i.e., it is linear
in the variables Vk+1,d. The following theorem is well-known, cf [Tho86] and [Wol98].

Theorem 2.3.1 (Killing is Finite Type). The PDE E (eq. (2.52)) defining a Killing d-
tensor of the geodesic flow is a first order linear PDE of finite type d. Hence, it can be turned
into a formally integrable PDE by Cartan’s prolongation–projection method. Moreover, no
compatibility conditions can be found before achieving Frobenius type.

Example 2.3.2. Consider on R2 the flat metric

g = (dx1)2 + (dx2)2 (H = p21 + p22). (2.55)

The equation for I = a(x) p1 + b(x) p2 to be a linear integral (Killing 1-tensor) is given by
the linear first order PDE

E =


ax = 0

ay + bx = 0

by = 0.

(2.56)

In Example 2.2.2 we saw that E is indeed a PDE of finite type 1. There are no compatibility
conditions for this metric.
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In the previous section we have made regularity assumptions on the PDE. In practice, this
assumption can be circumvented by restricting to an open submanifold of the PDE which
does not contain any singularities.

In the next section we shall apply Cartan’s prolongation method to the PDEs defining
Killing tensors on a spacetime (M, g). This PDE E is linear so each prolongation E(k)
will be linear in the (k + 1)-jets of the dependent variables. We shall convert this linear
system of equations to a matrix-valued function Mk(x) on the spacetime. In order to
make use of computer algebra software, we would like to insert a point to obtain a matrix
with rational coefficients. The first thing to do is to find the points that work nicely with
Cartan’s prolongation method. We call a point z ∈ (M, g) a regular point if the function
x 7→ rank(Mk(x)) attains its maximum at z for all k ≥ 0, that is, at each step we find the
maximal number of compatibility conditions. Note that a regular point is generic, i.e., the
regular points form an open, dense subset of M . A point is singular if it is not regular.

Example 2.3.3 (Toy Example of a Singular Point.). Consider the two functions

f1(x) = x, f2(x) = x2. The Wronskian of f1 and f2 is given by W (x) =

∣∣∣∣x x2

1 2x

∣∣∣∣ = x2.

Since the Wronskian does not vanish identically, we know that f1 and f2 are linearly inde-
pendent on R. However, the Wronskian vanishes at the (singular) point x = 0, so the 0-
and 1-jets of f1, f2 are not enough to detect linear independence. For the singular point, we
need to include 2-jets to see the linear independence. Indeed, the 1-jet at 0 of the equation
ax+ bx2 = 0 yields a = 0 and the 2-jet at 0 yields 2b = 0.

This example builds our intuition that for singular points more prolongations are needed to
find all the compatibility conditions. Since the number of equations and jet variables grow
drastically while prolonging it is ideal (necessary) to use regular points.

Example 2.3.4 (Singular Points of Geodesic Flow on a Surface of Revolution). A
surface of revolution is an embedded submanifold S ⊆ R3 of Euclidean space obtained by
a parametrization (u, θ) 7→ (r(u) cos(θ), r(u) sin(θ), z(u)) for some functions r(u), z(u) with
r(u) > 0 for all u. In these coordinates the induced metric on S reads

g = du2 + r2dθ2 H = p2u +
p2θ

(r(u))2
(2.57)

By Noether’s theorem, the circle action generates a linear integral given by µ = pθ. By
Clairaut’s theorem this linear integral equals r(u) cos(θ) along geodesics. The points on S
with angular coordinate θ = π

2 are singular.

We will not comment further on regular or singular points.
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2.3.1 Computer Implementation of Cartan’s Method

We now discuss several algorithms based on Cartan’s prolongation method, which can be
implemented in computer algebra programs. We state the algorithms and then prove cor-
rectness and termination.

Algorithm 2. (Cartan’s Method for Geodesic Flow).
(Input: A nonnegative integer d, a local representation of an n-dimensional space-
time (Mn, g), a regular point z ∈M .)

• Step 1.) Compute the Poisson bracket {H, Id} of the function Id with the
Hamiltonian H of the geodesic flow. (Their Poisson bracket is a polynomial in
momenta of degree d+ 1.)

• Step 2.) Collect the coefficients of {H, Id} with respect to the momentum vari-
ables. Define the first order linear PDE E := {F = 0 : F ∈ coeffsp({H, Id})}.

• Step 3.) Set k := 0.

– Write E(k) = {F (k)
i = 0 : i ∈ I} and Vk+1,d = {vj : j ∈ J} where I and J

are indexing sets.

– Convert the linear system of equations E(k) into the matrix Mk with en-
tries defined by

(i, j) 7→ coeff(F
(k)
i , vj) (2.58)

– Set δk := columns(Mk)− rank(Mk).

If (k < d) or (k > 0 and δk ̸= δk−1), increase k by 1 and repeat Step 3.

• Step 4.) Return (δk, k)

(Output: The dimension dimKd = δk of the space of Killing d-tensors. The integer
k indicates the number of prolongations we need to achieve formal integrability.)

Proposition 2.3.5. Algorithm 2 is correct and it terminates.

Proof. Termination of algorithm 2 is guaranteed by Cartan’s prolongation theorem. We
now verify correctness. In view of algorithm 1, it remains to check that all the com-
patibility conditions of the projection π : E(k) → E can be detected using the value
δk = columns(Mk) − rank(Mk). Since the PDE E defined by the Poisson bracket is linear,
the equations defining the prolongation E(k) are linear in the dependent variables Vk+1,d.
Consequently, we can compute compatibility conditions using only linear algebra.

Example 2.3.6. Consider on the manifold R>0(x
1)× R(x2) the metric

g = (dx1)2 + x1 · (dx2)2. (2.59)

The Hamiltonian of the geodesic flow is H = p21 +
1
x1
p22. We apply algorithm 2 to find the

number of Killing 1-tensors.
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Step 1.) Let I1 = a1(x)p1 + a2(x)p2 be an arbitrary polynomial (in momenta) of degree 1.
Using the Leibniz rule we compute

{H, I1} = {p21 +
1

x1
p22, a

1(x)p1 + a2(x)p2}

= −2a1[1,0]p
2
1 − 2

(
a2[1,0] +

a1[0,1]

x1

)
p1p2 −

(
a1

x21
+ 2

a2[0,1]

x1

)
p22.

(2.60)

Step 2.) Collecting the coeffients in Equation (2.60) with respect to momentum variables,
we obtain the following PDE:

E = {2a1[1,0] = 0, 2a2[1,0] +
a1[0,1]

x1
= 0,

a1

(x1)2
+ 2

a2[0,1]

x1
= 0} (2.61)

In view of the second equation, we see that E is not of Frobenius type yet. Theorem 2.3.1
guarantees that the next prolongation is of Frobenius type. We now set k := 0.

Step 3.) We write E as above and the variables as V1,1 = {a1, a1[1,0], a
1
[0,1], a

2, a2[1,0], a
2
[0,1]}.

By differentiating the left hand sides of the equations from the PDE E with respect to the
variables in V1,1 we obtain the matrix M0:

M0 =

 0 2 0 0 0 0
0 0 2

x1 0 2 0
1

(x1)2 0 0 0 0 2
x1 ,

 (2.62)

which clearly has rank 3 for all x1 > 0. Thus, δ0 = 6− 3 = 3.

We continue the loop, summarizing the results in the following table:

E E(1) E(2) E(3) E(4)

rows(Mk) 3 9 18 30 45
columns(Mk) 6 12 20 30 42
rank(Mk) 3 9 18 29 41

δk 3 3 2 1 1

Step 4. We conclude that g has one Killing field (which is ∂x2).

The number of rows and columns of the matrices Mk show that doing this algorithm by
hand quickly gets unfeasible, even for this low-dimensional example.

Remark 2.3.7 (Pseudo-Stabilization). Algorithm 2 requires the use of a regular point.
If a singular point is chosen, the algorithm can have two consecutive values in the sequence
(δk)k that agree before additional compatibility conditions are found. We call this phe-
nomenon pseudo-stabilization. After pseudo-stabilization the sequence (δk)k will continue
to decrease until it stabilizes at the correct value. It is thus important to run algorithm 2
several times with different points to check if a point is possibly singular.

Finding relations amongst Killing tensors using Cartan’s prolongation method

Recall that a relation among Killing tensors is an element of the kernel of the map Kd1 ⊗
Kd2 → Kd1+d2 . We can use Cartan’s prolongation method to find relations.
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Notation. We introduce some more notation. Denote by

Ik,d := Taylor(ai1···id , z, k) · pi1 · · · pid (2.63)

an arbitrary polynomial of degree d whose coefficient functions are Taylor approximated in
a point z up to order k. For example, with 4 independent coordinates we have

I1,1 =

4∑
i=1

(ai[1,0,0,0](z)(x1−z1)+a
i
[0,1,0,0](z)(x2−z2)+a

i
[0,0,1,0](z)(x3−z3)+a

i
[0,0,0,1](z)(x4−z4)+a

i
[0,0,0,0](z))pi.

(2.64)

Algorithm 3. (Finding Relations among Killing Tensors).
(Input: Nonnegative integers d1, d2, a local representation of an n-dimensional
spacetime (Mn, g) and a regular point z ∈M . )

• Step 1.) For i = 1, 2: run algorithm 2 to obtain dimKdi and the number of
prolongation ki needed to achieve formal integrability.

Consider the polynomial Iki+1,di .

• Step 2.) Consider the linear algebraic system of equations {Taylor(c, z, k) = 0 :

c ∈ coeffsp({H, Iki+1,di})} on the variables Vki+1,di(z) := {a
i1···idi+1
α (z) : |α| ≤

ki +1}, for i = 1, 2. Solve the equation and find a basis vi1, · · · , vidimKdi
for its

solution set.

Set Ijki+1,di
= eval(Iki+1,di , v

i
j) for 1 ≤ j ≤ dimKdi .

• Step 3.) Set

T :=

dimKd1∑
l=1

dimKd2∑
m=1

cl,m I lk1+1,d1 · I
m
k2+1,d2 . (2.65)

Define S := {Taylor(c, z, d1 + d2) : c ∈ coeffsp(T )}).

