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Abstract

With the introduction of distributed generation and the establishment of smart grids,
several new challenges in energy analytics arose. These challenges can be solved with a
specific type of recurrent neural networks called echo state networks, which can handle
the combination of both weather and power consumption or production depending on the
dataset to make predictions. Echo state networks are particularly suitable for time series
forecasting tasks. Having accurate energy forecasts is paramount to assure grid operation
and power provision remains reliable during peak hours when the consumption is high.

The majority of load forecasting algorithms do not produce prediction intervals with
coverage guarantees but rather produce simple point estimates. Information about uncer-
tainty and prediction intervals is rarely useless. It helps grid operators change strategies
for configuring the grid from conservative to risk-based ones and assess the reliability of
operations.

A popular way of producing prediction intervals in regression tasks is by applying Bayesian
regression as the regression algorithm. As Bayesian regression is done by sampling, it nat-
urally lends itself to generating intervals. However, Bayesian regression is not guaranteed
to satisfy the designed coverage level for finite samples.

This thesis aims to modify the traditional echo state network model to produce marginally
valid and calibrated prediction intervals. This is done by replacing the standard linear
regression method with Bayesian linear regression while simultaneously reducing the di-
mensions to speed up the computation times. Afterward, a novel calibration technique
for time series forecasting is applied in order to obtain said valid prediction intervals.

The experiments are conducted using three different time series, two of them being a time
series of electricity load. One is univariate, and the other is bivariate. The third time series
is a wind power production time series. The proposed method showed promising results
for all three datasets while significantly reducing computation times in the sampling step.
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Part I / Introduction

1 Motivation

Electricity load forecasting with the use of historical observations has been of great in-
terest ever since the start of the electric power industry (Hong & Fan, 2016), as electric
power can only be converted to other forms of energy that can be stored and then later
converted back to electric power (Jensen, 2021). In electric power systems planning and
operations, having accurate forecasts for the electricity load is indispensable. Having ac-
curate forecasts can increase the reliability of the power supply system as well as decrease
the operating and maintenance costs (Almeshaiei & Soltan, 2011). A reasonable balance
between electricity production and consumption must be achieved to guarantee that the
operational limits of the electricity grid are not surpassed, in addition to minimizing the
cost of over-and underproduction. However, a perfect equilibrium is not achievable in the
real world (Infield & Freris, 2009). Electricity over-or underproduction can cause finan-
cial loss as electricity is sold via bidding in the electricity market, where the sellers and
buyers are required to produce and buy the agreed-upon amount (Dalal, Mglna, Herrem,
Rgen, & Gundersen, 2020). The information above makes it abundantly clear that fore-
casts are necessary, and the ability to quantify the uncertainty in the predictions is of
paramount interest. Forecast models that can convey these uncertainties are referred to
as probabilistic forecast models (Jensen, 2021).

In contrast to point forecasts which predict a single point, probabilistic load forecasts
provide intervals, quantiles, or density functions for the predictions (Hong & Fan, 2016),
which reflect the uncertainty of the predictions. The construction of prediction intervals
is usually done with the available past observations in combination with explanatory
variables to provide a range of values for subsequent observations for a given confidence
level (Jensen, 2021). If a prediction interval achieves coverage for future observations
equal to the designed confidence level, the prediction interval is termed valid (C. Xu &
Xie, 2020). Valid prediction intervals are of utmost importance in high-risk situations,
which enables risk-based specification and operation of the network (Jensen, 2021). A
prediction interval with wider intervals indicates increased uncertainty as the width serves
as a reliability measure of the forecast (Quan, Srinivasan, & Khosravi, 2013). Should an
interval be overly wide or unreliable, it becomes ineffective. Therefore, the construction
of narrow and valid or close to valid prediction intervals is key.

The task of forecasting electricity load is complex as the electricity load data display
substantial temporal variations and regularly display non-linear dependencies (Yang, Wu,
Chen, & Li, 2013). An electricity load forecaster must identify and learn the temporal
dependencies exhibited by the data. In addition to this, assimilate the extent to which
the load is affected by external factors should they be included in the model (Jensen,
2021). Classically, electricity load forecasters have been made using traditional time
series models such as the autoregressive (AR), and the autoregressive integrated moving
average (ARIMA) models along with their multivariate extensions (Dang-Ha, Bianchi,
& Olsson, 2017). The advantage of such statistical methods is the ease of construction
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prediction interval, as they work under the assumption that the samples and errors of the
time series are distributed according to the normal distribution (Jensen, 2021). Where
these models falter is their inability to model non-linear dependencies in the data and
the normal distribution assumption as the distribution of the underlying data generation
process is usually unknown (Box, Jenkins, Reinsel, & Ljung, 2015).

Since these classical parametric time series models have their limitations, machine learning
methods have been developed to solve the electricity load forecasting problem; neural
networks, in particular, have been proposed (Jensen, 2021). The advantage of neural
networks is the automatic non-linear relationship learning capabilities without requiring
significant prior knowledge about the distribution of the data in addition to needing fewer
data preprocessing steps in comparison to the statistical models (Gasthaus et al., 2019).
However, neural networks, in general, do not produce probabilistic forecasts as their
predictions come in the form of point estimates (Keren, Cummins, & Schuller, 2018).
The qualities of neural networks are the core motivation for this thesis; to make a neural
network model that produces valid prediction intervals suitable for use with electricity
load and production datasets.

Echo state networks (ESN) are a type of recurrent neural networks (RNN), which is
a class of neural networks. Recurrent neural networks are categorized by the internal
recurrent connections, which are used for processing sequential data (Goodfellow, Bengio,
& Courville, 2016). This recurrent connection allows the information to flow in loops
within the network (Jensen, 2021). Where echo state networks differ from recurrent
neural networks is how the network is trained. Whereas for RNNs; all the weights must
be trained, only the output weights need to be trained for ESN models. The result of
this is a neural-based model which can be efficiently trained through the use of linear
regression algorithms such as Ridge regression. However, just like many other types of
neural networks, echo state networks do not inherently produce probabilistic forecasts
and produce point forecasts instead (Bianchi, Scardapane, Lokse, & Jenssen, 2020).

Bayesian Echo State Network (McDermott & Wikle, 2019) is a probabilistic forecasting
technique that trains an echo state network model using Bayesian regression as opposed
to Ridge regression to provide uncertainty estimates. The algorithm laid out in the
paper by (McDermott & Wikle, 2019) uses a stochastic search variable selection prior,
which combats over-parametrization. This, however, proves to be very computationally
expensive as the dimensionality increases, thus deterring more widespread use. This
increase in computation costs compared to Ridge regression is due to Bayesian inference
using sampling as it is probabilistic rather than Ridge regression, which is deterministic.

With the advent of using computers to write algorithms for complex models and perform-
ing inference for large datasets, Bayesian inference saw a rise in popularity in the 1990s
(Mushore, 2018). A way of doing this sampling is with the help of Markov chain Monte
Carlo, and Gibbs sampling in particular (Gilks, Richardson, & Spiegelhalter, 1995). In
1999 launched one of the first freely available softwares for Bayesian inference; this soft-
ware was called BUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000).

However, Bayesian inference usually does not guarantee adequate coverage as the upper

and lower bounds of a Bayesian prediction interval are obtained via quantile functions
from the sampled predictions. A prediction interval that provides its designed coverage
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or is calibrated is highly desirable. A model that produces calibrated prediction intervals
makes it possible to accurately quantify the uncertainty in the predictions, thus giving
decision makers greater insight into how reliable the results are and which course of action
to take.

2 Electricity Load and Production Forecasting

The electricity load forecast is of great importance to grid operators for planning and
operation in the power industry as it predicts the expected electricity demand (Jensen,
2021). With the deployment of smart grid technology and the integration of electric
power sources such as solar and wind power, the electric power industry has seen rapid
changes (Hong & Fan, 2016). However, as these renewable energy sources intermittently
produce power, several new difficulties have arisen for the operational reliability of the
electric power grid on both sides of production and consumption (Taylor & McSharry,
2007). These difficulties stem from the varying electricity consumption combined with
the highly irregular electricity production from renewable resources (Jensen, 2021). It is
for this reason that accurate predictions are paramount.

What makes the task of electricity forecasting challenging are the factors that influence
electricity consumption. These include but are not limited to climate conditions, tem-
perature, and customer activity. This results in a complex and dynamic system (Jensen,
2021). There are also social and environmental factors that increase the unpredictability
of electricity load data (Almeshaiei & Soltan, 2011), and how much the consumption is
affected is highly variable (Jensen, 2021). For example, the temperature impacts electric-
ity consumption to a more considerable degree in colder climates than in warmer climates
due to heating demands. Electricity load also exhibits strong cyclical time dependencies
(Yang et al., 2013), as the electricity load depends on the previous hours in addition to
the same hours in the preceding weeks, which also have further dependencies (Jensen,
2021).

The electricity load forecasting time horizon for the forecasts is usually split into two
different categories, short-term load forecasting and long-term load forecasting, where
long-term forecasting is any time horizon longer than two weeks (Hong & Fan, 2016).
Furthermore, electricity load forecasts are often aggregated together, consisting of in-
dividual consumers ranging from households to the industrial level (Jensen, 2021). The
reason for this is forecasting of an individual household electricity load can be considerably
more difficult than the aggregated electricity load due to large fluctuations in electricity
consumption that a single household presents (Gasparin, Lukovic, & Alippi, 2019). With
aggregation, the variation within the signal typically sees a decrease and exhibits less
erratic behavior. Considering all these facts, it becomes evident that a single model is
not a sufficient generalization of all electricity load use cases. Thus, models specific to
the forecasting task at hand should be constructed based on the characteristics of the
consumption data.

The existing electricity load forecasting methods mainly consist of models producing point
estimates. This holds for both machine learning methods as well as statistical methods.

3 /81



Part I — Introduction / Research Questions, Proposed Approach, and Contributions

These point estimates are frequently the expected value of the conditional mean of future
load (Chen, Kang, Chen, & Wang, 2020). However, point estimates are not that desirable
as the uncertainty in the predictions remains unknown. On the other hand, probabilistic
forecasts inherently provide these uncertainty estimates and are, therefore, more desirable
in electricity load and production forecasting tasks. Inaccurate forecasts have the ability
to cause companies operating in competitive power markets financial implications (Taylor
& McSharry, 2007); therefore, the risk associated is of great interest.

Statistical-based methods and machine learning-based methods are two of the most com-
monly used techniques within the field of electricity load forecasting (Hong & Fan, 2016).
In the field of time series forecasting, statistical models such as the autoregressive mod-
els have been at the forefront (Dang-Ha et al., 2017). However, in recent times neural
networks have increased in popularity. Specifically, recurrent neural networks are one of
the most frequently used neural networks for time series forecasting (Chen et al., 2020).
This is due to the ability to effectively process and extract nonlinear information from
a large historical input of data and the recurrent connection within the neural network
that enables the network to retain information from the previous input. This lends itself
to any field containing temporal dependencies (Choi, Bianchi, Kampffmeyer, & Jenssen,
2020).

As electricity load is heavily time-dependent, it naturally lends itself to recurrent neural
networks. Echo state networks, a class of recurrent neural networks, are well suited
for these tasks as training these models can be done quickly, whereas a more standard
recurrent neural network might take a lot longer to train (Variengien & Hinaut, 2020).
However, as stated earlier neural networks typically do not provide probabilistic forecasts.
A solution to this is replacing the underlying training algorithm with one that provides
probabilistic forecasts for the readout layer in the echo state network model. One such
way is with Bayesian regression as opposed to Ridge regression. As Bayesian regression
typically uses sampling, it naturally lends itself to providing probabilistic forecasts where
each sample can be used to make a prediction, which can, in turn, be used to make
prediction intervals, thus making probabilistic forecasts.

Bayesian regression, however, does not guarantee adequate coverage of the prediction
intervals as Bayesian uncertainty estimates are often inaccurate (Kuleshov, Fenner, & Er-
mon, 2018). This can be due to a multitude of factors, such as model misspecification and
the use of approximate inference. Having uncertainty estimates that grossly misrepresent
the actual uncertainty can be harmful as it can portray a forecast with a high degree of
certainty while, in reality, being very uncertain, leading to the wrong decision being taken.
In electricity production, this can manifest itself as operators believing the production to
be higher than it will be, leading to more electricity being sold than is produced.

3 Research Questions, Proposed Approach, and
Contributions

Based on the motivational factors laid out in Section 1, this thesis will try to answer the
following research questions:
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e [s it possible to reduce the computation time with a Bayesian echo state network to
a degree where it is usable even with a large number of connections without reducing
the performance?

e Can the prediction intervals offered by the Bayesian echo state networks be recali-
brated to obtain approxrimately valid prediction intervals?

This thesis proposes a probabilistic electricity load and production forecasting method
based on echo state networks. The proposed method specifically reduces the overall
dimensionality of the model to a more manageable size while using Bayesian regression
to train the model rather than traditional regression methods to construct prediction
intervals in the form of quantiles for the upper and lower bound. The prediction intervals
are then recalibrated to produce better intervals that attain the designed coverage level.
The experiments are conducted using univariate and multivariate electricity load data as
well as multivariate electricity production data. The experimental results show promising
results for the proposed method with the given data.

The key contributions of this thesis can be summarized as follows:

e Proposing a dimensionality reduction technique to be used in tandem with the
Bayesian ESN model in an effort to reduce the computation time to train a Bayesian
regression model as the ESN readout.

e As the Bayesian prediction intervals might not be approximately valid, a calibration
technique is used to recalibrate the model to produce approximately valid prediction
intervals.

e Applying the proposed method to both univariate and multivariate electricity load
datasets in addition to an electrical power production dataset. Where the pro-
posed method is pitted against the common statistical-based methods as well as the
traditional ESN model.

4 Thesis Outline

This thesis is split into five distinct main parts. Part II presents the relevant background
theory used in this thesis. These are related to the proposed method or used in the
comparisons made against the proposed method. Each section in part II tackles the
technical knowledge needed in part I1I, with the exception of section 5 and section 6. These
two sections present the time series forecasting background as well as the statistical-based
methods.

Part III revolves around the proposed method, presenting it and closely related works.

In the penultimate part, part IV, the experiments are conducted to investigate whether
the proposed method has any validity in addition to examining the datasets.

Finally, part V is the last part focused on concluding remarks and where additional
research is suggested for future work.
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5 Time Series Forecasting

A time series is simply a sequence of data points ordered after the time it was obtained
(Shumway & Stoffer, 2017). By ordering them this way, more information can be acquired
(Jensen, 2021). This time element makes it possible to study the trend and seasonality
of whatever sequence in question, called time series analysis. Time series forecasting tries
to predict future values of this time series. In some cases, additional time series are
used as explanatory variables; these are called exogenous variables and are separate time
series from the original. This is useful as variations in one time series may depend on the
variation within another and thus may improve the accuracy of the predictions.

There are two general approaches to point time series forecasting, single-step and multi-
step (Taieb, Bontempi, Atiya, & Sorjamaa, 2012). Single-step forecasting is predicting
the subsequent time step for a time series. This amounts to this equation:

Yi+1) = f(yu;XflLX((le))? L= 17 "7N (1)

here y is the time series we want to predict, X is the exogenous variables, t is the
number of observations.

