
Faculty of Engineering Science and Technology
Department of Computer Science and Computational Engineering

Spatial Mapping Using HoloLens 2
A Proposal for Improvement and an Analysis of Inner Workings

Casper Andrè Levoll-Steen
Master thesis in Applied Computer Science, Narvik, May 2022

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2022 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“No plan survives first contact with the enemy.”
–Helmuth von Moltke

“The most common error of a smart engineer is to optimize a thing that
should not exist.”

–Elon Musk

Abstract
In this thesis we focus on improving the spatial mapping of Microsoft’s aug-
mented reality glasses HoloLens 2. Firstly, an in depth analysis of innerworkings
and limitations, based on public resources, is conducted. This is then followed
by a series of experiments in a small and simple indoor environment, the ex-
periments are designed to extract additional information about the mapping
which could not be found through public resources. Some of the experiments
have also been conducted with a light detection and ranging (LiDAR) device
of the type Velodyne VLP–16. A comparison between the two indicate that
HoloLens 2 is able to perform at the same level.

The information from the analysis and experiments provide a strong foundation
for improvement of the mapping. Only a simple algorithm have been imple-
mented and tested, but in chapter 6 a series of recommendations and ideas
for how to proceed with this project are listed. The implemented algorithm
uses plane fitting to “pull” points within a certain distance onto the plane.
This helps to improve structures that were originally flat, such as walls and
floors.

Acknowledgements
Firstly, I would like to thank Børre Bang and my supervisors Tatiana Kravetc,
Aleksander Pedersen, and Tanita Brustad for the tips, feedback and resources
they have given me along the way.

Secondly, I would like to thank my family, Arild, Bente, Dorthe, Erle, Faya, and
Siri, for all the love and support you have given. Without you my education
would have been a lot harder and I would not have been able to accomplish
all the things that I have.

I am also thankful for the support frommy classmates Magnus Hanssen,Markus
Tobiassen, and Tanja Henriksen. Without you I might not have been able to
finish my degree on time.

Lastly, I would like to thank two unsung heroes that have helped keeping my
spirit up: the coffee machine and the 49” widescreen monitor. My education
would have been a lot more tiresome and frustrating without you.

Contents
Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Thesis structure . 1
1.2 Background . 1

2 About HoloLens 2 5
2.1 Position tracking . 6
2.2 Depth sensor . 7
2.3 Displays . 7
2.4 Processors . 9
2.5 Spatial mapping . 12
2.6 Scene understanding . 13

3 Problem description 17

4 Analysis of the spatial mapping 19
4.1 Environment . 19
4.2 Experiments . 23
4.3 Choice of technology . 25

4.3.1 Author’s experience 26
4.3.2 Review of tools and libraries 26
4.3.3 Chosen setup . 31

4.4 Results . 32
4.4.1 HoloLens 2 . 32
4.4.2 LiDAR . 47

5 Improvement of mesh 53
5.1 Method . 53
5.2 Results and discussion . 54

6 Conclusion and future work 57

Bibliography 59

Appendices 67

Appendix A Source code and setup 67

Appendix B Original project description 69

vii

1
Introduction
1.1 Thesis structure

Chapter 1 gives a small backstory and introduction to the theme of this thesis.
Chapter 2 presents all the relevant information about HoloLens 2 that is obtain-
able through official sources. Chapter 3 presents the author’s interpretation
of the given task, and limitations made based on the given time-frame and
information gathered in chapter 2. Chapter 4 presents an in-depth analysis of
the spatial mapping meant to extract additional information which could not
be found through official data. Chapter 5 presents and discusses the proposed
method for improvement of the mapping. Lastly, chapter 6 summarize the
project, and gives recommendations and ideas for how to proceed with this
project.

Appendix 𝐴 provides instructions for how to access the source code, original
data, and how to set up and run the applications. The original task description
is attached in Appendix B.

1.2 Background

The term mixed reality (mr) was introduced in 1994 in a paper by Paul
Milgram and Fumio Kishino [62, 38], it is a spectrum with the physical world
on one side and the virtual world on the other. Between the two extremes
you get a mix of the physical and virtual world in various degrees. Perhaps
the more familiar mixes include augmented reality (ar), virtual reality (vr),
hand-tracking, spatial audio, and spatial mapping – which is the focus of this
thesis.

1

2 chapter 1 introduction

Figure 1.1: Venn-diagram of the interaction between humans, computers and environ-
ments [38].

Spatial mapping1 is a part of the computer vision (cv) field, and its purpose
is to provide a detailed representation of real-world surfaces. It is an essential
part of making holograms look like they interact with the real world. Early
work on this topic, such as Lawrence Roberts in 1963 [67] andMarc Pollefeys in
1998 [22], consisted of extracting 3D-information from 2D images. Today depth
sensors in various formats are the most common way to extract 3D-information
in mr context. Especially time of flight (tof) sensors, which “flood” the scene
with infrared light and measures the time it takes for the light to bounce back,
are widely used.

1. Also known as 3D surface reconstruction

1.2 background 3

(a) Spatial mapping wireframe mesh. (b) Spatial mapping solid mesh.

(c) Structured light concept, used on Kinect v1
[16].

(d) Time of flight concept [25].

Figure 1.2: Examples of depth sensors and how spatial mapping can be visualized in
an application.

Microsoft’s Kinect camera is a tof sensor2 and was first released as a comple-
ment to the Xbox 360 gaming console in 2010. The low price and quality of
the camera, combined with the fundamental work of i.a. Curless and Levoy
in [4], Newcombe et al. in [63], Hoppe in [13] and Klein and Murray in [21],
quickly made it popular with scientists, engineers and hobbyists. It helped lay
the foundation formr and spatial mapping as we know it today [84, 65].

2. Not the 1st generation

4 chapter 1 introduction

(a) From left to right: Kinect v1, v2, and v4
(Azure Kinect) [71].

(b) Diagram of components on Azure Kinect
[40].

Figure 1.3: Kinect cameras.

vr technology has seen a massive increase in interest and development the
last decade, but it is not a new concept, and can in fact be traced back to
early 1960s. Around the same time as Lawrence Roberts published his PhD on
computer vision; Morton Heilig got patents on a pair of vr-glasses [28] and a
vr simulator [27].

Fast forward almost 60 years to 2019 and we arrive at the launch of Microsoft’s
HoloLens 23, which is the 2nd generation of their cutting edge ar glasses
and the research object of this thesis. The glasses are fully self-contained and
have many sensors and features. For depth sensing and tracking in particular
the glasses are equipped with an Azure Kinect camera module, an inertial
measurement unit (imu), and 4 head tracking cameras.

(a) HoloLens 2.
(b) VR glasses from 1960, named “Stereoscopic

Television for Individual Use” [28].

Figure 1.4: Illustration of HoloLens 2 and VR glasses from 1960.

3. Hereinafter referred to as “HoloLens” or “the glasses”

2
About HoloLens 2
The aim of this chapter is to use existing resources to create a solid foundation
for how the glasses work, with special attention to spatial mapping and ren-
dering. This foundation will be used when a deeper analysis of the mapping is
done in chapter 4. The following sources have been used to gather information:
Microsoft documentation [39, 43, 44, 45, 46, 40, 49, 50, 51, 47, 42], two talks
from Marc Pollefeys [65, 64], a talk from Alex Kipman [18], a talk from Elene
Terry [70], notes from Elene Terry’s talk [5], an evaluation of Azure Kinect
[71], and documentation for research mode [80, 79, 78].

Figure 2.1: Overview of hardware components [70].

5

6 chapter 2 about hololens 2

2.1 Position tracking

Figure 2.2: Close-up of the sensors for spatial mapping and position tracking [39].

The glasses use 4 gray-scale cameras and an imu to orient itself. Two of the
cameras point forward and the other two to the side, at a high level their
functionality can be compared to human stereo and periphery vision. They
operate at 30 FPS and 640 × 480 resolution, and are used to help avoid
accumulating drift by predicting motion and detecting landmarks. Since the
cameras can recognize landmarks, the glasses also have the ability to remember
locations they have visited. The imu is of the type LSM6DSM [69] and consists
of an accelerometer for linear acceleration along the x, y and z axes (and
gravity), a gyroscope for rotations, and amagnetometer for absolute orientation
estimation. Together they can perform visual-inertial simultaneous localization
and mapping (vislam) with low drift and latency.

2.2 depth sensor 7

2.2 Depth sensor

Figure 2.3: The Azure Kinect module separated from its housing [18].

As mentioned in section 1.2 the depth sensor uses the tof concept and consists
of a shutter sensor with a resolution of 1 MP and two lasers. The lasers emit
photons and the shutter “measures” the returning photons. One laser points
downward and is used for articulated hand tracking (ahat), it operates at a
wide angle and 45 FPS up to 1 meter away. The other laser points forward
and is used for computing the spatial mapping on the glasses, it operates at a
narrow angle and 1–5 fps.

2.3 Displays

The human eye is not able to focus on objects as close as the HoloLens displays.
In order to solve this problem, a branch of optics known as waveguides are
used, in short the light-waves/photons are guided to the back of the eye. Each
display consists of 3 micro electro mechanical system (mems) lenses, one for
each of the colors red, green and blue, and each lens consists of millions of
mirrors/gratings (about 100nm in size). When a photon enters the lens it
bounces between these mirrors until it hits total internal reflection (tir), and
shoots to the back of the eye. The displays have a holographic resolution of 2K
and a holographic density of >2.5k radiants (light points per radian).

8 chapter 2 about hololens 2

Figure 2.4: A display, the brown/yellow area are the lenses.

3 lasers per eye are used to emit red, green and blue light. In the process
of distributing the light, it first hits a fast tracking mirror which oscillates at
12kHz, and then a slow tracking mirror oscillating at 120Hz. The fast mirror
is responsible for the horizontal direction and the slow mirror for the vertical.
Note that this is a simplified explanation, there are other processes to, such as
dis-speckling1 of the light.

1. Speckles = granular pattern

2.4 processors 9

Figure 2.5: Illustration of waveguide process [18].

Figure 2.6: View of the fast tracking mirror under a microscope. The mirror spreads
the light horizontally [18].

2.4 Processors

There are 2 components on the glasses that are responsible for computation
and connectivity: a custom-made holographic processing unit (hpu) located
at the front, and a system on a chip (soc)2 located at the back. Each of them

2. Also known as application processor

10 chapter 2 about hololens 2

are designed to handle specific workloads, and they communicate via one PCle
2.0 connection at up to 100 MB/s. The hpu is responsible for receiving and
processing all raw sensor data and making final adjustments on holograms
when they are returned from the soc. The soc is a Qualcomm Snapdragon
850 Compute Platform [66] and is responsible for handling the processed data,
applications, connections, storage, memory, and CPU- and GPU-operations. It
is important to note that there is a strict separation between front and back;
the soc only gets results and API-calls (e.g. hand- and eye-position).