• Step 4.) Solve the linear algebraic system of equations {F = 0 : F ∈ coeffsx(S)}
in terms of the coefficients cl,m, and call the resulting solution space R.

• Step 5.) Return R and dimR.

(Output: The relations among Killing tensors of rank d1 and d2. The dimension of
R is the number of (linearly independent) relations.

Proposition 2.3.8. Algorithm 3 is correct and it terminates.

Proof. For d ≥ 1, consider the PDE

E = {F = 0 : F ∈ coeffsp({H, Id})} (2.66)

on the bundle
π : Rn+(

n+d−1
d ) → Rn, (x, ai1···id) 7→ x. (2.67)

An arbitrary (k+1)-jet jk+1
z σ of a section σ = (ai1···id(x)) can be identified with the Taylor

polynomial Ik+1,d = Taylor(ai1···id , z, k + 1)pi1 · · · pid . Under this correspondence, we have
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that jk+1
z σ ∈ E(k) if and only if {H, Ik+1,d} vanishes up to order k. This observation ex-

plains steps 1 and 2.

By Theorem 2.3.1 Kd is determined by d-jets in the sense that we can compute all jets of a
Killing d-tensor at a point if we know the d-jets (or equivalently the Taylor polynomial up
to order d + 1). Thus, in step 3 we must include the jets up to order d1 + d2 in order to
determine uniquely the corresponding (d1 + d2)-tensor. (Remark W: mtaylor command in
maple has other idea of up to order k)

Example 2.3.9. Consider on the manifold R3 the flat metric (with Hamiltonian)

g = dx2 + dy2 + dz2 (H = p2x + p2y + p2z). (2.68)

We show using algorithm 3 that there exists one relation among the Killing 1-tensors.

Step 1. Applying algorithm 2 shows that we need one prolongation to achieve formal inte-
grability and that dimK1 = 6.

Step 2. The linear integrals up to order 2 (actually up to any order) are given by

I1 = px, I2 = py, I3 = pz, I4 = xpy − ypx, I5 = ypz − zpy, I6 = xpz − zpx. (2.69)

Step 3. We set

T :=

6∑
l=1

6∑
m=1

cl,mIl · Im. (2.70)

The coefficients of T (up to order 2) with respect to the momentum variables are given by

p2x : c1,1 − yc1,4 − zc1,6 + y2c4,4 + yzc4,6 + z2c6,6

pxpy : c1,2 + xc1,4 − z(c1,5 + c2,6)− yc2,4 − 2xyc4,4

pxpz : c1,3 + y(c1,5 − c3,4) + xc1,6 − zc3,6 − 2xzc6,6

p2y : c2,2 + xc2,4 − zc2,5 + x2c4,4 − xzc4,5 + z2c5,5

pypz : c2,3 + yc2,5 + x(c2,6 + c3,4)− zc3,5 − 2yzc5,5

p2z : c3,3 + yc3,5 + xc3,6 + y2c5,5 + xyc5,6 + x2c6,6

(2.71)

Step 4. We equate the polynomials in Equation (2.71) to zero and solve. The solution is
given by

c1,5 = −c2,6 = c3,4. (2.72)

with all the other coefficients being zero.

Step 5. We conclude that we have found one relation among the Killing 1-tensors. It is
given by

px(ypz − zpy) + pz(xpy − ypx) = py(xpz − zpx). (2.73)

We discuss an application, which we shall use in later chapters.
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Application. We can use algorithms 2 and 3 to prove the existence or nonexistence of
irreducible Killing tensors, as we now briefly describe. Suppose that we have a local repre-
sentation of a spacetime (M, g) and consider the short exact sequence

0 −→ Ker ι2 −→ S2K1
ι2−→ K2 −→ Coker ι2 −→ 0. (2.74)

Recall that Ker ι2 consists of the relations among Killing 1-tensors and that Coker ι2 can
be identified with the irreducible Killing 2-tensors. First, using algorithm 2 we compute the
dimensions of S2K1 and K2. Then we use algorithm 3 to determine the dimension of the
kernel Ker ι2. Finally, the number of (linearly independent) irreducible Killing 2-tensors is
given by

dimCoker ι2 = dimK2 − dimS2K1 +Ker ι2. (2.75)

Here we used the exact sequence property to relate the dimensions. This method can be
readily generalized to higher order Killing tensors.

Cartan’s Prolongation Method for a regular Metric

We can also use Cartan’s method for a family of metrics gf parametrized by a function
f . Since computer algebra programs assume regularity (i.e., the function f is not assumed
to satisfy nontrivial equations.) In order to circumvent this problem, we need to modify
algorithm 2 to keep track of possible nontrivial equations on the function f which alter the
results of the prolongation method. For simplicity, we shall assume that f is a function of
just one variable.

Consider the PDE E defining a Killing tensor. In Cartan’s prolongation method we can
consider two sets of variables, those that are determined and those that are free. The
determined jet variables are written in terms of the free variables. The Killing d-tensor
PDE is determined by the d-jets, so all jets of order greater than d are determined. After
reaching Frobenius type, we prolong to find compatibility conditions. These compatibility
conditions increase the number of determined variables, and in turn decrease the number of
free variables. We keep prolonging until we acquire stabilization (i.e., no more compatibility
conditions can be found). The next algorithm is based on this idea, with the key feature
that we control the assumptions made on f .
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Algorithm 4. (Cartan’s Method for a General Metric).
(Input: A nonnegative integer d, a family of local representations of an n-
dimensional spacetime (Mn, gf ) depending on a function f of one variable.)

• Step 1.) Compute the Poisson bracket {H, Id} of the function Id with the
Hamiltonian H of the geodesic flow. Consider the PDE E := {F = 0 : F ∈
coeffsp({H, Id})}.

• Step 2.) For k from 0 to d−1, do the following. Consider the prolongation E(k).
Express, using the equations defining E(k), the maximal number of (k+1)-jets
in terms of the remaining free variables. We set

subk+1 := {expressions of (k+1)-jets in terms of the free variables ⊆ Vk+1,d}

(Note that the number of free variables increase as we prolong.)
Denote by sub1···d = ∪dj=1subj the expressed jets up to order d.

• Step 3.) For the Frobenius type PDE E(d), express all (d+ 1)-jets in terms of
the free variables (⊆ Vd,d) by using the expressions obtained in sub1···d. Set

subd+1 := {expressions of all (d+1)-jets in terms of the free variables ⊆ Vd,d}.

• Step 4.) Set k := 1. For E(d+k), do the following.

– Express all (d + k + 1)-jets in terms of the free variables (⊆ Vd,d) and
denote the set of these expressions by subd+k+1.

– After expressing, we collect the unused equations into

int(d+k) := {the remaining equations defining E(d+k)}

The set int(d+k) consists of potential compatibility conditions.

– Simplify sub1···d using these compatibility conditions, which reduces the
number of free variables. Here, potential conditions on f can arise (as a
consequence of division by differential expressions in f ). Keep track off
this “branching”.

Increase k by 1 and repeat step 4 until no additional compatibility conditions
can be found.

• Step 5.) Return the number of remaining free variables in sub1···d for each
branch (nontrivial equations satisfied by f).

(Output: The dimension dimKd of Killing d-tensors as a function of f .)
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Chapter 3

Metrics in General Relativity

3.1 Classifying Spacetimes

We discuss several possible approaches to classifying Lorentzian spacetimes.

Petrov Classification

The Petrov classification is an algebraic classification of the Weyl tensor. We briefly recall
the situation in dimension 4. The Riemann curvature tensor is given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, R(X,Y, Z,W ) = g(R(X,Y )Z,W ) (3.1)

By contraction of the curvature tensor we can construct the Ricci curvature and scalar
curvature, respectively given by

Ric(X,Y ) = tr(Z 7→ R(Z,X)Y ) Scal := tr(Ric). (3.2)

The Weyl tensor is the completely trace-free (0, 4)-tensor defined by

W := R− 1

2

(
Ric− Scal

4
g

)
⃝∧ g +

Scal

24
g⃝∧ g. (3.3)

Here · ⃝∧ · is the Kulkarni–Nomizu product for symmetric (0, 2)-tensors. By the Ricci
decomposition [Lee16, p.216], we can write the curvature tensor in terms of the Weyl
tensor and two additional tensors coming from the Ricci curvature. The Weyl tensor enjoys
the same algebraic symmetries as the curvature tensor. Hence, we can view the Weyl tensor
at an event q in spacetime as a curvature operator taking bivectors to bivectors,

W : ∧2TqM → ∧2TqM. (3.4)

One then proceeds by converting the (6× 6)-matrix associated to this linear map to a com-
plex symmetric trace-free (3 × 3)-matrix [Ste+09, p.49]. The Petrov classification is then
obtained by classifying the possible sets of eigenvalues (with multiplicites). This leads to
six different Petrov types (I, II, D, III, N, O). For example, an event is said to be of Petrov
type O if its Weyl tensor vanishes. By the Weyl–Schouten theorem [Ste+09] a 4-dimensional
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spacetime is conformally flat if and only if its Weyl tensor vanishes everywhere.

Note that the curvature tensors of vacuum spacetime are distinguished by the Petrov classi-
fication, since vacuum spacetimes are Ricci-flat and so R =W . For physical interpretations
of the different Petrov types in terms of tidal forces see [d’I92].

Scalar Curvature Invariants

Ideally, we can locally classify spacetimes (up to isometry) by finding some simple criteria to
decide if there exists an isometry between two spacetimes. The method of scalar curvature
invariants provides some progress in this direction.

Consider a local representation of two Lorentzian metrics

g = gij(x) dx
idxj g̃ = g̃ij(x̃) dx̃

idx̃j (3.5)

Given a coordinate transformation φ : x 7→ x̃(x) the isometry condition φ∗g̃ = g reads

g̃ij(x̃(x)) dx̃
idx̃j = gij(x) dx

idxj (3.6)

This equation defines a nonlinear first order PDE on the functions x̃i(x), which in practice is
virtually impossible to solve explicitly. Instead we construct simple scalar invariants to com-
pare both metrics. Here a scalar invariant means a scalar function that is invariant under
the pseudogroup of coordinate transformations, that is, we know how the object transforms
under coordinate changes. We observe that if g and g̃ are isometric, then their invariants
will be the same. A difficulty that arises is that the invariants are computed with respect
to different coordinate systems, so it might be hard to compare them.

