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Abstract

Along the Norwegian coasts the presence of blue forests are the key marine
habitats. Due to increased anthropogenic activity and climate change, the
health and extent of the blue forests is threatened. However, no low•cost,
reliable system for monitoring blue forests exists in Norway at this time. This
thesis studied machine learning methods to classify marine vegetation from
hyperspectral data acquired in Norway. The study area is situated by Larvik
at Ølbergholmen. The dataset consists of 12 hyperspectral images with 173
spectral bands in the region 390 nm • 749 nm and corresponding labels of
the di�erent classes. This dataset was used to train and evaluate the machine
learning methods. In addition, an independent dataset from a di�erent site was
used for robustness evaluation. Three machine learning methods were studied;
Random Forest (RF),Support Vector Machines (SVM) and Convolutional Neural
Network (CNN). The results indicate that the powerful CNN approach had the
best performance during validation based on the computed statistical measures.
However, when evaluated for robustness, RF performed the best. The computed
confusion matrices for the validation and robustness studies revealed that the
presence of a so•called turf algae caused di�culties in distinguishing between
the classes, which is an important �nding with regard to future research. This
thesis has shown that machine learning can be used for monitoring blue forests
and various marine vegetation species using hyperspectral drone imaging along
the Norwegian coast.
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1
Introduction

Coastal habitats are experiencing signi�cant degradation [1], both globally
and locally [2, 3]. Marine vegetation, known as blue forests, forms the basis
of marine coastal ecosystems and have a great importance for climate and
society [4� 8]. As well as the green forests on land, blue forests also absorb a
signi�cant amount of the climate gas Carbon Dioxide (CO2) as they account
for up to 70 % of the marine carbon storage. However, the absorbed CO2 is
released if the vegetation is demolished [7]. Blue forests absorb nutrients, which
in turns reduces turbidity and bind sediments thus prevents coastal erosion.
Blue forests o�er recreational environments for thousands of species, including
commercial seafood which many local communities depend on [6].

Blue forests along the Norwegian coasts have lately been receiving increased
interest due to their importance [6]. However, blue forests face several exis•
tential threats in the Norwegian coast, such as destructive turf algae [9]. The
so•called turf algae attaches itself to other marine vegetation, slowly su�ocat•
ing it because the turf algae blocks the sunlight from reaching the underlying
vegetation [10]. Large areas in the Southern part of the Norwegian coast are
now covered by the damaging turf algae, and it is spreading further north [11].
Urchin overgrazing also threatens the existence of blue forests, because it
causes large areas to appear as barren grounds as the urchins take over the
sea�oor. These barren grounds have limited productivity and potentially acts
as hostile environments for the species that depend on the blue forests [2].
Figure 1.1 shows examples of how the local marine environments are e�ected
by urchins overgrazing and turf algae. The blue forests are also sensitive to

1



2 chapter 1 introduct ion

(a) (b)

Figure 1.1: a) Urchins have taken over the local marine environment (Credit: Jacey
Can Wert [16]),(b) turf algae lays over the marine vegetation as a blanket,
preventing the access of sunlight for the underlying vegetation (Credit:
Hartvig Christie [17]).

environmental changes, as well as anthropogenic activity [2,4,6,12].

The Norwegian Blue Forests Network suggests that the most important actions
for preserving the valuable blue forests along the Norwegian coast is to "1)
protect the blue forests we have; 2) restore the blue forests we have lost; or
3) replace the blue forests we have lost" [7]. In order to ful�ll these three
points, thorough mapping of the extent and the physiological state of the
blue forests is needed. This has previously been done by di�erent in•situ
monitoring techniques [13]. In•situ mapping and monitoring of blue forests
along the Norwegian coast is both resource•intensive and ine�ective due to the
large extent of the coast [5, 13]. Lately, remote sensing has been studied for
monitoring of marine vegetation, as a more powerful and e�ective alternative
to in•situ �eld campaigns. [3�5,14,15].

