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Abstract
In large simulations, like predicting the movement of ocean particles, it is
common that simulation executions are related when they share one or more
inputs. When the number of simulations increases, it becomes harder for users
who run the simulations to keep track of all the simulations. Also, more storage
spaces are wasted if there are multiple copies of the same input files.

This thesis describes a system that collects data from previous simulations,
allowing users to search for the data they need to run the next simulation. Also,
the system identifies the same files that were used in previous simulations,
which allows users to re-use these files instead of copying the files to a new
simulation folder to use them.

Among the simulations that were executed in our current environment, the
system identifies around 11% of input files that are shared by the simulations.
Users can refer to the same file to use it instead of copying the file to new
simulation folders.

The conclusion is that the system helps users who run simulations to reduce
their efforts and time to find input files that are used in previous simulations
when they set up for a new simulation. Also, it saves storage space on the
computing cluster where the simulations run on by identifying the duplicated
data.
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1
Introduction
Large simulations can provide better insights and directions for future large-
scale and long-term planning. For instance, a weather simulation allows better
preparation for the impacts of climate changes, and a simulation on predicting
the movement of ocean particles enables exploiting ocean resources more
efficiently. However, executing these large simulations requires a lot of energy
and money for CPU power and storage space. Often, simulation executions
are related because the inputs are shared by many executions, or the outputs
from a previous simulation are used as inputs in the next simulation (Figure
1.1). Generally, to prepare for a simulation, a new folder is created to store the
inputs it requires and the output it produced. However, these dependencies
are usually not maintained, so resources are wasted in terms of preparation
time for users to gather the essential inputs of the simulations, and the storage
spaces for the redundant inputs. In particular, the following problems arise
when the number of simulations increases:

1



2 chapter 1 introduction

Figure 1.1: An illustration of how the inputs and outputs are related between
simulations. The dotted line from output to input indicate that the
output is used as input for another simulation, while the solid line
from input to output indicate that the input produce the corre-
sponding output.

1. Longer time for users to set up a new simulation: The required input
files are usually scattered over many different folders, so it takes longer
time for users to gather all these input files from different locations to
set up the next simulation.

2. Inputs duplication: Input files are copied from the previous simulation
folders to the new simulation folder. Hence, the same input files can be
duplicated multiple times and therefore takes up unnecessary storage
space.

To address the above problems, we propose the Metadata Management Pro-
gram (MdMP). By managing the input and output data between simulations,



3

MdMp reduces the time and efforts required to prepare files for a simulation,
and it saves storage spaces by re-using the same inputs using the following
approaches:

1. To reduce users’ efforts and time to prepare files for a simulation, MdMp,
tracks the relationships of the input and output data between simula-
tions by creating a knowledge graph [1]. It provides users with a set of
commands on the command line tools to search for inputs and outputs
in previous simulations that are stored in the knowledge graph to use as
inputs for the next simulation .

2. To avoid redundant copies of files in simulation folders, MdMp stores
the files in a centralized storage and identifies the files with the same
content to save storage spaces.

To create the knowledge graph and store the files in the centralized data storage,
MdMP needs to obtain the information about the files and their metadata in the
simulation folders. By runningMdMP in a simulation folder after the simulation
is completed, it gets the information about the files and their metadata in the
simulation, then store them in the centralized data storage and knowledge
graph respectively.

Figure 1.2: An illustration about the process howMdMp creates the knowledge
graph and stores the files in the centralized data storage.
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So, when users prepare for the next simulation, they can use MdMp to search
for the files by the relationships that are stored in the knowledge graph, and
use files in the centralized data storage.

When we were developing MdMP, we encountered two major challenges. The
first one is about ensuring the data validity in MdMp. If users receive invalid
or corrupted data from MdMp to run a simulation, they need to re-run the
simulation. It is costly to re-run the simulation, which may take up to a few
weeks. To solve this challenge, we implemented DDD (Domain Driven Design)
[19] [12] to ensure the data validity inMdMp. The second challenge ismanaging
the dependencies in MdMp with different services, such as the database service
for creating the knowledge graph and the File IO service for the centralized
data storage. If the dependencies are not managed properly, it is difficult to add
new services, or replace the current services with other services in the future.
To overcome this challenge, we use Free Monad [6] approach to manage the
dependencies.

So, there are four main approaches adopted in MdMp, which provide benefits
to different types of users. The approach of creating knowledge graph benefits
the users who run the simulations, helping them to search for files through
the relationships between simulations. The approach of storing files to the
centralized data storage benefits the system managers who manage the cluster
that the simulations run on, helping them to save storage spaces by not having
redundant copies of files in simulation folders. The approach of implementing
DDD lowers the chances of re-running simulation due to invalid data in MdMp.
Finally, the approach of using Free Monad helps the system managers and
developers to add or switch out services easily.
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Figure 1.3: An illustration about the four approaches implemented in MdMp.