Figure 2.7: Close-up of the hpu and soc. The two components on either side of the
HPU are the light engines [78].

Since the displays are see-through, which means that the real world comes
in at 0 ms latency, it is necessary to also have low latency on the holograms.
When the user moves around, the inverse motion have to be applied to the
holograms to make it look like they belong in the real world. If the hologram-
latency goes above 9ms the user will start to notice lagging [18, 65]. Figure
2.8 illustrates the process that makes it possible to stay below the 9ms limit.
First the hpu predicts where the glasses will be when it is time to render an
image (rendering-time is also taken into account). When the image is done
rendering and ready for drawing, a last-second late stage reprojection (lsr) is
done. This essentially shifts/warps the image a bit to get the correct viewpoint
based on the latest imu data.

2.4 processors 11

Figure 2.8: An illustration of the pipeline from raw sensor input to display [70].

Figure 2.9: Detailed view of the different parts of the hpu. DNN = deep neural
network AI core (makes inferences on raw data), R2D = raw data to
depth data, SR = surface reconstruction, HeT = head tracking, ET = eye
tracking, LSR = late stage reprojection [65].

12 chapter 2 about hololens 2

2.5 Spatial mapping

There are three ways of acquiring the spatial mapping data, but only one of
them are suitable for deployed applications if you want to manipulate the data
real-time. The first method is to acquire the raw point clouds by putting the
glasses in “research mode”, which provides access to an extra set of API-calls.
However, this mode is not intended for applications in enterprise environments
or in other distribution channels such as Microsoft Store [42].

(a) The real model (puzzlebox on
a table).

(b) The resulting point cloud consisting of more than
7 000 000 points (the entire cloud is not visible in fig-
ure).

Figure 2.10: An illustration of what an extracted point cloud can look like.

Before the second and third method is presented, an explanation of how
the glasses store the environment is necessary. As the glasses explore the
environment they divide it into multiple surfaces in a way that makes sense
for them. Each mesh3 has its own globally unique identifier (guid), and lives
in its own local coordinate system. API-calls exists for transforming between
these systems (and the global system) [61]. All coordinate systems use meters
as unit for length.

The second method is through the Windows Device Portal, which is a developer
tool that lets you configure and manage the glasses and can also help to debug
applications. Figure 2.11 illustrates the “3D View” tool which lets you see the
mapping and also save it in .obj format. With this method you can not extract
the data in real-time and you can not manipulate it in an application.

3. The terms “surface” and “mesh” will be used interchangeably, but they mean the same

2.6 scene understanding 13

Figure 2.11: 3D View in Device Portal, the blue mesh is the mapping.

The last method is to use the API-calls that are available to applications in
normal mode. The basic flow is that the glasses continuously explore and
improve its internal understanding of the environment. An application can
express interest in this information by subscribing to an update event and
specifying a bounding volume (e.g. bounding box, sphere or frustum). When
the set of surfaces within that volume has changed, the application is notified
and receives information which it can reason about (either add, update or
remove a surface). For each mesh it is possible to ask the glasses to compute
a triangulation with a maximum resolution (triangles per cubic meter). The
application can then draw, manipulate and export this data as it sees fit (but it
has no effect on the glasses’ internal understanding).

2.6 Scene understanding

Scene understanding is designed to make applications environmentally aware
by providing developers with a high-level representation of the environment.
It can be thought of as a wrapper of helper-functionality around the spatial
mapping. It is important to note that it can be computationally expensive to
compute scene understanding (up to multiple seconds).

14 chapter 2 about hololens 2

The understanding can be computed in 3 (related) categories:

• A watertight environment by using AI and the spatial mapping to make
inferences about the planar structure of the environment as shown in
figure 2.12𝑏

• Plane regions (not watertight) based on the spatial mapping (called
Quads)

• A mesh/triangulation that aligns with the planar surfaces (spatial map-
ping)

The environment is built using the following constructs:

• SceneComponents – the most basic decomposition, they have their own
unique ID and can for instance be a mesh, quad or a bounding box

• SceneObjects – represents real world objects such as background, wall,
floor, ceiling, and platform

• SceneMesh – an approximated triangulation of a SceneComponent
• SceneQuad – bounded rectangular surfaces that represents 2D approxi-

mations of surfaces in the 3D world

Common use-cases for scene understanding include placement scenarios, oc-
clusion, physics, navigation, and visualization (of the constructs).
To summarize: spatialmapping provides the least amount of latency and highest
accuracy whereas scene understanding provides structure and simplicity.

(a) Scene understanding with no inferences.

Figure 2.12: Scene understanding with inferences disabled and enabled [44].

2.6 scene understanding 15

(b) Scene understanding with inferences (creates a watertight mesh).

Figure 2.12: Scene understanding with inferences disabled and enabled [44] (Cont.).

3
Problem description
This section explains the author’s interpretation of the given task, decisions
made based on the acquired information about the glasses, and limitations
made in order to meet the deadline. The original description can be seen in
appendix 𝐵.

The task consists of two parts, and they are interpreted as such: (1) analyze
limitations, weaknesses, and inner workings of the glasses with focus on spatial
mapping. This will lay the foundation for (2) developing an algorithm that
can improve the mapping in real time. There are mentioned some tools and
algorithms in the description, these are considered as suggestions for where it
can be a good idea to start.

Although it is possible to extract the raw point clouds generated by the sensors,
the focus will be on the mesh computed internally by the glasses. There are two
main reasons for this: firstly, as mentioned in figure 2.10𝑏, the raw point clouds
can easily consist of millions of points. This amount of points is not suitable
to process on the glasses, and it would take too long to develop a solution
that could handle it (e.g. remote computation). Secondly, the raw data is only
available when the glasses are in “research mode”, which would drastically
narrow the usability of the developed algorithm.

Another limitation made in order to meet the deadline is to work in a small,
simple and static environment. This implies that problems associated with
creatingworld-scale experiences [43, 14] such as drift of holograms andmultiple
coordinate systems are not taken into consideration. The goal is to find and
improve the major weak-points in simple environments first, and then gradually
transition to larger and more complex environments.

17

4
Analysis of the spatial
mapping

This chapter describes the methods, tools and results of the conducted experi-
ments. The purpose is to extract information about the spatial mapping which
was not obtainable through documentation or related work.

4.1 Environment

Microsoft’s guidelines for environment construction [48] is used as foundation
for designing the testing area. Figure 4.1 shows the entrance of the room from
the inside. Figure 4.2 shows the view from the entrance and inwards, this
perspective is assumed when referring to the walls as left or right. Figure 4.3
shows the view from the left wall, on the table is a blue flower pot flipped
upside down and a ceramic bowl, this perspective is assumed when referring
to objects relative to the table. Notice the pipes and the “double” corner at the
bottom left, this is the only “clean” corner in the room. Figure 4.4 shows the
room seen from the right wall, notice the vertical list ornaments on the wall.
Lastly figure 4.5 shows a baking bowl that was added in retrospect of the initial
experiments.

19

20 chapter 4 analysis of the spatial mapping

Figure 4.1: The entrance seen from inside the room.

Figure 4.2: View inwards from the entrance.

4.1 environment 21

Figure 4.3: The room seen from the left wall.

Figure 4.4: The room seen from the right wall.

22 chapter 4 analysis of the spatial mapping

(a) Sideview. (b) Topview.

Figure 4.5: A baking bowl.

The room and objects has the following noteworthy characteristics:

• Room
– Dimensions (WHL): 3.08m × 3.11m × 6.45m
– Fluorescent lights

∗ Frequency: 50Hz
∗ Lux-values: ∼ 600 directly under light, ∼ 200 on bright area

of wall and table, ∼ 70 on floor and darker areas (shadow)
• Flower pot

– Volume: 0.0261m3

– Dimensions:

4.2 experiments 23

• Bowl
– Dimensions:

• Electric channel above table
– Gap between table and lower edge of channel: 12.5cm
– Gap between floor and lower edge of channel: 84.5cm
– Dimensions:

• Baking bowl
– Dimensions:

All dimensions have been measured manually with a tape measure.

4.2 Experiments

Some experiments are based on related work about HoloLens 1, some on per-
sonal observations and ideas, and some have been added in retrospect due to

24 chapter 4 analysis of the spatial mapping

observations from the initial tests.
It is important to note that the experiments are not designed to do an ex-
act analysis of accuracy, but rather get indications of accuracy in a realistic
usage setting, and to get a deeper understanding of how the mapping is con-
structed. For an exact analysis the data sets need to be larger, the environment
more dynamic, and factors like warm up time [71, 14] needs to be taken into
account.

A light detection and ranging (lidar)-scanner of type Velodyne VLP-16 Puck1
[83] will be used as benchmark against the original and improved spatial
mapping.

Performance (HoloLens)

Description: measure the resource-usages of the glasses in 3 scenarios:

• When no app is running, i.e. the glasses are on, but idle
• When the app for spatial mapping is idle, i.e. not rendering or updating

meshes
• When the app for spatial mapping is running with different resolutions,

starting at 1 000 triangles per cubic meter

Purpose: see how much processing power is left for improving the meshes,
and find a reasonable trade-off between performance and mapping resolution.
The final resolution will be used to map the entire test environment, and this
mapping will be used in the subsequent experiments that require mapping
data. The scanning will try to comply with the guidelines from Microsoft [41].
Execution: each scenario will be run for 15minutes, and data will be collected
through the Device Portal. The glasses’ internal cache for spatial mapping will
be reset between each run. A bounding box of 5m×3m×3m is used as volume
for updating meshes.

IMU (HoloLens)

Description: record imu-data (accelerometer, gyroscope, magnetometer) over
a period of 30 minutes.
Purpose: measure drift of values.
Execution: the glasses will hang still on a tripod during the recording.

1. Hereinafter referred to as “the lidar”

4.3 choice of technology 25

Flat surfaces (HoloLens and LiDAR)

Description: get vertex data from the floor and walls.
Purpose: measure global accuracy and local precision. Compare the results
with the evaluation of HoloLens 1 in [17], the evaluation of Azure Kinect in
[71], and with the lidar.
Execution: use plane fitting to compute the root mean squared error (rmse)
value, measure angles between the plane normals, and measure distance be-
tween the planes.

Sharp transitions (HoloLens)

Description: get vertex data from a small and large 90◦ transition.
Purpose: measure local precision/“tightness” of sharp transitions.
Execution: measure per-vertex distance from the bounding box of the transi-
tions.