Hyperspectral and multispectral sensors onboard drones, air crafts and satellites
collect valuable spectral information about the blue forests [5, 12, 14, 18� 20].
Satellite imagery have the potential of providing continuous surveillance of the
coastal regions in Norway. However, the high cloud coverage in the Arctic [21],
the limited spatial and spectral resolution in freely available data is a limitation
for the monitoring the blue forests. Using air crafts is an alternative to satellite
imagery, but this is often a costly way of retrieving data [3,22]. Drones o�er a
cost•e�ective on•demand and close•range method of collecting data of marine
vegetation [23].

Marine vegetation mapping from hyperspectral drone data has been done using
various Vegetation Indices (VI) [8]. Although VIs are widely applied for both
marine vegetation and land vegetation due to their simple rule•based structure
and good results [8,24], they do have some limitations. As with other rule•based
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methods, VIs are general methods that do not adapt to speci�c datasets [24,25].
In addition, VIs do not exploit available hyperspectral information, they only use
a few prede�ned spectral bands [24]. This limits the VIs in the ability to classify
di�erent species as well as make them inaccurate in for some applications [24].
Machine Learning (ML) methods are capable of handling complex data by
adapting the model to learn the patterns in the data and do not depend on
prede�ned assumptions [25]. Lately, di�erent ML methods have been studied
for classifying marine vegetation, as an e�ective and powerful alternative
additionally to in•situ campaigns [3 � 5]. These methods include for instance
K•means clustering [5], Random Forest (RF) [3] and several other statistical
and machine learning methods [5,23]. In the past years, neural networks have
also been applied for classifying di�erent hyperspectral satellite data as well
as marine vegetation data with outstanding performance [26�29].

Hyperspectral imaging by using drones has, to the author's best knowledge,
not yet been applied for mapping marine vegetation along the coast of Norway.
The project Mapping of Algae and Seagrass by using Spectral Imagining and
Machine Learning (MASSIMAL) is currently collecting hyperspectral data of the
Norwegian coast by the use of drones. In order to use this unique data for marine
vegetation mapping, algorithms need to be studied and established.

The objective of this thesis is to study various ML methods, including the
Random Forest (RF),Support Vector Machines (SVM) and Convolutional Neural
Network (CNN) for classifying marine vegetation from hyperspectral drone
data acquired by the MASSIMAL project. CNN is suggested as a novel approach
for classifying hyperspectral data, due to its ability to learn complex pattern
with high accuracy and handle large amount of data [26,28]. This thesis has
focused on a unique dataset acquired in Larvik, located in the south of Norway,
close to Oslo. The three methods have been evaluated and compared by a
thorough statistical analysis. The impact of turf algae in the classi�cations
has been studied. The thesis also conducted a study of the robustness of the
three methods by using an independent dataset. (Note, a feasibility of using
the aforementioned methods in application has also been tested, although this
was not the focus of this work. This was done by using the here established
methodologies for predicting marine vegetation on data, where class labels
are not available). The results of this work indicate that ML methods have the
potential to be applied to hyperspectral drone data for monitoring blue forests
along the coast of Norway.
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1.1 Structure of the thesis

This thesis is structured in 6 chapters. Chapter 6 is the main part of the
thesis.

Chapter 2 outlines the fundamentals of optical remote sensing applied for
marine vegetation, building a theoretical background needed for evaluation of
the main objective of the thesis.

Chapter 3 gives an introduction to hyperspectral imaging, its history, the process
�ow and its applications and challenges.

Chapter 4 presents di�erent types of marine vegetation, the importance of
monitoring and mapping, and how it can be done by using hyperspectral remote
sensing.

Chapter 5 presents di�erent algorithms that are, and can be used for under•
water vegetation mapping.

Chapter 6 is the main part of the thesis. The chapter �rst gives an introduction to
machine learning and describes the methods used in the thesis. The dataset that
was made available for this study is described, continued by the methodology.
The results are presented together with a discussion and a conclusion of the
thesis. Future work is also suggested.