One of the most important simulation models we used on our HPC (High-
Performance Computing) cluster is FVCOM (The Finite-Volume, Community
Ocean Model) [8]. FVCOM is used to simulate the circulation and ecosystem
dynamics from global to specific regions characterized by irregular complex
coastlines, islands, inlets, creeks, and inter-tidal zones. It is an integrated high-
resolution model system that is capable of nowcasts, hindcasts, and forecasts
of circulation and key ecosystem processes in estuaries and coastal oceans,
and it is widely used by private companies, government agencies and scientists
at academic universities and institutions in the word. MdMp supports obtain-
ing information from a simulation using FVCOM by extracting metadata of
files used in the simulation, which is stored in the configuration file inside
the simulation folder. MdMp stores the metadata of the files to construct a
knowledge graph to track the data relationships between simulations, allowing
users to search for data used in previous simulations and use the data for a
new simulation.

1.1 Related work

To allow users to search for files in previous simulations to use them as inputs
for a new simulation, we create knowledge graph to track the data between
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simulations. Google Search [10] also utilizes a knowledge graph to provide
more relevant results for users’ search.

To store files and their metadata to the centralized data storage and knowledge
graph from a simulation folder after the simulation, users need to run an "init"
command to let MdMp achieve that. It is similar to running a "git init" command
in a folder to let Git [2] to track the files in that folder. Our approaches to
checking whether two files share the same content, and the folder structure of
the centralized data storage are also closely tied to the Git file-system.

1.2 Outline

The outline is organized as follows. Chapter 2 discusses the tracking of data
relationships between simulations in MdMp. Chapter 3 discusses the usage
of centralized data storage. Chapter 4 covers the application of the DDD in
MdMp. Chapter 5 covers dependency management using Free Monad in MdMp.
Chapter 6 then provides the evaluation of MdMp. Finally, we conclude and
discuss possible future works in Chapter 7.



2
Relationships tracking
2.1 Introduction

In this chapter, we describe the solution implemented in the Metadata Manage-
ment Program (MdMp) for tracking the relationships of input and output data
between simulations. MdMp implements tracking for the simulation model
FVCOM (The Finite-Volume, Community Ocean Model). To track the relation-
ships between simulations, we first need to know what files are used as input,
and what output files are generated in a simulation. The file paths of these
files are specified in the configuration file during the simulation preparation
phrase. Thus, we created a standalone parser [3] library to read the content of
the configuration file and extract the files. MdMp uses the parser library as an
external service because we want to separate the implementation details of the
parser and MdMp such that adding new implementations to the parser with
other simulation models in the future would not affect the implementation of
MdMp. After reading the contents of the configuration file, MdMp tracks the
inputs and outputs by storing them in a knowledge graph.

This chapter starts with an overview of the preparation process of a simulation
using FVCOM (Section 2.2). We then discuss the design (Section 2.3) and our
implementation of tracking the relationships of inputs and outputs with the
help of the parser and the knowledge graph in MdMp (Section 2.4).

7
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2.2 Preparation of simulation

To prepare for a simulation, the steps are general, but FVCOM is used as
an example throughout the chapter. Below are the steps that users need to
take:

1. Create a simulation folder that contains all the input files, an config-
uration file and an output directory. The configuration file contains
information about the file paths of the input and output files, along with
various configuration parameters for the simulation, such as the number
of rivers, the units of the grid and the type of heat.

2. Specify all the parameters in the configuration file, including the input
and output file directory, the input file paths, and other miscellaneous
attributes for different types of input.

After performing the above steps, we can start executing the simulation by run-
ning the corresponding commands provided by FVCOM. Once the simulation
finishes, the output files are generated in the output file directory specified in
the configuration file.

Figure 2.1: This diagram shows the overview about the steps of running a
simulation.
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2.3 Design

2.3.1 Knowledge Graph

To track the input and output data relationships between simulations, MdMp
stores the relationships and the metadata in a knowledge graph using Neo4j
graph database [18]. In Neo4j, the "Node" type and the "Relationship" type
represent the data and the relationship between the data, respectively. There
are two major "Node" types created in the graph database:

1. File Nodes represents a file that is used in a simulation. The file can
be an input file, an output file and a configuration file. There are three
major properties in the File Node: checksum, file format and file name.
The checksum is a SHA-1 check-sum [2] used as part of the key to identify
the file node.

2. Simulation Node represents a simulation. It only has one property:
checksum; this SHA-1 checksum value is generated based on the SHA-1
check-sums of the input files in that simulation. It represents a unique
set of input files.

Figure 2.2: The diagram shows the file and simulation node with their own
properties
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Moreover, we define four major relationships between the file and simulation
nodes:

1. HAS_INPUT: The "HAS_INPUT" relationship links the input file to the
simulation. It has a property "Type" to indicate the configuration type
of the input file in the simulation. The "Type" value is extracted when
parsing the configuration file.

2. HAS_INPUT_CONFIG: The "HAS_INPUT_CONFIG" relationship links the
configuration file to the simulation. It does not have any property.