Convex/concave surfaces (HoloLens)

Description: get vertex data from convex and concave surfaces.
Purpose: see how well the glasses deal with convex and concave objects.
Yang Liu et al. in [26] found that HoloLens 1 struggles most with concave
surfaces/angles.
Execution: get vertex data from the flipped flower pot (convex), and the deep
and shallow bowl (concave). Use volume calculation and visual comparison
against reference models to determine accuracy.

Triangle coloring (HoloLens)

Description: color the triangles of each surface.
Purpose: get a better understanding of how surfaces are built and look for any
patterns.
Execution: each surface will fade from black to white (the first triangle is
black, and the last is white).

4.3 Choice of technology

An extensive study of tools and libraries has been conducted for this thesis.
The goal is to find a setup that best suits the task, makes the best use of the

26 chapter 4 analysis of the spatial mapping

author’s experience, and that makes the thesis as survey-able and transparent
as possible.

4.3.1 Author’s experience

Courses

• DTE-3610 Finite element methods, programming [76]
• DTE-3609 Virtual reality/graphics/animation - theory [75]
• DTE-3607 Advanced game and simulator programming [74]
• DTE-3605 Virtual reality, graphics and animation - project [73]
• DTE-3604 Applied geometry and special effects [72]

Tools

• Microsoft Visual Studio
• JetBrains products and solutions
• Blender

Programming languages and libraries

• C++ (11–20)
• Python
• OpenGL, glm, GLFW
• WebGL, Three.js
• Gmlib (in-house C++ library at UiT Narvik for geometric modelling)
• Boost C++ libraries
• Blaze C++ math library

4.3.2 Review of tools and libraries

OpenXR

OpenXR [52] is an API-standard created by the Khronos group. The purpose
of the API is to simplify software development for ar and vr by providing
cross-platform access to device runtimes and making applications able to run
on any system that exposes the OpenXR APIs. OpenXR also has an extension
mechanism which allows vendors to expose additional functionality beyond
the core features (e.g. scene understanding, spatial mapping and holographic
remoting for HoloLens 2).

4.3 choice of technology 27

Figure 4.6: Illustration of how OpenXR works [52].

Mixed reality toolkit

Mixed reality toolkit (mrtk) [57, 31] is a project driven by Microsoft and
its purpose is to accelerate cross-platform mr app development in the Unity
game engine. Some of the included features are scene understanding, spatial
mapping, UI controls and example scenes. There is also developed an mrtk-
version that works in Unreal Engine, however this version is at a far earlier
stage than the one for Unity.

Figure 4.7: An example scene from MRTK [57].

28 chapter 4 analysis of the spatial mapping

Windows universal samples

Universal windows platform (uwp) was introduced in Windows 10, and its
purpose is to help develop universal applications that can run on all platforms
created by Microsoft (e.g. Windows 10/11, Xbox and HoloLens). It provides
UI and asynchronous features that are ideal for internet-connected devices by
using the native API provided by the operating system. The API is implemented
in C++ and is supported in C#, Visual Basic, C++ and JavaScript [58].

“Universal Windows Platform (UWP) app samples” [32] is a repository main-
tained by Microsoft. As the name suggests, it contains a wide array of sample
apps that demonstrate the API usage patterns in the Windows Software Devel-
opment Kit for Windows 10. One app of particular interest is the “Holographic
spatial mapping sample” which demonstrates how to extract and visualize
the spatial mapping data using C++, uwp and DirectX. The visualizations
demonstrated in figures 1.2𝑎 and 1.2𝑏 are created with this app.

HoloLens2ForCV

HoloLens2ForCV [77] is a repository created by Microsoft. It provides access to
the research mode API-calls and uwp sample apps that handles the raw data
streams (depth camera, gray-scale cameras and imu). Its purpose is to make
it easier to use the glasses as a Computer Vision and Robotics research device.
The sample app “StreamRecorder” was used to extract the point cloud seen in
figure 2.10𝑏.

Holographic remoting

Holographic Remoting [55] is the process of streaming holographic content
from and to the glasses in real time. There are two main uses of this: (1)
previewing or debugging the application during development by running the
app locally in the Unity or Unreal game engines, and then stream the experience
to the glasses. (2) using the resources of a PC to power the app instead of
using the glasses’ onboard resources. This lets the user experience the app
on the glasses, while it actually runs on the PC. The first method is called
a “Holographic Remoting Player app”, and the second method is called a
“Holographic Remoting Remote app”. For the latter method it is recommended
to use the OpenXR API with either Unreal Engine, Unity or an uwp application.
A repository containing example applications can be found here [56].

4.3 choice of technology 29

Microsoft visual studio

Visual Studio [35] is an integrated development environment (ide) created by
Microsoft, it features all the tools needed to edit, debug, build and publish an
application. It is available for both Windows and Mac and comes in 3 editions:
Community (free version with the most important features), Professional (not
free, almost fully featured and designed for individuals or small teams), and
Enterprise (not free and fully featured for teams of any size). By using the
Visual Studio Installer tool you can customize the workloads/features that
you want the ide to provide, e.g. desktop development with C++, uwp
development, or game development with C++/Unreal Engine or C#/Unity.
The latest version of Visual Studio is the 2022 release which, among other
things, features significant performance improvements (by making it a 64-bit
application) and better developer tools for C++. Another thing to note is
that Visual Studio has been around for many years and is well integrated into
the development industry. This means that it comes with a large supportive
community, a lot of documentation, and many tutorials [37, 6].

Unreal Engine

Unreal Engine (ue) [10] is a game engine developed by Epic Games and is the
tool suggested in the original task description. Main features include:

• Free to use for learning, and developing internal projects. All features
are available from the beginning.

• Many free asset samples are available
• Blueprints – a ue scripting tool for assets, visuals, behaviors and ease of

use
• C++ in e.g. Visual Studio – for runtime performance, fundamental code,

engine functionality, and external libraries
• Debugging, streaming, and launch/deployment of applications
• A decent community for HoloLens
• Good tutorials such as app development [7], spatial mapping [9] and

scene understanding [53]
• Good plugins such as Mixed Reality Toolkit [31], OpenXR [30] and [29]

for research mode.

Unity

Unity [81] is a game engine developed by Unity Technologies, it has the
following main features:

30 chapter 4 analysis of the spatial mapping

• Free to use for learning, and developing internal projects. All features
are not included from the beginning.

• Many free asset samples are available
• Scripting with the C# language in e.g. Visual Studio
• Debugging, streaming, and launch/deployment of applications
• A very good community for HoloLens
• Good tutorials such as app development [33], spatial mapping [60] and

scene understanding [45]
• Good plugins such as Mixed Reality Toolkit [34], OpenXR [59] and [12]

for research mode.
• Has a tendency of getting updates and new features a while before Unreal

Engine

Rider

Rider [15] is an ide developed by JetBrains and can, among other things, be
used for writing C# for Unity and C++ and Blueprints for Unreal Engine.
The support for Unity was introduced in 2017 and has by now been deeply
integrated with the engine. At time of writing the support for Unreal Engine is
still in beta-version, which means that it could be prone to bugs and has not
had the time to build a large community. Note that there is no free version of
Rider available and that it, unlike Visual Studio, provides the same features on
Windows, Mac and Linux.

Blender

Blender [2] is an open source and free cross-platform 3D creation suite, it
supports the entire 3D pipeline such as modeling, animation, simulation and
rendering. It is also possible to customize Blender and create specialized
tools by using the Python programming language combined with the Blender
API.

CloudCompare

CloudCompare [3] is a free and open source program designed to do scientific
analysis of and comparisons between 3D point clouds and triangular meshes.
Some of its features include plane fitting and computation of curvature, density
and volume.

4.3 choice of technology 31

LidarView

ParaView is a free and open source application produced by Kitware, it pro-
vides functionality for loading, showing and interacting with data. LidarView
[20] is a wrapper-application around ParaView, and provides tools specifically
designed for lidar data, both real-time and post-processing. Functionality
of particular interest include recording and playback of scans, simultaneous
localization and mapping (slam)-algorithm for mapping without GPS/imu-
data, and exportation to “LAS” file format for further processing in other
applications.

LidarView is actually a brand-independent version of VeloView, which Kitware
is developing with Velodyne. Both provide the same functionality, but the
process for setting up VeloView can be a bit lengthy, and LidarView provides
everything out-of-the-box [20].

4.3.3 Chosen setup

The original setup for extracting and manipulating the mapping consisted
of using Unreal Engine, OpenXR, mrtk and Visual Studio combined with a
tutorial on spatial mapping [9]. This seemed like an ideal solution since the
author has experience with some of the tools, and it is relatively easy to expand
with user interface and visual effects while maintaining a high level of control
and flexibility with C++. However, as far as the author can tell, it is not possible
to extract or manipulate the mesh data, only visualize it. The “MRMesh” class
[8, 54], which doesn’t seem to have any option for extraction or manipulation,
was the closest it was possible to get to the data.

Since Unreal Engine is not an option, the chosen setup became Visual Studio
combined with the “Holographic spatial mapping sample app” from the uwp
repository. The main reasons for this are that minimum effort has to go into
learning a new tool or language and that the app is designed to solely extract
and visualize the spatial mapping, which is the most critical part of this project.
Expanding the project with e.g. scene understanding, remote rendering and
UI presents an opportunity for future work (see chapter 6).

CloudCompare, Blender, and LidarView will be used for analysis and post-
processing. The main reasons for choosing this combination is that they are
all free of charge, open source, and complement each other and the other
tools nicely. For instance a lidar-recording can be loaded and processed in
LidarView, exported to a “LAS”-format for processing in CloudCompare, which
can export it to a “ply” format for processing in Blender.

32 chapter 4 analysis of the spatial mapping

4.4 Results

4.4.1 HoloLens 2

Performance

Table 4.1 shows the collected data:

Table 4.1: Resource usage in various scenarios.

Scenario FPS CPU GPU RAM
No app 60 30% ± 10% 22.5% ± 2.5% ∼ 1.9/4.0GB
App idle 60 ∼ 50% ∼ 25% ∼ 1.9/4.0GB
1 000 t/m3 60 − 30 65% ± 5% 22.5% ± 2.5% ∼ 1.9/4.0GB
1 500 t/m3 60 − 30 65% ± 5% 20% ± 2.5% ∼ 2.0/4.0GB
2 000 t/m3 60 − 30 65% ± 5% 20% ± 2.5% ∼ 2.1/4.0GB
2 500 t/m3 60 − 30 65% ± 5% 20% ± 2.5% ∼ 2.0/4.0GB
3 500 t/m3 60 − 40 70% ± 5% 25% ± 2.5% ∼ 2.0/4.0GB
4 500 t/m3 60 − 30 65% ± 5% 20% ± 2.5% ∼ 1.8/4.0GB
8 000 t/m3 60 − 25 65% ± 5% 17.5% ± 2.5% ∼ 1.9/4.0GB

The major takeaways from this experiment are that the CPU is the limiting
factor, and that once the CPU reaches about70% utilization the process throttles
and FPS decreases. In the scenarios where the mapping application is running,
the FPS starts at 60 and after 5-8 minutes it has dropped and settled at a lower
value, usually around 30 FPS. If the app is idle then around 50% of CPU is
available to use for improving the mesh.