2
Optical remote sensing of
marine vegetation

In this project, optical remote sensing is used for monitoring of marine veg•
etation. The sunlight is the energy source in optical remote sensing, where
the sensors detect the re�ected sunlight of a target. This chapter therefore
gives an introduction to the physics of optical remote sensing, starting with
describing ElectroMagnetic (EM) radiation and blackbody radiation in Sec. 2.1
which explains how the sunlight behaves. Sec. 2.2 describes how the sunlight
propagates and how it is attenuated when it travels from the sun to the imaging
sensor. Then, Sec. 2.3 introduces the remote sensing re�ectance and the water
leaving radiance. The last section, Sec. 2.4 describes what sun glint is, how it
a�ects the measurements and what can be done in order to try to remove the
in�uence of it.

2.1 Electromagnetic radiation and blackbody
radiation

Optical remote sensing uses sunlight as the source of illumination. This section
therefore provides background theory about ElectroMagnetic (EM) radiation
and blackbody radiation, which describes how the sunlight behaves.

5



6 chapter 2 opt ical remote sensing of marine vegetat ion

There are two models that can be used to describe EM radiation; the wave
model and the particle model. The wave model describes the radiation as a
travelling EM wave with a magnetic and electric �eld orthogonal to the direction
of propagation. The magnetic and electric �elds relation and behaviour are
described by Maxwell's equations for vacuum, which can be written as

r � E = 0 • (2.1)

r � B = 0 • (2.2)

r � E = �
mB

mC
• (2.3)

r � B = ` 0n0
mE

mC
” (2.4)

� is the vector di�erential operator, E given in [V/m] is the electric �eld
component, B given in [T] is the magnetic �ux density, ` 0 given in [H/m]
and n0 given in [F/m] are the vacuum permeability and vacuum permittivity,
respectively. By combining the equations and solving them leaves the wave
equation for vacuum, given as

E = E0exp¹8¹k � r � lCºº• (2.5)

where E0 is the complex wave amplitude, r a position vector, k is the complex
wave number, l describes the angular frequency andt is the time [30].

The particle model describes EM radiation as a particle where its energy is
given as

� = �a =
�2
_

»� ¼• (2.6)

h is the Planck's constant (h = 6.62607015� 10� 34 JHz� 1), a is the frequency,
_ is the wavelength and c is the speed of light (c = 3.0 � 108 m/s). When
an EM particle collides with another particle (atom, molecule, ion) it is either
scattered or absorbed. To be absorbed, the energy of the EM particle needs to
be � E = E= � E0. E= refers to energy levels which corresponds to the amount
of energy the particle can take on. Energy levelE0 is the ground state where
the particle is at its lowest possible energy state. Energy level 1,E1 is the �rst
excited state in the atom that electrons be lifted up to. Electrons can be lifted
into excited states if the incoming energy matches the energy gap between the
di�erent energy states, � E . For example, to be lifted up to the �rst excited
state, energy level 1, the incoming energy needs to match the energy gap
� E = E1 � E0.

Figure 2.1 (a) shows an illustration of absorption, where an incoming photon
matches the energy gap,�a = � E = E1 � E0, which causes absorption and
electrons to be lifted up to energy state� 1. If the energy of the incoming photon
is higher than the binding energy of an atom then the photon can be absorbed
and ionize the atom. If electrons are relaxed down to an lower energy state,
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Figure 2.1: a) Absorption of incoming EM radiation that has an energy of � E = E1 �
E0 = �a . Electrons are lifted from energy level 0 (ground state) to energy
level 1 (�rst emission state) and(b) emission of energy that corresponds to
the same amount of energy between level 1 and 0;� E = E1 � E0 = �a .

then emission occurs, as shown in Fig. 2.1. Doing so, the particle releases the
same amount of energy that corresponds to the energy gap between the two
levels, in this case� E = E1 � E0. This phenomena is called emission. If the
energy of the incoming photon is lower than the required energy for absorption,
the particle is scattered away.

Di�erent forms of marine vegetation consists of di�erent substances, which
each emit and absorb EM radiation at di�erent wavelengths. Using the re�ected
and emitted EM radiation, it is possible to distinguish between di�erent marine
vegetation species [30,31].