3. HAS_OUTPUT: The "HAS_OUTPUT" relationship links the output file to
the simulation. It does not contain any property.

4. HAS_TREE: The "HAS_TREE" relationship links the tree commit file to
the simulation. It does not contain any property. The tree commit file
stores the information about the related files in the simulation, which is
used as a backup to keep the information about the related files in the
simulation in case the graph database is down.

Figure 2.3: The diagram shows the relationships between the file node and
the simulation node.

In the Neo4j graph database, the CQL (Cypher Query Language) [18] is
introduced. It is used to communicate and to perform operations on the
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database. The basic operations include inserting, searching, updating, and
deleting (CRUD) records in the database. CQL works like SQL (Structured
Query Language) [16] for graphs, while SQL is used in traditional relational
databases. It is faster and easier to use CQL to retrieve records that are re-
lated to other records because the relationships are already stored in the graph
database; while for SQL we need to perform different "join" operations to obtain
all the related data. In MdMp, CQL is used to perform the CRUD operations
with the help of a .NET client library, Neo4jClient [14] , to translate F# [7]
code into Cypher.

2.3.2 Parser

To obtain the input and output files in a completed simulation, we need to read
the content of the configuration file. We created our own parser for parsing the
configuration file of FVCOM. It is built as a standalone library to be plugged
into the MdMP. If we want to use another simulation model such as OpenDrift
[11], we can add the parsing logic implementation to the parser library. The
advantages of creating the parser as a standalone library are:

1. Loose Coupling: We do not need to recompile the main program if there
are any new updates or changes in the parser, vice versa.

2. Parallel development: The main program MdMp and the parser can be
developed in parallel since the implementation of the parser is indepen-
dent of the main program.

The input of the parser is the configuration file for a simulation. The parser
separates the content of the configuration file into different sections so that we
can extract the metadata from each section later. The output of the parser is an
"Result" discriminated union type [5]. The discriminated unions type contains
cases with different values and types, the value can be one of named cases.
If any errors occur during the parsing process, the "Result" will be an "Error"
case that contains the error message. Otherwise, if the parsing succeeds, the
"Result" will be an "Ok" case which contains a string array representing the
sections.
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2.4 Implementation

2.4.1 Knowledge Graph

To construct a knowledge graph in Neo4j graph database, MdMp needs to set
up a connection to Neo4j. We use Neo4jClient, a .NET client library, to set up
the connection. It also helps to translate F# code into CQL to perform CRUD
operations on the records. We created two "Create" operations in MdMp, one
for creating the file nodes and one for creating the relationships between the file
nodes and the simulation node. MdMp also provides several "Read" operations
to query for the data, and a "Delete" operation to delete the nodes.

Figure 2.4: An example showing the knowledge graph of one simulation cre-
ated in Neo4j. The node with grey color represents the simulation,
and the nodes with red color represents the file node. The arrows
with the color black, green, blue and pink indicate the "HAS_Input",
"HAS_OUTPUT", "HAS_INPUT_CONFIG" and "HAS_Tree" relation-
ship between the simulation node and the file node respectively.

When two simulations share some of the same inputs, they are related by
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these inputs, and the relationship is stored in the the knowledge graph (Figure
2.5).

Figure 2.5: An example showing the knowledge graph of two simulations. Both
of the simulations share some of the same input, and the second
simulation use one of the output from the first simulation as input.

2.4.2 Parser

We have implemented the parser as a standalone library using F#. MdMp
receives the parsed content by importing the the parser library and calling
the "parseContent" function in the parser. The "parseContent" function accepts
two arguments: The name of the simulation model and the content of the
configuration file. The information in the configuration file of FVCOM is defined
in different sections. Each section starts with a header string with the format
"&NML_XXX". The "XXX" string describes the usage of that section. For example,
the section with the header string "&NML_IO" contains the information about
the directories of the input and output files. Each section ends with a character
"/" in a new line followed by an empty line. The information we needed
from the configuration file of FVCOM include the title of the simulation, the
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current directories of the input and output files, and the filenames of these
files. The title of the simulation is denoted by the key "CASE_TITLE" under the
"&NML_CASE" section in the configuration file. The directories of the input and
output files are specified in the section "&NML_IO". The input file directory is
denoted by the key "INPUT_DIR", while the output file directory is indicated
by the "OUTPUT_DIR" (Figure 2.6).

Figure 2.6: An example showing the metadata we need to extract from the
configuration file, including the title, input and output file path,
and various input files. Note that the ’none’ filename indicated that
section is not being used in the simulation.

There are different types of input used in FVCOM, such as wind, heating, river,
etc. The filenames of the input files are specified in their corresponding sections.
For instance, to get the input file for wind, we check the key "WIND_FILE" in
the "&NML_SURFACE_FORCING" section (Figure ??).
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Figure 2.7: An example showing the "&NML_SURFACE_FORCING" section con-
taining the wind filename.