The scalar curvature is an invariant that we can use to compare metrics. For example, if

the scalar curvature Scal(x) of the first metric is constant and the S̃cal(x̃) nonconstant,
then we conclude that g, g̃ are not isometric. However, if the scalar curvatures are both
(non)constant, then we cannot rule out that the spacetimes are isometric. In this case,
we may look at other scalar invariants. A scalar curvature invariant [CHP09] is a scalar
function obtained from the curvature R, Ricci curvature Ric, the Weyl tensor W and their
covariant derivatives. Thus, some examples of scalar curvature invariants are the scalar
curvature Scal, the Kretschmann scalar RabcdR

abcd, the Weyl invariant WabcdW
abcd and

∇iRicjk∇iRicjk. In order to compare both metrics, we can look at syzygies (relations) in
the set of scalar curvature invariants. If the syzygies are different, the metrics are not iso-
metric.

A natural question to ask whether metrics can be classified using their scalar curvature
invariants. This is true in the Riemannian case (see the corollary after theorem 1 in note
19 on p.357 in [KN63] together with [Wey39]). However, there exist Lorentzian spacetimes
whose scalar curvature invariants all vanish (so-called VSI Spacetimes). It is thus impossible
to distinguish a VSI spacetime from Minkowski space using only scalar curvature invariants.
It is well-known that all VSI spacetimes are of Kundt class ([Pra+02]). A Kundt metric can
be written in coordinates (x1, x2, u, v) as [Col+09]

g = 2dudv + 2h(x1, x2, u)(du3)2 +Wi(x
1, x2, u, v)dxidu+ gij(x

1, x2, u)dxidxj (3.7)

for some smooth functions h,Wi, gij . (It is vacuum if and only if ∂2x1h+ ∂2x2h = 0.)
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Cartan’s Method of Moving Frames

Fortunately, it is still possible to classify Lorentzian spacetimes using Cartan’s method. In
Cartan’s method of moving frames, one uses the orthonormal frame bundle to construct in-
variants from the components of the Riemann curvature tensor and its covariant derivatives.
For 4-dimensional spacetimes, this procedure was carefully specified by Karlhede [Kar80]
and so is nowadays called the Cartan–Karlhede algorithm. We briefly sketch an approach
following [KMS19].

Let (M, g) be a Lorentzian spacetime. The orthonormal frame bundle P →M is a principal
bundle with structure group the Lorentz group O(3, 1). A fiber over x ∈ M consists of all
the orthonormal frames of g at x. The free and transitive action of O(3, 1) preserving the
fibers is

O(3, 1)× P → P, E′
i := Λ · Ei := ΛjiEj (3.8)

A key observation is that the components of a tensor can be viewed as a function on the
orthonormal frame bundle P. We define the Cartan invariants of order k to be ratio-
nal combinations of components of the Riemann curvature tensors and its k’th covariant
derivatives. In particular, Cartan invariants are functions on the total space P. If a Cartan
invariant is invariant under the action of the structure group (i.e. constant on the fibers),
then it descends to a function on the base M . We call functions on M obtained in this way
invariants onM . The advantage of this approach is the following: to establish the existence
of an isometry φ : (M, g) → (M̃, g̃) ‘downstairs’, we can instead compare their invariants
that are obtained from the Cartan invariants ‘living upstairs’:

P P̃

M M̃.
φ

We start by considering the Cartan invariants of order 0. If a Cartan is invariant under
the structure group, we obtain an invariant on M . If it is not, we aim to set this Cartan
invariant equal to a constant by fixing the group parameters. In turn this reduces the struc-
ture group from O(3, 1) to a lower-dimensional subgroup H0. Both the structure group and
total space are reduced in dimension. By doing this for all Cartan invariants of order 0, we
obtain a principal H0 subbundle P0 →M of the bundle P →M . Here the new total space
P0 consists of all the admissible orthonormal frames.

Next, we look at the Cartan invariants of order 1. We collect the new invariants on M . The
Cartan invariants which are not constant on the fibers allow us to reduce the structure group
and total space. This reduction yields a principal H1-subbundle P1 →M of P0 →M with
H1 ⊆ H0. We continue this process for higher order Cartan invariants. One counts decrease
of the dimension of the structure group and, simultaneously, the number of functionally
independent invariants on the base M . These represent the vertical and horizontal freedom
in the frame bundle (cf. [Bro+18]), respectively. The stabilization should occur for both

numbers, hence the number of steps cannot exceed n+ n(n−1)
2 = n(n+1)

2 where n = dimM .

After doing the above procedure for two metrics g, g̃, one can now decide if the two are
isometric or not. This is done by examining the syzygies among the invariants on the base
(cf. [KMS19]).
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Differential Invariants

An alternative approach to classification is the method of differential invariants. If a Lie
(pseudo)group acts on the total space E of a bundle, one can prolong this action to its jet
bundles [Olv95]. A differential invariant of order k is then just a function I : JkE → R which
is invariant under this prolonged group action. In [KMS19] differential invariants for Kundt
waves are computed and compared with the invariants obtained from the Cartan–Karlhede
algorithm.

Koutras–McIntosh Metric

We now introduce the metric that we shall study in the next chapters using the techniques of
chapter 2. We define the Koutras–McIntosh metric to be the 2-parameter family of metrics
which is given in coordinates x1, x2, x3, x4 by

g = 2(ax1+b)dx3dx4−2adx1dx3+{2f(x3)(ax1+b)((x1)2+(x2)2)−a2(x4)2}(dx3)2−(dx1)2−(dx2)2
(3.9)

Setting (a, b) = (0, 1) we obtain a conformally flat pp-wave

g = 2dx3dx4 + 2f(x3)((x1)2 + (x2)2)(dx3)2 − (dx1)2 − (dx2)2 (3.10)

and setting (a, b) = (1, 0) we obtain the Wils metric

gWils = 2 x1dx3dx4−2x4dx1dx3+{2f(x3)x1((x1)2+(x2)2)− (x4)2}(dx3)2− (dx1)2− (dx2)2

(3.11)
These latter two spacetimes are pure radiation solutions, that is, they satisfy Einstein’s
equations with energy-momentum tensor given by T = ϕ l ⊗ l for some scalar field ϕ and a
null one-form l. A. Koutras and C. McIntosh showed in [KM96] that the metric (3.9) has
no scalar curvature invariants.

Plane Waves and Singularities

We discuss the physical relevance of metrics (3.10), following the lecture notes Plane Waves
and Penrose Limits by M. Blau [Bla11].

A special class among the pp-waves are the gravitational plane waves which in Brinkmann
coordinates (x1, x2, u, v) take the form

g = 2 dudv +Aab(u) x
axbdu2 + (dx1)2 + (dx2)2 (3.12)

for some symmetric matrix Aab(u) called the wave profile. A key feature of a plane wave is
the existence of a parallel null vector field, namely the coordinate field ∂v. In particular, we
see that conformally flat pp-waves (3.10) are plane waves with Aab(u) = δabf(u).

Scalar curvature invariants are a useful tool in proving the existence of physical singularities
(e.g. the Kretschmann scalar in Schwarzschild spacetime). For plane waves all scalar cur-
vature invariants vanish, so one might wonder if physical singularities exist in plane waves.
This question can be answered by examining the Jacobi equation for variations of geodesics,
as we now briefly discuss. Let c(t, s) denote a variation of a geodesic c so that s 7→ c(t, s)
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is a geodesic for all t. Then the vector field J : s 7→ ∂c
∂t (0, s) along c is a Jacobi field. This

means that J satisfies the Jacobi equation

J̈ +R(J, ċ)ċ = 0. (3.13)

(Here the second derivative of J is taken with respect to the connection.) Physically, the
Jacobi equation describes the tidal forces on geodesic congruences. By choosing a Jacobi
field with Ju = 0 and taking s to be the affine parameter along the geodesic variation, one
can show (cf.[HE73, Section 4.1, 4.2], [Bla11, p.18], [Str12, p.68]) that the Jacobi equation
implies

d2

ds2
Ja = Aab(u(s))J

b. (3.14)

If the wave profile Aab is singular for some u, then the tidal forces become infinite in which
case we have a physical singularity.

R. Penrose shows in the paper Any Space-Time has a Plane Wave as its Limit [Pen76] that
to any pair (g, γ) of a spacetime (M, g) together with a null geodesic γ one can associate
a plane wave, the so-called Penrose limit. Determining the Penrose limit of a spacetime
entails computing the wave profile Aab(u) from the null geodesic and the metric. In the
original description the Penrose limit arises by writing the metric in terms of a 1-parameter
family of coordinates and taking the limit of the parameter. In [Bla+04] it is shown that
the wave profile Aab can also be computed from

Aab(u) = −Ra+b+|γ(u) (3.15)

with respect to a suitable pseudo-orthonormal frame (E+, E−, Ea). (On the left hand side
u is a coordinate of the plane wave, on the right hand side u is the affine parameter of the
null geodesic.)

For a large class of spacetimes with singularities, the Penrose limit, obtained from a null
geodesic approaching a singularity, has waveprofile Aab ∝ 1

u2 ([Bla+04]). In Chapter 4, we
apply Cartan’s prolongation method to the plane wave (3.10) with f(x3) = 1

(x3)2 .

3.2 Integrability in General Relativity

Kerr Metric

The Kerr solution in Boyer–Lindquist coordinates q = (r, t, θ, φ) is given by the two-
parameter family of metrics

gKerr =
1

Ξ

[
−(∆− a2 sin2(θ)) dt2 + 2a sin2(θ)(∆− r2 − a2) dt dφ

+sin2(θ)((r2 + a2)2 −∆a2 sin2(θ)) dφ2
]
+ Ξ

(
dr2

∆
+ dθ2

) (3.16)

where the two quantities ∆, Ξ are defined by

∆(r) = r2 − 2mr + a2, Ξ(r, θ) = r2 + a2 cos2(θ). (3.17)
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The geometry of the Kerr metric describes a stationary rotating black hole with total mass
m and angular momentum J := am. The metric coefficients are independent of the variables
t, φ, it follows that ∂t, ∂φ are Killing vector fields. In view of the Arnold–Liouville–Mineur
theorem, an additional integral would be beneficial to integrate the geodesic equations. In
order to obtain the geodesics, B. Carter used the Hamilton–Jacobi method. This essentially
entails to solving the Hamilton–Jacobi equation

H

(
qi,

∂S

∂qi

)
= gijKerr(q)

∂S

∂qi
∂S

∂qj
= −1

2
µ2 (µ = constant) (3.18)

for the generating function S of a symplectomorphism. Carter [Car68] solved this first order
PDE by additive separation of variables. The separation constant C corresponding to the
θ-dependent part, called Carter’s constant,

C := p2θ + cos2(θ)

(
a2(µ2 − p2t ) +

p2φ

sin2(θ)

)
. (3.19)

is the fourth integral of motion. By means of this complete set of integrals, he solved the
geodesics by quadrature.