Figure 2.1(b) shows the opposite case, where electrons are relaxing down
to a lower energy state. Doing so, the particle releases the same amount of
energy that corresponds to the energy gap between the two levels, in this case
� E = E1 � E0. This phenomena is called emission.

The Sun's radiation can be described by Planck's law which gives the spectral
radiation for a blackbody. A blackbody is de�ned as a perfect absorber and
emitter of energy. Planck's law is given by

� ¹_•) º =
2�2 5

_5

1

4
�2

_: �
) � 1

»Wsr� 1m� 2Hz� 1¼• (2.7)

where _ is the wavelength of the radiation, T is the temperature in Kelvin and
: � is Boltzmann's constant at 1.380649� 1023 JK� 1. Stefan Boltzmann's law is
derived by integrating Planck's law with respect to wavelength and is given as

� ¹) º =
¹ inf

0
� _ ¹) º3_ = f) 4 »Wm� 2¼• (2.8)

where f is a constant of 5.67� Wm� 2K� 4. B(T) gives the total power radiated
from a blackbody, and shows that the radiation is proportional with the tem•
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Figure 2.2: Illustration of sunlight that is directly re�ected at the ocean surface and
di�use scattering in the sky. Di�use scattering of sunlight also occurs in
the water column (scattering of for instance CDOM and suspended matter
indicated with P, X and Y) which together with scattering from the sea
bottom makes up the water leaving radiance. Figure reused from [32].

perature to the power of 4. It is also possible to derive Wien's displacement law
from Planck's law by di�erentiating Planck's law with respect to wavelength,
setting it equal to zero and solving it for zero. Wien's displacements law de•
scribes the maximum of the spectrum for a given temperature, and it can be
expressed by

_< =
0
)

»< ¼• (2.9)

where a is Wien's displacement constant at 2898̀ m [30].

This section provided a short overview of basic theory about EM radiation and
blackbody radiation which is used to describe sunlight, the energy source in
optical remote sensing. The next section will describe the path of the sunlight,
from the sun to the imaging sensor.

2.2 Light's pathway to the sensor

The measured signal at the optical sensor originates for several di�erent sources.
Figure 2.2 shows an overview of how sunlight propagates before it reaches
the imaging sensor. The sunlight �rst travels through the atmosphere before
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Figure 2.3: Absorption of EM radiation by the water. Figure reused from [34].

it reaches the ocean. On the journey through the atmosphere, some of the
radiation is scattered and absorbed by the atmosphere. In the case of drone
imaging close to the ocean surface, scattering from the atmosphere to the
sensor is less relevant than for instance for satellites. Further, the radiation
that reaches the ocean surface is either scattered of the surface, absorbed or
transmitted through the surface. If the surface is smooth, it is assumed that the
re�ection of the sunlight is specular. However, for ocean surfaces, the surfaces
often appear rough due to waves. The surface interactions then becomes more
complicated, and the interaction is then governed by the Rayleigh criterion
for rough surfaces, Snell's law and the Fresnel equations [31]. Re�ection of
rough surfaces in the direction of the imaging sensor generates glint (see Sec.
2.4) [33].

A portion of the sunlight will be absorbed by the ocean. Figure 2.3 shows the
absorption spectrum of clear water. The �gure shows that in the VISible (VIS)
region of the spectrum (400 nm • 700 nm), the absorption of EM radiation
is low for water. However, in the Near InfraRed (NIR) region and for larger
wavelengths, as well as wavelengths shorter than 400 nm, the absorption
is strong. This leaves the visible region of the EM spectrum as the part of
the spectrum that have the possibility to propagate down through the ocean
column, scatter of the sediments and macrophytes, propagate up through the
ocean column and reach the imaging sensor [31].