On the other hand, multi-step forecasting predicts several time steps instead of one. This
can be done in a multitude of ways, and the two most common are direct and recursive
methods (Jensen, 2021). The recursive one is an iterative method. It predicts the single-
step prediction and then uses this as input in the model to make subsequent predictions.
By using this approach, the uncertainty naturally increases as more predictions are made
since the prediction errors add up. The direct approach creates a different model at
each time step of the forecasting horizon. This avoids the recursive approach’s error
accumulation; however, it does not guarantee statistical dependence between the forecasts
(Jensen, 2021). The equation for multi-step forecasting then becomes:

Ya+1):e+T) = f (yl:ta Xl(lzz?X((Z_)t,_l)(t_FT)) ) 1= 17 ) N (2)

every variable here is represented by the same thing as in equation 1, with the addition
of T, which is the length of the forecasting horizon.

In contrast to point forecasting is probabilistic forecasting, which instead of making a sin-
gle prediction at each time step of the forecasting horizon, assumes there is a probability
distribution for every time step. Probabilistic forecasting thus gives us an insight into the
uncertainty of each prediction, and this can be useful in situations where a particular level
of certainty is expected. While there are frequentist approaches that also produce proba-
bilistic forecasts, such as quantile regression, the advantage of the Bayesian approach is in
the use of a prior. This prior can act as surrogate data, providing additional information
when the datasets are small. In this thesis, probabilistic forecasting will be done via the
Bayesian approach.
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5.1 Prediction Intervals

With probabilistic forecasting, the goal is usually to express this as prediction intervals
as a way of conveying the uncertainties in the predictions where wider intervals indicate
increased uncertainty. Prediction intervals are an estimate of the true interval that con-
tains future observations with a certain probability (Eikeland, Hovem, Olsen, Chiesa, &
Bianchi, 2022). This means there should be a 90% probability that the next value is
within the prediction intervals’ upper and lower bounds for a 90% prediction interval.

A generic way of expressing this probability at time step n is:
PY,eCX,)21-a (3)

here « is the significance level, C(X,,) is the confidence interval centered around the
covariate X,,, and Y,, is the response variable. This means, for a 90% prediction interval,
a must be 0.1.

The quality of a prediction interval can differ significantly from each other, and there
might be undercoverage or overcoverage, meaning that there are too few or too many
observations within the prediction intervals. The sharpness of a prediction interval is
also crucial as an excessively wide prediction interval tends to be less informative and
convey high uncertainty in the prediction model (Jensen, 2021). Sharpness refers to
how tightly the prediction interval covers the actual distribution. The ideal prediction
interval must therefore maximize the sharpness while simultaneously providing the correct
amount of coverage (Gneiting & Katzfuss, 2014). In addition to this, an ideal procedure
for constructing a prediction interval should involve no strong assumptions about the
underlying data distribution (Romano, Patterson, & Candes, 2019).

A marginal coverage guarantee is a prediction interval coverage guarantee that can be
defined on average over a set of test points for any fixed value X,,;; = x (Barber, Candes,
Ramdas, & Tibshirani, 2019). To appease the marginal coverage guarantee, the true test
value Y,, ;1 must be covered by the prediction interval of at least 1 - alpha on average over
a random draw of the training and test data from any underlying distribution such that
equation 3 is fulfilled. If a model satisfies this marginal coverage guarantee it is said to
be calibrated.

6 Autoregressive Integrated Moving Average Model

6.1 Introduction

Autoregressive Integrated Moving Average is a statistical time series model. The model
is a combination of two models, the autoregressive model and the moving average model
(MA). These two models and their extensions have dominated the field of time series
forecasting (Adhikari & Agrawal, 2013). The reason for their dominance can be chalked up
to a sound theoretical background; this, in turn, makes their behavior and properties easy
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to comprehend (Jensen, 2021). These models do, however, have their limitations; as a time
series gets more complex, the predictions often worsen due to the fact that they frequently
rely on assumptions of linear relationships and temporal dependencies (Brownlee, 2018).
Machine learning methods have been applied to overcome these limitations, such as echo
state networks.

ARIMA models assume that future values of a given time series are distributed according
to some known distribution, the normal distribution, for example, and are linearly de-
pendent on its past historical observations (Adhikari & Agrawal, 2013). The assumptions
made are critical to the ease of understanding, interpreting, and developing the models
and are a large contributing factor as to why they are routinely used in time series fore-
casting (Jensen, 2021). However, while these assumptions increase the ease of use, linear
models approximating non-linear responses generally do not provide adequate accuracy
for real-world forecasting tasks (Zhang, 2001).

In order to properly implement these models, the model orders must be chosen, and this
has been proven to require both skill and expertise (Box et al., 2015), as the optimal
model orders greatly increase the predictive power of the model. In its infancy, the
approach to choosing the model and its order was largely subjective and based on the
experience of the user (Jensen, 2021). However, functions such as the autocorrelation and
the partial autocorrelation can also inform the user of suitable model orders. Later on,
several metrics to identify the optimal model and orders were developed, these include
the likes of Akaike’s information criterion (AIC), Akaike’s final prediction error (FPE),
and the Bayes information criterion (BIC) (De Gooijer & Hyndman, 2006). These all aim
to find the optimal model orders which minimize the single-step forecast.

6.2 Autoregressive Model

An autoregressive model is a model that linearly depends on a specified number p of past
values at time ¢ denoted as z;. A univariate autoregressive model is termed AR(p) while
its multivariate counterpart is called a vector autoregressive model VAR(p). A VAR(p)
model can be expressed mathematically as (Tsay, 2014):

p
zi=cta+ Y ¢z (4)
j=1

here c is a constant vector, ¢; are the parameters for the model and a; representing a
stochastic vector with zero mean vector and positive-definite covariance matrix whose
realizations are i.i.d.

6.3 Moving Average Model

A moving average model, in contrast to an autoregressive model, uses the errors, o, from
past forecasts in its prediction at time step t. The model is termed MA(q), where ¢ deter-
mines the number of past errors that affect the current value. As with the autoregressive
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model, extension into multivariate makes it a vector moving average model of order g,
VMA(q). This can be expressed according to this (Tsay, 2014):

q
Zr=p+ Z Hiat,i (5)

1=0

here the 6; represent the model parameters, while p is the expectation z; and the past
error vector terms are a;_;. The weighted moving average can be thought of as values of
z; as implied by equation 4.

6.4 Autoregressive Integrated Moving Average Model
Defined

As stated earlier, autoregressive moving average models are the combination of AR(p)
and MA(q), denoted ARMA(p,q); these models are often used for time series forecasting
tasks. Forecasts are made from this model by a linear combination of past errors and past
values of the time series. An assumption for this kind of model is stationarity, meaning
that all statistical properties of the time series are constant (Jensen, 2021). Examples of
non-stationary time series are time series that exhibit trends! or seasonalities?.

To circumvent this issue, extensions of the ARMA process are applied; these models are
termed autoregressive integrated moving average and seasonal autoregressive integrated
moving average. These models are denoted as ARIMA(p,d,q) and SARIMA (p, d, q)x (P, D, Q, m),
respectively. The difference between ARMA and ARIMA models is the inherent differ-
encing in the ARIMA model, where d indicates the degree of differencing and thereby
corresponds to the integrated part of the ARIMA model. Differencing is done to remove
trends. An example of differentiation is shown below with three levels of differencing:

2z, = 2, d=0
2, = 2 — 21, d=1
2=z — 22— 1+ 29, d=2

The SARIMA model removes the trend just like the ARIMA model but with the dis-
tinction of taking the seasonality of the time series into account. This is done with the
(P, D,Q,m) orders of the model, where each letter represents the same as in the ARIMA
model with the exception of m that influenced the other seasonal elements. This means,
for example with an m = 12 suggesting a cyclical pattern lasting a year and with a P =1,
the seasonal offset for this model then would be t —(m x 1) = t—12. A model parameter
can be set to zero (Brownlee, 2018), for example an ARIMA(0,0,1) is reduced to an MA(1)
model. The ARIMA model can be further expanded upon to create the ARIMAX model,
and this model includes the use of exogenous variables (X) using a linear combination.

In order to make the task of choosing optimal model orders easier, the autocorrelation
function (ACF) and the partial autocorrelation function (PACF) are plotted. These can

LA change in behavior over time
2Cyclical pattern over time
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be used to identify if the time series exhibits trends or seasonalities. Another way to check
if the time series is stationary is through statistical tests, such as the Dickey-Fuller test
(Dickey & Fuller, 1979). If the plots and the test show clear non-stationarity, then the
time series needs to be differenced to possible trends, at least for the models that require
a stationary time series. Finally, when the time series is deemed stationary, the AR and
MA orders can be chosen using ACF and PACF once again, where these orders are chosen
to be as small as possible within an acceptable error level (Jensen, 2021).

6.5 Prediction Interval in the ARIMA model

Prediction intervals from ARIMA models are calculated using the model residuals; the
intervals are written in general from as (Hyndman & Athanasopoulos, 2018):

Yt+h £ Ca O,

here ¢, is the point prediction at time step h while ¢, is a constant that is chosen to
receive the desired degree of confidence (Shumway & Stoffer, 2017), and g, is the standard
deviation estimate of the forecast distribution at time h. These estimates are assumed to
be uncorrelated and normally distributed and are calculated from the standard deviation
for the model’s residuals.

These prediction intervals usually increase in width as the forecasting horizon increases,
as was stated in section 5; this is due to the associated rise in uncertainty (Jensen, 2021).
Stationary models with d = 0 generally have prediction interval widths that converge
for longer horizons, while models with d > 1 will have widths that continually increase
(Hyndman & Athanasopoulos, 2018).

With one-step-ahead predictions, the standard deviation is approximately the standard
deviation of the distribution therefore the prediction interval simply becomes ;.1 + ¢,
irrespective of the model orders for all ARIMA models (Hyndman & Athanasopoulos,
2018). The confidence level ¢, is easily found from the quantile function for the standard
normal distribution. While this simplification is possible for the one-step-ahead predic-
tion, the same can not be said for multi-step ahead predictions. With multi-step ahead,
predictions j, usually increases with h and so does the complexity of the calculations. For
more details on this, the reader is referred to the book written by (Brockwell, Brockwell,
Davis, & Davis, 2016).

7 Echo State Network

7.1 Introduction

Echo state network provides an architecture to the class of computational dynamical sys-
tems, implemented following the principles of reservoir computing (Gallicchio & Micheli,
2011). This is done by way of feeding an input signal to a large, recurrent, and a randomly
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connected dynamic layer called the reservoir. Then, in combination with the output from
a memory-less layer called the readout layer, the output is used to solve a specified task.
In contrast to most other hard computing approaches, which rely on lengthy training
procedures to acquire optimal model parameters through an algorithm, ESN has proved
to be a speedy approach, usually by solving a convex optimization problem (Bianchi,
Scardapane, Uncini, Rizzi, & Sadeghian, 2015; Bianchi & Suganthan, 2020).

The ESN approach has been used in a wide variety of contexts, some of them being static
time series classification (Bianchi et al., 2020; Bianchi, Scardapane, Lgkse, & Jenssen,
2017), time-series detrending (Maiorino, Bianchi, Livi, Rizzi, & Sadeghian, 2017), speech
recognition (Skowronski & Harris, 2007), graph and trees classification (Gallicchio &
Micheli, 2010; Bianchi, Gallicchio, & Micheli, 2022; Gallicchio & Micheli, 2013), condition
monitoring systems (Noori, Waag, & Bianchi, 2020), intrusion detection (Tchakoucht &
Ezziyyani, 2018), adaptive control (D. Xu, Lan, & Principe, 2005), harmonic distortion
measurements (Deihimi & Rahmani, 2017) and various kinds of non-linear dynamical
systems in general (Bianchi, Livi, & Alippi, 2016; Bianchi, Livi, Alippi, & Jenssen, 2017;
Livi, Bianchi, & Alippi, 2017; Bianchi, Livi, & Alippi, 2018; Bianchi, Livi, Jenssen, &
Alippi, 2017). Where ESN has seen its most use is in the field of predicting real-valued
time-series relative, an example of this is electricity load which is used extensively in
this thesis. The forecasts are typically performed 1-hour and 24-hours ahead (Bianchi,
De Santis, Rizzi, & Sadeghian, 2015). Another area where ESN has achieved good results
is in the prediction of chaotic time series, which is a testament to the capability of these
neural networks to make accurate forecasts of a chaotic process from almost noise-free
training data (Racca & Magri, 2021).

Even though a larger reservoir has the potential to capture the dynamic of the underlying
system more accurately, it can result in a more complex model with a more considerable
risk of lowered generalization capabilities due to overfitting (Gallicchio, Micheli, & Pe-
drelli, 2017, 2018). Here, several different regression methods have been adopted to train
the readout layer. These could be affected by too many dimensions, which increased the
demand for both software and hardware. However, it is possible to maintain meaningful
distance relationships between original data and deal with the curse of dimensionality by
using dimension reducing methods such as Principal Component Analysis. Reducing di-
mensions removes redundant features and algorithms previously unfit with large amounts
of dimensions open up. In the literature, different methods have been proposed to in-
crease the generalization ability of the network and regularize the output. This can be
something in the vein of shrinking the weights of the connections from the reservoir to
the readout layer or pruning some connections from the reservoir to the readout layer.

7.2 Echo State Network defined

Echo state networks contain a large, untrained recurrent layer of non-linear units and a
linear, memory-less readout layer, and this readout layer is usually trained with linear
regression. The equations that define ESN are as follows:

hy = ¢ (Wihy1 + Wix, + Wiy, +&) (6)
yi = (Wix; + W7hy) (7)
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Where equation 6 describe the state-update and equation 7 describe the output and & is
a small i.i.d noise term. Figure 1 explain how the equations interact.

W

Figure 1: Showing a schematic depiction of the ESN architecture. Here the circles are the input x, state h and
output y. The polygon is the activation function performed by the neurons and z~! is the unit delay
operator. The two solid squared are the trainable matrices while the dashed squares are the randomly
initialized matrices. Source: (Lgkse et al., 2017).

Inside the reservoir there are N, neurons characterized by an activation function ¢(-),
this is normally implemented as a tanh function. The network at time-step k£ is driven
by the input signal x, € RY generating the output y, € R™, where N; and N, are
the dimensions of the input and output. h; € R™ being the vector that describes the
instantaneous ESN states. There are several weight matrices, them being W, € RN*/Nr
W € RV-*Ni and W) € RY*Ne where the first is the reservoir connections, the second
being the input to reservoir and the last is the output to reservoir feedback. The values
inside these matrices are sampled from the uniform distribution with -1 and 1 as the
minimums and maximums, respectively.

In accordance with the ESN theory, the reservoir W, must satisfy the “echo state prop-
erty” (ESP) (Bianchi et al., 2020). Satisfying this property guarantees that a given input
on the state of the reservoir will vanish in a finite number of time steps. There are sev-
eral ways to re-scale the matrix W}, a widely used rule of thumb is to re-scale so that
the spectral radius is less than one, i.e., p(W]) < 1, where p(-) denotes the spectral ra-
dius. However, there are also several theoretically founded approaches in the literature
to tune p properly. The other hyperparameters that require tuning are the density of
the connections, the input scaling, and the number of connections in the reservoir. These
hyperparameters, in addition to the spectral radius, should be tuned carefully using cross-
validation techniques such as random or grid search as properly tuned hyperparameters
for the ESN model are critical for the performance of the model (Thiede & Parlitz, 2019).