The main takeaway of this story is that the additive separability of the Hamilton–Jacobi
equation is closely related to the existence of quadratic integrals. Woodhouse’ article [Woo75]
explores this relation in detail.

The techniques from Chapter 2 provide another way of proving the existence of a quadratic
integral. Application of algorithm 2 to the Kerr metric (with parameters m = 50, a = 1

2 )

gives the following tables. In each table we denote the prolongation E(k) together with its
corresponding value δk.

Linear E E(1) E(2) E(3)

δ 10 10 2 2

Quadratic E E(1) E(2) E(3) E(4) E(5)

δ 30 50 50 6 5 5

The first computation shows that pt, pφ are the only linear integrals for the Kerr metric.
The second table shows that there are 5 quadratic integrals. The linear integrals and the
Hamiltonian account for 4 quadratic integrals (p2t , pφpt, p

2
φ, H). It follows that there is an

additional irreducible quadratic integral.

Summarizing, the Hamilton–Jacobi method provides an effective way of finding quadratic
integrals. Cartan’s prolongation method allows us to prove the (non-)existence of higher
order Killing tensors. Even though Cartan’s method does not give us an explicit form of
the integrals, we can use algorithm 3 to obtain the integrals up to a given order.
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Chapter 4

Killing Tensors of Conformally
Flat pp-Waves

The metric of a conformally flat pp-wave is given by

g = 2dx3dx4 + 2f(x3) ((x1)2 + (x2)2) (dx3)2 − (dx1)2 − (dx2)2 (4.1)

where f is a function of the coordinate x3. The Hamiltonian of the geodesic flow is given
by

H := −p21 − p22 + 2p3p4 − 2f(x3)((x1)2 + (x2)2)p24 (4.2)

The paper Symmetry classes of pp-waves by Sippel and Goenner [SG86] has classified pp-
waves in terms of their isometry group. For conformally flat pp-waves there are three
classes:

• the generic case has dimK1 = 6;

• the second class given by f = k for some constant k ̸= 0 has dimK1 = 7 and the
seventh integral is given by p3;

• the third class given by f = k
(x3)2 for some constant k ̸= 0 has dimK1 = 7 and the

seventh integral is given by x3p3 − x4p4.

In light of this, we will consider four metrics.

• Metric 1: f(x3) = 1

• Metric 2: f(x3) = x3

• Metric 3: f(x3) = (x3)2.

• Metric 4: f(x3) = 1
(x3)2 .

Metric 1 belongs to the second class, metrics 2, 3 belong to the generic case and metric 4
belongs to the third class. We will apply Cartan’s prolongation method (algorithm 2) to
the PDE

E = {F = 0 : F ∈ coeffsp({H, Id})} (4.3)
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to compute the number of Killing d-tensors for d = 1, 2, 3, 4. Given Killing tensors of degree
d1 and d2 their product will be a Killing tensor of degree d1 + d2. Thus, the existence
of Killing 1-tensors imply the existence of higher order Killing tensors. However, relations
between lower order Killing tensors will ’lower’ the number of (independent) higher order
Killing tensors. On the other hand, there might be additional irreducible Killing tensors.
In order to compute the relations among Killing tensors we shall apply algorithm 3. In turn
this will allow us to confirm the (non-)existence of irreducible Killing tensors up to order 4.

Note on the computational complexity.

We briefly discuss the computational difficulties associated with Cartan’s method and how
we deal with them. The dimension of the prolongation matrix Mk from algorithm 2 equals

rows(Mk) =

(
n+ d

d+ 1

)( k∑
i=0

(
n+ i− 1

n− 1

))
, columns(Mk) =

(
n+ d− 1

d

)(k+1∑
i=0

(
n+ i− 1

n− 1

))
(4.4)

In particular, we see that the number of rows grows faster than the number of columns. We
highlight several elements that have made the computer implementation more efficient:

• (LinBox). The LinBox package ([Dum+02]) in Sage allows for incredibly fast rank
computations of large sparse integer matrices. For example, computing the rank of
the quartic prolongation matrix M19 for metric 2 with size (495880)× (371910) took
less than an hour. In comparison, rank computations of smaller matrices (say 50000
by 40000) would take several days in Maple or not give a result at all. Thanks to
LinBox, the time to compute the ranks is negligible. The generating of a prolongation
matrix takes by far the longest time of the steps in algorithm 2.

• (Exploiting Sparsity.) The prolongation matrices Mk that we encounter here are
sparse (with density < 0.001). It is important that the generation of the matrix reflects
this. We generate a matrix with only zeroes and then substitute the nonzero values.

• (Combinatorial Description of Prolongations.) For the quartic case, we used
a combinatorial description of the prolongation equations. We demonstrate this for
metric 2. Since I4 is of degree 4, we have that {H, I4} is of degree 5 in momenta.
Thus, we can write {H, I4} = coeffτp

τ where pτ = pτ11 p
τ2
2 p

τ3
3 p

τ4
4 . Given a multi-index

τ of length 5, we obtain the pτ -coefficient in terms of the coefficients of I:

coeffτ ({H, I4}) = 2∂1(a
τ−11) + 2∂2(a

τ−12)− 2∂4(a
τ−13)− 2∂3(a

τ−14)

+ 4x3((x1)2 + (x2)2)∂4(a
τ−14)− 2((x1)2 + (x2)2)

(τ + 13 − 2 · 14)!
(τ − 2 · 14)

− 4x1x3
(τ + 11 − 2 · 14)!

(τ − 2 · 14)!
aτ+11−2·14 − 4x2x3

(τ + 12 − 2 · 14)!
(τ − 2 · 14)!

aτ+12−2·14

(4.5)

Using the product rule for multi-index notation, we can subsequently determine the
general expression for ∂α(coeffτ ({H, I4})), where α is a multi-index. In this way we
obtain the equations of the prolongation as a function of the multi-indices τ and α.
This combinatorial description significantly reduces the time needed to generate the
equations in Maple, especially as the order increases.
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4.1 Dimensions of Space of Killing Tensors

Metric 1 (f(x3) = 1)

We present the results of algorithm 2 applied to metric 1 for the degrees d = 1, 2, 3, 4. In the
tables below we collect for a given degree d, the k’th prolongation E(k) together with its value
δk obtained from step 3. The generic point we used for algorithm 2 is z := (1, 2, 3, 4) ∈ R4.
The used Maple worksheet “ConformallyFlatPPWave1 Algorithm2” is supplied separately
in the attached zip-file.

Linear E E(1) E(2) E(3)

δ 10 10 7 7

Table 4.1: The values of δ obtained in algorithm 2 (step 3) for d = 1.

Quadratic E E(1) E(2) E(3) E(4) E(5) E(6)

δ 30 50 50 37 29 28 28

Table 4.2: The values of δ obtained in algorithm 2 (step 3) for d = 2.

Cubic E E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8)

δ 65 125 175 175 134 101 87 84 84

Table 4.3: The values of δ obtained in algorithm 2 (step 3) for d = 3.

Quartic E E(1) E(2) E(3) E(4) E(5) E(6)

δ 119 . . . . . . 490 490 . . . 299

cont’d E(7) E(8) E(9) E(10) E(11) E(12)
δ . . . . . . . . . . . . 210 210 . . .

Table 4.4: The values of δ obtained in algorithm 2 (step 3) for d = 4.

Recall that the PDE E defined by the Poisson bracket {H, Id} is of finite type d. This
manifests itself by the fact that the value δd of E(d) is maximal (10 for the linear case, 50
for the quadratic case, 175 for the cubic case and 490 for the quartic case). By prolonging
further (as in step 3) we obtain compatibility conditions. As a result, the rank of the matrix
Mk (2.58) increases and so the value δk decreases. If two subsequent values δk, δk+1 are
equal (with k ≥ d), the sequence of δ-values stabilize and we can read off the number of
Killing d-tensors. These values are printed bold-faced in the tables above. We conclude that

dimK1 = 7, dimK2 = 28, dimK3 = 84, dimK4 = 210. (4.6)
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Metric 2 (f(x3) = x3)

We present the results of algorithm 2 applied to metric 2 for the degrees d = 1, 2, 3, 4. In the
tables below we collect for a given degree d, the k’th prolongation E(k) together with its value
δk obtained from step 3. The generic point we used for algorithm 2 is z := (1, 2, 3, 4) ∈ R4.
The used Maple worksheet “ConformallyFlatPPWave2 Algorithm2” is supplied separately
in the attached zip-file.

Linear E E(1) E(2) E(3) E(3)

δ 10 10 7 6 6

Table 4.5: The values of δ obtained in algorithm 2 (step 3) for d = 1.

Quadratic E E(1) E(2) E(3) E(4) E(5) E(6) E(7)

δ 30 50 50 35 28 24 22 22

Table 4.6: The values of δ obtained in algorithm 2 (step 3) for d = 2.

Cubic E E(1) E(2) E(3) E(4) E(5) E(6)

δ 65 125 175 175 131 100 . . .

cont’d E(7) E(8) E(9) E(10) E(11) E(12) E(13)
δ . . . 68 . . . 64 63 62 62

Table 4.7: The values of δ obtained in algorithm 2 (step 3) for d = 3.

Quartic E E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8) E(9)

δ 119 . . . . . . 490 490 389 292 245 213 194

cont’d E(10) E(11) E(12) E(13) E(14) E(15) E(16) E(17) E(18) E(19)
δ 181 170 163 158 156 154 152 150 148 148

Table 4.8: The values of δ obtained in algorithm 2 (step 3) for d = 4..