To ensure that MdMp extracts the metadata correctly in each section according
to its section header, the parser separates the sections into a string array by
checking the content that begins with the format "NML_XXX" and ends with
a newline with a "/" character followed by a empty line. If the parsing fails,
an error message wrapped in "Result" type with "Error" case will be returned.
Otherwise, if the parsing succeeds, a string array wrapped in "Result" type with
"Ok" case will be returned. Each item in the string array contains one section
of the configuration file (Figure 2.8).
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Figure 2.8: An example showing the successful result as a string array contain-
ing the metadata in different sections.

Once we have the directories and the filenames, we can combine the directory
and filename to get the file path. Then we check whether the file exists in the
file path. If not, we will prompt a message to the user about the invalid file path
and stop the program. Occasionally, the filename can bemarked as "none" in the
configuration file, indicating that this input is not needed. In this case, we will
filter the file marked with "none" and proceed to the next step, but we will still
prompt a message about the unused input. An example of the combined source
file path is "/Users/miclo/MetaServer/Cli/input/Titania_wnd_all.nc"



3
Centralized Data Storage
3.1 Introduction

A new simulation can use some of the same inputs and/or outputs from previous
simulations as inputs. In such case, the same copies of the input files can be
found in different simulation folders. To reduce the disk spaces occupied by
duplicate copies, we store all files in a centralized data storage, then users can
create symbolic link [13] files pointing to the actual files in the centralized
data storage instead of duplicating the same files. MdMp provides several
commands for users to search for the related files to obtain the file paths in the
centralized data storage. Moreover, to avoid having duplicated copies of the
same file in the centralized data storage, we base the filenames on the content
of the file by generating a SHA-1 checksum for each file.

To prevent losing the information of the original simulation folder, we create
a snapshot of the simulation folder, which contains the configuration file, the
input files and the output files. These files are also symbolic link files that point
to the actual files stored in the centralized data storage.

This chapter starts with the design (Section 3.2) of storing files to the centralized
data storage, and the folder structure of the centralized data storage. We then
present how users can refer to the files in the centralized data storage instead
of copying the same files to a new simulation folder (Section 3.3). Next, we
discuss the snapshot of the simulation folder (Section 3.4).

17
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3.2 Design

3.2.1 Identify the same files when storing files

There are three kinds of files that MdMp stores in the centralized data storage:
input file, output file and the configuration file. To avoid storing the same
file more than once in the centralized data storage, our initial approach is to
generate a SHA-1 checksum of a file’s content, then use it as the filename to
identify the file, which is similar to how Git stores files. However, it takes a lot
of time to compute the SHA-1 checksum of a file with large content. So, our
solution is: First, for each of the input files, we generate a SHA-1 checksum of its
file content. The size of input files are small, so we do not have the problem of
the SHA-1 checksum computation time. Next, we generate a SHA-1 checksum
from all the input file SHA-1 check-sums generated in the previous step. This set
of input file SHA-1 check-sums uniquely identifies the simulation that produces
the corresponding output files. Since the configuration file contains all the
input file names, we replace every input file name with the corresponding
SHA-1 checksum of each input file generated in the previous step (Figure 3.1),
and then generate a SHA-1 checksum of this transformed configuration file.
This SHA-1 checksum is used by the configuration file and all the output files.
To distinguish between the configuration file and the output file, and between
the output files, we standardized the filename format of each file to "[SHA-1
checksum]-[custom name]", where the custom name is the original filename
(Figure 3.2).
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Figure 3.1: An example of the new configuration file after replacing the original
input file name with the new input file name.

Figure 3.2: An example of how the new filenames look like with the checksum.
Note that the checksum of the configuration file and the output
file are the same.
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Finally, the process of storing a file to the centralized data storage is: we first
check whether the filename contains a SHA-1 checksum or not. If the filename
DOES NOT contains a SHA-1 checksum, we generate a SHA-1 checksum of
the file content (For the configuration file and the output file, we use the
SHA-1 checksum of the transformed configuration file instead) and use the
new filename format "[SHA-1 checksum]-[custom name]" to store the file.
Otherwise, if the filename DOES contain a SHA-1 checksum, we extract the
filename. Next, we look up the filename in the centralized data storage. If it
already exists, we do not store the file again. Otherwise, we store the file with
the new filename containing the checksum and the custom name.

Figure 3.3: This diagram shows the decision flow of storing files to the data
storage.

3.2.2 Data Storage Directory Structure

When we store files to the data storage, we create a directory to store all these
files. Each file is stored under a directory with a directory name using the first
two characters of the file’s SHA-1 checksum, and the directory is stored under
the the top-level directory (Figure 3.4). There are two main reasons why we
extract the first two characters of the SHA-1 checksum as the directory:

1. Provide faster file access time: In some file systems such as the Ext*
family, the structure of a directory is a linked list or a table of entries. To
search for a file, the entire list is scanned until the matching file name
is found, which is undesirable for performance. To provide faster access
time, keeping each directory small is important.

2. Keep the directory small: Some file systems are only limited to 32000
entries in a single directory. In Linux kernel, the number of commits is
within the order of that magnitude. By subdividing the commits using
the first two hex digits, the top-level size is limited to 256 entries.
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Figure 3.4: This diagram illustrate the folder structure in the data storage.