On the other hand, the weight matrices W7 and W, are instead optimized for the specific
task. To determine them, let us look at the training sequence of T}, desired input-output
pairs given by

(%1, 7)., (X3, Y, )- (8)
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The initial phase of the training is called state harvesting. Here the inputs are fed to the
reservoir in compliance with Equation 3. This then produces a sequence of internal states
hy,...,hy, . As per the definition, the outputs of the ESN are not available for feedback.
Instead, the desired output is used in Equation 4. The states are then filled into the
matrix S € RTe-*Ni+Nr and the desired output in a vector y* € R”# such that:

x|, hy v
S = Yy = (9)
X%t'r’ h%:t'r y}“‘

The initial D rows S and y* should be discarded as they are washout elements that refer
to a transient phase in the ESN’s behavior.

As stated previously, the readout of the model is trained; this is done by solving a convex
optimization problem, of which several closed-form solutions have been proposed in the
ESN literature. The go-to standard here is regularized least-square regression, typically
Ridge regression, which can be quite easily computed through the Moore-Penrose pseudo-
inverse (Bianchi et al., 2020).

Ridge regression is performed by solving the following equation

W;, = arg min % |SW —y* g % HWH2 = (STS +A1)'sTy” (10)

Wi RN X Nr

where W = [WIW?|T and A\ € RT is the L, regularization coefficient.

8 Bayesian Regression

8.1 Introduction

In general, there are two approaches when it comes to statistical inference, the two being
the frequentist approach and the Bayesian approach (Mushore, 2018). The frequentist
approach is the more commonly used one and draws its conclusions only from the sample
data using known experiments (Hoijtink, Klugkist, & Boelen, 2008), while Bayesian infer-
ence in addition to this includes the use of a subjective belief. The results of frequentist
inference are deterministic, meaning even if repeated an infinite number of times, the re-
sults will not change. How significant these findings are is usually measured by a p-value
or a confidence interval. These results make it possible to perform hypothesis testing,
which results in finite conclusions, like rejecting or accepting an alternate hypothesis.

Furthermore, the parameters in the frequentist approach are fixed, even if they are un-
known. Whereas in the Bayesian approach, the parameters are not fixed. They get up-
dated as more information becomes available. They are also assigned a prior probability
distribution before being updated that can add information about the parameters.
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In contrast to frequentist inference, the advantage of Bayesian inference is the extreme
flexibility offered. With the Bayesian approach, it is straightforward to fit realistic mod-
els to complex data sets with measurement errors and censored or missing observations
(Dunson, 2001). Also, the ability to provide further information through a prior distri-
bution is advantageous as this allows the user to quantify one’s prior beliefs about the
likely values of the unknown parameter. However, the use of subjective priors has been
the more controversial aspects of Bayesian inference (Dunson, 2001). To combat this, one
can use vague priors that avoid this issue altogether.

8.2 Bayesian Inference defined

The Bayesian inference approach can be split into three parts: the prior, the posterior, and
the likelihood. If we have unknown parameters @ = (6, ...,0,,) and data y = (y1, ..., Yn),
given the random variables y and 6 let 7(-) denote the probability distribution function
of a random variable. The likelihood function is then given by:

L(Bly) = m(y|0) = HW e (11)

This likelihood function is the sample data’s density function, and the observations
Y1, .-, Yn are thought to be independent given the unknown parameters @ and can thus be
written as the product in this equation. Here the prior distribution is given as 7(0) as
a subjective belief on 0, this gives an indication of how uncertain @ might be. Whereas
the posterior distribution reflects the uncertainty of 8 after the data y has been observed.
The posterior distribution is a conditional distribution, and by applying Bayes theorem
to continuous distributions, one achieves this equation:

CO)n(y0)  (O)n(y]6)
TN =T T Ta(0)n(y0)de (12)

7(y|@)7(y) represent the joint density of y and 8 while 7(y) is the normalizing constant,
it ensures that 7(6|y) is a proper posterior distribution. However, it is normally not of
interest as we are usually more interested in the proportion of the product of the prior
and the likelihood, this is then written as

m(0]y) oc 7(0)7(y|0). (13)

Also, this normalizing constant is often intractable. However, a very popular sampling
technique, Markov Chain Monte Carlo (MCMC), avoids the computation of it.

The posterior distribution is usually used to acquire summary statistics such as the mean,
variance, and quantiles of the posterior and represents a compromise of the data y and
our belief of 8. By using this posterior distribution, it is possible to find credible regions
for @ or intervals for elements of 8. The difference between regular confidence intervals
and credible intervals is that confidence intervals depend only on the data and are given
as random variables for fixed parameters (Mushore, 2018). Whereas credible intervals are
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quantiles for the density of the parameter in question, which is dependent on both the
data and the prior. A 100(1- «)% credible interval is then defined as:

/cu w(0ly)dd=1—a, ae(0,1) (14)

Cl

where ¢, and ¢; are the quantiles that gives the specified probability.

The two most common types of credible intervals are the highest posterior density (HPD)
and equi-tailed intervals. The HPD approach works by finding the sample space of 8 that
makes up the 100(1- «)% interval beginning at the peak of the posterior density function.
The region then defines the HPD credible interval by this equation:

R(c) = {0 : n(0ly) = c} (15)

Where c is the largest constant that fulfills this equation

/ T0ly) =1—« (16)
9€R(c)

The equi-tailed interval is simply an interval where we choose ¢; = § and ¢, =1 — 5. It
the posterior distribution is symmetrical then the HPD interval and equi-tailed interval

will be equal.

8.3 Sampling For Bayesian Regression

Regarding calculating the posterior distribution, a standard method is the sampling class
MCMC as one can not typically express the distribution in an analytical form (Mushore,
2018). MCMC sampling work by generating irreducible and aperiodic Markov chains,
which then should converge to the target posterior distribution. The accuracy of this
sample will grow as the chain grows in the number of iterations.

Gibbs sampling is an MCMC method and is the specific case of the Metropolis-Hastings
algorithm where all the proposals are accepted (Maklin, 2020). This sampling technique
is applicable as the conditional distributions are known, but the joint distribution is not
known or is difficult to sample from. The algorithm goes as follows:

Algorithm 1: Gibbs Sampling.
1 Initialize Y°, X

2 for j=1,...do

3 Sample X7 ~ p(X|Y7™1)
4 Sample Y7 ~ p(Y|X7)

5

Here we start by choosing an initial value of the random variables X and Y, and then
we sample from the conditional distribution of X|Y;_;. We use this value next to sample
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from Y|X; and then repeat n-1 times, alternating between sampling from X|Y and Y'|X
using the current value of the other random variable.

Due to Gibbs sampling using the conditional distributions, it naturally lends itself to
Bayesian regression. The posterior distribution for the regression parameters given an
input and output from which we can sample then becomes:

Plol, x) - FUEX) 2 PO

(17)

where X is our explanatory variable, Y is our dependent variable, and ( are our coefficients.
This means that P(S|X) is our prior, P(y|X) the normalizing constant and P(y|3, X)
being the likelihood. By utilizing Gibbs sampling for Bayesian linear regression, we receive
as many different regression models as our number of iterations. These models can, in
turn, be used to make predictions and construct our prediction intervals.

With the sampling done, inferences about each regression parameter can be made. More
importantly, as this thesis focuses on probabilistic forecasting, each sample can be used
to make a prediction, thus giving us samples from the posterior predictive distribution.
With samples from the posterior predictive distribution, one can simply take whatever
quantile is desired to produce a prediction interval. The posterior predictive distribution
is sampled using this equation:

7 = B Xpew + N(0,07) (18)

where 7 is the predicted value from sample j using the regression coefficients 3’ multiplied
with the new data X,,.,, and adding the error term that is normally distributed with mean
zero and variance o7,

8.4 MCMC - Diagnostic

In order to ascertain whether the sampling sufficiently samples from the target distribu-
tion, the sampling is done in what is called chains. This simply means that sampling is
done twice; by sampling in chains, one can use plots like trace plots and density plots to
assess whether the chains converge towards the same distribution or not.

It is essential that the two chains converge towards the same distribution as MCMC
samples from the posterior distribution, as any inference could be radically different de-
pending on which chain is used if the chains do not converge. This can mean drawing
the wrong conclusions about the parameters, leading to improper decision-making for
the model user. In the case of probabilistic forecasting, this can manifest itself as very
different prediction intervals. Therefore, trace plots in combination with density plots for
MCMC are a valuable tool to assess the convergence of the MCMC sampler.
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8.4.1 Trace plot

Trace plots are a useful diagnostic tool that can identify problems in the sampling, such
as an insufficient burn-in period or serial correlations, meaning that the beginning part
of the sampling is discarded or a sample is somewhat dependent on the previous samples,
respectively.

Chain 1 - Low serial correlation - No apparent problems

AN

Figure 2: Showing an MCMC chain with sufficient burn-in and low serial correlations. Source: (Taboga, 2021).

In figure 2 it is shown how a trace plot ideally should look like where the values vary
around the mean of the sample, indicating that the MCMC sampling are samples from a
similar distribution as the target distribution (Taboga, 2021).

Chain 2 - Long bum-in - Problem 1
‘ID T T T T T T T T T
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Figure 3: Showing trace plot of MCMC sampling where burn-in is required. Source: (Taboga, 2021).

Figure 3 show an MCMC chain where burn-in is required. It is categorized by drastically
different values until the 1500 iterations mark, where it switches over to oscillating around
the mean. By discarding the first 2500 samples, the trace plot more closely resembles the
trace plot shown in figure 2. This is shown in figure 4.
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Chain 2 - Bum-+n discarded - Problem 1 solved
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Figure 4: Showing trace plot of MCMC sampling after discarding the burn-in period of 2500 samples. Source:
(Taboga, 2021).

High serial correlations between the samples mean that the chain is slow in exploring the
sample space. This can be countered by increasing the number of iterations giving the
chain more samples to sufficiently explore the sample space (Taboga, 2021). Figure 5
shows an MCMC chain where there is high serial correlation present.

Chain 3 - High serial correlation - Problem 2

1 I T I I T !

-1 5 1 1 1 1 1 1 1 L 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 5: Showing trace plot of MCMC sampling where high serial correlations are present. Source: (Taboga,
2021).

By increasing the number of iterations, the trace plot shown in figure 6 more closely
resembles the one in figure 2, thus making the sampling more closely resemble the target
distribution.
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Chain 3 - Sample size increased - Problem 2 solved
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Figure 6: Showing trace plot of MCMC sampling where serial correlations are present but with increased iterations.
Source: (Taboga, 2021).

8.4.2 Density plot

In addition to trace plots, density plots also offer a way to diagnose problems in the
sampling. Density plots are simply smoothed histograms of the MCMC chain, making it
possible to discern whether the chains in the MCMC sampling converge towards the same
distribution and what kind of distribution it is, for example, if the sampling distribution
is bi-modal or normally distributed.

Density

Figure 7: Showing density plot of MCMC sampling where two chains converge into a normal distribution.

Figure 7 show two MCMC chains that converge onto the same distribution, indicating
good sampling choices that lead to sufficient sampling from the target distribution.
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However, should the prior or the sampling parameters be wrongly chosen, namely the
burn-in period and the number of iterations, this can lead to sampling chains that do not
converge to the same distribution as shown in figure 8. In this figure, one chain resem-
bles a bi-modal distribution while the other chain more resembles a skewed distribution
indicating subpar sampling from the target distribution.

03

02

Density

Figure 8: Showing density plot of MCMC sampling where two chains do not converge.

9 Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction technique which is
statistically motivated (Bianchi et al., 2020). The data is projected onto the orthonormal
basis which preserves as much variance as possible in the input signal, while also keeping
the individual components uncorrelated (Bianchi et al., 2020). The basis vectors are called
principal components and thus gives PCA its name. PCA works by applying the linear
transformation Y = ETX, where Y is the data projected on the principal components,
X is our input signal and E is the orthogonal eigenvector matrix. For this to work we let
X € R? be a random vector and Y, = EAE” be its covariance matrix, also A = diag();)
is the diagonal eigenvalue matrix. Doing this transformation ensures that the covariance
matrix of Y is 3, = A, it is then clear that the components of Y are uncorrelated. It

follows then that: » » P
N Vartx) = Var(Y) =Y (19)
i=1 i=1 =1

Now it is possible to reduce the dimensionality to d where d < p by projecting the data
onto d eigenvectors with the largest eigenvalues. This means the dimension reduction

step becomes: R
Y =E’x (20)
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This preserves most of the variance of X as E; = (eq, e, .., ¢4) is the truncated eigenvector
matrix with the eigenvalues sorted like this Ay > Ay > ... > A\;. Thus making the reduction
step to choose how many of these e; to include.

10 Platt Scaling

10.1 Introduction

Faithfully assessing uncertainty in specific applications can be as crucial as obtaining a
high accuracy with predictions. Therefore, having a properly calibrated model is highly
desirable (Kuleshov et al., 2018). Unfortunately, in a Bayesian setting, uncertainty esti-
mates regularly fail to capture the true data distribution; see figure 9 below. When this
occurs, a model is referred to as miscalibrated; an example of this is a prediction interval
containing more or less than its intended coverage. This can happen for several reasons,
such as a model bias or a predictor not being expressive enough to assign the correct
probability to every credible interval.

Raw 90% Confidence Interval from a Bayesian Neural Network
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Figure 9: Showing properly and improperly calibrated confidence intervals. Source: (Kuleshov et al., 2018).

In a classification setting, this means a forecaster correctly classifying samples 90% of the
time with a confidence level of o = 0.1.
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10.2 Platt Scaling Defined

For classifying into two classes, there is usually a class-separating feature that can help
classify samples into the two classes. Figure 10 for an example of this.

2D Classification Problem
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Figure 10: Showing two classes separated by a hyperplane in 2D. Source: (Kuleshov et al., 2018).

A binary classification forecaster H is perfectly calibrated if equation 21 holds true as T

— Q. T
Zt:1 yt]I{H(xt) = p}
T
> i1 {H (z1) = p}
Here H(x;) denotes the probability of event y; = 1 while I is an indicator function, meaning
that the numerator is the sum of all the correct classifications and the denominator is the

sum of both incorrect and correct classifications. A sufficient condition for a calibrated

model when z;,y; are identical and independent distributed realizations of the random
variables X, Y ~ P is:

— p forall p € 0,1], (21)

P(Y=1| HX)=p)=p forall p€l0,1]. (22)

As most classification algorithms do not come perfectly calibrated as standard (Kuleshov
et al., 2018), recalibration methods train a secondary model R : [0,1] — [0,1] on top of
the already trained forecaster H such that R o H is calibrated. If z; and y; are sampled

i.i.d from P then recalibration can be seen as estimating the conditional density R(p) =
PY =1] H(X) = p).
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One of the most commonly used recalibration techniques is Platt scaling (Platt et al.,
1999), which approximates the conditional density with a sigmoid (Kuleshov et al., 2018).
The reason for approximating with a sigmoid is that margins between densities are appar-
ently exponential (Platt et al., 1999). Therefore, Bayes’ rule on two exponentials suggests
a parametric form of a sigmoid (Hastie & Tibshirani, 1997).

1

PY =1|H(X)=p) = amms

(23)

Where A and B are two parameters trained discriminatively, and the output of the fore-
caster is proportional to the log odds of a positive example. Platt scaling assumes the
forecaster is made using support vector machines. The parameters A and B are fit using
maximum likelihood estimation from a training set, separate from the one used to train
the forecaster.

In essence, the objective is to estimate the empirical probability of observing a given class
as a function of x, see figure 11.

Estimating Density of Brown Class

1.0 — Density estimate (isotonic regression)

0.8

Empirical Probability of Brown Class

0.0
-1.5 -10 -05 0.0 0.5 1.0 1.5 2.0

Class-Separating Feature

Figure 11: Showing empirical probability of observing a given class. Source: (Kuleshov et al., 2018).