Radiation that propagates through the water column decays as a function of
the depth of the water. This occurs due to scattering and absorption in the
water column. The presence of di�erent substances at the water surface and
in the water column a�ects the scattering and absorption of the radiation.
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Figure 2.4: Absorption spectrum of CDOM (black line), water (blue line) and
Chlorophyll•a (green lines) for di�erent concentration. CDOM has an
exponentially decrease in absorption with wavelength, while water has an
almost exponentially increase in absorption with wavelength. The absorp•
tion of Chlorophyll•a depends heavily on concentration, and it has mainly
two absorption peaks, in the blue band and in the IR band. Figure reused
from [36].

Figure 2.4 shows how di�erent concentrations of Chlorophyll•a absorbs, as
well as the absorption from Colored Dissolved Organic Matter (CDOM) and
detritus, and the absorption of water itself. The presence of these substances
can possibly prevent the observation of sea bottom vegetation and complicate
the observation of macrophytes close to or at the ocean surface [35,36].

Additional to the absorption, and scattering, due the presence of Chlorophyll•a,
CDOM etc. in the water column, the radiation experiences attenuation as it
propagates through the water column due to absorption by the water itself.
The attenuation of the radiation depends on the wavelength of the radiation,
where the red part of the EM spectrum attenuates more rapidly than the blue
part. Figure 2.5 shows a hypothetical re�ectance spectra of a marine vegetation
species, and how it might change with depth due to the attenuation e�ect.
The changes seen in the re�ectance spectra at di�erent depths, could make
it challenging to recognise the same species at 1 meters depth and 10 meters
depth. It is possible to correct for this a�ect if the bathymetry is known for
every pixel and the concentration of CDOM etc., i.e. the attenuation is known,
but it is not done in this project [35].

This section provided a description of the sunlight's pathway from the sun
to the imaging sensor. The next section will introduce the remote sensing
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Figure 2.5: Hypothetical spectra for seagrass or macroalgae and how it might change
with increasing depth. The attenuation di�ers for each wavelength, making
it harder to discriminate between di�erent species. Figure reused from
[35].

re�ectance and water leaving radiance.

2.3 Remote Sensing Re�ectance and Water
Leaving Radiance

The remote sensing re�ectance, ' AB, is the re�ection just above the ocean
surface. It contains the spectral color information of the water column. The
remote sensing re�ectance is a function of the water leaving radiance, ! F ,
which is the upwelling radiance from ocean to air [31].

In the case of ocean imaging performed by drones where the atmospheric
in�uence of the radiation is disregarded, the water leaving radiance is what
the drone measures. The atmospheric in�uence can be disregarded if the drone
have a �ight height below a certain height. Research show that for a �ight
height above 50 meters, signi�cant atmospheric e�ects appeared [37]. Using
these �ndings, this project further assumes that for images acquired below 50
meters above the sea, atmospheric in�uence can be neglected, which is the
case in this project.

The water leaving radiance is proportional to the backscatter coe�cient, 1¹_º,
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divided by the absorption coe�cient, 0¹_º [31]:

! F ¹_º /
1¹_º
0¹_º

»Wm� 2sr� 1¼” (2.10)

The backscatter and absorption coe�cient is a sum of the di�erent substances
in the water that scatter and absorb, such as the water itself, phytoplankton
(Chlorophyll•a), CDOM (Colored Dissolved Organic Matter) and suspended
particulates [31]. The absorption and backscatter coe�cients are given in Eq.
(2.14) and (2.15). The remote sensing re�ectance is given by

' AB=
! F ¹_º

� 3 ¹_•0¸º
»sr� 1¼• (2.11)

where � 3 ¹_•0¸º is the down•welling solar irradiance where 0¸ refers to just
above the ocean surface [31]. The remote sensing re�ectance and water leaving
radiance can be used in bottom re�ectance retreival. In the case of bottom
re�ectance retreival, the remote sensing re�ectance can be written by

' AB= ' F
AB¹_º ¸ ' 1

AB¹_º (2.12)

where ' F
AB¹_º describes the water column interactions and' 1

AB¹_º is the bottom
re�ectance. ' F

AB¹_º and ' 1
AB¹_º can be written by [38]