The design of the data storing structure is similar to the one implemented in
Git. The only difference is that we have the full SHA-1 checksum and a custom
name as the filename, instead of just using the rest of the SHA-1 checksum as
a file name. There are two reasons behind the difference:

1. Both the output file and the transformed configuration file share the
same SHA-1 checksum in a simulation, so we need the custom name to
identify them.

2. We need to specify the filename of input files in the configuration file,
so we need the full SHA-1 checksum in the filename. Also, it is possible
that some output files from previous simulations are used as input files
in the next simulation, so we also need the custom name to identify the
output files.

3.3 Use files in centralized data storage

When users prepare for a new simulation, they may use some inputs and/or
outputs from previous simulations as inputs for the new simulation. Without
centralized data storage, they need to copy the same files to the new simulation
folder to use them (Figure 3.5). To reduce disk spaces for storingmultiple copies
of the same files in different simulation folders, they can create symbolic link
files instead. To create a symbolic link file, users need to know the file path that
points to the actual files stored in the centralized data storage. To obtain the
file path, MdMp provides several commands for users to search for the related
file in the centralized data storage.
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Figure 3.5: An example showing that user need to copy the same input file A
and input file B from simulation A folder to simulation B folder.

After getting the file path in the centralized data storage, users can create the
symbolic link file with it, then specify the filename in the configuration file in
the new simulation folder for the simulation model to use it.

3.4 Snapshot of the Simulation Folder

We create a snapshot of the simulation folder as a backup to the origin simula-
tion folder, which allows users to maintain the information about the simulation
even if the files in the origin simulation folder are gone or corrupted. The in-
formation stored in the snapshot includes the configuration file, the input files
and the output files. In order to save disk spaces, the files are symbolic link
files that point to the actual files stored in the centralized data storage (Figure
3.6).
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Figure 3.6: An example of showing the symbolic link files in the snapshot
simulation directory pointing to the actual files in the data storage.

The name format of the snapshot of the simulation directory is [simulation
SHA-1 checksum]-[case title]-[timestamp]. The simulation SHA-1 checksum is
the same as the SHA-1 checksum of the transformed configuration file. The
case title is the title of the simulation extracted from the configuration file. The
timestamp is the current timestamp when creating the simulation directory
(Figure 3.6).
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Figure 3.7: An example of the name format of the snapshot of the simulation
directory.



4
Domain Driven Design in
MdMP

4.1 Introduction

In this chapter, we discuss the Domain-driven design (DDD) implemented
in MdMp. DDD is a software design approach that focus on modelling the
software to match the input from experts in each domain related to the project.
A domain in DDD refers to an area of knowledge where people work and
try to solve problems. There are several domains we need to understand to
implement DDD in MdMp, including the simulation using FVCOM, the graph
database to create knowledge graph. To provide solutions after understanding
the problems in the domains, we build a solution space (domain model) that
contains the relevant domains, and these domains are mapped to the DDD
terminology - bounded contexts. Each bounded context defines its own data
objects to represent the data in its own domain, and they are called domain
objects in DDD. These data objects are passed around bounded contexts when
they are needed in different bounded contexts. The data objects that are
transferred between bounded contexts have different formats and they are
called Data Transfer Objects (DTOs).

This chapter begins with the motivation of using DDD in MdMp (Section 4.2).
We then discuss the design (Section 4.3) and our implementation on DDD with
DTO and Domain Object Type (Section 4.4).
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4.2 Motivation

When users prepare for a new simulation and use MdMp to look for information
in previous simulations, it is possible that MdMp returns information that is no
longer valid due to errors in the graph database or the centralized data storage,
but users are not aware of that and still use the information, which can lead to
a re-run of the simulation. The cost of re-running the simulation is high since
the execution time can be up to a few weeks. DDD is implemented in MdMp
to ensure data validity by providing a domain model.

There are two major advantages to implementing DDD in MdMp. The first
one is that it creates a "Trust Boundary" between MdMp and everything out-
side MdMp, such as the database and the centralized data storage. The "Trust
Boundary" ensures the data validity inside MdMp by implementing the vali-
dation at the boundary of the program to validate the data before it enters
into MdMP. Therefore, when users search for files to use as inputs for a new
simulation using MdMP, they can trust and use the information provided by
MdMp. The second advantage is that DD makes MdMp self-documenting. DDD
provides a "ubiquitous language" such that every party participating in the
project, including the simulation users and the developers of the MdMp, can
understand the logic and flow of the program better, which can save users’
time to communicate with the developers when they need some adjustments
or changes in the future. The data is wrapped into domain types defined by
the users and the strict type system in F# helps to protrude the type label and
to strengthen the type checking. The trade-off of using DDD is that it requires
developers more effort to get the value when they work on the data because the
data is wrapped in Domain Object types, so they need to unwrap the Domain
object to get the value. However, we believe implementing DDD is worth the
effort because the cost of re-running simulation is much higher.