To evaluate the recalibration a plot such as figure 12 is used, where each line should
ideally follow the gray stipulated line as that represents perfect calibration. The uncali-
brated and recalibrated lines are made by binning the prediction into ten intervals ([0,0.1],
(0.1,0.2],...), and plotting the predicted versus the observed frequency of the brown class
in each interval (Kuleshov et al., 2018).
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Calibration Plot

1.0 —— Uncalibrated
A - Recalibrated
g ----- Perfectly calibrated
0.8
i}
=
o
o8]
%5 0.6
2
%
g 04
o
8
= 0.2
o
£
L
00

0.0 0.2 04 0.6 0.8 1.0
Mean Predicted Value

Figure 12: Showing recalibration plot using Platt scaling. Source: (Kuleshov et al., 2018).

For a further and more in-depth explanation of Platt scaling, the reader is referred to the
paper by (Platt et al., 1999), which first introduced the concept.
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This part of the thesis will present the proposed method, which is inspired by the works
Accurate Uncertainties for Deep Learning Using Calibrated Regression by (Kuleshov et
al., 2018) and Deep echo state networks with uncertainty quantification for spatio-temporal
forecasting by (McDermott & Wikle, 2019). These two works tackle the two separate
parts of the proposed method, namely quantifying uncertainty in an ESN model and
recalibrating a Bayesian prediction interval. The two following sections, 11 and 12 will
introduce these subjects. Section 13.2 will present the combined and proposed method to
construct a probabilistic wind power and electricity load forecasts with accurate estimates
of uncertainty. In addition to this, the hyperparameter search will be discussed in section
13.3.

11 Echo State Network Uncertainty Quantification
with Bayesian Regression

(McDermott & Wikle, 2019) present an algorithm for Bayesian deep ensemble ESN; how-
ever, in this thesis, standard Bayesian ESN is performed, but it is still using the foundation
laid out by (McDermott & Wikle, 2019). As stated by the authors, the motivation behind
this approach is to provide the opportunity for uncertainty quantification, specifically in
long-lead forecasting of environmental processes literature. Their paper also specifies
that the method also applies to standard ESN. The training algorithm used differs from
traditional ESN models; as traditional ESN models typically use Ridge regression, the
Bayesian ESN model utilizes Bayesian regression as the training algorithm of choice.

According to the authors of this paper, standard and deep ensemble ESN does not account
for the errors in estimating the regression or residual variance parameters in the training
stage of the ESN algorithm nor for the truncation error in the basis expansion. This,
however, can be changed by implementing Bayesian estimation at the training stage of
the ESN model. The model is defined as:

Data stage: Z;|a; ~ D(u(ay),0), (24)
Nres L ()
. N
Output stage: o = —— Zl[ﬁﬁj) + ;ﬂﬁ”gh(ht,l )]+ (25)
]: —

here D denotes an unspecified distribution with a known n, X n, spatial covariance matrix
©, « is our forecast. g, is the activation function, the same as ¢ in Equation (3) and
7, ~ N(0,0.I). What makes this model an ensemble is the n,.s part and is referring to
the fact that there is n,., number of models and is then averaged, hence why it is divided
by that in equation 25. 3 are our regression matrices which have now been acquired

through some form of sampling, the (j) is in reference from the j-th sampled flgl) in np
dimensional vector from an nj; x T" dynamical reservoir. These are defined for [ =1, ..., L
and j = 1,..,n,es where L is the number of hidden layers, these hidden layers are what
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makes it deep instead of standard ESN with only one hidden layer. The matrices are
then:

=] (26)
This implies that if all the ﬁgj ) terms for | < 2 are set to zero, this becomes the standard

ESN model in an ensemble setting. Also the fl;jl) terms come the from the deep nature of
this type of model.

The paper by (McDermott & Wikle, 2019) also suggests using a stochastic search variable
selection (SSVS) prior for the Bayesian sampling. This is because, as is stated in their
paper, "This model is clearly overparameterized.” One can use a multitude of variable
selection priors from the Bayesian variable selection literature. (McDermott & Wikle,
2019) chose an SSVS prior as it can shrink a large percentage of the regression parameters
to zero or close to zero while simultaneously leaving the remaining parameters unchanged.
A stochastic search variable selection prior is defined in the paper as:

Bl,b,kl”}/lﬁl ~ %&N(Oy Uﬁl,o) + (1 - WBZ)N(Oa 061,1)7 (27)

AP ~ Bernoulli(mg,). (28)

Here the k; indexes the hidden units for a particular layer and og,0 > 0s,1. 7g, is the
probability of including each regression parameter.

Because of the conditional nature of the SSVS prior, (McDermott & Wikle, 2019) suggest
using Gibbs sampling as the distributions are straightforward to sample from and their
natural convenience with hierarchical models, due to being defined conditionally. At the
same time, sampling n,.., reservoirs that are generated are treated as fixed covariates.

To finish the prior specifications, the variance parameter is chosen as an inverse-gamma
prior, this way the variance parameter ag is distributed according to IG(ay, ;). In
regards to hyper-parameter search the authors suggest using the genetic algorithm for the
hyper-parameters defined in the ESN model, while 0,0, 04,1, 73,, &, and 3, are problem
specific.

11.1 Discussion

The subject of this subsection will be to briefly discuss the application of Bayesian prin-
ciples to the ESN architecture. The reader is referred to the paper by (McDermott &
Wikle, 2019) should a more thorough and in-depth discussion be desired.

The approach introduced by (McDermott & Wikle, 2019) certainly achieves its goal of
implementing uncertainty estimates with ESN models and is specifically made for use
with spatio-temporal data sets. This methodology is then able to construct prediction
intervals, which are not readily available from the ESN architecture. The authors also find
their approach to give more accurate predictions than traditional ESN model, whether
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the model is "deep” or not. The authors note that the advantage of the deep architecture
comes from allowing different time scales in the predictors. That is a positive for their
experiments as they look at long-lead forecasting. However, that might not be as relevant
regarding wind and electricity load forecasts as the forecast horizons are usually an hour
or 24 hours ahead.

In the experiments, (McDermott & Wikle, 2019) note that the deep Bayesian model pro-
duces considerably better uncertainty estimates than just the deep model, which acquires
its estimate from bootstrapping. They also mention that computing times are reasonably
short, at least compared to traditional deep learning models. Most of the computing
times come in the form of Bayesian sampling.

12 Accurate Uncertainties for Deep Learning Using
Calibrated Regression

12.1 Introduction

(Kuleshov et al., 2018) present in their paper algorithms to accurately assess the uncer-
tainty of forecasts. It is applied to both classification and regression. There are other
ways to recalibrate prediction intervals (Kuleshov et al., 2018); however, their algorithm
is unique in the fact that it is model-agnostic and that it can be applied to any regression
model. This is possible it is applied as a post-processing step on the intervals produced by
the trained model. The only requirement is that the model outputs a cumulative distri-
bution function (CDF) for each observation. The algorithm boils down to simply shifting
the quantiles used in making the prediction interval up or down to achieve correct cover-
age. Their algorithm is inspired by Platt scaling, which can only be used on classification
problems, while their algorithm is applied to regression problems as well. Algorithm 2
is written verbatim from their paper in section 12.3; it can be a bit unclear what to do
from reading the algorithm. In practice, it is pretty simple and computationally cheap,
at least in a Bayesian setting, as the data needed is readily available.

12.2 Calibrated Regression Defined

In a regression setting, a calibrated prediction interval simply means a (1-a/)100% interval
should contain (1-a)100% of the true value. I.e with a 90% prediction interval 90% of y,
should be inside. Mathematically formulated as:

STy < F7 Y (p)}
T

— p forall p €[0,1], (29)

where F; ! is the quantile function at time step t, p is our level of confidence, and T
— 00. This means that the predicted and empirical CDF should converge as the data
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set increases in length if the model is calibrated. If z; and y; are i.i.d realizations of the
random variable X and Y, respectively, then a sufficient condition for this will be:

P(Y < F,;'(p)) =p for all p € [0,1] (30)
where F, denotes our forecast at X. This implies for every p; and py € [0, 1]

23:1 H{Ft_l(pl) <y < Ft_l(p2)

— 1
T — P2—N (31)

where p; and p, are our lower and upper prediction interval quantiles.

As a visualization of a model with uncalibrated confidence intervals in comparison to
calibrated confidence intervals, see figure 13. Here it is possible to see a model with too
low coverage where the width is overly narrow, causing more than the desired amount to
be outside the interval. While after recalibration, the interval is wider with more of the
true values inside the confidence interval.

Forecasts with Uncalibrated Confidence Intervals
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Figure 13: Difference between calibrated and uncalibrated prediction intervals. Source (Kuleshov et al., 2018).
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12.3 Performing Calibration

However, simply a properly calibrated confidence interval is not desirable; it should also
be sharp. Meaning the interval should be as narrow as possible while still containing
the requisite number of observations. Explicitly, var(F;) should be small, where F; is the
cumulative distribution function for the Bayesian predictions at time step t (Kuleshov et
al., 2018).

This calibration technique resembles Platt scaling on which it is based. It relies on an
auxiliary model R: [0, 1] — [0, 1] such that the R o F; forecasts are calibrated. The
algorithm is simple in nature and can be applied to most regression models, specifically
applied to Bayesian regression is used in this thesis. The algorithm goes as follows:

Algorithm 2: Recalibration of Regression Models.
input : Uncalibrated model H : X — (Y — [0,1]) and calibration set

S ={(ze, ) Hor
output: Auxiliary recalibration model R:[0,1] — [0, 1].

1 C9nstruct a recalibration dataset: D = {([H ()] (1), P([H ()] (1))}, where
P(p) = {wel[H(w)l(ye) < p,t=1,...T}H /T

2 Train a model R on D

By using algorithm 2 one achieves a new model where inputting the desired confidence
level returns the quantile to use, which theoretically should give calibrated prediction
intervals.

12.4 Calibrated Regression In Practice

Performing recalibration in practice means first obtaining this data set D, called recal-
ibration set. This is done by making all the probabilistic predictions using a separate
data set from the training data set. After that, it is possible to make the predictive CDF
part of the data set. One does that by averaging how many predicted values are below
the true value at each time step; this is the P([H (x)](y;)) part of the recalibration set.
With this predictive CDF, obtaining the empirical CDF simply becomes the average of
the predictive CDF values that are less than each predictive CDF value at each time step;
this is the [H(z)](y:) part of the recalibration set. To visualize the nomenclature used
in the paper by (Kuleshov et al., 2018), see figure 14. We notice that in practice, the
validation set, used to optimize the model’s hyperparameters, can also be used as the
recalibration set D.
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Figure 14: Visualization of what the different nomenclatures represent. Source (Rentsch & Vasishth, 2019).

Now that both parts of the calibration set are in place, all that remains is to perform the
isotonic regression with the empirical CDF as input and the predictive CDF as output.
This, in turn, allows us to input the desired confidence level into the function, and the
output is the readjusted quantile level needed for the model to be properly calibrated, in
theory. The authors suggest using isotonic regression for this part as the regression line
fit is a free-form line. Isotonic regression captures the variance seen in a plot of predicted
versus empirical CDF; also, it does not force a straight line onto the points (Kuleshov
et al., 2018). Another reason for using isotonic regression is its non-decreasing nature,
which is essential as a P(Y < F,!(p)) is monotonically increasing. Therefore, for the
recalibration to work, it is crucial that the fitted line is non-decreasing.

In short, the method proposed by (Kuleshov et al., 2018) is isotonic regression fit on the
predicted cumulative distribution and the empirical cumulative distribution. Thus recal-
ibrating each theoretical quantile to the empirical quantiles on the recalibration dataset.
Figure 15 shows the curve the isotonic regression is fit on.
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Figure 15: Showing a plot of the predicted cumulative distribution against the empirical cumulative distribution,
the function that is fit by isotonic regression. Source (Kuleshov et al., 2018).

12.5 Diagnostic

It is recommended that this recalibration set is made using a separate dataset from the
regular regression training to reduce overfitting. A diagnostic tool for this method is the
calibration plot below, see figure 16.
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Calibration Plot
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Figure 16: Showing diagnostic plot. Source: (Kuleshov et al., 2018).

This plot indicates how close to a perfectly calibrated model we receive from recalibrating.
It should ideally match the gray line where the expected confidence level is the same as
the observed one. Each point in figure 16 represents the observed confidence level attained
using the expected confidence level; the expected confidence level starts from 0 and goes
up to 1. The expected confidence level is just the intended coverage level, meaning the
coverage one expects from the interval. The observed confidence level is the coverage
attained using —oo as the lower bound and the expected confidence level as the upper
bound. In other words, the probability of observing an outcome y; in a set of ten intervals
(—o0, F(p)] for p = 0,0.1, ..., 1 (Kuleshov et al., 2018), calculated according to equation
30.

12.6 Discussion

The subject of this subsection will be to briefly discuss recalibration of a prediction inter-
val. The reader is referred to the paper by (Kuleshov et al., 2018) should a more thorough
and in-depth discussion be desired.

In the experiments (Kuleshov et al., 2018) achieve somewhat or significantly better cali-
bration. They used eight different UCI data sets and two different regression algorithms,
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Bayesian linear regression and dense neural network. The authors note that this form of
recalibration preserves the accuracy of point estimates given sufficient data for recalibra-
tion. However, the prediction intervals can become less sharp if the model underestimates
the uncertainty and is too tight around the mean prediction before recalibration. This
should come as no surprise, as the interval naturally grows as the upper and lower quan-
tiles approach 1 and 0, respectively.

The approach introduced and formalized by (Kuleshov et al., 2018) appears to be success-
ful for recalibrating in both the classification and continuous case. They also introduced
visualization tools such as figure 16 to assess performance.

13 Proposed Method: Calibrated Uncertainty
Estimates For Echo State Networks

13.1 Motivation

Simply having an accurate forecast is not enough in many situations, and although ESN
forecasts can be incredibly accurate, it does not inherently provide uncertainty estimates
(Bianchi et al., 2020). The fact that the approach made by (McDermott & Wikle, 2019)
can be applied to any ESN model provides the proposed method opportunity to be used
within a wide array of different time series forecasting tasks. However, the prediction
intervals provided by the Bayesian ESN model are not guaranteed to provide adequate
coverage and are very computationally expensive as dimensionality can be high using
optimized hyperparameters. Through the use of dimensionality reduction techniques such
as principal component analysis, the Bayesian ESN model becomes a more feasible model
to implement.

Recalibrating the quantiles from the Bayesian sampling should, in theory, make the pre-
diction intervals at least approximately marginally valid with the algorithm provided by
(Kuleshov et al., 2018). The effect of this is more helpful prediction intervals that can
better guide decision-making as uncertainty should then be faithfully represented in the
prediction intervals.

By combining the modifications done to the traditional ESN model to produce proba-
bilistic forecasts with recalibrating the corresponding prediction intervals to accurately
quantify the uncertainty in the predictions while maintaining fast computations time
through the use of dimensionality reduction techniques, the proposed method hopefully
will be valuable.

13.2 Model Overview

As introduced above, the proposed method combines Bayesian regression as the regression
algorithm with PCA being applied to the reservoir states and then recalibrating the
quantiles. The steps for performing the proposed method thus become:
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e Step 1: The first step is to initialize the ESN model and retrieve the training
reservoir states; PCA is then applied to these states.

e Step 2: After reducing the dimensionality, the Gibbs sampling is applied to give
us n regression weight samples. With the regression weights in place, prediction
of the dataset’s recalibration part can occur. To do this, reservoir states from the
recalibration dataset must be retrieved, and this is then reduced down to the same
dimensionality as the training by applying PCA with the same rotation matrix as
in step 1.

e Step 3: The next step is performing the recalibration. With each sample from the
Gibbs sampling, a prediction is made, thus giving us n predictions at each predicted
time step. By applying the recalibration algorithm, we attain the isotonic regressed
function.

e Step 4: The final step is inputting the desired confidence level into the recali-
bration function, which then gives the quantile levels to get the right amount of
coverage. These quantiles are then used to produce the final prediction interval
using the testing data, and these prediction intervals are predicted the same way as
the recalibration ones in step 3.
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Figure 17: Flowchart for the steps in the proposed method.