We conclude that the dimensions of the space Kd of Killing d-tensors are given by

dimK1 = 6, dimK2 = 22, dimK3 = 62, dimK4 = 148. (4.7)
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Metric 3 (f(x3) = (x3)2)

We present the results of algorithm 2 applied to metric 3 for the degrees d = 1, 2, 3, 4. In the
tables below we collect for a given degree d, the k’th prolongation E(k) together with its value
δk obtained from step 3. The generic point we used for algorithm 2 is z := (1, 2, 3, 4) ∈ R4.
The used Maple worksheet “ConformallyFlatPPWave3 Algorithm2” is supplied separately
in the attached zip-file.

Linear E E(1) E(2) E(3) E(3)

δ 10 10 7 6 6

Table 4.9: The values of δ obtained in algorithm 2 (step 3) for d = 1.

Quadratic E E(1) E(2) E(3) E(4) E(5) E(6) E(7)

δ 30 50 50 35 28 24 22 22

Table 4.10: The values of δ obtained in algorithm 2 (step 3) for d = 2.

Cubic E E(1) E(2) E(3) E(4) E(5) E(6)

δ 65 125 175 175 131 100 . . .

cont’d E(7) E(8) E(9) E(10) E(11) E(12) E(13)
δ . . . 68 . . . 64 63 62 62

Table 4.11: The values of δ obtained in algorithm 2 (step 3) for d = 3.

Quartic E E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8) E(9)

δ 119 . . . . . . 490 490 389 292 245 213 194

cont’d E(10) E(11) E(12) E(13) E(14) E(15) E(16) E(17) E(18) E(19)
δ 181 170 163 158 156 154 152 150 148 148

Table 4.12: The values of δ obtained in algorithm 2 (step 3) for d = 4.

Note that the δ-values are exactly the same as for metric 2. We conclude that

dimK1 = 6, dimK2 = 22, dimK3 = 62, dimK4 = 148. (4.8)
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Metric 4 (f(x3) = 1
(x3)2

)

We present the results of algorithm 2 applied to metric 4 for the degrees d = 1, 2, 3, 4. In the
tables below we collect for a given degree d, the k’th prolongation E(k) together with its value
δk obtained from step 3. The generic point we used for algorithm 2 is z := (1, 2, 1, 4) ∈ R4.
The used Maple worksheet “ConformallyFlatPPWave4 Algorithm2” is supplied separately
in the attached zip-file.

Linear E E(1) E(2) E(3)

δ 10 10 7 7

Table 4.13: The values of δ obtained in algorithm 2 (step 3) for d = 1.

Quadratic E E(1) E(2) E(3) E(4) E(5) E(6)

δ 30 50 50 35 29 28 28

Table 4.14: The values of δ obtained in algorithm 2 (step 3) for d = 2.

Cubic E E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8)

δ 65 125 175 175 . . . . . . 87 84 84

Table 4.15: The values of δ obtained in algorithm 2 (step 3) for d = 3.

Quartic E E(1) E(2) E(3) E(4) E(5) E(6)

δ 119 . . . . . . 490 490 389 294

cont’d E(7) E(8) E(9) E(10) E(11) E(12)
δ 245 223 215 211 210 210 . . .

Table 4.16: The values of δ obtained in algorithm 2 (step 3) for d = 4.

We conclude, for metric 4, that:

dimK1 = 7, dimK2 = 28, dimK3 = 84, dimK4 = 210. (4.9)
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4.2 Relations and Irreducible Killing Tensors

Relations and Irreducible Killing Tensors of Metric 1

In this section we determine the relations among Killing tensors using algorithm 3. The com-
putations were done in Maple, see the Maple file “ConformallyFlatPPWave1 Algorithm3”.
The generic point we used is again z = (1, 2, 3, 4). Consider the short exact sequence

0 −→ Ker ι2 −→ S2K1
ι2−→ K2 −→ Coker ι2 −→ 0. (4.10)

Algorithm 3 shows that there is one relation, that is,

dimKer ι2 = 1. (4.11)

We have that dimK2 = 28 and dimS2K1 =
(
8
2

)
= 28, so we compute that

dimCoker ι2 = 28− 28 + 1 = 1. (4.12)

Thus, there exists an irreducible Killing 2-tensor. We will show later that it is not the
Hamiltonian. Actually, Maple is able to solve the Killing 2-tensors explicitly. The irreducible
Killing 2-tensor is given by

Iq := x3((dx1)2+(dx2)2)−x1dx1dx3−x2dx2dx3−x3dx3dx4+(2x4−2x3((x1)2+(x2)2)) (dx3)2

(4.13)
or equivalently, by the quadratic integral

Iq = x3p21 + x1p1p4 + x2p2p4 − 2x3p3p4 + 2x3((x1)2 + (x2)2 + x4)p24. (4.14)

Next, we look at the short exact sequence

0 −→ Ker ι3 −→ K1 ⊗K2
ι3−→ K3 −→ Coker ι3 −→ 0. (4.15)

Algorithm 3 gives us 112 relations among the Killing tensors of rank 1 and 2:

dimKer ι3 = 112. (4.16)

It follows that
dimCoker ι3 = 84− 196 + 112 = 0 (4.17)

We conclude that all Killing 3-tensors are reducible. Since all Killing 3-tensors are reducible,
we look at the short exact sequence

0 −→ Ker ι4 −→ S2K2
ι4−→ K4 −→ Coker ι4 −→ 0. (4.18)

(If there was an irreducible Killing 3-tensor, the source space of ι4 would be K1⊗K3 instead
of S2K2.) Algorithm 3 gives us 196 relations:

dimKer ι4 = 196. (4.19)

It follows that
dimCoker ι4 = 210− 406 + 196 = 0. (4.20)

We conclude that all Killing 4-tensors are reducible. The following short exact sequence
gives us a lower bound on the number of Killing 5-tensors:

0 −→ Ker ι4 −→ K1 ⊗K4
ι5−→ K5 −→ Coker ι5 −→ 0. (4.21)
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Reducibility of the Hamiltonian

We prove that the Hamiltonian of metric 1 is reducible, i.e., it decomposes as a sum of
products of Killing 1-tensors. In algorithm 3 (step 3), we replace T by

H −
7∑
l=1

7∑
m=l

cl,mI
l
2,1I

m
2,1, (4.22)

where Ij2,1 (1 ≤ j ≤ 7) are the linear integrals up to order 2 (found in steps 1 and 2). Then
proceeding with steps 4 and 5 in algorithm 3, we obtain a solution in terms of the coefficients
cl,m.

We summarize these results in the following theorem.

Theorem 4.2.1. Consider a conformally flat pp-wave as in eq. (4.1) with f(x3) = k for
some constant k ̸= 0. The dimension of the space Kd of Killing d-tensors for d = 1, 2, 3, 4
is given by:

dimK1 = 7, dimK2 = 28, dimK3 = 84, dimK4 = 210. (4.23)

There exists one irreducible Killing 2-tensor, which is not the Hamiltonian (metric). The
Killing tensors of rank 3 and 4 are all reducible.

Proof. We can rescale the coordinates x3, x4 such that f = 1. The theorem follows from
the results for f = 1.

Relations and Irreducible Killing Tensors of Metrics 2 and 3

In this section we determine the relations among Killing tensors using algorithm 3 for metrics
2 and 3 (the results are identical). The computations were done in Maple, see the Maple
file “ConformallyFlatPPWave2 Algorithm3” and “ConformallyFlatPPWave3 Algorithm3”.
The generic point we used is again z = (1, 2, 3, 4). Consider the short exact sequence

0 −→ Ker ι2 −→ S2K1
ι2−→ K2 −→ Coker ι2 −→ 0 (4.24)

We find one relation using algorithm 3:

dimKer ι2 = 1, (4.25)

and so we compute
dimCoker ι2 = 22− 21 + 1 = 2. (4.26)

We conclude that there are 2 irreducible Killing 2-tensors. We show later that the Hamilto-
nian is irreducible. Similar to metric 1, metric 2 and 3 have an irreducible Killing 2-tensor,
which is not the Hamiltonian. Next, we look at the short exact sequence

0 −→ Ker ι3 −→ K1 ⊗K2
ι3−→ K3 −→ Coker ι3 −→ 0. (4.27)

Among the Killing tensors of rank 1 and 2 we find 70 relations:

dimKer ι3 = 70, (4.28)

and it follows that
dimCoker ι3 = 62− 132 + 70 = 0. (4.29)
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We conclude that all Killing 3-tensors of metrics 2 and 3 are reducible. We consider the
exact sequence

0 −→ Ker ι4 −→ S2K2
ι4−→ K4 −→ Coker ι4 −→ 0. (4.30)

Algorithm 3 shows that there are 105 relations:

dimKer ι4 = 105. (4.31)

Thus, we find that
dimCoker ι4 = 248− 253 + 105 = 0. (4.32)

We conclude that all Killing 4-tensors of metrics 2 and 3 are reducible.

Irreducibility of the Hamiltonian

We prove that the Hamiltonian of metrics 2 and 3 is reducible, i.e., it decomposes as a sum
of products of Killing 1-tensors. In algorithm 3 (step 3), we replace T by

H −
6∑
l=1

6∑
m=l

cl,mI
l
2,1I

m
2,1, (4.33)

where Ij2,1 (1 ≤ j ≤ 7) are the linear integrals up to order 2 (found in steps 1 and 2). Steps
4 and 5 return no solution, which means that the Hamiltonian is irreducible.

We summarize these results in the following theorem.

Theorem 4.2.2. Consider a conformally flat pp-wave as in eq. (4.1) with f(x3) = x3 or
f(x3) = (x3)2. The dimension of the space Kd of Killing d-tensors for d = 1, 2, 3, 4 is given
by:

dimK1 = 6, dimK2 = 22, dimK3 = 62, dimK4 = 148. (4.34)

There exist two irreducible Killing 2-tensors, one of which is the Hamiltonian (metric). The
Killing tensors of rank 3 and 4 are all reducible.