' F
AB¹_º = 0”05

11 ¹_º
0¹_º ¸ 11 ¹_º

�
1 � exp� 3”2¹0¹_º¸ 11 ¹_ººH

�

' 1
AB¹_º = 0”173¹_º exp� 2”7¹0¹_º¸ 11 ¹_ººH ”

(2.13)

0¹_º is the absorption coe�cient, 11 ¹_º is the backscatter coe�cient, H is
the depth of the water in meters and d¹_º is the bottom albedo. The bottom
albedo is a measure of how much the sea bottom re�ects [38]. The absorption
coe�cient is given by

0) ¹_º = 0F ¹_º ¸ 0?� ¹_º ¸ 0��$" ¹_º ¸ 0B?¹_º• »< � 1¼• (2.14)

where 0F ¹_º• 0?� ¹_º• 0��$" ¹_º• 0B?¹_º are clear water, phytoplankton, CDOM
and suspended particle absorption coe�cients, respectively [31]. The backscat•
ter coe�cient can be written by

11) ¹_º = 11F ¹_º ¸ 11?� ¹_º ¸ 11B?¹_º• »< � 1¼• (2.15)

where11F ¹_º,11?� ¹_º,11B?¹_º is clear water backscatter,phytoplankton backscat•
tering and suspended particle backscattering, respectively. Backscatter from
CDOM is negligible so it is not included in the equation [31].
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Figure 2.6: Turbid water (left) vs. clear water (right). The turbidity makes it challeng•
ing to identify the sea bottom vegetation. Image reused from [39].

The equations stated here shows how the turbidity (the presence of di�erent
substances in the water column) in�uence the remote sensing re�ectance.
Figure 2.6 shows turbid water (left) and clear water (right). The �gure shows
how turbidity makes is challenging to identify the underwater vegetation. If
the water is clear, Eq. (2.14)• (2.15) is only left with the water absorption and
scattering terms, hence the retreival of the bottom re�ectance is more straight
forward. The presence of di�erent substances in the water column and the at
the ocean surface do, as shown in this section, a�ect the measured signal. With
the presence of di�erent substances in the water column, the remote sensing
re�ectance consists of a mix of di�erent signals from the di�erent substances,
in addition to the signal from the marine vegetation. This a�ects the ability to
identify marine vegetation species.

This section introduced the remote sensing re�ectance and water leaving
radiance. The next section will highlight the problems that occur due to sun
glint and how it can be accounted for.

2.4 Sun glint

Sun glint is a phenomena that occurs when sunlight is re�ected of a wind
roughened ocean surface into the sensor direction. Sun glint can overwhelm
the re�ected ocean radiance, obscuring the signal from the sea �oor [31].
Because of this, sun glint needs to be avoided, masked out or removed. Wind
speed, sensor position and viewing angle all contributes to the amount of
sun glint that appears in the image. Sun glint removal can be performed by
modelling the capillary waves using wind models, and thus try to estimate how
the sun light interacts with the waves. In addition a mask can be applied to
remove the pixels that exceeds a speci�ed threshold [31].
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(a) Drone image before sun glint removal

(b) Drone image after sun glint removal

Figure 2.7: Illustration of how sun glint a�ects the quality of a drone image.(a) shows
the image before sun glint removal.(b) shows the same image after sun
glint removal; in this image it is easier to visually identify the di�erent
species in the image, especially in the bottom right part of the image. Note
that some parts of the image in(b) are masked out, due to saturation of the
spectrum at data acquisition or if the sun glint removal have procured an
invalid spectrum with negative values. The �gure shows one of the images
from the dataset used in this thesis. From personal correspondence with
Martin Skjelvareid.
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Hedley et al. (2005) [33], describes a method for sun glint removal that includes
using NIR measurements to estimate the amount of sun glint for each pixel.
Assuming all NIR radiation is absorbed by the ocean, the NIR radiation that
is re�ected to the sensor, will thus be due to sun glint. One also needs to
assume a linear relationship between the amount of sun glint in the VIS and
NIR brightness. This way, the amount of NIR brightness can be an indicator of
how much sun glint there is in the VIS part [33]. Figure 2.7 shows an example
from the dataset used in this project of how sun glint disturbs the signal from
the sea bottom. The method from Hedley et al. (2005) is applied to the image.
Figure 2.7a shows the image before sun glint correction, and Fig. 2.7b shows
the result of sun glint removal. Visual inspection of Fig. 2.7(a) and(b) suggests
that the removal of sun glint makes it easier to both separate di�erent species
and identify which species are present in the image, especially in the dark
areas. Note that some areas are masked out in Fig. 2.7 (b), due to mainly two
reasons; the spectrum have been saturated during data acquisition or the sun
glint removal have resulted in an invalid spectrum with negative values.