35 / 81



Part III — Proposed Method / Proposed Method: Calibrated Uncertainty Estimates For
Echo State Networks

Algorithm 3: Proposed method algorithm

input : Training data {(z;, )}, confidence level a € (0,1), recalibration data
{(z, yl)}tT;JTrfjl and test data {(x;, ;) tTiJ:FQle
output: Recalibrated prediction intervals

Initialize ESN model
Retrieve reservoir states from training data
Apply PCA to said reservoir states according to equation 20
Perform Bayesian regression using Gibbs sampling with algorithm 1, sample n
iterations
Retrieve reservoir states from recalibration data
Apply PCA to those reservoir states
Using the samples from the Gibbs step, make n predictions for each time step
Construct recalibration dataset to train auxiliary model in accordance with
algorithm 2
9 Train said auxiliary model with isotonic regression
10 Input desired confidence level into auxiliary model
11 Retrieve reservoir states from testing data
12 Apply PCA to those reservoir states
13 Using the samples from the Gibbs step, make n predictions for each time step
14 Use the output of step 10 as the quantiles for the prediction intervals

N

® J o »

13.3 Hyperparameter Search

Choosing bad hyperparameters in the ESN model can significantly impact the perfor-
mance of the model. Especially parameters like spectral radius and input scaling are
critical to tune for the model to perform to the best of its abilities (Maat, Gianniotis,
& Protopapas, 2018). The hyperparameters are, in practice, chosen by evaluating the
model’s performance on a validation dataset, or in our case, the recalibration dataset,
with a specific network configuration. The hyperparameter optimization techniques can
include the likes of manual search or grid search.

These methods work by selecting hyperparameters from a user-defined search space, either
systematically in the case of grid search or randomly in the case of random search (Jensen,
2021). This space is a volume where each dimension represents a hyperparameter, and
each of the points within represents a particular network configuration (Brownlee, 2018).
Systematically searching this space is termed grid search, whereas randomly selecting con-
figurations within this space is referred to as random search. In this thesis, the technique
used will be random search

As stated in the paragraph above, random search is used in this thesis. Each configura-
tion is initialized ten times, and the mean MSPE is noted for the configuration. Each
hyperparameter is sampled from the uniform distribution such that the minimum and
maximum values inside the hyperparameter space are reasonable. An exception is made
for the number of units as it needs to be an integer; sampling from the uniform distri-
bution does not work. Instead, a random number generator is used. The search is done
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using 1000 configurations which should provide ample opportunity to find a good network
configuration.

Table 1: Values used in the random search for optimizing hyperparameters.

Random search parameters
Minimum Maximum
Number of units || 500 1500
Spectral radius 0.15 1.55
Input scaling 0.05 0.95
Density 0.05 0.35

Table 1 shows the minimum and maximum values each hyperparameter can take. Obvi-
ously, these values exclude potentially better network configurations that are outside this
hyperparameter space. However, these values should form a solid hyperparameter space
in which the search can be conducted.
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In this part of the thesis, the proposed method will be applied to several different data
sets to assess the performance. The proposed method is tested on both univariate and
multivariate electricity load time series and a multivariate wind power data set. The
performance of the recalibrated prediction interval will be compared to the uncalibrated
one. In addition, comparisons will be made to traditional methods of time series fore-
casting such as ARIMAX. As discussed in the methodology section, the proposed method
combines Bayesian regression with the standard ESN model to compute prediction in-
tervals. The prediction intervals are then recalibrated to improve performance. Finally,
the comparisons will be made to assess performance and whether the added computation
cost and increased complexity are rewarding. As mentioned previously, standard ESN
and ARIMAX will be used as reference models. Standard ESN is naturally chosen as the
proposed method is an augmented ESN model, and ARIMAX is chosen as the ARIMA
family of models are some of the most widely used models within time series forecasting
(Jensen, Bianchi, & Anfinsen, 2022).

Section 14 will introduce the three data sets used in the experiments, in addition to the
preprocessing steps of the time series. Afterward, section 15 will describe the architectures
and implementation details of the different models. Then, in section 16 the different
evaluation metrics are introduced in order to assess the performance. Lastly, in section
17.1 the results of the experiments will be discussed.

14 Datasets

This section will present three different real-world data sets, where two of them are elec-
tricity load data sets, and the third is a wind power production data set. A pre-analysis
will be performed on all the data sets to determine whether the time series exhibit trends
or seasonalities, which is essential to understand the data at hand in order to interpret
the results and perform helpful preprocessing steps. The latter can include normalizing
the data, detrending, or deseasonalizing. If any preprocessing steps are taken, the reverse
transformation needs to be applied as a post-processing step to transform the data back
to its original format to evaluate results properly.

14.1 ACEA - Univariate

The first dataset that is analyzed is the electricity consumption registered by Azienda
Comunale Energia e Ambiente (ACEA). ACEA is the company that provides electricity to
Rome and some of the neighboring regions with a power grid covering 10 490km of medium
voltage lines and 11 120km of low voltage lines. Their distribution network comprises of
backbones of uniform sections that expand radially. Therefore, the distribution network
has the ability to counter-supply if a branch is out of order. These backbones are each
fed by two distinct primary stations. Also, through the use of breakers, each half-line is
protected against faults.
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The dataset originally introduced in (Bianchi, De Santis, et al., 2015), consists of a time
series of the amount of electricity supplied and is measured on a medium voltage feeder
from the distribution network in Rome. The data was collected from 2009 to 2011 with
a measurement taken every 10 minutes for 954 days of activity, resulting in 137,444
measurements. The models will be trained to predict the electricity load 24 hours ahead;
this means predicting 144-time steps ahead. As for exogenous time series, no exogenous
time series is provided; however, the electricity load 24 hours in the past is used. The
dataset is split into three parts: the training part is chosen to be the first three months,
the 4" month is used as a validation/recalibration set, and the 5 month for testing the
validity and accuracy of the final model.

According to (Bianchi, Maiorino, Kampffmeyer, Rizzi, & Jenssen, 2017) “In the ACEA
time series there are no missing values, but 742 measurements (which represent 0.54% of
the whole dataset) are corrupted”. The corrupted values are replaced by fitting a cubic
spline to the dataset and then replacing the corrupted entries with the corresponding
values from the fitted spline. In doing so, the imputation should factor in the local
variations of the load better (Bianchi, Maiorino, et al., 2017).

14.1.1 Data Preprocessing

Table 2: Descriptive statistics of the load profile in kiloVolts (KV) of the electricity consumption.

Descriptive Statistics for ACEA load

Training Recalibrating Testing
Length 12960 4320 4320
Mean 54.3 55.8 61.1
Std 14.5 16.1 174
Min 17.3 25.2 19.1
Max 109.1 96.1 102.2

Full Time Series Sample Week
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Figure 18: Electricity load over the entire time period. Figure 19: Electricity load over week 1 of the time period.

To identify trends or seasonalities, one can look at the plotted time series such as figure
18. Here there is some indication of a weak trend that seems to dissipate midway into the
time series. However, by looking at figure 19, one can clearly see a seasonality emerging
every 144-time intervals. This is expected as 144-time intervals correspond to precisely
a day, and electricity consumption naturally follows a daily cycle. By analyzing the
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autocorrelation function and the partial autocorrelation function, one can further identify
trends or seasonalities.
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Figure 20: Autocorrelation function up to the maximumFigure 21: Autocorrelation function up to lag 1008 (a
lag. weeks worth).

The ACF plots confirm the findings from plotting the time series; there is clear seasonality
every 144-time steps by looking at the weekly ACF from figure 21. The seasonality can
be dealt with by differencing the time series at lag 144, which also removes the trend.

The partial autocorrelation function indicates which correlations are indirect and which
are direct. For example, figure 22 shows a few statistically significant correlations; they
are however, relatively small, barring the one at lag 1 and a few around lag 144 .
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Figure 22: Partial autocorrelation function for the electricity load.
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Figure 23: Differenced at time lag 144 electricity load

plot Figure 24: Differenced at time lag 144 ACF plot.
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The differenced electricity load plot now shows no trend, and there is still some seasonality.
Notably, the 1008 time steps frame shows some seasonality; this corresponds to a weekly
seasonality. This can be removed with a second differentiation. However, because of the
long periodicity of the time cycle, the models would require large amounts of memory to
store information for a longer time interval (Bianchi, Kampffmeyer, Maiorino, & Jenssen,
2017). Another thing to consider with a second differentiation is that the models would
have to be trained on the load residuals on the same day and time for two consecutive
weeks. That is why only the differentiation at lag 144 is applied.
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Figure 25: Showing the mean load (blue line) and the mean + standard deviation (red line).

For studying the variance, the average daily load for the 144-time intervals has been cal-
culated across the whole dataset, and the standard deviation for each time interval. As
the standard deviation is relatively small in this case, a non-linear transformation for
stabilizing the variance might not be necessary. Therefore, we conclude that standardiza-
tion is an adequate procedure for normalizing the data in this case. The standardization
step is done to limit the oversaturation as the activation function used in the ESN model
reaches its upper and lower limits at around =+ 2.

In summary, the data preprocessing applied are standardization and seasonal differen-
tiation at lag 144. These transformations are reversed after computing the forecasts to
obtain predictions on the correct scale.

14.2 GEFCom2012 - Bivariate

The second dataset that is considered is the time series of electricity consumption from the
Global Energy Forecasting Competition 2012 (GEFCom2012) (Silva, 2014). The dataset
covers one year during 2006 of electricity load from a US energy supplier measured hourly;
in addition, the dataset includes a time series of the temperature in the same area as where
the electricity consumption is measured. The electricity load varies from 10 000kWh to
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200 000kWh and is represented as the average hourly load. The GEFCom 2012 dataset
is measured from 20 different feeders in the same geographical area and then aggregated.

As with the ACEA dataset, the GEFCom 2012 is divided into three parts. The training
set covers the first ten months, and the 11" month is used as validation /recalibration set
while the 12! month is used for testing the accuracy of the different models. The time
horizon for the forecasts is 24 hours ahead of the aggregated time series. The temperature
time series is used as an exogenous input in this case.

14.2.1 Data Preprocessing

Table 3: Descriptive statistics of the load profile in kilowatt hours (kWh) of the electricity consumption.

Descriptive Statistics for GEFCom 2012 load
Training Recalibrating Testing
Length 7272 720 720
Mean 1037412 1071306 1086948
Std 351148.8 337812.8 202733
Min 519507 561629 528534
Max 2942993 1966244 1762396
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Figure 26: Aggregate electricity load profile GEFComFigure 27: Aggregate electricity load the first week of the
2012 where the blue line represents the trend. GEFCom 2012 dataset.

rrrr

By plotting the time series over the first ten months, we can see a clear trend depending
on whether it is summer or winter, see figure 26. As expected, the electricity consumption
is higher during the winter due to increased household heating demands. In addition, it
is also possible to observe higher energy consumption during the day than at night. This
effect becomes more apparent by looking at a single week in the time series like in figure
27 instead.
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Figure 28: Autocorrelation function up to the maximumFigure 29: Autocorrelation function up to lag 168 (a
lag. week).

To study the seasonality of the dataset, the ACF for the first ten months as well as the
first week, see figure 28 and 29. Here the 24-hour seasonality is quite apparent, especially
in figure 29. To remove the daily seasonality, differencing at lag 24 is performed. Such a
differentiation produced the time series in figure 30 and the corresponding autocorrelation
function plot in figure 31.
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Figure 31: Autocorrelation function of differenced elec-

Figure 30: Differenced electricity load at lag 24. tricity load at lag 24.

The partial autocorrelation in figure 32 shows two large correlations followed by minor but
still statistically significant correlations. Larger lags also show two statistically significant
correlations every 24 lags, which amounts to 1 day.
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Figure 32: Partial autocorrelation function for the electricity load.
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As with the ACEA dataset, in order to study the variance, the mean and standard devia-
tion for the aggregate load of each hour in a day have been calculated and plotted in figure
33. The standard deviation appears to vary more later during the day when consump-
tion typically is higher. The GEFCom 2012 dataset is normalized similarly to the ACEA
dataset, i.e., with standardization. Standardization is done to prevent oversaturation as
the activation function for the ESN model, tanh(x), relies on small values as the upper
and lower limits are reached at around =+ 2.
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Figure 33: Showing the mean load (blue line) and the mean =+ the standard deviation (red line) for each hour in
a day.

The main difference between GEFCom 2012 compared to ACEA is the presence of an
exogenous time series. As stated earlier, the exogenous time series is the temperature, as
the electricity consumption rises with the use of household heating or cooling in the colder
or warmer months, respectively. However, the relationship between electricity consump-
tion and temperature can not be captured by linear correlation as electricity consumption
rises with both increases and decreases in temperature. Indeed, the correlation between
the two time series is only 0.2. The relationship, however, is stronger than what the cor-
relation would indicate. Figure 34 makes this evident as the V-shape denotes an increase
in electricity consumption when the temperature rises or falls from the mean of 62°F.
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Figure 34: 2-dimensional histogram of the temperature and the aggregated electricity consumption where brighter
areas indicate more populated bins.

To summarize, the preprocessing steps taken for GEFCom2012 are seasonal differentiation
at lag 24 and standardization. After the forecasts are obtained, the transformations are
reversed to map the predictions to the correct scale.

14.3 Fakken Wind Power production - Multivariate

The last dataset concerns the power production of a wind farm in the northern part of
Norway. This wind farm is called ”Fakken” and consists of 18 turbines, each capable of
producing up to 3 MW under the right circumstances. This gives the farm a maximum
power output of 54 MW. The area in which Fakken is situated upon has a complex
topography, which has a significant impact on each of the turbines’ power production
(Eikeland et al., 2022). The altitude in this area varies from 0 to more than 1000 meters
above sea level (MASL) as shown by figure 35.
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4 Kilometers.
]

Figure 35: Altitude map to show the topology of the region. The red circles are the 18 wind turbines in the farm.
The colors are for each altitude level, with green being the most predominant ranging from 75 to 230
MASL. Source: (Eikeland et al., 2022).

Due to rapidly changing altitude, the wind turbines can experience vastly different wind
speeds, and, according to the owner of Fakken, the leftmost turbine produced just 75%
of the power that the rightmost produced during 2020 (Eikeland et al., 2022). The main
reason for this difference is the number of obstacles in the wind’s path. The turbines on
the left are somewhat protected from the wind by nearby large mountains, while the ones
on the right are closer to the ocean with less protection. The result of this can be increased
difficulty in making accurate predictions since the aggregate power production vary more
than comparable wind farms in flat areas as the weather conditions will be more uniform
for the farm as a whole. For this reason, predictions will be made for individual turbine
power production instead of aggregating the power production.