Figure 4.8: A snapshot of the overview in the Device Portal.

4.4 results 33

8 000 triangles per cubic meter is set as a reasonable trade-off between res-
olution and performance, 25–30 FPS is okay as long as no fast or sudden
movements are executed. This of course is a personal opinion, people respond
differently to VR experiences as described by Barrett in [1].

Figure 4.9: Original scan of the room, the roof and the mesh outside the windows
will not be used in the experiments.

Figure 4.10: The model after removing the roof and the mapping outside the window.

34 chapter 4 analysis of the spatial mapping

Figure 4.11: All meshes in their own local coordinate system.

IMU

The values in figure 4.12 and 4.14 has been normalized to a value between
−1 and 1 in order to make the x, y, and z values fit into the same graph. See
appendix 𝐴 for how to access the original data.

Figure 4.12: Distribution of normalized values for accelerometer.

4.4 results 35

Table 4.2: Additional data for accelerometer (not normalized).

X Y Z
Average/mean 9.80842 −0.76339 −0.20520
RMSE/Std. Dev. 0.00600 0.00899 0.00836
Max value 9.86962 −0.73000 −0.16858
Min value 9.75222 −0.80004 −0.23655

Figure 4.13: Distribution of values for gyrometer.

Table 4.3: Additional data for gyrometer.

X Y Z
Average/mean −0.00011 0.00129 0.00162
RMSE/Std. Dev. 0.03384 0.03354 0.03268
Max value 0.13319 0.14212 0.13457
Min value −0.17199 −0.12452 −0.12411

36 chapter 4 analysis of the spatial mapping

Figure 4.14: Distribution of normalized values for magnetometer.

Table 4.4: Additional data for magnetometer (not normalized).

X Y Z
Average/mean 408.15000 434.40000 −56.70000
RMSE/Std. Dev. 1.19895 1.11052 0.88789
Max value 410.85000 438.45000 −51.90000
Min value 402.90000 425.55000 −58.95000

Figure 4.15: Illustration of the setup, the tripod is of type “Manfrotto Befree GT”.

4.4 results 37

Flat surfaces

Table 4.5 shows the results from plane-fitting done in CloudCompare, and the
data from the evaluation of HoloLens 1 in [17]. The list-ornaments may have
slightly corrupted the rmse value of the left wall.

Table 4.5: Plane-fitting data of flat surfaces.

Right wall Left wall Floor HoloLens 1
RMSE/Std.
Dev.

0.00571 0.00643 0.00959 0.02500

Normal [−0.22076,
0.00201,
0.97533]

[−0.22678,
0.00450,
0.97394]

[0.00004,
0.99999,
0.00297]

Center (2.069,
0.607,
−1.447)

(1.271,
0.375,
1.540)

(1.706,
−1.510,
0.053)

No. vertices 820 892 1 718 4 002 (10
planes)

The data in table 4.5 indicate that there is an improvement in accuracy going
from HoloLens v1 to v2, and that the standard deviation of ≤ 17mm stated
in Microsoft documentaion [40], and further backed up by Tölgyessy et al. in
[71], is true.

The shortest distance between the right wall center and the left plane is 3.089m,
which is 9mm longer than the measured 3.08m. The angle between the wall
normals is 0.38◦, this gives a maximum distance deviation of ~±6mm per
meter. The angle between the right wall normal and the floor is 89.72◦, which
is 0.28◦ off from the ideal 90◦.

Figures 4.16 and 4.17 illustrate how the distances between the mesh and the
fitted plane is distributed for the floor and right wall. As can be seen, the meshes
have a tendency to “dip” along the edge, i.e. where it is about to transition into
another object (e.g. floor to wall). Based on results in [71], the higher rmse
value of the floor is most likely due to the lower reflectivity, and not the angle
of scanning.

38 chapter 4 analysis of the spatial mapping

Figure 4.16: Distances between the vertices of the right wall and the fitted plane.

Figure 4.17: Distances between the floor-vertices and the fitted plane.

Sharp transitions

Figures 4.18 and 4.19 indicate that a distance/error of up to 4.5cm can be
expected when dealing with large sharp transitions.

4.4 results 39

Figure 4.18: Distances from the corner to the bounding box. This is the corner to the
left of the table.

Figure 4.19: Distances from the wall/floor-transition to the bounding box. This is the
transition to the right side of the table.

40 chapter 4 analysis of the spatial mapping

Figure 4.20 shows a distance of at most 8.2cm from the fitted plane to the
electric channel, which is 1.2cm more than the measured 7cm. Figure 4.21
shows that the glasses struggle to get a square shape, it starts with a ~45◦
slope out from the wall, followed by a somewhat flat area, and then a ~45◦
slope back into the wall.

Figure 4.20: Distance between the electric channel and the fitted plane of the right
wall.

Figure 4.21: How the table and electric channel compares to the reference models
in red (only the first half of the table is included). Notice that the “dip”
mentioned earlier is also present in the transition between wall and table.

4.4 results 41

Convex/concave surfaces

Figures 4.22 and 4.23 show that the glasses are able to do a decent scanning of
the flower pot, but has a really hard time detecting the bowl. The real volume
of the flower pot is calculated to be approximately 0.0261m3 and the volume
of the scanned one is approximated to 0.0202m3, i.e. it is a little undersized.
Since the height of the bowl and the upper distance-limit found in the sharp
transition experiments are quite similar, the baking bowl was added in ret-
rospect to see if the glasses could handle it better. As figure 4.22 shows, the
baking bowl is much more visible but still only about half the height of the real
one, and the glasses really struggle with the thickness of the walls (they have
almost created a lid on top).

Figure 4.22: The flower pot, baking bowl, and bowl (the small dark gray bump between
the pot and baking bowl).

Figure 4.23: How the flower pot and bowl compare to the reference models (before
the baking bowl was added).

42 chapter 4 analysis of the spatial mapping

Triangle coloring

The results from this experiment shows that the glasses scan the room/surfaces
in stripes with a top-to-bottom approach. It is the Y-position (height) of the
vertices that matters most when it comes to indexing, X- and Z-position comes
second.

Figure 4.24: Overview.

Figures 4.25–4.27 demonstrates that the Y-position triumphs X and Z.

Figure 4.25: The left wall and ventilation-pipe, the top part of the wall and the venti-
lation are indexed first.

4.4 results 43

Figure 4.26: The table and right wall seen from the front.

Figure 4.27: Coloring of the floor and part of wall and table.

The next two sections presents useful observations that were not planned to
look for in the original experiments.

44 chapter 4 analysis of the spatial mapping

Surface structure

The general approach is to divide the room into square surfaces, i.e. if you
collapse them to a 2D structure they generally become a square plane, like
the one in figure 4.30. The dimension of such a plane is quite accurately
2.52 × 2.62m, and planes overlap each other by ∼ 10cm.

Figure 4.28: Surface structure of entire room.

Figure 4.29: Surfaces overlap by ∼ 10cm.

4.4 results 45

Figure 4.30: Wall and table. The surface becomes a square plane if it is collapsed.

A surface doesn’t necessarily have to be one connected mesh, as illustrated
in figure 4.31. Here the mesh consists of wall, ventilation pipe, and a small
disconnected piece of the table.

Figure 4.31: Surfaces can be disconnected.

46 chapter 4 analysis of the spatial mapping

The general substructure of a surface are triangulated quads, where the width
and length tends to be a multiple of 32cm. Figure 4.32 shows that one of the
square qauds is about0.32×0.36m,one of the rectangular quads is 0.67×0.32m
and the width and length of the entire surface is about 2.62 × 2.52m.

Figure 4.32: Substructure of surfaces and dimensions.

Scanning techniques

The general scanning technique proposed by Microsoft [41] is to move slow
and smoothly around the environment. In the case of the flower pot, a faster
and less smooth approach yielded better results. If the movement were too
slow, the glasses tried to “connect” the top of the pot to the background, which
created jagged areas on the flower pot.

4.4 results 47

4.4.2 LiDAR

Setup and execution

The lidar has been rigidly mounted to the same tripod used in figure 4.15
during the whole experiment. The standard configuration of the lidar has
been used, see figure 4.33 and 4.36. No GPS or imu has been used in this
experiment.

Figure 4.33: lidar configuration.

Figure 4.34: Information about field-programmable gate array (fpga) and firmware.

Since the collected frames2 are relative to the lidar, the slam algorithm

2. A frame is the aggregate of all data points acquired during an entire scan (e.g. one full
360° sweep).

48 chapter 4 analysis of the spatial mapping

provided by LidarView has been used to fit the frames into one global coordinate
system. Kitwares tutorial [19] has been followed for installation, slam, and
exportation. Specifically the pre-built binaries have been used to install the
application, the slam parameters for indoor scenes have been used for tuning
the algorithm, and the procedure under “Directly aggregate all points in a LAS
file” was used for exportation.

2 scans and 3 point clouds have been used in this experiment. Scan one is
done by walking back and forth in the room to scan as much as possible (figure
4.35), and scan two is done by letting the lidar stand still on the table and
scan a few frames (figure 4.36). 2 of the point clouds are generated by using
slam on all frames in each scan, and the third point cloud is generated by
exporting only 1 frame from the second scan without using slam. The reason
for this is to test the accuracy in different scenarios, and to get data unaffected
by the slam algorithm.

Figure 4.35: The resulting point cloud from scan one (unnecessary points have been
removed, e.g. door, locker, and points outside the window). The orange
parts represent the parts used in the experiments. The entire point cloud
consists of 15 479 458 points and 935 frames.

4.4 results 49

Figure 4.36: The resulting point cloud from scan two, only the walls are used from
this scan. The cloud consists of 813 414 points and 29 frames.

Flat surfaces

Tables 4.6–4.7 and figures 4.37–4.39 shows the results from the plane-fitting
done in CloudCompare. As can be seen they indicate that the lidar has
a slightly worse performance overall compared to HoloLens 2. The official
accuracy for the lidar is ±3cm and a range up to 100m [83], which seems to
be correct.

50 chapter 4 analysis of the spatial mapping

Table 4.6: Plane-fitting data of flat surfaces.

Right wall Left wall Floor
Scan 1, all
frames, w
slam

RMSE/Std.
Dev.