Relations and Irreducible Killing Tensors in Metric 4

For d = 1, 2, 3, 4, we find that the number of Killing d-tensors and the number of relations
(syzygies) among Killing d-tensors of metric 4 are identical to those of metric 1, see the
attached Maple worksheet “ConformallyFlatPPWave4 Algorithm3”. Thus, there exists one
irreducible Killing 2-tensor and the Killing 3- and 4-tensors are all reducible. However, in
constrast to metric 1, the irreducible Killing tensor of metric 4 is the Hamiltonian. We
summarize:

Theorem 4.2.3. Consider a conformally flat pp-wave as in eq. (4.1) with f(x3) = 1
(x3)2 .

The dimension of the space Kd of Killing d-tensors for d = 1, 2, 3, 4 is given by:

dimK1 = 7, dimK2 = 28, dimK3 = 84, dimK4 = 210. (4.35)

There exists one irreducible Killing 2-tensor, which is the Hamiltonian (metric). The Killing
tensors of rank 3 and 4 are all reducible.
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4.3 The Isometry Algebra of Conformally Flat pp-Waves

The previous sections deduced results on the number of Killing tensors without computing
them explicitly. In this section we study the isometry algebra structure using the explicit
form of the linear integrals.

For a generic metric of a conformally flat pp-wave, there exist 6 Killing fields ([SG86],
[BO03]) given by

I1 = x2p1 − x1p2
I2 = −ϕ′1(x3)x1p4 + ϕ1(x

3)p1

I3 = −ϕ′2(x3)x1p4 + ϕ2(x
3)p1

I4 = ϕ′1(x
3)x2p4 − ϕ1(x3)p2

I5 = ϕ′2(x
3)x2p4 − ϕ2(x3)p2

I6 = c p4,

(4.36)

where ϕ1, ϕ2 are solutions of the second order linear homogeneous ODE ϕ′′+2f ϕ = 0. There
are two special classes of conformally flat pp-waves which admit a seventh independent linear
integral in addition to the six above:

• If f = k for some constant k ̸= 0, then p3 is an integral.

• If f = k
(x3)2 for some constant k ̸= 0, then x3p3 − x4p4 is an integral. (This integral

comes from the boost (x1, x2, x3, x4) 7→ (x1, x2, ax3, a−1x4)).

The constant c in linear integral I6 can be normalized such that the brackets of the generic
case are given by

{I1, I2} = I4, {I1, I3} = I5, {I1, I4} = −I2, {I1, I5} = −I3
{I2, I3} = I6, {I4, I5} = I6.

(4.37)

We see that the center is given by Z(K1) = ⟨I6⟩. This Lie algebra is graded ([gi, gj ] ⊆ gi+j):

g = g0 ⊕ g1 ⊕ g2, (4.38)

where g0 = ⟨I1⟩, g1 = ⟨I2, I3, I4, I5⟩ and g2 = ⟨I6⟩. Thus, the nilradical (maximal nilpotent
ideal) of the Lie algebra is given by nil(g) = g1 ⊕ g2. It is a solvable Lie algebra, i.e. the
derived series g(j) terminates:

g(1) = ⟨I2, I3, I4, I5, I6⟩, g(2) = ⟨I6⟩, g(3) = 0. (4.39)

Moreover, the nilradical g1 ⊕ g2 = heis(5) is the Heisenberg algebra and g0 is generated by
a complex structure on g1. We now examine metrics 1,2,3,4.
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Metric 1

There are 7 linear integrals in metric 1 given by:

I0 =
p3√
2
, I1 = x2p1 − x1p2

I2 =
√
2 cos(

√
2x3)x1p4 + sin(

√
2x3)p1

I3 = −
√
2 sin(

√
2x3)x1p4 + cos(

√
2x3)p1

I4 = −
√
2 cos(

√
2x3)x2p4 − sin(

√
2x3)p2

I5 =
√
2 sin(

√
2x3)x2p4 − cos(

√
2x3)p2

I6 =
√
2 p4

(4.40)

The Hamiltonian of metric 1 is reducible. We can decompose the Hamiltonian into the
linear integrals, as follows:

H = −I1I6 − I22 − I23 − I24 − I25 + 2I0I6 − I3I4 + I2I5. (4.41)

The (nonzero) structural relations of the isometry algebra are given by:

{I1, I2} = I4, {I1, I3} = I5, {I1, I4} = −I2, {I1, I5} = −I3
{I2, I3} = I6, {I2, I0} = I3, {I4, I0} = −I2
{I4, I5} = I6, {I4, I0} = I5, {I5, I0} = −I4.

(4.42)

We see that the center is given by Z(K1) = ⟨I1⟩. This Lie algebra is still graded ([gi, gj ] ⊆
gi+j):

g = g0 ⊕ g1 ⊕ g2, (4.43)

where g0 = ⟨I0, I1⟩, g1 = ⟨I2, I3, I4, I5⟩ and g2 = ⟨I6⟩. Moreover, the subalgebra g0 is
generated by two commuting complex structures on g1 ∼= R2 ⊗ R2.

Metrics 2 and 3

We do the same for metric 2 (which is isomorphic to the isometry algebra of metric 3).

I1 = x2p1 − x1p2
I2 = −2 1

3AiryAi(1,−2 1
3x3)x1p4 +AiryAi(−2 1

3x3)p1

I3 = −2 1
3AiryBi(1,−2 1

3x3)x1p4 +AiryBi(−2 1
3x3)p1

I4 = 2
1
3AiryAi(1,−2 1

3x3)x2p4 −AiryAi(−2 1
3x3)p2

I5 = −2 1
3AiryBi(1,−2 1

3x3)x2p4 −AiryBi(−2 1
3x3)p2

I6 =
2

1
3

π
p4

(4.44)

The Airy functions AiryAi,AiryBi are solutions of the second order ODE ϕ′′+2x3ϕ = 0. In
particular, we see that this Lie algebra can be viewed as a subalgebra of metric 1’s isometry
algebra.
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Metric 4

The linear integrals of metric 4 are given by

I0 = x3p3 − x4p4, I1 = x2p1 − x1p2

I2 =
−1

2
√
x3

[{
√
7 cos

(√
7 log(x3)

2

)
+ 2 sin

(√
7 log(x3)

2

)}
x1p4 + 2x3 sin

(√
7 log(x3)

2

)
p1

]

I3 =
1

2
√
x3

[{
√
7 sin

(√
7 log(x3)

2

)
− 2 cos

(√
7 log(x3)

2

)}
x1p4 − 2x3 cos

(√
7 log(x3)

2

)
p1

]

I4 =
1

2
√
x3

[{
√
7 cos

(√
7 log(x3)

2

)
+ 2 sin

(√
7 log(x3)

2

)}
x2p4 + 2x3 sin

(√
7 log(x3)

2

)
p2

]

I5 =
−1

2
√
x3

[{
√
7 sin

(√
7 log(x3)

2

)
− 2 cos

(√
7 log(x3)

2

)}
x2p4 − 2x3 cos

(√
7 log(x3)

2

)
p2

]

I6 =

√
7

2
p4

(4.45)

The (nonzero) structural relations of this isometry algebra are given by:

{I1, I2} = I4, {I1, I3} = I5, {I1, I4} = −I2, {I1, I5} = −I3
{I2, I3} = I6, {I4, I5} = I6, {I0, I6} = −I6

{I0, I2} =
−1
2

(I2 +
√
7I3), {I0, I3} =

1

2
(
√
7I2 − I3)

{I0, I4} =
−1
2

(I4 +
√
7I5), {I0, I5} =

1

2
(
√
7I4 − I5),

(4.46)

We see that the element I6 is no longer central, so the isometry algebra has trivial center.
The element I6 is a common eigenvector for the adjoint representation of g (cf. Lie’s Theorem
on solvable Lie algebras). This Lie algebra is graded ([gi, gj ] ⊆ gi+j):

g = g0 ⊕ g1 ⊕ g2, (4.47)

where g0 = ⟨I0, I1⟩, g1 = ⟨I2, I3, I4, I5⟩ and g2 = ⟨I6⟩ and g1⊕ g2 = heis(5). The subalgebra
g0 is generated by a complex structure on g1 and an automorphism on g1 that commutes
with the complex structure.

Existence of irreducible Killing 2-tensor in generic case

Since metrics 1, 2 and 3 have an irreducible Killing 2-tensor which is not the Hamiltonian,
it is natural to ask whether any generic conformally flat pp-wave has an irreducible Killing
2-tensor. We can look at the explicit expression of the quadratic integral of metric 1 and
make an ansatz for the general case.

The following theorem is not a new result, it was already proven by [KT10, p. 5] using
the Koutras algorithm. However, the methods we have employed in this chapter give an
alternative view on these results. Moreover, these methods are applicable to all spacetimes
in contrast to the Koutras algorithm (which requires a homothetic Killing field).
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Theorem 4.3.1. A conformally flat pp-wave (M, g) (eq. (4.1)) with either dimK1 = 6
(generic case) or f = k ̸= 0 (second class) admits an irreducible Killing 2-tensor not being
the Hamiltonian. It is given by the quadratic integral

Iq := −x3H + x1p1p4 + x2p2p4 + 2x4p24, (4.48)

where H is the Hamiltonian of the geodesic flow.

Proof. It is readily computed that Iq is an integral. To see that Iq is irreducible, note that
the linear integrals do not depend on x4, whereas Iq does.

Remark 4.3.2. The Koutras algorithm uses a homothetic Killing field to generate a Killing
2-tensor. The homothetic Killing field here is given by L := x1p1 + x2p2 + 2x4p4. Indeed,
we have that {H,L} = constant ·H
Module Structure of Kd over K1

The space of Killing d-tensors is a module over K1 with respect to the Poisson bracket:
given Id ∈ Kd, I ∈ K1, their Poisson bracket {Id, I} is again a Killing d-tensor. Since the
Killing tensors of rank 3 and 4 are all reducible, it suffices to compute the Poisson bracket
of the quadratic integral Iq with the linear integrals. For the generic case (in particular
metrics 2 and 3) we obtain the following brackets

{Iq, I6} =
I26
c
, {Iq, I1} = 0, {Iq, I2} = c I6I2, {Iq, I3} = c I3I6

{Iq, I4} = c I4I6, {Iq, I5} = c I5I6.