The dataset spans 2021, yielding 8,784 power production observations for each of the
turbines. In addition to the power production, the wind speed and direction measurements
were taken with the same temporal resolution as the power for each of the 18 turbines. In
particular, the measurements are taken from weather stations mounted on each turbine
at 1-hour resolution by the Troms Kraft Power company. Weather forecasts are also used
to provide further accuracy in predicting, rather than just historical power and wind.
These weather predictions come from a numerical weather prediction (NWP) model called
the AROME-Arctic model, which was created by the meteorological institute of Norway
(MET) 3. The weather predictions made by AROME-Arctic come in the form of hourly
forecasts with a 2.5 km spatial resolution. As with the wind measurements, the AROME-
Arctic predictions come as wind speed and wind direction. However, contrary to the

3https://www.met.no/en/projects/The-weather-model-AROME-Arctic
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weather measurements that are specific to each wind turbine, the predictions are split
into two different cells, one containing 12 turbines while the other contains the remaining
6, see figure 36.
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Figure 36: Weather simulation map from the AROME-Arctic model with each cell representing a 2.5 km? area
and a red dot for each turbine. Source: (Eikeland et al., 2022).

The AROME-Arctic map highlights the differing wind speeds that occur in the region. It
ranges from upwards of 30 m/s to zero in just a few kilometers. In addition to the actual
measurements collected by the weather stations, these weather predictions should aid in
the accuracy of the power generation forecasts.

As a final note about the turbines, the cut-in and cut-off wind speeds for the turbines are
around 4 m/s and 25 m/s, respectively. Power production starts at this cut-in speed and
continually climbs until the wind speed reaches about 12-13 m/s; at this wind speed, the
power production is at its peak of 3 MW. On the other hand, if the wind speed increases
to the cut-off speed of around 25 m/s, the turbine will stop, as can be seen in figure 37.
This is due to a safety mechanism that prevents the wind turbine from rotating too fast
as it can get damaged (Eikeland et al., 2022).
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This dataset is split into three parts, like the ACEA and GEFCom 2012 datasets. A
training part, a validation/recalibration part, and a testing part. The training part covers
the first ten months, while validation/recalibration and testing cover the 11" and 12,
respectively. The forecasting horizon is set to 36 hours ahead; the reason is that the
electricity market requires participants to submit their final bids by 12:00 regarding the
expected amount of power generation the next day, therefore the 36 hours (24 hours +
12 hours). As for exogenous time series, historical power, wind speed, wind direction,
and predicted wind speed and wind direction are used. Several different subsets of these

Wind Speed (m/s)

Figure 37: Plot showing the power curve from one of the turbines.

covariates will be considered in section 14.3.1.

14.3.1 Data Preprocessing

Table 4: Descriptive statistics for the power production of one of the 18 turbines.

Descriptive Statistics for power production in kW
Training Recalibrating Testing
Length 7320 720 744
Mean 830.68 1226.8 1075
Std 988.3 1030.5 1023.2
Min -23.7 -14.26 -15,9
Max 3000.9 3000.2 3000.6
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Figure 38: Power production of one of the turbines withFigure 39: Power production of the same turbine as in
the blue line representing the trend in kW. figure 38, but for a week instead in kW.

In figure 38 it is quite clear the erratic nature of the power production, at least on that
time scale. With figure 39 it becomes a bit clearer; the power production varies wildly in
just a few time steps because of the non-linear dependence with the wind speed.
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Figure 40: Wind speed plot for the same turbine as in figure 38, the blue line representing the trend.

There is a trend towards less power production during the summer months. This is due to
less windy conditions during the summer, as can be seen in figure 40. The reason for the
continuous lack of power production that lasts approximately 300-time steps at around
time step 4000 is unclear as the wind rarely exceeds the 25 m/s threshold in that period.
A reason could be that the turbines are shut down for maintenance; however, this is just
speculation.

Power Production Power Production

ACF

Figure 41: Autocorrelation function up to the maximumFigure 42: Autocorrelation function up to lag 168 (a
lag. week).
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The autocorrelation functions in figure 41 and 42 show an abundance of short-term linear
dependencies; however there seems to be a lack of seasonality in the time series. This is
confirmed in figure 43.
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Figure 43: Partial autocorrelation function with the blue lines representing the upper and lower limits of a 95%
confidence interval.

As only the first two lags are outside the confidence interval in figure 43 it is safe to say
the correlations in figure 41 are indirect correlations that can be explained by the first

two time steps. These sorts of dependencies are also exhibited in the wind speed time
series.

Wind Speed Wind Speed

Figure 44: Autocorrelation function. Figure 45: Partial autocorrelation function.

The autocorrelation function and the partial autocorrelation for the wind speed as de-
picted in figure 44 and 45 closely resemble the ones for the power production. This is
not surprising as the correlation between the two is relatively high (0.85). Obviously, this
makes sense as the wind speed directly dictates the power production, and the measure-
ments are taken at the specific wind turbine.

To remove the trend shown in figure 38 differentiation can be applied like in the other
datasets; however, in this case, it is sufficient to do it at lag 1. The same procedure is

applied to the wind speed time series. The result of this are figure 46 and 47 showing a
flat trend line.
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Figure 46: Differenced power production time series withFigure 47: Differenced wind speed time series with the
the blue line representing the trend. blue line representing the trend.

The resulting ACF for the power production and wind speed show little correlation after
lag 1.
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Figure 48: Differenced autocorrelation function for theFigure 49: Differenced autocorrelation function for the
power production time series. wind speed time series.

As the measurement units in the wind direction time series are degrees, the time series is
rapidly changing with no fundamental changes in direction at 360 and 0. In other words,
if the direction changes between 350 and 10, it is a 340 degrees change while being only
20 in reality. The nature of this problem can be seen in figure 50.
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Figure 50: Plot of the wind direction time series showing the rapidly changing direction in degrees.

Steps to remedy this can be made. The procedure chosen here transforms the wind speed
and direction from polar coordinates to Cartesian coordinates. The time series for the X
and Y component then becomes as shown in figure 51 and 52 respectively.
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Figure 51: Plot showing the X-component of the windFigure 52: Plot showing the Y-component of the wind
time series. time series.

The accompanying autocorrelation functions and partial autocorrelation functions then
become as shown in figure 53, 54, 55 and 56.
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Figure 53: ACF for the X-component of the wind time

series Figure 54: ACF for Y-component of the wind time series.
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Figure 55: PACF for X-component of the wind time se-Figure 56: PACF for the Y-component of the wind time
ries. series.

The partial autocorrelation functions and autocorrelation functions resemble the ones for
the wind speed time series, which makes sense. There is a clear lack of seasonality and
the correlations in figure 53 and 54 can be explained as indirect correlations as they are
gone in the partial autocorrelation functions in figure 55 and 56.

These time series can also be differentiated at lag 1 to remove the correlations in figure
53 and 54 and the trends shown in figure 51 and 52. With this differentiation done, the
plot of the differenced wind components become as shown in figure 57 and 58.
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Figure 57: Plot showing the differenced X-component ofFigure 58: Plot showing the differenced Y-component of
the wind time series. the wind time series.

Accompanying the time series plots are the PACF and ACF plots, which show no signif-
icant correlations after lag 2 in figure 59 and 60.
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Figure 59: ACF for the differenced X-component of theFigure 60: ACF for the differenced Y-component of the
wind time series. wind time series.

The PACF plots shown in figure 61 and 62 show some statistically significant correlation
after the first few lags.
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Figure 61: PACF for the differenced X-component of theFigure 62: PACF for the differenced Y-component of the
wind time series. wind time series.

As a final note to the wind direction and speed, the same procedures have been applied
to the predicted wind direction and speed from the AROME-Arctic model.
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Figure 63: Plot showing the mean (blue) and mean + standard deviation (red) for the power production in kW.

As the time of day does not generally impact the wind speeds, the mean is relatively
stagnant throughout the day, i.e., the mean is a rather straight line as seen in blue in
figure 63 around the 1000 kW mark. There is, however, quite a large amount of variation as
just one standard deviation covers two-thirds of the possible power production spectrum.

The final preprocessing step taken to these time series is standardization. This is mainly
done to prevent oversaturation in the ESN as the activation function tanh(x) reaches its
limits shortly after £2. This makes the ESN not sensitive to differences in lower and
larger values.

To summarize, the preprocessing steps taken are differentiation at time lag 1, decomposing
the wind speed and direction into X and Y components, and standardization. Section
15 will cover different combinations of exogenous variables such as decomposed wind,
historical wind and power, and predicted wind as inputs to achieve the best model to
apply the proposed method. The transformations will be reversed when making the final
predictions with the models. Although only one turbine has been shown in this section,
the analysis of the time series for the 17 other turbines produced similar results.

15 Model Setup

The models presented in this section will each construct a 90% prediction interval, meaning
« = 0.1. The time horizon for the prediction intervals will be 24 hours for all the datasets
with the exclusion of the Fakken dataset, where it is 36 hours as explained in section 14.3.

Sections 15.1 and 15.2 will cover the parameter configurations for each model. Firstly
the implementation and configuration of the ARIMAX models will be presented; this
is necessary to have a baseline to compare the ESN models to. After that, the ESN
hyperparameter configuration will be covered as well as the hyperparameter choice in the
Gibbs sampling step of the proposed method.
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15.1 ARIMAX Models

The ARMIAX models are implemented using the auto.arima function from the forecast
package in R*. The auto.arima function fits an ARIMA model using the training data
provided. It is of the class "ARIMA,” which allows the use of the forecast function
from the same package to predict a specified number of out-of-sample forecasts. For the
multivariate datasets, the historical data and the exogenous variables are presented to the
model. In regards to choosing the model orders, two approaches are possible. The first is
the standard of determining it by analyzing the ACF and PACF; however, the auto.arima
function searches to choose the model that minimizes the Akaike information criterion
and thus might be preferential in situations where it is hard to determine the orders of
the model.

As touched upon in section 5 the uncertainty in prediction obtained from multi-step
forecasting increases as the forecasting horizon increases, and thus the prediction interval
width typically widens. This is because multi-step forecasting treats the previous forecast
as actual observations when making the following prediction. The result of this is often
an accumulation of errors that further widen the prediction interval.

This thesis focuses on multi-step forecasting on a 24-hour time horizon for the ACEA and
GEFCom 2012 datasets and 36 hours for the Fakken dataset. These time series, as stated
earlier, are divided into training, recalibration, and testing, where the recalibration set is
also used as a validation set for hyperparameter optimization of the ESN models. Contrary
to this hyperparameter optimization, the ARIMA models do not use cross-validation as
they only use the ACF, PACF, and AIC to select the orders. Therefore, in order for the
ARIMA models to have similar prediction setups, the recalibration set was not used for
these models.

One thing to note, there should ideally be fitted a new ARIMA model after each fore-
casting horizon (Jensen, 2021), i.e., a new one after 24 or 36 hours, depending on the
dataset. This is to obtain optimal results but is very much infeasible due to the length of
the datasets as well as the sheer number of forecasting horizons.

In comparison with the ESN models, the ARIMA models are deterministic and, therefore,
only need the results from a single run for each model. Table 5 shows the orders for each
of the models. One thing of note here is that the Fakken model is made with historical
power production, wind speed, direction, and the X and Y components, in addition to the
NWP data that also contains the wind speed and direction with its decomposed elements
as the exogenous variables. As can be noticed in table 5, the AIC is significantly higher
for the Fakken data, and this is reflected in our predictions in section 17.1.3.

Table 5: ARIMA model parameters, (p,d,q).

ARIMA Models
ACEA GEFCom 2012 Fakken
Model ARIMAX(2,0,3) | ARIMAX(4,0,5) | ARIMAX(2,1,2)
AIC -16981.53 -10729.64 7441.73

‘https://cran.r-project.org/web/packages/forecast/index.html
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15.2 Echo State Network Model

The ESN-based models are initialized using the rESN package ® which is then modified to
include the parameter input scaling. Modifications were also made to extract the reservoir
states to perform the Bayesian regression. As stated in section 13.3, the hyperparameter
search is carried out by random search with ten initialization per configuration to find
an approximately ideal configuration to apply the proposed method. The parameters in
question are the number of units, spectral radius, the density of non-zero connections,
and input scaling.

15.2.1 Choice Of Exogenous Variables For Fakken Data

In regards to choosing a good combination of exogenous variables such as the temperature
in the GEFCom 2012 dataset or wind speed in the Fakken dataset, the mean squared
prediction error (MSPE) is used. The goal is to choose the combination that produces
the best predictions. It is much quicker to do as we can train using Ridge regression
instead of performing the Bayesian regression part of the proposed algorithm. Ridge
regression foregoes the sampling, which is comparatively more computationally expensive,
thus making it quicker to make these comparisons. The data used for these comparisons is
the recalibration part, just like the hyperparameter optimization. This is done to choose
a model and model configuration that best fit the prediction task while also not being too
specific for the testing part, as that is kept separate until the final predictions. Also, the
MSPE is calculated using standardized data.

When choosing the combination of exogenous variables, one run of each is not enough as
the predictions can vary wildly between each run, even with the same configuration and
exogenous variables. This is due to the fact that each ESN model is randomly initialized.
To combat this, each combination is initialized 200 times, and the mean MSPE for each
combination is calculated. The different combinations are chosen, totaling 12, divided into
two groups, 6 using the differenced time series and 6 using the regular time series. Do note
that the MSPE for the differenced models is calculated after reverting the differencing on
the predictions.

The configuration is kept constant for all the combinations and every initialization. This
is to provide a baseline MSPE and isolate the effect of the combinations. Due to this, the
combination chosen might be the right one based on the testing, but in reality, it may
not be the best one for this task. Table 6 shows the configuration chosen for choosing the
combination.

Table 6: Network configuration used for finding the combination of exogenous variables.

Network configuration
Number of units 500
Spectral radius 0.85
Regularization 1
Input scaling 1
Density 0.2

Shttps://github.com/jaredhuling/rESN
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The different exogenous variables are termed as such:

e Predicted Wind (PW), for the numerical wind speed and direction prediction from
AROME-Arctic.

e Historical Power (HP), the historical power production for the wind turbine.
e Historical Wind (HW), the historical wind speed and direction for the wind turbine.

e Predicted Decomposed Wind (PDW), the decomposed X and Y components of the
numerical wind speed and direction prediction from AROME-Arctic in addition to
the same wind speed prediction.

e Historical Decomposed Wind (HPDW), the decomposed X and Y components of
historical wind speed and direction in addition to the historical wind speed.

e All Historical Power(AHP), the historical power production for all the 18 turbines.

When using historical power or wind, the time series lagged 36-time steps behind the time
step we want to predict. In theory, we only have access to the historical wind or power
up to 36 hours before making a prediction. To make it a bit clearer, see figure 64.

Input data Target prediction (t+35)
A |

[ ] r |
P 0 1 2 3 4 5 35 3 37 38 39 40

t

Figure 64: Showing how predicted and measured data are used in training and predicting with historical wind
power generation (P), historically measured weather (MW) and predicted weather (PW). Source
(Eikeland et al., 2022).

All these combinations give us the following MSPE as seen in table 7. In addition to
calculating the MSPE of each combination, the standard deviation can also be calculated
and help inform the correct choice of combination. A minor standard deviation is desirable
as the proposed method does not include an ensemble. Thus, the variation with the same
model configuration and exogenous variable has more impact on the final predictions.

Table 7: Mean squared prediction error for the 12 combinations where regular are before applying differentiation
at lag 1 and differenced after differencing at lag 1.