This chapter described how the sunlight interacts with the ocean surface, water
column and sea bottom. These relations are important to understand when
working with remote sensing in shallow waters. The next chapter will provide
basic background information on hyperspectral imaging, which is the type of
data that is used in this project.
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Hyperspectral imaging

This project uses hyperspectral remotely sensed imagery in order to classify
and detect di�erent marine vegetation. Hyperspectral sensors provide high
spectral resolution (a high number of spectral bands with narrow bandwidth)
making them a good tool in mapping of vegetation in marine habitats [8]. This
chapter therefore provides an introduction to hyperspectral imaging.

Hyperspectral sensors used for remote sensing of the Earth were �rst developed
by the Jet Propulsion Laboratory in the 1980s. These sensors were able to
capture detailed and more precise spectral information than the multispectral
sensors available [24]. Hyperspectral imaging sensors use imaging spectroscopy
to image the Earth with high spectral resolution. Imaging spectroscopy is an
imaging technique where, instead of only capturing the classical RGB image,
the sensor captures as many as several hundreds spectral bands at the same
time for each pixel, with only a few nm in bandwidth. The hyperspectral sensors
used for ocean remote sensing typically capture bands from the VIS to the NIR
part of the EM spectrum [24].

The hyperspectral image data can be presented by 3D data cube as shown in Fig.
3.1. Figure 3.1 shows an illustration of the three dimensional data cube, where
x and y forms the image and z•dimension contains the spectral bands. A pixel
contains a stack of wavelengths that make up an almost continuous spectra of
the surface. For vegetation studies, this detailed spectral information makes it
possible to detect small changes in the physical structure and biochemistry of
the vegetation [24].

17
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Figure 3.1: 3D Hyperspectral imaging cube shows a stack of bands in z•direction
and an image displayed in the x and y direction. One pixel in the image
contains a lot of narrow spectral bands, which forms a spectra for the
surface the pixel represents. Credit: MASSIMAL project

Hyperspectral remote sensing is a relatively new technology, and its applications
for detection and identi�cation of terrestrial and marine vegetation, minerals
and man•made materials etc. is currently being investigated by scientists. Due
to the detailed spectral information for each pixel in the image, hyperspec•
tral sensors shows promising results for marine vegetation mapping [4,5,23].
Compared to multispectral remote sensing, hyperspectral remote sensing has
much more detailed spectral measurements. Analyzing multispectral data, it
is possible to detect vegetation and possibly distinguish between di�erent
species [30]. By utilizing the high spectral resolution in hyperspectral sensors,
it is possible to detect small changes in the spectral response of the target [24].
The detailed spectral information is useful for mapping of marine vegetation
because it makes it possible to identify the extent and health of the vegeta•
tion and possibly distinguish between di�erent species with similar spectral
signature [24,40] . Figure 4.3 shows the spectral signature from three di�erent
seagrass species. Their spectra are almost identical, but some parts di�er by
a small amount. These small di�erences could be detected by a hyperspectral
sensor due to the high spectral resolution [24].