4.3 Design

4.3.1 Data Transfer Object (DTO)

There are three scenarios when we convert the data into DTO type:

1. When extracting data from the configuration file: After parsing the
configuration file, we get an array of string wrapped in "Result" union
type. They are wrapped by the "Result" type because the parsing can fail
due to invalid parameters. Once we have the valid result, we convert the
result into our DTO type (Figure 4.1).



4.3 design 27

2. When transferring data to the database: When saving data to the
database, we convert our data in MdMp from Domain Object Type to
DTO type, and further serialize the DTO type into JSON string because
the database receives data as JSON string (Figure 4.2).

3. When transferring data from the database: When we query data from
the database, we de-serialize the JSON string retrieved from the database
and then convert it into DTO type. The de-serialization may fail due to
errors return from the database, so we wrap the DTO type in "Result"
union type (Figure 4.3).

Figure 4.1: The diagram shows the conversion from the content in the config-
uration file to the DTO type.
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Figure 4.2: The diagram shows the process of saving data from MdMp to the
database.

Figure 4.3: The diagram shows the process of converting data from the
database to our DTO type.
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4.3.2 Domain Object Type

In MdMp, we do not directly use the DTO type as the format to represent the
data in our domains, we only use the DTO type to work as a bridge between
our domain and the outside world. So, after we convert the data into DTO
type, we further convert it into Domain Object Type.

During the conversion from DTO type to Domain Object Type, we put our
validation rules and logic in when creating the Domain Object Type data. For
example, when we create our "File" Domain Object Type data, we forbid the
filename to be null.

Since the conversion from DTO type to our Domain Object type can fail due
to the validation rules, we wrap the Domain Object type into "Result" union
type. As a result, data that does not pass our validation rules is not created.
Therefore, we ensure the data that is created in our domain is valid.

After we get the valid data, we wrap the data into our Domain Object type. For
instance, we have a "File" Domain Object type, with three attributes - checksum,
name, format. These attributes are all in the string type, but we create an extra
new type for each of the attributes and a model for that type such that we
can define our validation rules in the model. The extra type layer provides
strict checking when passing the data around. When we manipulate the data,
we pass the data around to different functions. With the explicit type, we do
not need to worry about passing invalid data to the function. For example, if
we have a function which accepts a "Filename" type data as the parameter
to change the filename, we know the "Filename" type data already pass our
domain logic and validation rules. But if the input parameter of the function is
just a "string" type, we may receive a random string which does not pass our
validation rule as a valid filename, then we need to check the validity of the
data in every function that uses the data. When we convert the data from our
Domain Object type to DTO type, we no longer need to wrap the DTO type in
"Result" type because we know that every data in our Domain Object type is
valid, so we can perform the conversion directly.

4.4 Implementation

4.4.1 Conversion to DTO

If the configuration file is valid, we have an array of strings. Each string in
the array contains the information about a group of parameters for a setting.
For example, the string marked with "&NML_IO" contains the information
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about the input file path and the output file path, and the string marked with
"&NML_SURFACE_FORCING" contains information about the wind input file
along with other parameters such as wind type. To convert the string array
into our DTO types, we create a module for each of the sections that we want
to extract (Figure 4.4). In the module, there is a "toDto" function to convert
the string to DTO type (Figure 4.5).

Figure 4.4: The figure showing the conversion from string to DTO type by
calling the "toDto" function.

Figure 4.5: The figure showing the "toDto" function in the "IOInput" module.

We define a discriminated union type named "NodeDto" that contains 5 cases
of DTO records (Figure 4.6). With the help of the "NodeDto" union type, it is
easier to pass the DTO records around to different functions.
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Figure 4.6: The figure shows the "NodeDto" union type with the 5 cases.

4.4.2 Conversion to Domain Object Type

After converting the string to DTO type, we further convert it into our Domain
Object Type. We create a "toDomain" function to handle all the 5 DTO types
conversion (Figure 4.7), and the validation rules for the conversion are imple-
mented in the function (Figure 4.8). Then the result is wrapped in "Result"
because the conversion may fail due to the invalid data defined by our Domain
logic.

Figure 4.7: The figure shows the "toDomain" function.
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Figure 4.8: The figure shows an example of the validation when creating the
Domain Object.



5
Dependency Management
in MdMP

5.1 Introduction

In this chapter,we discuss the dependencymanagement implemented inMdMp.
In an application, when a function calls another function, the former function
then has a dependency on the latter one. It is very common to have depen-
dencies inside an application. For instance, we need to connect to a database
engine to store and manage our data, or to connect to some third party services
such as payment services and authentication services. These dependencies can
be "pure" or "impure". The meaning of "impure" here is defined under the con-
text of referential transparency [15]. Thus, we consider every dependency that
produces side effects as "impure". On the contrary, the dependency that always
produces the same result with the same input is considered as "pure". Since
we adopt the functional programming style throughout MdMp, we separate
the impure and pure actions, and push the impure actions to the boundary
of the program. The impure actions in MdMp include the communication
between the database, the logging service and the file IO between the data
storage.