(4.49)

For metric 1 we get the above together with the additional bracket {Iq, I0} = cH. These
brackets show that the quadratic integral Iq is not a good candidate to prove integrability of
the geodesic flow. Indeed, Iq only Poisson commutes with the linear integral I1. Also, note
that {Iq,K1} := {{Iq, I} : I ∈ K1} ⊆ ι2(S

2K1). (This is also true for metric 1, because
in that case the Hamiltonian is reducible.) For metrics 1, 2, 3, 4, we have that the Hamil-
tonian is the only Killing tensor that commutes with all other Killing tensors (up to order 4).

Note that the Poisson algebra (4.49) is weighted. If we assign the weights w(I0) = w(I1) = 0,
w(I2) = w(I3) = w(I4) = w(I5) = 1 and w(I6) = w(Iq) = w(H) = 2, then the Poisson
bracket of two integral with weights w1 and w2 is an integral of weight w1 + w2.

4.4 Integrability of Conformally Flat pp-Waves

Theorem 4.4.1. The geodesic flow of a conformally flat pp-wave (M, g) is integrable.

Proof. Consider the function F := (H, I1, I3, I5) : T
∗M → R4, where I1, I3, I6 are the linear

integrals as in eq. (4.36). In view of the brackets (4.37), we see that the component functions
are pairwise Poisson-commuting. The component functions are linearly independent almost
everywhere, because the Jacobian matrix

(
∂F i

∂pj

)
1≤i,j≤4

=


−2p1 −2p2 2p4 2p3 − 4f(x3)((x1)2 + (x2)2)p4
0 0 0 1

ϕ1(x
3) 0 0 −ϕ′1(x3) x1

0 −ϕ2(x3) 0 −ϕ2(x3) x2

 (4.50)

has full rank almost everywhere.
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In contrast to the Kerr metric, the linear integrals imply integrability of the geodesic flow.
By the Arnold–Mineur–Liouville theorem, the geodesic equations can be integrated and its
geodesics exhibit regular dynamics (outside of singular points).

4.5 Applications

We mention some applications of the results in this chapter.

Penrose Limits. As discussed in Chapter 3, Penrose limits are plane waves associated to a
null geodesic in spacetime. The number of Killing vectors is hereditary, which means that
if the original spacetime has N Killing vectors, then the resulting Penrose plane wave also
has atleast N Killing vectors. Thus, the spacetimes that have a conformally flat pp-wave as
their Penrose limit, have no more than 7 Killing vectors. In Chapter 3 we mentioned that
Penrose limits of null geodesics approaching a singularity have wave profile proportional to

1
(x3)2 . For example, the Penrose limit for a singular FLRW spacetime is in the same class as

metric 4 ([Bla11, p.63]). Furthermore, the Penrose limit of the Schwarzschild metric for a
null geodesic with constant r gives rise to a conformally flat pp-wave with f(x3) = constant
([Bla11, p.58]). To summarize, the results obtained in this chapter have implications for
the (non)existence of Killing tensors in Penrose limits.

Superintegrability. Even though the quadratic integral Iq is not needed to prove integrabil-
ity, it does restrict the possible motion of the geodesics. This phenomenon, having more
integrals than necessary, is called ‘superintegrability’. The main point is that in a ‘superin-
tegrable’ system of dimension 2n the motion does not occur on an n-dimensional torus (or
cylinder in the non-compact case) but on one with dimension smaller than n.

Extending Spacetimes. Integrals can also be used for extending spacetimes ([Ger69]). This
is important for the global analysis of spacetimes.
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Chapter 5

Absence of Killing Tensors in
Wils Metric

The Wils metric is given by

g = 2x1 dx3dx4− 2x4 dx1dx3 + {2f(x3) x1((x1)2 +(x2)2)− (x4)2} (dx3)2− (dx1)2− (dx2)2

(5.1)
where f is a nonzero function of the coordinate x3. For f = 0 this metric is of constant
sectional curvature and thus admits the maximal number of Killing tensors, all of which are
reducible (cite Thompson 88). The original motivation for studying this metric ([KM96])
was to find an example of a metric without symmetries that has vanishing scalar curvature
invariants. This is in contrast to the flat metric which has maximal symmetry. In this paper
A. Koutras and C. McIntosh show in particular that a Wils metric generically has no Killing
fields. The purpose of this chapter is to give a precise characterization of f for which the
Wils metric does admit Killing 1-tensors and Killing 2-tensors (apart from the metric).

To start our study of the Wils metric, we shall consider three cases

• Metric 1: f(x3) = 1

• Metric 2: f(x3) = x3

• Metric 3: f(x3) = (x3)2.

We apply Cartan’s prolongation method (algorithm 2) to the PDE

E = {F = 0 : F ∈ coeffsp({H, Id})} (5.2)

to compute the number of Killing d-tensors for d = 1, 2, 3, 4. After these computations, we
consider a Wils metric with arbitrary f . By applying algorithm 4, we deduce the precise
form of f for which a Wils metric admits a Killing 1-tensor and a Killing 2-tensor (apart
from the metric). This leads to theorems (5.2.1) and (5.2.3).
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5.1 Dimensions of Killing Tensors

Metric 1 (f(x3) = 1)

We present the results of algorithm 2 applied to metric 1 for the degrees d = 1, 2, 3, 4. In the
tables below we collect for a given degree d, the k’th prolongation E(k) together with its value
δk obtained from step 3. The generic point we used for algorithm 2 is z := (1, 2, 1, 4) ∈ R4.
See the attached Maple worksheet “Wils1 Algorithm2.mw”.

Linear E E(1) E(2) E(3) E(4) E(5)

δ 10 10 7 4 1 1

Table 5.1: The values of δ obtained in algorithm 2 (step 3) for d = 1.

Quadratic E E(1) E(2) E(3) E(4) E(5) E(6)

δ 30 50 50 31 14 2 2

Table 5.2: The values of δ obtained in algorithm 2 (step 3) for d = 2.

Cubic E E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8)

δ 65 125 175 175 115 . . . 3 2 2

Table 5.3: The values of δ obtained in algorithm 2 (step 3) for d = 3.

Quartic E E(1) E(2) E(3) E(4)

δ 119 245 385 490 490

cont’d E(5) E(6) E(7) E(8) E(9)
δ 353 135 4 3 3

Table 5.4: The values of δ obtained in algorithm 2 (step 3) for d = 4.

The sequence of δ-values decreases quickly after reaching Frobenius type. This allows us to
compute the number of Killing 4-tensors in a reasonable amount of time (2-3 hours). We
conclude that

dimK1 = 1, dimK2 = 2, dimK3 = 1, dimK4 = 3. (5.3)

The Killing vector is given by ∂x3 , because the metric coefficients do not depend on the
coordinate x3. The three reducible Killing 4-tensors are given by (∂♭x3)4, g(∂♭x3)2, g2.

66



Metric 2 (f(x3) = x3)

We present the results of algorithm 2 applied to metric 2 for the degrees d = 1, 2, 3, 4. In the
tables below we collect for a given degree d, the k’th prolongation E(k) together with its value
δk obtained from step 3. The generic point we used for algorithm 2 is z := (1, 2, 1, 4) ∈ R4.
See the attached Maple worksheet “Wils2 Algorithm2.mw”.

Linear E E(1) E(2) E(3) E(4) E(5) E(6)

δ 10 10 7 4 1 0 0

Table 5.5: The values of δ obtained in algorithm 2 (step 3) for d = 1.

Quadratic E E(1) E(2) E(3) E(4) E(5) E(6)

δ 30 50 50 31 14 1 1

Table 5.6: The values of δ obtained in algorithm 2 (step 3) for d = 2.

Cubic E E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8)

δ 65 125 175 175 115 41 1 0 0

Table 5.7: The values of δ obtained in algorithm 2 (step 3) for d = 3.

Quartic E E(1) E(2) E(3) E(4)

δ 119 245 385 490 490

cont’d E(5) E(6) E(7) E(8) E(9)
δ 353 135 2 1 1

Table 5.8: The values of δ obtained in algorithm 2 (step 3) for d = 4.

We conclude that

dimK1 = 0, dimK2 = 1, dimK3 = 0, dimK4 = 1. (5.4)
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Metric 3 (f(x3) = (x3)2)

We present the results of algorithm 2 applied to metric 3 for the degrees d = 1, 2, 3, 4. In the
tables below we collect for a given degree d, the k’th prolongation E(k) together with its value
δk obtained from step 3. The generic point we used for algorithm 2 is z := (1, 2, 1, 4) ∈ R4.
See the attached Maple worksheet “Wils3 Algorithm2.mw”.

Linear E E(1) E(2) E(3) E(4) E(5) E(6)

δ 10 10 7 4 1 0 0

Table 5.9: The values of δ obtained in algorithm 2 (step 3) for d = 1.

Quadratic E E(1) E(2) E(3) E(4) E(5) E(6)

δ 30 50 50 31 14 1 1

Table 5.10: The values of δ obtained in algorithm 2 (step 3) for d = 2.

Cubic E E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8)

δ 65 125 175 175 115 41 1 0 0

Table 5.11: The values of δ obtained in algorithm 2 (step 3) for d = 3.

Quartic E E(1) E(2) E(3) E(4)

δ 119 245 385 490 490

cont’d E(5) E(6) E(7) E(8) E(9)
δ 353 135 2 1 1

Table 5.12: The values of δ obtained in algorithm 2 (step 3) for d = 4.

We conclude that

dimK1 = 0, dimK2 = 1, dimK3 = 0, dimK4 = 1. (5.5)
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5.2 Nonexistence of Killing Tensors in General Case

5.2.1 Linear Case

We know that the Wils metric generically has no Killing vector fields. However, the com-
putations from metric 1 show that there exist special cases of the Wils metric for which we
can find a Killing field. By application of algorithm 4, we determine the number of Killing
fields in an arbitrary Wils spacetime exactly.