0.01070 0.01242 0.02969

Normal [0.94163,
−0.04742,
0.33329]

[0.93992,
−0.03319,
0.33978]

[−0.00900,
0.98635,
0.1644]

Center (−2.010,
0.523,
−0.755)

(0.873,
0.428,
0.368)

(−0.571,
−1.578,
−0.426)

No. vertices 4 065 472 4 813 978 101 702
Scan 2, all
frames, w
slam

RMSE/Std.
Dev.

0.00815 0.00991

Normal [0.99295,
0.00348,
−0.11850]

[0.99270,
−0.00600,
−0.12044]

Center (1.251,
0.292,
−0.067)

(−1.836,
0.376,
0.224)

No. vertices 246 415 176 789
Scan 2, one
frame, w/o
slam

RMSE/Std.
Dev.

0.00780 0.00960

Normal [0.99305,
0.00419,
−0.11760]

[0.99276,
−0.00472,
−0.12004]

Center (1.266,
0.260,
0.087)

(−1.83,
0.369,
0.305)

No. vertices 8 534 6 178

4.4 results 51

Table 4.7: Angles and distances between the fitted planes.

Angle nor-
mals

Distance
planes

Distance de-
viation/m

Scan 1, all
frames, w
slam

Floor /
Right wall

90.03◦
(0.03◦)

Not relevant Not relevant

Right wall /
Left wall

0.90◦ 3.094m 0.0160 m

Scan 2, all
frames, w
slam

Right wall /
Left wall

0.55◦ 3.100m 0.0097 m

Scan 2, one
frame, w/o
slam

Right wall /
Left wall

0.53◦ 3.100m 0.0093 m

Figure 4.37: Distances from the plane fitting of the right wall in scan one.

52 chapter 4 analysis of the spatial mapping

Figure 4.38: Distances from the plane fitting of the right wall in scan two (all frames).

Figure 4.39: Distances from the plane fitting of the floor in scan one.

5
Improvement of mesh
This chapter presents the results and proposed method for improving the mesh.
The time frame of the thesis and the available resources onboard the glasses
have had major influence.

5.1 Method

Based on the information from chapter 2 and 4 it is clearly most practical to
treat the meshes as a whole in a global coordinate system instead of improving
them one by one locally. It is also most practical to do improvements in batches
rather than continuously, this way you can do a complete scan, turn off updating
and rendering to get the maximum available computing power, and then run
an improvement on the whole environment. However, the divided structure of
the surfaces should be kept, since if you merge them you would lose the ability
to check against updated meshes coming from the glasses’ internal memory. In
addition, you would have to render the whole environment instead of just the
meshes that are within field of view.

Since the generated planes in section 4.4.1 turned out to have a reasonably
good global accuracy, the proposed method consists of using these planes to
“pull” points that are within a certain distance onto the plane. This will produce
completely flat surfaces with sharp 90◦ transitions, it also means that features
on or close to the wall may end up being pulled in as well (e.g. electric channels,
paintings, and lists).

Section 5.2 shows results from a preliminary post-processing done with a
Python-script on the same meshes illustrated in section 4.4.1. The algorithm
has yet to be implemented and tested on the glasses themselves.

53

54 chapter 5 improvement of mesh

5.2 Results and discussion

The results in figure 5.1 shows that a threshold of 4–4.5cm from the plane
seems to work well (as indicated in chapter 4).

(a) Right side of table with 3.5cm as threshold.
(b) Right side of table with 4cm as threshold.

(c) Left side of table with 4cm as threshold. The
two pipes is believed to be the cause for the
one protruding vertex.

(d) Some parts of the vertical ventilation pipe
havemerged into the wall (4cm threshold).

Figure 5.1: Results at varying distance thresholds.

5.2 results and discussion 55

(e) Some parts of the electric channel is flat-
tened at 4cm threshold.

(f) Slightly more than 6cm of threshold is re-
quired to remove the curvature on the left
wall, the need for higher threshold might
be because of the list ornaments.

Figure 5.1: Results at varying distance thresholds (Cont.).

The proposed method is simple and very naive, but is well suited for the
available computational power on the glasses, and it works fine as long as
the real-world surface was flat and without features too small. The results
presented in chapter 4 indicates that, in the given circumstances, the glasses
are equally, if not slightly better, than the lidar. Mind you that the glasses and
lidar are designed to perform in different scenarios, e.g. the glasses would
never be able to scan outdoors up to 100mwith ±3cm accuracy. Additionally, if
an imu was used in combination with the lidar, and the slam algorithm was
fine-tuned even more then the results would probably have been better.

6
Conclusion and future
work

Although with a slightly different approach than the one suggested in the
original task description, this project has successfully addressed both of the
research questions, and created a very strong foundation for further develop-
ment. Chapter 2 presented all the relevant information about HoloLens 2 that
could be obtained through official sources. Chapter 4 presented a thorough
analysis of the spatial mapping in an effort to extract as much information
as possible, the accuracy of the spatial mapping was also compared against a
lidar. Chapter 5 presented a method for improving the mapping based on
the information from chapter 2 and the results from chapter 4.

As a concluding remark, some recommendations and ideas for how to proceed
with this project is presented below.

The first recommendation is to convert the current application into a “Holo-
graphic Remoting Remote app” so that the full power of a computer can be
utilized. This will provide a great platform for implementing more advanced
algorithms.

The second recommendation is to implement the proposed method on the
glasses. Since the planes/meshes used to generate the results in section 5.2
was manually cut out in Blender, a way to extract the same information in
the application needs to be figured out. This could be done by using Scene
Understanding, manually checking relations between positions and normals,
or with the help of the user (e.g. define/draw bounding boxes) – or maybe
a combination of the three. When this is done it should be tested with even
higher resolutions than the 8 000 triangles/m3 used in this project to see if it
is of any use.

When it comes to further processing of the mapping, three algorithms/ap-

57

58 chapter 6 conclusion and future work

proaches was found particularly interesting. The first one is by Shen et al. [68]
where they present a method of reconstructing sharp features from blended
or chamfered features by using normal filtering. It seems like the presented
results can be useful for this project, and may be something to consider doing
before running the proposed plane fitting algorithm. The second algorithm
is Lloyd’s algorithm [85], which helps to make the meshes more uniform by
evenly distributing the vertices. Whether to use this on all surfaces, or to run it
first, between other algorithms, or last, is something that should be tested. The
third algorithm/suggestion is to convert the mapping into a blending spline
surface since such surfaces are good for difficult shaping and dynamic change
of shapes [23]. This could for instance enable the user to interact with the
mapping and shape it so it becomes more accurate. Resources/libraries such
as [24, 23, 11] is something to consider for implementing this.

Other ideas that should be considered is to switch to Unity so it is easier to
create UI and other effects, andmaybe create a version that uses the point cloud
from “research mode” instead of the mapping provided by the glasses.

Bibliography
[1] Barrett, J. Side Effects of Virtual Environments: A Review of the

Literature.

[2] Blender Technologies. Blender. https://www.blender.org/, Vis-
ited: 2022-04-28.

[3] CloudCompare. CloudCompare. https://www.danielgm.net/cc/, Vis-
ited 2022-04-27.

[4] Curless, B., and Levoy, M. A Volumetric Method for Building
Complex Models from Range Images. SIGGRAPH 3 (09 1996).

[5] Cutress, I. , and Terry, E. Hot Chips 31 Live Blogs: Mi-
crosoft Hololens 2.0 Silicon. https://www.anandtech.com/show/14775/
hot-chips-31-live-blogs-microsoft-hololens-20-silicon, 2019, Vis-
ited: 2022-04-20.

[6] Enlyft. Companies using microsoft visual studio. https://enlyft.com/
tech/products/microsoft-visual-studio, Visited: 2022-05-15.

[7] Epic Games. Create A HoloLens 2 App With Unreal Engine And
Mixed Reality UX Tool | Inside Unreal. https://dev.epicgames.
com/community/learning/livestreams/4vR/create-a-hololens-2-app-
with-unreal-engine-and-mixed-reality-ux-tools-inside-unreal,
Visited: 2022-04-25.

[8] Epic Games. MRMesh. https://docs.unrealengine.com/4.27/en-US/
API/Runtime/MRMesh/, Visited: 2022-04-25.

[9] Epic Games. Spatial Mapping. https://dev.epicgames.com/
community/learning/courses/qyR/mapping-the-real-world/LBo/
spatial-mapping, Visited: 2022-04-25.

[10] Epic Games. Unreal Engine. https://www.unrealengine.com/en-US/,
Visited: 2022-04-25.

[11] Floater, M. Meshless Parameterization and B-Spline Surface Approx-
imation.

[12] Gu, W. HoloLens2-ResearchMode-Unity. https://github.com/
petergu684/HoloLens2-ResearchMode-Unity, Visited: 2022-04-28.

59

https://www.blender.org/
https://www.danielgm.net/cc/
https://www.anandtech.com/show/14775/hot-chips-31-live-blogs-microsoft-hololens-20-silicon
https://www.anandtech.com/show/14775/hot-chips-31-live-blogs-microsoft-hololens-20-silicon
https://enlyft.com/tech/products/microsoft-visual-studio
https://enlyft.com/tech/products/microsoft-visual-studio
https://dev.epicgames.com/community/learning/livestreams/4vR/create-a-hololens-2-app-with-unreal-engine-and-mixed-reality-ux-tools-inside-unreal
https://dev.epicgames.com/community/learning/livestreams/4vR/create-a-hololens-2-app-with-unreal-engine-and-mixed-reality-ux-tools-inside-unreal
https://dev.epicgames.com/community/learning/livestreams/4vR/create-a-hololens-2-app-with-unreal-engine-and-mixed-reality-ux-tools-inside-unreal
https://docs.unrealengine.com/4.27/en-US/API/Runtime/MRMesh/
https://docs.unrealengine.com/4.27/en-US/API/Runtime/MRMesh/
https://dev.epicgames.com/community/learning/courses/qyR/mapping-the-real-world/LBo/spatial-mapping
https://dev.epicgames.com/community/learning/courses/qyR/mapping-the-real-world/LBo/spatial-mapping
https://dev.epicgames.com/community/learning/courses/qyR/mapping-the-real-world/LBo/spatial-mapping
https://www.unrealengine.com/en-US/
https://github.com/petergu684/HoloLens2-ResearchMode-Unity
https://github.com/petergu684/HoloLens2-ResearchMode-Unity

60 bibl iography

[13] Hoppe, H., Derose, T., Duchamp, T., Mcdonald, J. , and
Stuet-zle, W. Surface reconstruction from unorganized point clouds.