When the application becomes larger and more complicated, the number of
dependencies could grow rapidly. If the dependencies are notmanaged properly,
we will face the following problems when the application starts to grow:
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1. Difficult to replace parts of the application: During the development
of a project, the business requirements could change and we may replace
parts of the application with new services. Without proper management
of the dependencies, it is hard to perform the replacement and we may
need to rewrite the whole code base.

2. Hard to write unit tests: Unit testing is used to ensure the outcome of
a function is expected and valid. If the dependencies are not handled
properly, many unexpected outcomes could be generated from different
dependencies and hence it would be difficult to do unit testing.

In Object-Oriented programming (OOP) [9], such dependency issues can be
managed by dependency injection [4]. In functional programming, a similar
approach is to pass the dependencies as parameters in a function, using partial
application [7] instead of injecting the dependencies into the constructor or
into a container. However, this approach is not totally functional because the
function still has impure actions that would produce side effects.

In order to make it functional, we can use the dependency rejection [17]
technique to first separate the pure and impure codes, and then combine
these actions inside a top level function. The function that mixes pure and
impure codes is called composition root. However, since we plan to make
MdMp into an interactive program in the future, the dependency rejection
approach is no longer applicable in an interactive program. Hence, we proceed
to use dependency interpretation [17], known as Free Monad [6] in Functional
Programming.

This chapter begins with the motivation to use Free Monad in MdMp (Section
5.2). We then discuss the design (Section 5.3) and the implementation of Free
Monad in MdMp (Section 5.4).

5.2 Motivation

MdMp contains impure dependencies with different services, including the
database service, the file I/O service and the logging service. By applying the
Free Monad approach to manage these dependencies, we gain several benefits.
The first one is that it allows late binding. We can delay the dependency using
partial application, enabling us to switch out the interpreter with a different
infrastructure. For example, we could replace our logging interpreter with
another logger interpreter that shares the same interfaces without modifying
the top-level composition root. The second benefit is that it is easier and
faster for developers to write unit tests. By separating the impure and pure
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dependencies, they can write unit tests for the pure parts and then write the
integration tests in the composition root. Finally, it allows MdMp to implement
different services in parallel because it enables loose coupling by creating
separate model for each service.

However, the disadvantage of Free Monad approach is that it can be hard to
understand for those who do not have knowledge about functional program-
ming concepts like Monad. Other approaches like "dependency rejection" are
more direct and do not require any special knowledge.

5.3 Design

To implement the Free Monad approach in MdMp, we first need to identify
the impure dependencies and separate them from pure dependencies. There
are three impure dependencies in MdMp:

1. Database: Our program needs to communicate with the database, such
as querying and creating data in the database, which are impure actions.
The database we use in our program is the graph database Neo4j.

2. File IO: The actions of File IO such as creating files and directories in
the centralized data storage are impure.

3. Logging: There is logging in MdMp to keep track of the progress and
errors throughout the program, and the logging actions are impure.
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Figure 5.1: The figure shows the impure dependencies in our program.

After identifying the impure dependencies, we define a data structure which
acts as instructions (Figure 5.2). In order to delay performing the impure
actions, we change the type signature of the function from ’a -> ’b to ’a * (’b
-> ’c). That is, a tuple which contains the original input and a "next" function
(Figure 5.3).
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Figure 5.2: The figure shows an example of normal functions without creating
instructions to delay the impure actions.

Figure 5.3: The figure shows an example of how we create the instructions
with a "next" function to delay the impure actions.

With this approach, we can apply it in a recursive interactive program because
the "next" function delays the return of results until another instruction is
received. To end the recursion, we add a "stop" instruction to the instruction
set (Figure 5.4). The "stop" instruction returns the value received from the
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previous instruction after being executed by the interpreter.

Figure 5.4: The diagram shows an example of adding the "stop" instruction to
the instruction set.

Next, an interpreter is created to execute the instructions. The "next" function
in the instruction is called after the execution, and the result of the execution
is used as input in the "next" function (Figure 5.5).
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Figure 5.5: The diagram shows an example of the approach of using an inter-
preter to execute the instructions.

The interpreter also acts as the composition root for that service, which contains
a mix of pure and impure actions. In the implementation, we first obtain the
instructions that we need to execute. Note that these instructions are all pure,
so we are able to reap the benefits of loose coupling and easier unit testing.
After we receive the pure instructions, we use the interpreter to execute these
instructions and then perform the impure actions (Figure 5.6). This is how we
delay impure actions.
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Figure 5.6: The diagram shows an example of the approach of using an inter-
preter to execute the instructions.

5.4 Implementation

The first step of implementing a Free Monad is to create a functor. After that,
we built a monad from that functor. The monad is a new type containing the
functor, and the monad has two types of value - the functor as the "Free" value
and the normal value as the "Pure" value. To "Free" the monad, we turn the
monad into recursive, whereas the "Free" values are the trees and the "Pure"
values are the leafs.