Theorem 5.2.1. The Wils metric (5.1) generically has no Killing vector fields. It admits
one Killing vector if and only if f is of the form

f(x3) =
c1

(c2c23 + 2c2c3x3 + c2(x3)2 − 4)2
(5.6)

for some constants c1, c2, c3 with c1 being nonzero. If f is of this form, the Killing vector is

X := −(c2c23 + 2c2c3x
3 + c2x

3
3) ∂x3 + 2c2(c3x

4 + x3x4 + x1) ∂x4 . (5.7)

Proof. We prove this theorem by use of algorithm 4. See the attached worksheet “WilsGen-
eralCaseLinearIntegrals.mw” which is a Maple-implementation of algorithm 4. In order to
simplify the calculations we evaluate x1 = 1, x2 = 2, x4 = 4.

Step 1 and 2.) Using, the equations defining the PDE E , we express the 1-jets a11, a12, a13, a14,
a23, a

2
4, a

3
2, a

3
4, a

4
1, a

4
2 in terms of the free variables a1, a2, a3, a4, a21, a

2
2, a

3
1, a

3
3, a

4
3, a

4
4 and the

function f(x3).

Step 3.) For the first prolongation E(1), we can express all 2-jets in terms of lower order jets
without making any assumptions on f .

Step 4.) Consider E(2). If we assume that f ̸= 0, we obtain the following compatibility
conditions:

a31 = 0, a33 = −a
1f + f ′a3

2f
, a44 = 0. (5.8)

We are left with 7 free variables. For E(3), we obtain the additional compatibility conditions:

a1 = 0, a22 = a43, a
2
1 =

2a2f2 − 4a3ff ′ + 2a3ff ′′ − 3a3(f ′)2

6f2
(5.9)

We are left with 4 free variables. The prolongation E(4) gives three additional compatibility
conditions: a43 = 0 and two expressions for a2 and a4. We are left with 1 free variable,
namely a3. The prolongation E(5) does not give an additional compatibility condition if and
only if f is a solution of the ODE

f ′′′ =
3f ′(6ff ′′ − 5f ′)2)

4f2
. (5.10)

The solutions of this ODE are given by

f(x3) =
c1

(c2c23 + 2c2c3x3 + c2(x3)2 − 4)2
(5.11)
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for some constants c1, c2, c3 with c1 ̸= 0. If this differential equation is not satisfied, then
there are no Killing vector fields for the Wils metric. The Killing vector for Wils metric
with f as in (5.11) is given by

X := −(c2c23 + 2c2c3x
3 + c2x

3
3) ∂x3 + 2c2(c3x

4 + x3x4 + x1) ∂x4 . (5.12)

Remark 5.2.2. Note that the above computation is consistent with the results obtained
from algorithm 2. We start with 10 free variables, then 7, then 4, then 1 and finally 1 or 0
depending on the function f .

5.2.2 Quadratic Case

We continue to play this game for the quadratic case.

Theorem 5.2.3. The Wils metric (5.1) generically has no Killing 2-tensors apart from the
metric. It admits one additional Killing 2-tensor if and only if f is of the form

f(x3) =
c1

(c2c23 + 2c2c3x3 + c2(x3)2 − 4)2
(5.13)

for some constants c1, c2, c3 with c1 being nonzero.

Proof. We prove the theorem with help of algorithm 4. See the attached Maple work-
sheet “WilsGeneralCaseQuadraticIntegrals.mw”. Note that a quadratic polynomial I =
aij(x)pipj in four variables has 10 coefficient functions. It is readily seen that there are 10
0-jets, 40 1-jets and 100 2-jets.

Step 1 and 2. We express 20 1-jets in terms of 30 free-variables (10 0-jets and 20 1-jets).
Collect these expressions into sub1. We prolong to E(1). Substitute the expressions sub1
into the equations defining the first prolongation. Next, we express 80 2-jets in terms of 50
free variables, namely 10 0-jets, 20 1-jets and the 20 remaining 2-jets.

Step 3. Consider the prolongation E(2), which is of Frobenius type. We can express all 3-jets
in terms of the 50 free variables without making any assumptions on f .

Step 4. The prolongation E(3) gives 19 compatibility conditions, and so we are left with 31
free variables. The prolongation E(4) gives an additional 17 compatibility conditions, we are
left with 14 free variables. The prolongation E(5) gives 12 compatibility conditions and the
potential compatibility condition

a33 (4ff ′′′ − 18ff ′f ′′ + 15(f ′)3) = 0. (5.14)

If the second factor is nonzero, we obtain a 13th compatibility condition a6 = 0. In that
case, we are left with 1 free variable. The corresponding Killing 2-tensor is the metric. If f
satisfies the ODE (5.10) then the second factor is identically zero. Consequently, we cannot
resolve for the 0-jet a33, and so we have 2 free variables. The two corresponding Killing
2-tensors are given by the metric and the symmetric product of the vector field (5.12) with
itself.

Corollary 5.2.4. The Wils metric (5.1) admits no irreducible Killing 2-tensors for any f .

70



5.3 Applications

We mention some applications of Killing tensors in the Wils metric.

VSI Spacetimes. The Wils metric is an example of a spacetime with vanishing curvature
invariants which generically has no nontrivial Killing 1- and 2-tensors. One could pose the
question if ‘hidden symmetries’ (i.e. higher order Killing tensors) are responsible for the
vanishing of scalar curvature invariants. Corollary (5.2.4) show that the Wils metric admits
no irreducible Killing 2-tensors. Moreover, our computations for metrics 1,2,3 show that in
these cases there are no irreducible Killing 3- and 4-tensors as well.

Tensor Tomography. Suppose we have a pseudo-Riemannian submanifold (M, g) of a pseudo-
Riemannian manifold (N, gN ) without boundary. Consider the unit cotangent bundle SM
which is defined as SM := H−1(1) where H is the Hamiltonian of the geodesic flow. For a
given ξ ∈ SM define τ(ξ), the travel time, to be the time when the N -geodesic with initial
data ξ ‘leaves’ (M, g) and ‘enters’ the ambient manifold N . Explicitly, one defines

τ(ξ) = inf{t > 0 : γξ(t) ∈ N\M} (5.15)

where γξ is the N -geodesic with initial data ξ. We assume that the travel time is finite for
all ξ ∈ SM . Let ϕtN denote the geodesic flow on the ambient manifold N . The geodesic ray
transform If of a function f ∈ C∞(SM) is defined by

If(ξ) :=

∫ τ(ξ)

0

f(ϕtN (ξ)) dt (ξ ∈ S+M).

(Here S+M := {ξ ∈ SM : g(ν, ξ♯) ≤ 0} with ν an outward-pointing normal to ∂M .)

The problem of tensor tomography is to recover the function f from its geodesic ray trans-
form ([PSU13]). In applications, one would like that the geodesic ray transform is injective
(in a suitable way). The absence of Killing tensors is useful in this setting, because the
geodesic ray transform of an integral of motion reduces to the function ξ 7→ c τ(ξ) for some
constant c. Thus, we cannot recover an integral from its geodesic ray transform.

Linear Stability of Einstein Equations. Marsden and Arms [AM79] show that the absence of
Killing fields implies linear stability of the Einstein equations with respect to some Cauchy
hypersurface.
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Outlook

The starting point of this thesis was to view the geodesic flow as a Hamiltonian system on
the cotangent bundle of a pseudo-Riemannian manifold. By Noether’s theorem we have a
bijection between Killing vectors (symmetries) and conserved quantities (linear integrals).
Generalizing the Lie bracket of vector fields to the Schouten–Nijenhuis bracket extends this
duality to a one-to-one correspondence between Killing tensors and integrals which are poly-
nomial in momenta. The Poisson bracket of the Hamiltonian with an arbitrary polynomial
(in momenta) leads to a PDE on its coefficient functions.

Since the condition for a polynomial to be an integral is a PDE, we then moved on to the
study of PDEs from the geometric perspective. By means of prolongation and projection
one can obtain compatibility conditions, essentially new equations which must be satisfied
by solutions of the PDE. For systems of linear PDEs of finite type (such as the Killing
equations) Cartan’s prolongation method computes the number of solutions through linear
algebra. Subsequently we can also obtain the syzygies among Killing tensors using algorithm
3. Combining these results then proves the (non)existence of irreducible Killing tensors in
the spacetime!

In Chapter 4 we applied these methods to several examples of conformally flat pp-waves.
We reproved a result by Keane and Tupper [KT10] that there exists an irreducible Killing
2-tensor in generic conformally flat pp-waves. Moreover, we proved by Cartan’s prolonga-
tion method that all Killing 3- and 4- tensors in these examples are reducible.

Finally, we studied the Wils metric. For several examples of a Wils metric, we showed
that there are no Killing tensors up to degree 4 apart from the Hamiltonian (and possibly
a Killing vector). Next we considered the entire family of the Wils metric, which has as
parameter a function of one variable. By application of algorithm 4 we deduced the exact
form of the function for which the Wils metric admits one Killing vector. This makes a
statement of Koutras and McIntosh [KM96] about the Wils metric [Wil89] more precise.
We also showed that the only additional Killing 2-tensor in a Wils metric comes from this
Killing vector (if it exists). In particular, we obtained that any Wils metric admits no irre-
ducible Killing 2-tensors.

To conclude, we hope that this thesis convinced the reader that Cartan’s prolongation
method is a feasible approach to finding higher rank Killing tensors (or disproving their
existence). Further research would include applying these methods to other spacetimes
with the hope that we can find new examples of spacetimes admitting Killing tensors of
rank 3 or greater. Finding such examples would provide testing ground.
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Analyse non linéaire. Vol. 28. 1. 2011, pp. 75–90.

[KT10] Aidan J Keane and Brian OJ Tupper. “Killing tensors in pp-wave spacetimes”.
In: Classical and Quantum Gravity 27.24 (2010), p. 245011.

[KVLG17] Boris S Kruglikov, Andreas Vollmer, and Georgios Lukes-Gerakopoulos. “On
integrability of certain rank 2 sub-Riemannian structures”. In: Regular and
Chaotic Dynamics 22.5 (2017), pp. 502–519.

[Lee13] John M Lee. “Smooth manifolds”. In: Introduction to Smooth Manifolds. Springer,
2013, pp. 1–31.

[Lee16] John M Lee. Riemannian manifolds: an introduction to curvature. Vol. 176.
Springer Science & Business Media, 2016.

[Lew57] Hans Lewy. “An example of a smooth linear partial differential equation with-
out solution”. In: Annals of Mathematics (1957), pp. 155–158.
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