[14] Hübner, Patrick et. al. Evaluation of HoloLens Tracking and Depth
Sensing for Indoor Mapping Applications. Sensors 20, 4 (2020).

[15] Jetbrains. Rider. https://www.jetbrains.com/rider/, Visited: 2022-
04-25.

[16] Kah, P., Shrestha, M., Hiltunen, E., and Martikainen, J.
Robotic arc welding sensors and programming in industrial applications.
International Journal of Mechanical and Materials Engineering 10 (12 2015).

[17] Khoshelham, K., Tran, H., and Acharya, D. INDOORMAPPING
EYEWEAR: GEOMETRIC EVALUATION OF SPATIAL MAPPING CAPABIL-
ITY OF HOLOLENS. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences XLII-2/W13 (2019), 805–
810.

[18] Kipman, A. HoloLens 2: Unpacked. https://video.ethz.ch/speakers/
global-lecture/2019/61d6198e-bf0d-4970-962a-a56e70482fce.html,
2019, Visited: 2022-02-22.

[19] Kitware. How to SLAM with LidarView? https://gitlab.kitware.
com/keu-computervision/slam/-/blob/master/paraview_wrapping/
Plugin/doc/How_to_SLAM_with_LidarView.md, Visited: 2022-05-10.

[20] Kitware. LidarView: The ParaView Lidar App. https://www.paraview.
org/lidarview/, Visited: 2022-05-10.

[21] Klein, G., and Murray, D. Parallel Tracking and Mapping for Small
AR Workspaces. In 2007 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality (2007), pp. 225–234.

[22] Koch, R., Pollefeys, M., and Van Gool, L. Multi Viewpoint
Stereo from Uncalibrated Video Sequences. pp. 55–71.

[23] Lakså, A. Blending techniques in Curve and Surface constructions. UiT
The Arctic University of Norway, May 2021.

[24] Lakså, A. gmlib. https://source.coderefinery.org/gmlib/gmlib1,
Visited: 2022-05-15.

[25] Li, L. Time-of-Flight Camera - An Introduction, 2014.

https://www.jetbrains.com/rider/
https://video.ethz.ch/speakers/global-lecture/2019/61d6198e-bf0d-4970-962a-a56e70482fce.html
https://video.ethz.ch/speakers/global-lecture/2019/61d6198e-bf0d-4970-962a-a56e70482fce.html
https://gitlab.kitware.com/keu-computervision/slam/-/blob/master/paraview_wrapping/Plugin/doc/How_to_SLAM_with_LidarView.md
https://gitlab.kitware.com/keu-computervision/slam/-/blob/master/paraview_wrapping/Plugin/doc/How_to_SLAM_with_LidarView.md
https://gitlab.kitware.com/keu-computervision/slam/-/blob/master/paraview_wrapping/Plugin/doc/How_to_SLAM_with_LidarView.md
https://www.paraview.org/lidarview/
https://www.paraview.org/lidarview/
https://source.coderefinery.org/gmlib/gmlib1

bibl iography 61

[26] Liu, Yang et. al. Technical Evaluation of HoloLens for Multimedia: A
First Look. IEEE Multimedia PP (10 2018), 1–1.

[27] M. L. Heilig. Sensorama Simulator. U. S. Patent 3,050,870, Issued
August 28. 1962.

[28] M. L. Heilig. Stereoscopic Television for Individual Use. U. S. Patent
2,955,156, Issued October 4. 1960.

[29] Microsoft. Microsoft Hololens 2 Research Mode for Unreal En-
gine. https://github.com/microsoft/HoloLens-ResearchMode-Unreal,
Visited: 2022-04-25.

[30] Microsoft. Microsoft-OpenXr-Unreal. https://github.com/
microsoft/Microsoft-OpenXR-Unreal, Visited: 2022-04-25.

[31] Microsoft. MixedRealityToolkit-Unreal. https://github.com/
microsoft/MixedRealityToolkit-Unreal/blob/master/FAQ.md#how-
does-mrtk-unreal-relate-to-mrtk-unity, Visited: 2022-04-25.

[32] Microsoft. Universal Windows Platform (UWP) app samples. https:
//github.com/microsoft/Windows-universal-samples, Visited: 2022-04-
27.

[33] Microsoft. HoloLens 2 fundamentals: develop mixed reality ap-
plications. https://docs.microsoft.com/en-us/learn/paths/beginner-
hololens-2-tutorials/, Visited: 2022-04-28.

[34] Microsoft. Mixed Reality Toolkit Unity. https://github.com/
microsoft/MixedRealityToolkit-Unity/releases, Visited: 2022-04-28.

[35] Microsoft. Visual Studio. https://visualstudio.microsoft.com/,
Visited: 2022-04-28.

[36] Microsoft. Using Visual Studio to deploy and debug.
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/
advanced-concepts/using-visual-studio?tabs=hl2, Visited: 2022-05-15.

[37] Microsoft. Visual Studio community support. https://docs.
microsoft.com/en-us/answers/products/vs, Visited: 2022-05-15.

[38] Microsoft Documentation. What is mixed reality?, 2021, Vis-
ited: 2022-02-18. https://docs.microsoft.com/en-us/windows/mixed-
reality/discover/mixed-reality.

https://github.com/microsoft/HoloLens-ResearchMode-Unreal
https://github.com/microsoft/Microsoft-OpenXR-Unreal
https://github.com/microsoft/Microsoft-OpenXR-Unreal
https://github.com/microsoft/MixedRealityToolkit-Unreal/blob/master/FAQ.md#how-does-mrtk-unreal-relate-to-mrtk-unity
https://github.com/microsoft/MixedRealityToolkit-Unreal/blob/master/FAQ.md#how-does-mrtk-unreal-relate-to-mrtk-unity
https://github.com/microsoft/MixedRealityToolkit-Unreal/blob/master/FAQ.md#how-does-mrtk-unreal-relate-to-mrtk-unity
https://github.com/microsoft/Windows-universal-samples
https://github.com/microsoft/Windows-universal-samples
https://docs.microsoft.com/en-us/learn/paths/beginner-hololens-2-tutorials/
https://docs.microsoft.com/en-us/learn/paths/beginner-hololens-2-tutorials/
https://github.com/microsoft/MixedRealityToolkit-Unity/releases
https://github.com/microsoft/MixedRealityToolkit-Unity/releases
https://visualstudio.microsoft.com/
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-visual-studio?tabs=hl2
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-visual-studio?tabs=hl2
https://docs.microsoft.com/en-us/answers/products/vs
https://docs.microsoft.com/en-us/answers/products/vs
https://docs.microsoft.com/en-us/windows/mixed-reality/discover/mixed-reality
https://docs.microsoft.com/en-us/windows/mixed-reality/discover/mixed-reality

62 bibl iography

[39] Microsoft Documentation. About HoloLens 2, 2021, Visited:
2022-04-20. https://docs.microsoft.com/en-us/hololens/hololens2-
hardware#sensors.

[40] Microsoft Documentation. Azure Kinect DK hardware spec-
ifications, 2021, Visited: 2022-04-20. https://docs.microsoft.com/en-
us/azure/kinect-dk/hardware-specification.

[41] Microsoft Documentation. Map physical spaces with HoloLens,
2021, Visited: 2022-05-01. https://docs.microsoft.com/en-us/hololens/
hololens-spaces#mapping-your-space.

[42] Microsoft Documentation. HoloLens Research Mode, 2022, Vis-
ited: 2022-04-15. https://docs.microsoft.com/en-us/windows/mixed-
reality/develop/advanced-concepts/research-mode#usage.

[43] Microsoft Documentation. Coordinate Systems, 2022, Vis-
ited: 2022-04-20. https://docs.microsoft.com/en-us/windows/mixed-
reality/design/coordinate-systems.

[44] Microsoft Documentation. Scene Understanding, 2022, Vis-
ited: 2022-04-20. https://docs.microsoft.com/en-us/windows/mixed-
reality/design/scene-understanding.

[45] Microsoft Documentation. Scene Understanding SDK Overview,
2022, Visited: 2022-04-20. https://docs.microsoft.com/en-us/windows/
mixed-reality/develop/unity/scene-understanding-sdk.

[46] Microsoft Documentation. Spatial Mapping, 2022, Visited: 2022-
04-20. https://docs.microsoft.com/en-us/windows/mixed-reality/
design/spatial-mapping#mesh-processing.

[47] Microsoft Documentation. Using the Windows Device Portal.
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/
advanced-concepts/using-the-windows-device-portal, 2022, Visited:
2022-04-22.

[48] Microsoft Documentation. HoloLens environment considerations,
2022, Visited: 2022-05-01. https://docs.microsoft.com/en-us/hololens/
hololens-environment-considerations.

[49] Microsoft Documentation. SpatialSurfaceInfo Class.
https://docs.microsoft.com/en-us/uwp/api/Windows.Perception.
Spatial.Surfaces.SpatialSurfaceInfo?view=winrt-22000, Visited:

https://docs.microsoft.com/en-us/hololens/hololens2-hardware#sensors
https://docs.microsoft.com/en-us/hololens/hololens2-hardware#sensors
https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification
https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification
https://docs.microsoft.com/en-us/hololens/hololens-spaces#mapping-your-space
https://docs.microsoft.com/en-us/hololens/hololens-spaces#mapping-your-space
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/research-mode#usage
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/research-mode#usage
https://docs.microsoft.com/en-us/windows/mixed-reality/design/coordinate-systems
https://docs.microsoft.com/en-us/windows/mixed-reality/design/coordinate-systems
https://docs.microsoft.com/en-us/windows/mixed-reality/design/scene-understanding
https://docs.microsoft.com/en-us/windows/mixed-reality/design/scene-understanding
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/scene-understanding-sdk
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/scene-understanding-sdk
https://docs.microsoft.com/en-us/windows/mixed-reality/design/spatial-mapping#mesh-processing
https://docs.microsoft.com/en-us/windows/mixed-reality/design/spatial-mapping#mesh-processing
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-the-windows-device-portal
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-the-windows-device-portal
https://docs.microsoft.com/en-us/hololens/hololens-environment-considerations
https://docs.microsoft.com/en-us/hololens/hololens-environment-considerations
https://docs.microsoft.com/en-us/uwp/api/Windows.Perception.Spatial.Surfaces.SpatialSurfaceInfo?view=winrt-22000
https://docs.microsoft.com/en-us/uwp/api/Windows.Perception.Spatial.Surfaces.SpatialSurfaceInfo?view=winrt-22000

bibl iography 63

2022-04-22.

[50] Microsoft Documentation. SpatialSurfaceMesh Class.
https://docs.microsoft.com/en-us/uwp/api/Windows.Perception.
Spatial.Surfaces.SpatialSurfaceMesh?view=winrt-22000, Visited:
2022-04-22.