5.4.1 Instruction as Functor

There are three impure dependencies in our program, we create an instruction
type as functor for each of the impure dependencies to extract the pure part.
We further wrap these three functors in a generic instruction type to allow
interpreting different instructions in the program.
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Figure 5.7: The figure shows an example of the "createNodes" instruction to
create nodes in the database.

We add an extra optional "Decision" layer to extract the corresponding instruc-
tions. The reason we add this layer is that we want to group the instructions
into a decision that is defined by our domain logic. For example, when we
copy directory to the data storage, we first have the instruction to create di-
rectory in the data storage, then we have the instruction to copy the directory
to the destination. So we group these two instructions into a decision called
"CopyDirectoryDecision" (Figure 5.8).

Figure 5.8: The figure shows an example of the "CopyDirectoryDecision" deci-
sion that contains two instructions to be execute.
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5.4.2 Program as Free Monad

To create a Free Monad, we build a Monad from the functor, and the Monad
is a union type named "Program" with two cases:

1. Free: The Free case contains the "Program" type itself wrapped in the
instruction functor, which is a recursive type.

2. Pure: The Pure case contains the union’s generic type. We use the type
name "Stop" to represent the Pure case.

Figure 5.9: The diagram shows the "Program" with the "Free" part and the
"Pure" part.

5.4.3 Interpreter

Once we have our "Program" as Free Monad, we create an interpreter function
to recursively read the tree (Free case value) until it encounters a leaf (Pure
case value) (Figure 5.10).
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Figure 5.10: The diagram shows the interpreter. It recursively execute the
instructions until a "stop" instruction

There are three sets of instructions wrapped in the "Program" type correspond-
ing to the three impure dependencies: the database service, the logging service
and the file I/O service. We can easily add a new set of instructions to the
interpreter if we have new impure dependencies in the future. Also, it is easy
to switch out the current services, as long as the new one implements the same
interface.





6
Evaluation
6.1 Evaluation

Before MdMp was implemented, when users prepare input files for a new
simulation, they may not know that other copies of the file are already in other
simulation folders. Even if they do, they need to browse the other simulation
folders and copy the files to the new simulation folder. MdMp helps to gather
the files and metadata of the files in previous simulations such that users can
have the knowledge of the files that were used. Then, users can search for
particle files to use for their next simulation through MdMp.

There are around 20 simulation folders created on our HPC cluster. These
simulations target different areas of the ocean. There are 9 input files inside
each simulation folder on average, and 1 out of 9 of the files are the same on
average. So, approximately 11% of the files are redundant. Therefore, the total
number of files that need to be stored can be reduced by 9% by not having
duplicated files. We believe the duplication rate will grow when we execute
more simulations in future, especially when the new simulations target a part
of the area that exists in the previous simulations, or an area that overlaps two
areas, because they may share some of the same input files such as the wind
file.

After adopting DDD in MdMp, we spent less development time on writing codes
to check the validity of data coming from external services like the database
because data was validated before we created the data into the domain objects
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in MdMp, and we do not need to add extra codes to check the validate of the
data in the functions that use the domain objects.

When using the impure dependencies in MdMp, including the database service,
the file I/O service and the logging service, we found out that it was hard
for us to debug the problems when the pure and impure dependencies are
mixed together in the top-level composition root. After using the Free Monad
approach to manage the dependencies, the debugging process becomes easier
and less time consuming because the impure actions are separated according
to the services, making it clearer to display where the errors occur.



7
Conclusion
7.1 Lesson Learned

We thought that it was easy to identify files with the same content by generating
a SHA-1 checksum of the file content. The process was smooth for input files
and the configuration file until it came to the output files. It took a long time
to generate a SHA-1 checksum of the content of an output file. So we need to
develop another approach to identify the output files with large sizes using a
SHA-1 checksum but not generated by the file’s content.

To ensure data validity in MdMp, we used the DDD approach when developing
MdMP. It took time to create different domain object types and set up the
validation rules when creating the domain objects. But with the help of the
domain object types, we instantly know if we commit any mistakes or not when
we pass the data around to different functions to perform different operations
on the data. Also, we do not need to worry about the data received from other
services being corrupted or invalid because of the validation rules.

To manage the dependencies in MdMp, we used the Free Monad approach. At
the beginning, it was complex and it took time to build up different interpreters
and the instructs inside the interpreters. However, we believe it is worth our
effort to implement it because the impure actions of each service are isolated
from each other. So, it was easy to add a new interpreter for logging and replace
our logging interpreter with another logger interpreter without affecting the
other services.
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7.2 Limitation

MdMponly supports parsing the content of the configuration file in FVCOMnow.
However, the parser was built as a standalone library. So, to support another
simulation model with different formats of content in the configuration file, the
parsing logic can be added to the parser library without affecting MdMp.

7.3 Future Work

Currently, MdMp only provides commands on the command line tools for users
to query for the files that are stored in the knowledge graph and the centralized
data storage. We plan to provide a GUI (Graphical User Interface) on a web
server that allows users to query data and provide more searching criteria. Also,
we plan to provide a retention policy to filter the old data in the centralized
data storage that is not being used for a long period of time.
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