Mean Squared Prediction Error

Regular Differenced
PW 1.01 (0.027) 3.08 (0.32)
PW+HP 0.83 (0.029) 10.6 (3.47)
PDW 0.88 (0.053) 11.4 (3.6)
PDW+HP 0.89 (0.046) 3.2 (0.96)
PDW+AHP 0.87 (0.063) 10.2 (9.75)
PDW+HDW+HW+PW+HP 0.86 (0.077) 10.6 (6.65)
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By using table 7, we can see that the combination that gives us the lowest MSPE is the
one with predicted wind speed and direction with the addition of historical power. The
increase in MSPE while using the historical wind speed and direction and its derivatives
might be the high correlation between it and the historical power, 0.85 to be exact. Also,
why using the differenced time series increases the MSPE to such a large extent is unclear.
This increase MSPE is also reflected in its standard deviation, which is significantly higher
for the ones using differenced data as seen in table 7.

To further identify the optimal combination, we used the Friedman test to ascertain
whether there is a difference between the combinations or if the difference in MSPE is
purely due to chance. Here the null hypothesis is that MSPE does not differ between com-
bination pairs, and the alternative hypothesis is that there is a difference in MSPE between
the combination pairs. Figure 65 shows the p-value for each pair; most of the pairs differ
significantly from each other, with the exception of the pairs PDW & PDW+AHP, PDW &
PDW+HDW+HW+PW+HP, PDW+AHP & PDW+HDW+HW+PW-+HP. The differ-
enced pairs are not that interesting, but PW & PDW+HP, PW+HP & PDW+HDW+HW+PW+HP,
and PDW & PDW+HDW+HW+PW+HP do not significantly differ. One note here is
that all the regular pairs that do not differ use decomposed wind as an exogenous variable.
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03
02
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Figure 65: Heatmap for the p-values for each combination from the Friedman test, the gray diagonal being paired
with itself. The order is going from regular combinations and then differenced combinations in the
order from table 7.

The reasonable conclusion based on average MSPE, the standard deviation, in addition
to being significantly different from any other combination, is that predicted wind speed
and direction with historical power should be the combination used going forward. It
is, however, essential to note that while this might be the best combination with the
data available, it does not exclude the possibility that another combination is better for
actually predicting. This is due to the MSPE being calculated using the recalibration part
of the dataset and not the actual part we want to predict. Also, the model configuration
is kept constant for all the models and every initialization. Therefore there might be
a combination and configuration that outperforms this. In fact, it is safe to say that
even the network configuration used for the PW+HP model is not ideal. For this reason,
hyperparameter optimization is performed using the PW+HP combination to find an
approximately ideal configuration for the model.
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15.2.2 Hyperparameters

To achieve a good selection of hyperparameters for the ESN model, the algorithm laid out
in section 13.3 is used to find these hyperparameters. The optimization will be applied
to all three datasets. While several different configurations might perform roughly the
same, some care should be taken not to choose a needlessly complex configuration when
a more straightforward model performs equally well. An example of this is the Fakken
optimization, where 1550 units perform barely better than 570, but because of this increase
in units, the complexity rises while not gaining additional performance. Therefore, if the
two configurations perform approximately the same, the one with fewer units is chosen.
This decrease in complexity also impacts the PCA part of the proposed algorithm as
the dimensionality is not reduced as heavily. One note is that what is deemed a good
trade-off in terms of MSPE to the number of units is mainly arbitrary. However, among
the 1000 different combinations, the difference between the two usually comes down to
the 4" decimal.

Table 8: Network configuration for the three datasets.

Network Configuration
ACEA GEFCom 2012 Fakken
Number of units || 1165 559 270
Spectral radius 1.52 0.99 0.175
Input scaling 0.065 0.225 0.517
Density 0.26 0.26 0.093
MSPE 0.17 0.32 0.63

Table 8 present the different optimized network configurations for each dataset used in the
final prediction in section 17. Also, in this table, the corresponding MSPE achieved during
the hyperparameter search is presented. As noted earlier, this is with ten initializations
each. With the MSPE for each dataset, the increasing difficulty of predicting is quite
apparent, especially with the Fakken dataset, which has almost five times the MSPE as
the ACEA dataset. This, in theory, should be reflected in the relative width of each
prediction interval, as MSPE is a metric for error in the predictions.

15.2.3 PCA

As laid out in section 9, PCA is a dimensionality reduction tool that conserves the greatest
amount of variation. To determine the number of components used going forward, two
factors are taken into account, how much variance each component contains and how
computationally complex we want our model to be. In regards to the variance, a scree plot
is used. A scree plot is simply a line plot of the variance each component represents and
is strictly non-increasing due to the components being ordered from largest to smallest.
This way, we can judge at what point each additional component brings no significant
increase in explanatory power. Also considered is the added complexity and corresponding
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computation time each component brings, where we use more components than strictly
needed if the sampling computation time can be kept short just as an insurance policy.

Scree Plot ACEA
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Figure 66: Scree plot for the components of the ACEA ESN model.
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Figure 67: Scree plot for the components of the GEFCom 2012 ESN model.
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Scree Plot Fakken
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Figure 68: Scree plot for the components of the Fakken ESN model.

Figure 66, 67 and 68 show the ACEA, GEFCom 2012 and Fakken scree plots, respectively.
The ACEA scree plot indicates that most of the variance is contained in just the first
two components. The GEFCom 2012 scree plot increases to 3 components before the
significant drop-off variance. Lastly, the Fakken should require four components to explain
most of the variance. Table 9 shows the chosen amount of components for each dataset,
and it is chosen by judging the scree plots in combination with choosing an amount that
offers some redundancy. It should be noted that these choices are mainly subjective.
However, this amount of components should be a solid compromise between the total
amount of variance explained and computation times. This dimensionality reduction
reduces the computation time of 99% when comparing the original GEFCom 2012 with
a dimension of 559. Obviously, a more significant reduction is achieved with the other
models as they have even more units.

Table 9: The amount of components chosen to move forward with.

PCA components choice
ACEA GEFCom 2012 Fakken
Components 10 10 10

15.2.4 Bayesian Regression

The Bayesian regression part is done using the Just Another Gibbs Sampler (JAGS) with
the interface package rJAGS ¢ to allow the use of JAGS inside R. A vital thing to note

Shttps://cran.r-project.org/web/packages/rjags/index.html
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about JAGS is that it uses precision instead of variance, with precision being the inverse
of the variance. Therefore, higher precision specified in the initialization of the sampler
equals less variance. When sampling, the values for the intercept and the regression
coefficients are recorded in addition to the variance from each sample. Burn-in is used
when sampling as Gibbs sampling requires a few samples before properly sampling from
the target distribution and means simply discarding the first iterations of the sampling
with however many iterations specified as burn-in. Thinning is another parameter used
in Gibbs sampling, referring to how many iterations are thrown out, with 1 being none
of the iterations thrown out and 10 being nine iterations thrown out while one is saved.
As stated in section 8.4, density and trace plots are used to check whether the Markov
chains converge towards the same distribution or not. If the two chains do not converge
to the same distribution, that can indicate a wrong choice of priors or simply not enough
samples with too little burn-in. Therefore, ample amounts of sampling have been provided
for each dataset, however, at the cost of some computing time. This increased computing
time is not detrimental as PCA is applied before sampling.

modelString =
model {
for(1 in 1:N) {
y[1] ~ dnorm(mu[i], sigma)
mul[i] <- b0 + inprod(b[], x[1,])
}

#Priors:

tau ~ dgamma(l , 1)

bO ~ dnorm(0, 1)

sigma <- 1/tau

for (3 1in 1:K) {
b[j] ~ dnorm(0, 1)

}

Figure 69: Showing model specification for using JAGS.

Figure 69 shows an example of what a model specification for Bayesian linear regression
could be using rJAGS. Here it is possible to see what priors are used for the regression,
with dnorm(0,1) being a normal distribution with mean zero and precision equal to one
for all the regression parameters from f, to ;. However, as noted earlier, precision is
equal to 1 divided by the variance, which means the variance will also be one in the case
of precision equal to one. The prior for sigma is an inverse gamma distribution as sigma
is ﬁ and tau is distributed according to a gamma distribution with scale and shape
parameters equal to one. Higher precision here indicates a more informative prior, while
lower precision indicates a vaguer prior. Inverse gamma is chosen as a prior as it is a
conjugate prior for the normal distribution, meaning that prior and posterior share the
same functional form. This means that the prior for the regression parameters g and the

variance o2 is a normal-inverse-gamma distribution. The priors for this regression are
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then:
p(B,0%) = p(Blo*)p(c?)

where

Blo? ~ N(0,0?)
As the prior for 3 is conditioned on o2, it is sometimes called hierarchical (Gundersen,
2020). Conjugate prior is useful as it allows easier sampling as the prior and posteriors

distributions share the same form. However, note in figure 69 sigma is specified in the
model, but sigma in actuality means o2. This is due to the way rJAGS works.

Table 10 shows the different parameters used for the Gibbs sampling. These were chosen
through a mix of trial and error and reasonable assumptions.

Table 10: The Bayesian hyperparameters used in the Gibbs sampler.

Bayesian Regression Parameters

ACEA GEFCom 2012 Fakken
Burn-in 2000 2000 2000
Samples 10000 10000 10000
Prior Gamma(50,1) Gamma(1,1) Gamma(50,1)
Precision 10 350 1
Thinning 1 1 1
Computation 13.7 5.2 5.4
time (minutes)

As stated in the above paragraph, density and trace plots are used to be certain of
convergence of the sampling from the target distribution. In addition to this sampling
with two chains, meaning sampling twice, this is to compare where each chain converges
if it indeed converges. Below are the plots concerning the convergence of the regression
parameters for each dataset to give an insight into whether our hyperparameters shown
in table 10 work for this given task.
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Figure 70: Trace plot from the sampling for the ACEA dataset, where black and red represent each chain.
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Figure 71: Density plot from the sampling for the ACEA dataset, where blue and purple represent each chain.
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Here it is possible to see that both of these chains converge to the same distribution,
with the trace plot oscillating between the mean of each variable. This is good as this
indicates that our sampling assumptions hold up. Note that sigma is the variance used in
the predictions later on, and each b is a regression coefficient with b0 being the intercept.
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Figure 72: Trace plot from the sampling for the GEFCom 2012 dataset, where black and red represent each chain.
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Figure 73: Density plot from the sampling for the GEFCom 2012 dataset, where blue and purple represent each
chain.

As with the figures 70 and 71, figures 72 and 73 show similar results where the densities
converges to the same distribution for the most part.
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Figure 74: Trace plot from the sampling for the Fakken dataset, where black and red represent each chain.
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Figure 75: Density plot from the sampling for the Fakken dataset, where blue and purple represent each chain.

Again, figures 74 and 75 show that, for the most part, our sampling assumptions hold,
however, with a bit more deviation in the densities as seen in figure 75. This is also
reflected in the trace plots in figure 74 where the chains seem to differ a bit for coefficients
like b[1] and b[5]. b[5] in particular have pretty different densities depending on the chain.
This coefficient does not converge to the same value for the mean or any different quantile
and could change upon redoing the sampling.

Table 11: Comparison of the the resulting MSPE using Ridge regression and Bayesian regression in combination

with PCA.
MSPE Comparison
ACEA GEFCom 2012 Fakken
Ridge MSPE 0.16 0.32 0.63
Bayes MSPE 0.17 0.33 0.73
Difference 0.01 0.01 0.1

Judging by these figures, our choice of parameters seems to be good enough of a fit to
move forward with. However, simply having the sampling converge as one would expect is
not enough. As the mean prediction should converge to the ordinary least squares given
enough data, a check of this could be to plot both predicted time series and calculate the
MSPE as, in theory, they should not differ significantly from each other. This difference
can be seen in table 11. In addition, this difference can be seen in figures 76, 77 and 78
below. These figures show that the Gibbs sampling is working as intended and can thus
be used in the recalibration part of the proposed method in section 17. Do note that the
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Ridge regression predictions made below are calculated before applying PCA; therefore,
this also serves to see if the PCA step significantly changes the predictions.
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Figure 76: Showing the mean Bayesian prediction in blue and the Ridge regression with A being 1 in green for
the ACEA dataset, the red one is the true value from the recalibration part of the dataset.

Figure 76 confirms our conclusions from the density and trace plots as there is, for all
intents and purposes, no difference between the Ridge regression prediction and the mean
Bayes prediction showing that our sampling assumptions are holding up.
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Figure 77: Showing the mean Bayesian prediction in blue and the Ridge regression with A being 1 in green for
the GEFCom 2012 dataset, the red one is the true value from the recalibration part of the dataset.

The mean prediction for the GEFCom 2012 dataset, as seen in figure 77 shows an almost
identical prediction as the standard Ridge regression prediction. This means that our
sampling assumptions are indeed holding up.

67 / 81



Part IV — Experiments / Evaluation Metrics

Fakken

—— Obseved Value

~=~ Bayesian Prediction
] l

|

[

Ridge Prediction
o o
i }

I‘ l‘ﬁ‘\ | . L
f N il
i h W]W’U 1 ‘.,“

Standardized Power Production

Index

Figure 78: Showing the mean Bayesian prediction in blue and the Ridge regression with X being 1 in green for one
turbine in the Fakken dataset, the red one is the true value from the recalibration part of the dataset.

Figure 78 show more deviation from the Ridge regression predictions; however, the pre-
dictions are generally in the same vicinity, with the mean Bayes prediction not being as
extreme as the Ridge predictions. This can be due to a multitude of reasons, such as lack
of data. More probably, the sampling parameters could be tuned better. Especially, the
precision could be better tuned due to the high variance of this dataset. This could also
be due to the PCA step in the proposed algorithm, and further experimenting might prove
helpful. The precision chosen for the Fakken sampling was chosen due to the fact that
increasing precision leads to a more negligible difference between the chains at the cost
making the prediction more conservative, i.e., being more centered around the mean, thus
increasing the difference between the mean Bayes prediction and the Ridge prediction.
Therefore the precision landed at one as shown in table 10 and serves as a middle ground
between the chains converging and prediction close to the Ridge prediction.

These three figures show that both the PCA and sampling steps are working as intended as
beside figure 78 the mean Bayes prediction is very close to the Ridge regression prediction.
Meaning that not much information is lost during the PCA step, and sampling is done
from the target distribution.

16 Evaluation Metrics

To properly assess the performance of differing forecasters, it is crucial to have metrics
that properly rank the predictive power of each forecasting approach (Gneiting & Raftery,
2007). Two useful metrics to look at regarding probabilistic forecasting in the form of
prediction intervals are the width and the coverage. Using merely one of these is usually
insufficient as an interval with the correct coverage but is wider than it needs to be is
undesirable. Likewise, having the width be narrow is a good thing, but if it is too narrow
to achieve the correct coverage, that is also undesirable. Therefore both the width and the
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coverage in unison should be considered when assessing the performance of a prediction
interval.

Section 12 put forth the idea of sharpness and calibration as ideally a prediction inter-
val must maximize the sharpness of the predictive distributions, subject to calibration
(Gneiting & Katzfuss, 2014). As stated earlier, the sharpness is how tightly the interval
covers the true distribution. In contrast, a prediction interval is valid if coverage of a new
observation is guaranteed to be greater or equal to the desired confidence level (Jensen,
2021).

To quantify the performance of each model in section 15, two of the more frequently used
metrics in probabilistic forecasting are prediction interval coverage probability (PICP)
(Khosravi, Nahavandi, & Creighton, 2010) and prediction interval normalized average
width (PINAW) (Shepero, Van Der Meer, Munkhammar, & Widén, 2018), is used.