[51] Microsoft Documentation. SpatialSurfaceObserver Class.
https://docs.microsoft.com/en-us/uwp/api/Windows.Perception.
Spatial.Surfaces.SpatialSurfaceObserver?view=winrt-22000, Visited:
2022-04-22.

[52] Microsoft Documentation. OpenXR. https://docs.microsoft.
com/en-us/windows/mixed-reality/develop/native/openxr, Visited:
2022-04-26.

[53] Microsoft Documentation. Scene Understanding in Un-
real. https://docs.microsoft.com/en-us/windows/mixed-reality/
develop/unreal/unreal-scene-understanding, Visited: 2022-04-26.

[54] Microsoft Documentation. Spatial Mapping in Un-
real. https://docs.microsoft.com/en-us/windows/mixed-reality/
develop/unreal/unreal-spatial-mapping, Visited: 2022-04-26.

[55] Microsoft Documentation. Holographic Remoting
Overview. https://docs.microsoft.com/en-us/windows/mixed-
reality/develop/native/holographic-remoting-overview, Visited
2022-04-27.

[56] Microsoft Documentation. Holographic Remoting Samples.
https://github.com/microsoft/MixedReality-HolographicRemoting-
Samples, Visited 2022-04-27.

[57] Microsoft Documentation. What is the Mixed Reality
Toolkit. https://docs.microsoft.com/en-us/windows/mixed-reality/
mrtk-unity/?view=mrtkunity-2021-05, Visited: 2022-04-27.

[58] Microsoft Documentation. What’s a Universal Windows Plat-
form (UWP) app? https://docs.microsoft.com/en-us/windows/uwp/
get-started/universal-application-platform-guide, Visited: 2022-04-
27.

[59] Microsoft Documentation. Setting up your XR configu-
ration. https://docs.microsoft.com/en-us/windows/mixed-reality/

https://docs.microsoft.com/en-us/uwp/api/Windows.Perception.Spatial.Surfaces.SpatialSurfaceMesh?view=winrt-22000
https://docs.microsoft.com/en-us/uwp/api/Windows.Perception.Spatial.Surfaces.SpatialSurfaceMesh?view=winrt-22000
https://docs.microsoft.com/en-us/uwp/api/Windows.Perception.Spatial.Surfaces.SpatialSurfaceObserver?view=winrt-22000
https://docs.microsoft.com/en-us/uwp/api/Windows.Perception.Spatial.Surfaces.SpatialSurfaceObserver?view=winrt-22000
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/native/openxr
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/native/openxr
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unreal/unreal-scene-understanding
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unreal/unreal-scene-understanding
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unreal/unreal-spatial-mapping
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unreal/unreal-spatial-mapping
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/native/holographic-remoting-overview
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/native/holographic-remoting-overview
https://github.com/microsoft/MixedReality-HolographicRemoting-Samples
https://github.com/microsoft/MixedReality-HolographicRemoting-Samples
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/?view=mrtkunity-2021-05
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/?view=mrtkunity-2021-05
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/xr-project-setup?tabs=openxr
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/xr-project-setup?tabs=openxr
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/xr-project-setup?tabs=openxr

64 bibl iography

develop/unity/xr-project-setup?tabs=openxr, Visited: 2022-04-28.

[60] Microsoft Documentation. Spatial mapping in Unity.
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/
unity/spatial-mapping-in-unity?tabs=xr, Visited: 2022-04-28.

[61] Microsoft Documentation. Spatial Coordinate Sys-
tem, Visited: 2022-05-02. https://docs.microsoft.com/en-
us/uwp/api/windows.perception.spatial.spatialcoordinatesystem.
trygettransformto?view=winrt-22000#windows-perception-spatial-
spatialcoordinatesystem-trygettransformto(windows-perception-
spatial-spatialcoordinatesystem).

[62] Milgram, P., and Kishino, F. A Taxonomy of Mixed Reality Visual
Displays. IEICE Trans. Information Systems vol. E77-D, no. 12 (12 1994),
1321–1329.

[63] Newcombe, Richard A. et al. KinectFusion: Real-time dense
surface mapping and tracking. In 2011 10th IEEE International Symposium
on Mixed and Augmented Reality (2011), pp. 127–136.

[64] Pollefeys, M. MARSS2021 - Prof. Dr. Marc Pollefeys - "HoloLens,
Mixed Reality and Spatial Computing". https://www.youtube.com/watch?
v=gW-nkyF_s48, 2021, Visited: 2022-02-22.

[65] Pollefeys, M. TUM AI Lecture Series - HoloLens, Mixed Reality and
Spatial Computing (Marc Pollefeys). https://www.youtube.com/watch?
v=45r5VRHfGrs, 2021, Visited: 2022-02-22.

[66] Qualcomm Technologies. Snapdragon 850 Mobile Compute Plat-
form. https://www.qualcomm.com/products/application/mobile-
computing/snapdragon-8-series-mobile-compute-platforms/
snapdragon-850-mobile-compute-platform, Visited: 2022-04-21.

[67] Roberts, L. G. Machine Perception of Three-Dimensional Solids. PhD
thesis, Massachusetts Institute of Technology, 1963.

[68] Shen, J.-G., Zhang, S.-y. , Chen, Z.-y. , Zhang, Y., and Ye, X.
Mesh sharpening via normal filtering. Journal of Zhejiang University -
Science A: Applied Physics and Engineering 10 (04 2009), 546–553.

[69] STMicroelectronics. iNEMO 6DoF inertial measurement unit
(IMU), for smart phones with OIS / EIS and AR/VR systems. Ultra-low
power, high accuracy and stability. https://www.st.com/en/mems-and-

https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/xr-project-setup?tabs=openxr
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/xr-project-setup?tabs=openxr
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/xr-project-setup?tabs=openxr
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/xr-project-setup?tabs=openxr
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/spatial-mapping-in-unity?tabs=xr
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/spatial-mapping-in-unity?tabs=xr
https://docs.microsoft.com/en-us/uwp/api/windows.perception.spatial.spatialcoordinatesystem.trygettransformto?view=winrt-22000#windows-perception-spatial-spatialcoordinatesystem-trygettransformto(windows-perception-spatial-spatialcoordinatesystem)
https://docs.microsoft.com/en-us/uwp/api/windows.perception.spatial.spatialcoordinatesystem.trygettransformto?view=winrt-22000#windows-perception-spatial-spatialcoordinatesystem-trygettransformto(windows-perception-spatial-spatialcoordinatesystem)
https://docs.microsoft.com/en-us/uwp/api/windows.perception.spatial.spatialcoordinatesystem.trygettransformto?view=winrt-22000#windows-perception-spatial-spatialcoordinatesystem-trygettransformto(windows-perception-spatial-spatialcoordinatesystem)
https://docs.microsoft.com/en-us/uwp/api/windows.perception.spatial.spatialcoordinatesystem.trygettransformto?view=winrt-22000#windows-perception-spatial-spatialcoordinatesystem-trygettransformto(windows-perception-spatial-spatialcoordinatesystem)
https://docs.microsoft.com/en-us/uwp/api/windows.perception.spatial.spatialcoordinatesystem.trygettransformto?view=winrt-22000#windows-perception-spatial-spatialcoordinatesystem-trygettransformto(windows-perception-spatial-spatialcoordinatesystem)
https://www.youtube.com/watch?v=gW-nkyF_s48
https://www.youtube.com/watch?v=gW-nkyF_s48
https://www.youtube.com/watch?v=45r5VRHfGrs
https://www.youtube.com/watch?v=45r5VRHfGrs
https://www.qualcomm.com/products/application/mobile-computing/snapdragon-8-series-mobile-compute-platforms/snapdragon-850-mobile-compute-platform
https://www.qualcomm.com/products/application/mobile-computing/snapdragon-8-series-mobile-compute-platforms/snapdragon-850-mobile-compute-platform
https://www.qualcomm.com/products/application/mobile-computing/snapdragon-8-series-mobile-compute-platforms/snapdragon-850-mobile-compute-platform
https://www.st.com/en/mems-and-sensors/lsm6dsm.html
https://www.st.com/en/mems-and-sensors/lsm6dsm.html
https://www.st.com/en/mems-and-sensors/lsm6dsm.html

bibl iography 65

sensors/lsm6dsm.html, Visited: 2022.04.24.

[70] Terry, E. Silicon at the Heart of HoloLens 2. In 2019 IEEE Hot Chips 31
Symposium (HCS) (2019), pp. 1–26.

[71] Tölgyessy, Michal et al. Evaluation of the Azure Kinect and Its
Comparison to Kinect V1 and Kinect V2. Sensors 21, 2 (2021).

[72] UiT The Arctic University of Norway. DTE-3604 Applied
geometry and special effects. https://en.uit.no/education/courses/
course?p_document_id=765883&ar=2022&semester=H, Visited: 2022-05-15.

[73] UiT The Arctic University of Norway. DTE-3605 Virtual
reality, graphics and animation - project. https://en.uit.no/education/
courses/course?p_document_id=765882&ar=2022&semester=H, Visited:
2022-05-15.

[74] UiT The Arctic University of Norway. DTE-3607 Advanced
game and simulator programming. https://en.uit.no/education/
courses/course?p_document_id=745558&ar=2022&semester=V, Visited:
2022-05-15.

[75] UiT The Arctic University of Norway. DTE-3609 Virtual re-
ality, graphics and animation - theory. https://en.uit.no/education/
courses/course?p_document_id=743948, Visited: 2022-05-15.

[76] UiT The Arctic University of Norway. DTE-3610 Finite ele-
ment methods, programming. https://en.uit.no/education/courses/
course?p_document_id=743947, Visited: 2022-05-15.

[77] Ungureanu, Dorin et al. HoloLens 2 Research Mode as a Tool for
Computer Vision Research. arXiv:2008.11239 (2020).

[78] Ungureanu, Dorin et al. HoloLens 2 Research Mode as a Tool for
Computer Vision Research. https://arxiv.org/abs/2008.11239, 2020,
Visited: 2022-04-20.

[79] Ungureanu, Dorin et al. HoloLens 2 Research Mode: API
Overview. https://github.com/microsoft/HoloLens2ForCV, 2021, Vis-
ited: 2022-04-20.