Optical remote sensing of the Earth have some challenges that occurs due to
the nature of the surface of the Earth. Shadowing, topographic variations and
surface composition are challenges that can confuse interpretation of the image.
Shadowing occurs when large objects causes dark areas (shadows) where the
imaging sensor is not able to capture any information [30]. Topographic
variations refers to height variations in the terrain which can change the
spectral re�ectance in such a way that some areas in the image appear distorted.
Topographic correction is often used as a way of trying to correct for the reduced
in�uence of topography [41]. The composition of the surface often makes it
challenging to retrieve the correct information of what the surface is composed
of. This is often due to the occurrence of two or more surface types captured by
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one pixel in the image. If the spatial resolution is 2 by 2 meters, then inside that
square di�erent surface may be present such as clear water, phytoplankton,
rocks, grass, etc. Especially in the coastal areas, where land meets the ocean
this is a challenge. When a pixel covers both land and the ocean surface, the
re�ection from land is often a lot stronger than re�ection from the ocean
surface, which can cause saturation of the signal. A high spatial resolution
will reduce this problem because there will be a higher amount of pure water
pixels close to the shore. One way to achieve high spatial resolution is to use
drones, which operates at a low altitude. For such pixels, that represents a
composition of di�erent surfaces, the observed spectra is mixed. There are
generally two types of mixing; linear mixing and non•linear mixing. Linear
mixing refers to the situation where the combinations of di�erent surfaces are
additive, i.e. the surface radiations are separate until they reach the sensor. For
this case, it is possible to estimate the ratio of each surface material by linear
unmixing. Linear unmixing uses known spectral properties and determines the
relative contribution of di�erent species for each pixel. [24]. Further challenges
includes radiometric interaction with the ocean surface as described in Sec.
2.3.

Although the detailed spectral resolution of hyperspectral sensors is very useful,
some of the information in the measured spectra may be redundant. It can
often be challenging to know which spectral bands that are important for the
problem at hand [26]. Dimensionality reduction is often used in order to extract
the important features (either the spectral bands them self, or a transformation
or combination of the spectral bands) (see Sec. 6.1.1 and Sec. 6.1.2).

While this work focuses on hyperspectral sensors mounted on drones, there are
hyperspectral satellite sensors that are operational. An example is the Italian
PRecursore IperSpettrale della Missione Applicativa (PRISMA), whose mission
is to monitor natural resources and collect data of the atmosphere in Europe.
PRISMA has 250 bands with a spatial resolution of 30 meters, and a swath
width of 30 km. It was launched in 2019 and is currently operational (2022) [42].
New sensors are developing, and a sensor from the Norwegian University of
Science and Technology (NTNU) launched a hyperspectral sensor in January
2022, onboard HYPer•spectral Satellite for Ocean observation•1 (HYPSO•1 ).
HYPSO•1 is going to be used for research and map algal blooming and changes
in ocean color. It measures spectral bands from 400 nm to 800 nm with spectral
bands of less than 5 nm with a swath width of 70 km, and a spatial resolution of
less than 100 meters [43]. An upcoming sensor from National Aeronautics and
Space Administration (NASA), is the Plankton, Aerosol, Cloud ocean Ecosystem
(PACE), which is going to investigate the atmosphere and ocean exchange of
carbon dioxide and more. It is planned to launch in the end of 2023. The ocean
color instrument of PACE will measure from 340 nm to 890 nm with 5 nm
resolution, have a spatial resolution on 1 km and swath width of 2663 km [44].
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By looking at the numbers for these sensors, it is clearly seen that the di�erent
resolutions often comes at a cost of the others. For example the big swath
width of PACE causes a poor spatial resolution of 1 km, compared to the good
spatial resolution of PRISMA where the swath width is only 30 km wide. The
smaller the swath width, the longer the revisit time is. The revisit time is also
important to consider, especially for vegetation when changes in the physical
structure can happen in short periods of time (days) [30,31]. For drones, the
spatial resolution can be improved by �ying closer to the object, which leads
to a smaller area being imaged [45]. The revisit time for drones are as often as
the drone can be safely operated.

This chapter provided an introduction to hyperspectral remote sensing, which
is the type of data this work is based on. The next chapter will look into the
biology of marine vegetation and the importance of sea bottom vegetation as
well as how hyperspectral data can be used in the mapping and classi�cation
of marine vegetation.
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