The reasoning behind PICP is that whether the prediction interval covers a single data
point is binary, the data point lies within the prediction interval, or it does not. To assess
the coverage of a prediction interval for several data points, such as a time series, the
coverage must be averaged over the entire predicted time series. The PICP is simple to
calculate as it is the sum of all the observations inside the prediction interval divided by
the number of observations. Formulated mathematically, this becomes:

1 & 1 L;, U;
PICP = —> ¢, ¢=1 v € 1L, Ul (32)
ne = 0, w ¢ [Li Ui

Here, L; and U; are the lower and upper bounds of the prediction interval at time step
i. While n; is the number of observations in the data set. The resulting PICP score will
be a number between 0 and 1, where 0 is a prediction interval containing none of the
observations while 1 contains every observation.

Whereas PICP pertains to the coverage, PINAW is the normalized metric for how wide a
prediction interval is. The average prediction interval width is the difference between the
upper and lower limits of the interval for every time step predicted, divided by the total
number of observations in the dataset. PIAW is the non-normalized prediction interval
average width, formulated as such

1 &
PIAW = — U, —L; 33
(0= L) (3)
As the PIAW is not normalized, it is dependent on the scale and unit of the predictions.
To make comparisons between prediction interval widths easier, it is usually normalized.
This is done by dividing the PIAW by a normalizing constant. The PINAW then turns
into

1] &
PINAW = — U, — L; 34
R ;( ) (34)

Where the normalizing constant R = 9,142 — Ymin is the difference between the maximum
and minimum of the observations for the predicted variable.
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As stated earlier, a prediction interval should have the correct coverage for the desired level
while being as narrow as possible since very wide intervals are uninformative. This makes
the use of the PICP score insufficient to evaluate the performance of a prediction interval.
Therefore, one should include the use of PINAW when evaluating the performance of a
prediction interval.

As the focus of this thesis is to construct prediction intervals for calibrated ESN fore-
casters, these two metrics are used to compare against the baseline method. However,
comparing the width without the coverage being at least nearly equal is not a good com-
parison. Therefore the PICP is first used, then the PINAW, where the best model is
the one with the closest PICP to its designed level while simultaneously minimizing the

PINAW.

17 Experimental Results

In this section, the results from the experiments are presented and discussed. First, the
performance using ARIMA models will be presented in table 12 and then the performance
of the ESN models in table 13 and table 14, the specifics of each dataset will be gone
over in section 17.1. The predictions made in section 17 are using the testing part of the
dataset.

Table 12: Results from the ARIMA models establishing a baseline performance.

ARIMA Performance

ACEA GEFCom 2012 Fakken
PICP 0.89 0.97 0.996
PINAW 0.53 0.55 1.4
MSPE 0.96 0.18 0.88

Table 13: Performance before performing recalibration.
Bayesian ESN — Uncalibrated Performance

ACEA GEFCom 2012 Fakken
PICP 0.93 1.0 0.98
PINAW 0.28 1.75 1.41
MSPE 0.19 0.19 0.8

From table 12 and table 13, we can see that the Bayesian ESN model vastly outperforms
the ARIMA model for the ACEA set with the MSPE reduction of over 75%. Sadly
this performance increase is not the same for the two other datasets, where the Fakken
dataset only offers a 10% reduction in MSPE. In contrast, the GEFCom 2012 dataset
actually sees an increase in MSPE. The performance increase in PICP and PINAW is
also evident, at least for the ACEA dataset; even if there is no significant difference in
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PICP, the PINAW is almost half that of the ARIMA prediction interval compared to
the Bayesian ESN prediction interval. This means that the Bayesian ESN model has
greater coverage before recalibrating while maintaining substantially lower PINAW. The
GEFCom 2012 prediction interval is excessively wide for both the Bayesian ESN and
the ARIMAX intervals. The PINAW for the Bayesian model is extreme and thus very
uninformative as the true values are all within the interval. However, the Fakken dataset
sees a decrease in PICP with a slight increase in PINAW, meaning that the coverage is
down, but the interval is wider. This will be explored more in-depth in section 17.1.3.

Table 14: Performance after performing recalibration.

Bayesian ESN — Recalibrated Performance
ACEA GEFCom 2012 Fakken
PICP 0.89 0.90 0.88
PINAW 0.23 0.42 0.81
MSPE 0.19 0.19 0.8

The recalibration shows promising results. Here the PICP is closer to its intended value
for the ACEA and Fakken datasets, with a significant narrowing in the width of the
prediction intervals seen in the PINAW score. GEFCom 2012 shows the most dramatic
difference, and it goes from covering every single observation with an extremely wide
prediction interval to producing a PICP score of 0.9, which is perfect. The PINAW is still
relatively large even though there is a reduction of 76%. Overall the results are excellent
as all the PICP for all the datasets are within 0.02 of their designed level.

17.1 Performance on Individual Datasets

17.1.1 ACEA Dataset

ACEA was the dataset that showed the most promising results switching from an ARI-
MAX model to a Bayesian ESN model. The resulting reduction in MSPE is nothing
short of extreme, as it goes from 0.96 to 0.19. The ARIMAX model is unable to deal with
reproducing the prominent daily seasonality. However, the ESN model reproduces this
very well, and therefore the errors are pretty minor, resulting in a substantial decrease in
MSPE.
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Figure 79: Diagnostic plot for the recalibration with the blue line being the recalibrated and red being the original
with purple as perfectly calibrated using the test data.

Figure 79 confirms the improvements made by recalibrating as the recalibrated line much
more closely resembles the perfectly calibrated model compared to the uncalibrated one.
As the data used is the testing, some deviation is expected to be seen in figure 79. Ideally,
when using such a plot, the recalibrated line should closely resemble the perfectly straight
purple line, which would indicate a perfectly calibrated model. There is, however, still
some amount of deviance, resulting in a model that is not perfectly calibrated but is still
an improvement over the uncalibrated model. In particular, it still provides undercoverage
in the 0.2 region while also providing overcoverage shortly after that remains until the
expected PICP reaches 0.95. The recalibration still yielded good performance as it is very
close at the 0.05 and 0.95 quantiles, which are the quantiles used to make the prediction
intervals. Both before and after recalibration, the performance line exhibits some of the
same behavior and sort of mimics each other. There is some undercoverage around the
0.25 region which then transitions into overcoverage later on. Albeit, the deviations are
considerably more significant before recalibration.
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Figure 80: Plot showing the uncalibrated and recalibrated prediction intervals for the first 1000 predictions, also
showing the observed values.

Figure 80 shows the narrowing of the prediction interval. While the PICP is not precisely
0.9 as intended, it got pretty close and is an improvement compared to the uncalibrated
prediction interval. One can easily observe here that the upper bound remains almost
utterly unchanged while the lower band is shifted slightly upwards due to the recalibration.
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Figure 81: Plot showing the recalibrated prediction interval for the first 1000 predictions as well as the ARIMAX
prediction interval, also showing the observed values. This is after reverting the standardization step.

With figure 81 the performance gained by using the proposed method as opposed to
ARIMAX becomes evident. As noted earlier, ARIMAX’s failure to capture the daily
electricity load in the ACEA dataset leads to uninformative prediction intervals. It is only
in the upper band that observations land outside the interval. The recalibrated Bayesian
ESN prediction interval follows the ACEA dataset fluctuations while maintaining a PICP
score very close to the intended level, making the model vastly superior to the ARIMAX
model. Overall the recalibration yielded good results for ACEA.
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17.1.2 GEFCom 2012 Dataset

The GEFCom 2012 saw a giant performance leap where the coverage reached its designed
level. This is also confirmed with figure 82 which shows that the recalibrated is near-
perfectly calibrated with only a slight deviation for a few PICP levels. It is also apparent
from this figure that before recalibration shows extreme coverage as there is only a narrow
band where the coverage actually changes.
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Figure 82: Diagnostic plot for the recalibration with the blue line being the recalibrated and red being the original
with purple as perfectly calibrated using the test data.

The extent of this overcoverage becomes apparent in figure 83, the chasm between both
the upper and lower band and the true value is extreme as even the highest value in the
lower bound is still significantly lower than the lowest true value. Recalibration tightens
this gap to a large extent and provides approximately valid prediction intervals compared
to the uncalibrated prediction interval, which produced abysmal results even compared
to the ARIMAX model.
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Figure 83: Plot showing the uncalibrated and recalibrated prediction intervals, also showing the observed values.

Figure 84 shows the difference between the ARIMAX prediction interval and the recali-
brated Bayesian ESN prediction interval. Here, the difference between the upper bounds
remains relatively small. However, in the lower bound, the recalibrated prediction interval
starts to pull ahead in performance by following the true observations more closely, thus
providing more narrow prediction intervals. However, both prediction intervals are quite
wide, and the mean Bayesian prediction and ARIMAX predictions perform roughly the
same, given that the MSPE for both is within 0.01 of each other.
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Figure 84: Plot showing the recalibrated prediction intervals as well as the ARIMAX prediction interval, also

showing the observed values. This is after reverting the standardization step.

17.1.3 Fakken Dataset

In the Fakken dataset, after recalibration, the PICP is only slightly lower than the desired
coverage level of 0.9. The PINAW was also significantly reduced from 1.41 to 0.81 and is a
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clear improvement compared to both the ARIMAX model and the uncalibrated Bayesian
ESN model.
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Figure 85: Diagnostic plot for the recalibration with the blue line being the recalibrated and red being the original
with purple as perfectly calibrated using the test data.

The diagnostic plot as shown in figure 85 confirm the results shown in table 13 and table
14. As is evident in this plot, the recalibrated model adheres much closer to a model with
perfectly calibrated PICP. There is barely any deviance with the exception of roughly 0.3
to 0.5, where there is some amount of overcoverage; however, it performs very well with
the PICP desired in most situations.
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Figure 86: Plot showing the uncalibrated and recalibrated prediction intervals, also showing the observed values.

Figure 86 shows the narrowing of the prediction interval while getting closer to the in-
tended PICP score. Even though PINAW is greatly reduced, it still remains rather large,
which means that the prediction interval is not very sharp and thus is quite uncertain.
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Figure 87: Plot showing the recalibrated prediction intervals as well as the ARIMAX prediction interval, also
showing the observed values. This is after reverting the standardization step.
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In figure 87, the improvements made by the recalibrated Bayesian ESN model become
rather straightforward, especially when moving further along the time axis. The ARI-
MAX prediction is even worse, considering the turbine has a maximum power output of
3000kW and a minimum of 0. The lower interval bound is always lower than 0, mak-
ing it effectively useless and the upper bound goes past 3000kW without going below it
again after about 350-time steps. This means that after about 350-time steps, there is
no possibility of the true values not being contained in the ARIMAX prediction interval.
While the recalibrated prediction interval is better in this regard, it still leaves a lot to
be desired, especially around the 600-time step mark. The upper bound exceeds the tur-
bine’s maximum capacity by a wide margin during this period. The lower bound of the
recalibrated prediction interval also exhibits the same behavior as the ARIMAX] at least
somewhat during the times when the actual power production hovers around 0.

Of course, the quality of the interval could be improved by manually adjusting the interval
to 0 when the lower bound assumes negative values and by decreasing the upper bound
to 3000kW when it goes above 3000kW.

18 Discussion

From table 12, 13 and 14, it can be seen that the proposed method produced the sharpest
approximately valid prediction intervals, however depending on the coverage achieved
before recalibration, as with the ACEA data, the performance gained might not be huge.

The PINAW was also seen to be varying hugely, depending on the dataset, as Fakken
produced incredibly wide prediction intervals no matter the model used. Thus the PICP
reached nearly 1 for both models before recalibrating. The reason for this appears to be
the considerable variation seen in the dataset coupled with the lack of production seen in
figure 34. One can reasonably assume this will impact the uncertainty in the predictions
and the MSPE, which is very high for both the ARIMAX and the Bayesian ESN models.

In contrast to the Fakken data, the GEFCom 2012 data saw good performance from the
ARIMAX model with an MSPE slightly lower than the one from the Bayesian ESN model.
The PICP and PINAW also show better performance for the ARIMAX model than the
Bayesian ESN model, at least before recalibration. Speculations can be made about this;
the biggest reason for this massively large prediction interval is how the predictions are
made. The Bayesian predictions are made by using the regression weights from a given
sample and adding an error term that is normally distributed with a mean equal to 0 and
variance equal to the sigma from the same given sample; this sigma was incredibly large
for the GEFCom 2012 data, hovering around 3.3-7 depending on the sample as can be
seen in the trace plots in figure 72.

Gibbs sampling with GEFCom proved to be tricky as there was a trade-off to be had
here; by increasing the precision, sigma converged to a smaller value. However, this came
at the cost of increasing the MSPE as the mean prediction then became less informative,
see figure 88. Thus the choice became to move forward with a high sigma, and this meant
receiving extremely wide prediction intervals as the PICP went to 1 and no true value
ever came close to the upper and lower bounds.
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Figure 88: Plot showing how increasing precision decreases the usefulness of the predictions.

However, the proposed method was able to deal with this extreme overcoverage, producing
an almost perfectly calibrated model, see figure 82. Through recalibration, all the coverage
goes from the narrow band from circa 0.4 to 0.6 to only showing a very slight deviation
from a perfectly calibrated. This shows the ability of the proposed method to produce an
approximately valid prediction interval given grossly overcovering models.
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This thesis focused on producing marginally valid and calibrated prediction intervals in
the field of probabilistic electricity load and power production forecasting by applying
Bayesian inference to an echo state network model. While also reducing the dimension-
ality of the reservoir states to shorten computation times and recalibrating the quan-
tiles to produce said marginally valid and calibrated prediction intervals. The proposed
method has been shown to produce calibrated prediction intervals with approximately
valid marginal coverage using two real-world electricity load datasets in conjunction with
one real-world electricity production dataset.

Additionally, the proposed method has been compared to the statistical time series fore-
casting method autoregressive integrated moving average as well as the performance gains
offered by recalibrating the quantiles. The experimental results show the coverage being
significantly closer to the designed level after recalibration, resulting in narrower and more
informative prediction intervals as all but one model’s prediction interval being too wide
with coverage of the prediction interval close to 100% when 90% is intended. While si-
multaneously reducing computation times by a massive margin without sacrificing point
estimate performance. The dimensionality reduction resulted in a whopping 99% re-
duction in computation time for the dataset with the least amount of dimensions. The
conclusions can overall be drawn as follows:

e Reduction of the dimensionality of the reservoir states saw little to no performance
decrease, but has a tremendous impact in reducing the computational time for
training the Bayesian regression.

e All recalibrated Bayesian models constructed approximately marginally valid and
calibrated prediction intervals as they in theory should.

e The major problem of uncalibrated Bayesian models is that they systematically over-
cover, i.e., they produce prediction intervals that are too wide. After recalibration,
the prediction interval become sharper and the coverage is reduced to match the
designed confidence level.

e Compared to the statistical-based models, the neural networks before recalibrating
performed as good or better, and then the performance was further improved after
recalibration.

To conclude this thesis, both research questions have been answered. The dimensional-
ity reduction greatly reduced the computation time while maintaining the model’s per-
formance even with a large number of connections in the reservoir, and the prediction
intervals were recalibrated to provide calibrated predictions intervals. This held for all
three datasets, regardless of the model’s performance or coverage before recalibration.
Thus, it provides evidence for the use case of the proposed method as it works for various
problems.

Future work can be applying the proposed method to different types of recurrent networks
or any model that requires regression to train the model, in particular to more complex
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versions of the echo state network models that might improve the baseline point estimate
performance, such as deep echo state network models (Gallicchio et al., 2017), or perhaps
by making it an ensemble echo state network model (Rigamonti et al., 2018). Another
direction future work can take is in trying to make the prediction intervals sharper for a
model that is well calibrated through some kind of post processing algorithm such as the
recalibration algorithm used in this thesis.
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