[80] Ungureanu, Dorin et al. Research Mode API. https://github.
com/microsoft/HoloLens2ForCV, 2021, Visited: 2022-04-20.

https://www.st.com/en/mems-and-sensors/lsm6dsm.html
https://www.st.com/en/mems-and-sensors/lsm6dsm.html
https://www.st.com/en/mems-and-sensors/lsm6dsm.html
https://www.st.com/en/mems-and-sensors/lsm6dsm.html
https://en.uit.no/education/courses/course?p_document_id=765883&ar=2022&semester=H
https://en.uit.no/education/courses/course?p_document_id=765883&ar=2022&semester=H
https://en.uit.no/education/courses/course?p_document_id=765882&ar=2022&semester=H
https://en.uit.no/education/courses/course?p_document_id=765882&ar=2022&semester=H
https://en.uit.no/education/courses/course?p_document_id=745558&ar=2022&semester=V
https://en.uit.no/education/courses/course?p_document_id=745558&ar=2022&semester=V
https://en.uit.no/education/courses/course?p_document_id=743948
https://en.uit.no/education/courses/course?p_document_id=743948
https://en.uit.no/education/courses/course?p_document_id=743947
https://en.uit.no/education/courses/course?p_document_id=743947
https://arxiv.org/abs/2008.11239
https://github.com/microsoft/HoloLens2ForCV
https://github.com/microsoft/HoloLens2ForCV
https://github.com/microsoft/HoloLens2ForCV

66 bibl iography

[81] Unity Technologies. Unity. https://unity.com/, Visited: 2022-04-
25.

[82] Velodyne. VLP 16 ’Puck’ Set Up Overview. https://www.youtube.com/
watch?v=Pa-q5elS_nE, Visited: 2022-05-15.

[83] Velodyne Lidar Inc. Velodyne LiDAR PUCK VLP-16.
https://www.goetting-agv.com/dateien/downloads/63-9229_Rev-
H_Puck%20_Datasheet_Web.pdf, 2018, Visited: 2022-05-02.

[84] Wikipedia. Kinect. https://en.wikipedia.org/wiki/Kinect, 2022,
Visited: 2022-02-22.

[85] Wikipedia. Lloyd’s algorithm. https://en.wikipedia.org/wiki/
Lloyd%27s_algorithm, Visited: 2022-05-14.

https://unity.com/
https://www.youtube.com/watch?v=Pa-q5elS_nE
https://www.youtube.com/watch?v=Pa-q5elS_nE
https://www.goetting-agv.com/dateien/downloads/63-9229_Rev-H_Puck%20_Datasheet_Web.pdf
https://www.goetting-agv.com/dateien/downloads/63-9229_Rev-H_Puck%20_Datasheet_Web.pdf
https://en.wikipedia.org/wiki/Kinect
https://en.wikipedia.org/wiki/Lloyd%27s_algorithm
https://en.wikipedia.org/wiki/Lloyd%27s_algorithm

A
Source code and setup
The source code for spatial mapping can be found here: https://github.com/
Cghost96/Thesis-UWP-Spatial-Mapping. It is included a “.vsconfig” file in the
repository which will help automatically install all the required tools and
settings. [36] is a nice guide for how to run an application (and also how to
manually set up all the tools).

The most relevant files and folders are listed below, otherwise the code and
structure is quite self explanatory.

• SpatialMappingMain.cpp – responsible for handling surface updates and
exporting the meshes when the app is about to shut down. The meshes
can be found using the Device Portal and navigating to System → File
Explorer → LocalAppData → SpatialMapping → LocalState → Meshes

• Common → Settings.h – contains all the relevant settings that can be
tuned, such as triangles per cubic meter

• Content→ SurfaceMesh.cpp – responsible for extracting and storing the
data in the correct way

• Data – this folder contains all the meshes and data extracted from
HoloLens

• Python – this folder contains the python scripts used in the project, the
one of most interest is probably “Improvement.py” which contains the
improvement-algorithm described in chapter 5

The source code for extracting the imu-data can be found here: https:
//github.com/Cghost96/Thesis-UWP-CV. There are 4 projects in the “Sample”
folder, the one used in this project is “SensorVisualization”. The files responsible
for handling the data are “BasicHologramMain.cpp” found in the “SensorVisu-
alization” folder, and “AccelRenderer.cpp”, “GyroRenderer.cpp”, and “MagRen-

67

https://github.com/Cghost96/Thesis-UWP-Spatial-Mapping
https://github.com/Cghost96/Thesis-UWP-Spatial-Mapping
https://github.com/Cghost96/Thesis-UWP-CV
https://github.com/Cghost96/Thesis-UWP-CV

68 appendix a source code and setup

derer.cpp” found under “SensorVisualization → Content”. If the setup-steps
for the spatial mapping project have been followed then only some additional
settings need to be adjusted for HoloLens, this guide explains how to do it
[80].

The files and data related to the lidar experiments are attached to this delivery
as a zip-folder. See this guide for how to connect with the lidar [82] (the
video is about VeloView but the steps are identical).

B
Original project description
The project description in its original form is listed over the next 4 pages.

69

Faculty of Engineering Science and Technology
Department of Computer Science and Computational Engineering
UiT - The Arctic University of Norway

Augmented reality.

Spatial mesh approximation using Hololens 2

Casper Andrè Levoll-Steen

Thesis for Master of Science in Technology / Sivilingeniør

Problem description

The objective of this master thesis project is to explore limitations of the mixed reality
device Hololens 2 [1] and propose a new method of the spatial mesh processing.

One of the basic features of the Hololens 2 is the ability of virtual objects to interact with
the real world. To obtain this interaction, there exists a technology called spatial
mapping [2]. It makes a coarse triangulation of its surroundings, for example, the room
space and the furniture in the room. The goal of the proposed topic is to process this
triangulation so that it approximates real-world objects more precisely and smoothly.
The task consists of two main challenges: hardware issues and algorithm development.

Hardware part:
- Identify possible hardware limitations.
- Extract mesh values and parameters.
- Insert the processed mesh back into the device.

Development part:
Use the blending spline approximation techniques [3] to process the triangulated spatial
mesh and represent it as a continuous surface.

The task can be extended towards experimental user interface for shape modeling with
Hololens 2 with special focus on volume and surface modeling.

Tools:
- Hololens 2
- Unreal Engine (https://www.unrealengine.com)
- MRTK (Mixed Reality Toolkit) (https://docs.microsoft.com/en-us/windows/mixed-
reality/develop/unreal/unreal-mrtk-introduction)

References:
1. Hololens 2: https://www.microsoft.com/en-us/hololens/hardware
2. Spatial mapping: https://docs.microsoft.com/en-us/windows/mixed-
reality/design/spatial-mapping
3. Tatiana Kravetc, Børre Bang, Rune Dalmo. Regression analysis using a blending type
spline construction. Springer Publishing Company 2017 (10521) ISBN 978-3-319-
67885-6. ISSN 0302-9743.s 145 - 161.s doi: 10.1007/978-3-319-67885-6_8.

Dates

Date of distributing the task: <10.01.2022>

Date for submission (deadline): <16.05.2022>

Contact information

Candidate

Supervisor at UiT-IVT, IDBI

Co-supervisor at UiT-IVT, IDBI

Casper Andrè Levoll-Steen

Tatiana Kravetc (tatiana.kravetc@uit.no)

Tanita Fossli Brustad (tanita.f.brustad@uit.no)
Aleksander Pedersen (aleksander.pedersen@uit.no)

General information

This master thesis should include:

 Preliminary work/literature study related to actual topic
- A state-of-the-art investigation
- An analysis of requirement specifications, definitions, design requirements, given

standards or norms, guidelines and practical experience etc.
- Description concerning limitations and size of the task/project
- Estimated time schedule for the project/ thesis

 Selection & investigation of actual materials
 Development (creating a model or model concept)
 Experimental work (planned in the preliminary work/literature study part)
 Suggestion for future work/development

Preliminary work/literature study

After the task description has been distributed to the candidate a preliminary study
should be completed within 3 weeks. It should include bullet points 1 and 2 in “The work
shall include”, and a plan of the progress. The preliminary study may be submitted as a
separate report or “natural” incorporated in the main thesis report. A plan of progress and
a deviation report (gap report) can be added as an appendix to the thesis.

In any case the preliminary study report/part must be accepted by the supervisor
before the student can continue with the rest of the master thesis. In the evaluation
of this thesis, emphasis will be placed on the thorough documentation of the work
performed.

Reporting requirements

The thesis should be submitted as a research report and could include the following parts;
Abstract, Introduction, Material & Methods, Results & Discussion, Conclusions,
Acknowledgements, Bibliography, References and Appendices. Choices should be well
documented with evidence, references, or logical arguments.

The candidate should in this thesis strive to make the report survey-able, testable,
accessible, well written, and documented.

Materials which are developed during the project (thesis) such as software / source code
or physical equipment are considered to be a part of this paper (thesis). Documentation
for correct use of such information should be added, as far as possible, to this paper
(thesis).

The text for this task should be added as an appendix to the report (thesis).

General project requirements

If the tasks or the problems are performed in close cooperation with an external company,
the candidate should follow the guidelines or other directives given by the management
of the company.

The candidate does not have the authority to enter or access external companies’
information system, production equipment or likewise. If such should be necessary for
solving the task in a satisfactory way a detailed permission should be given by the
management in the company before any action are made.

Any travel cost, printing and phone cost must be covered by the candidate themselves, if
and only if, this is not covered by an agreement between the candidate and the
management in the enterprises.

If the candidate enters some unexpected problems or challenges during the work with the
tasks and these will cause changes to the work plan, it should be addressed to the
supervisor at the UiT or the person which is responsible, without any delay in time.

Submission requirements

This thesis should result in a final report with an electronic copy of the report including
appendices and necessary software, source code, simulations and calculations. The final
report with its appendices will be the basis for the evaluation and grading of the thesis.
The report with all materials should be delivered according to the current faculty
regulation. If there is an external company that needs a copy of the thesis, the candidate
must arrange this. A standard front page, which can be found on the UiT internet site,
should be used. Otherwise, refer to the “General guidelines for thesis” and the subject
description for master thesis.

The supervisor(s) should receive a copy of the thesis prior to submission of the final
report. The final report with its appendices should be submitted no later than the decided
final date.

“Remember kids, the only difference between screwing around and science, is
writing it down.”
–Adam Savage

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Thesis structure
	1.2 Background

	2 About HoloLens 2
	2.1 Position tracking
	2.2 Depth sensor
	2.3 Displays
	2.4 Processors
	2.5 Spatial mapping
	2.6 Scene understanding

	3 Problem description
	4 Analysis of the spatial mapping
	4.1 Environment
	4.2 Experiments
	4.3 Choice of technology
	4.3.1 Author's experience
	4.3.2 Review of tools and libraries
	4.3.3 Chosen setup

	4.4 Results
	4.4.1 HoloLens 2
	4.4.2 LiDAR

	5 Improvement of mesh
	5.1 Method
	5.2 Results and discussion

	6 Conclusion and future work
	Bibliography
	Appendices
	Appendix A Source code and setup
	Appendix B Original project description

