
Faculty of Science and Technology
Department of Computer Science

First steps towards solving the café problem

—
Mariel Evelyn Markussen Ellingsen
INF-3981 Master’s Thesis in Computer Science - June 2022

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2022 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
Hearing loss, and assistive technologies to compensate for the loss, are becoming
more and more regular. Hearing aids have improved the quality of life for many
suffering from hearing loss but are still insufficient in some social settings. The
café problem rises when there are a group of people talking in a relatively
noisy environment where one person has hearing aids. Even with modern
advancements, such as speech recognition and noise cancellation, people using
hearing aids have difficulties differentiating the group’s conversation from
other noises.

This thesis will provide the architecture, design, implementation and evaluation
of a mobile application as a first step in creating a system that can counter this
café problem. A critical factor in a system like this is to reduce the audio latency
to a minimum. We investigate where latency is introduced in the system by
creating an experimental setup and evaluating the system.

We implement a prototype system and use the experimental setup to identify
latency-inducing components. We discuss how this latency can be reduced and
bring forward future steps that must be made in completing the system.

Acknowledgements
This master thesis is not only the results of one year of work but from the
total of 5 years dedicated to CS at UiT. So, therefore, all credit I have to give
encompasses all of these 5 years. 5 years of friendship made, lessons learned,
supporting words, and tears shed (happy tears, I promise).

I want to thank my class and all of the friends I’ve made here and will keep for
the rest of my life. A special thank you must be made to my "work wife". Thank
you, Tromsøstudentenes Dataforening, for giving me an extra reason to stay
in school. And a huge thank you to my supervisor Edvard Pedersen, for the
helpful pieces of advice, for giving grammatical corrections, and for wanting
to continue exploring where this application can go.

I want to express my gratitude to HLF Tromsø for granting me some of their
knowledge about hearing loss and how it is to live with it. I must also thank
my family. Especially my siblings, who may not understand exactly what I do
but support me regardless.

My last "thank you, very much" goes to my close friends. They have supported
me for most of my life, and have always, always, motivated me to continue on.
They are my biggest supporters, my loudest cheerleaders, and my first phone
call whenever I need to talk (and shed some tears).

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Thesis statement . 2
1.2 Thesis contributions . 2

1.2.1 Methodology . 3

2 Background 5
2.1 Sound . 5

2.1.1 Audio . 6
2.1.2 Analog audio . 6
2.1.3 Digital audio . 6

2.2 Hearing impairment . 6
2.2.1 Hearing aids . 7

2.3 Swift . 8
2.3.1 Mutlipeer Connectivity 8
2.3.2 AVAudioEngine . 8

3 Related Work 11
3.1 Investigating the café problem for hearing impaired 11

3.1.1 User story . 12
3.2 Hearing Aid Delay and Current Drain in Modern Digital Devices 13
3.3 Measuring Latency in Virtual Reality Systems 15

4 Application Architecture and Design 19
4.1 Architectural overview . 19
4.2 Design . 21

4.2.1 Audio transport handler 21

vii

viii contents

4.2.2 Recording application 21
4.2.3 Receiving application 22
4.2.4 Experimental design 22

5 Implementation 23
5.1 Development tools . 23
5.2 Audio formatting . 25
5.3 Audio subsystem . 25

5.3.1 Recording method 26
5.4 Audio transport handler . 26
5.5 Logging the system performance 27

6 Experimental Design 29
6.1 Design . 29

6.1.1 Computer and microphone 30
6.1.2 Sound absorption barrier and sound emitting device . 30
6.1.3 Device . 31

6.2 Experiment setup and execution 32
6.2.1 Setup . 32
6.2.2 Execution . 33

6.3 Limitations . 33
6.3.1 Human error . 33
6.3.2 Environmental error 34

7 Results 35
7.1 First experiment creating the baseline 35
7.2 Reducing the microphone buffer 36
7.3 Receiver buffer . 37
7.4 Graphs . 37

7.4.1 Combining all results from experiments 37
7.4.2 End-to-end latency 38
7.4.3 AVAudioEngine initialization 39

8 Evaluation 41
8.1 Audio length calculation . 41
8.2 Buffer size impact . 42

8.2.1 Reducing the microphone buffer 43
8.2.2 Theoretical impact 43

8.3 End-to-end latency . 44
8.4 One-time induced latency 45

9 Discussion 47
9.1 Experimental setup . 47
9.2 System improvement . 48

contents ix

9.2.1 Restructure and make alternations of code to remove
latency . 48

9.2.2 Alternatives for accessing microphone buffer 49
9.2.3 Alternatives to Multipeer Connectivity 50

9.3 Delay in general . 51
9.3.1 Handling audio delay in the system from a user per-

spective . 51
9.4 Human-centered design . 52

10 Future Work 53
10.1 Reducing microphone buffering 53
10.2 User Interface - Human-centered design 54
10.3 Security . 54
10.4 Hearing aids compatibility 55

11 Conclusion 57

List of Figures
2.1 Vibration in air pressure with corresponding sinusoidal wave 5

4.1 Architectural overview. Components between striped line is
shared by devices. 20

5.1 Screenshot of the user interface for the recorder device . . . 24
5.2 Screenshot of the user interface the for receiver device . . . 24

6.1 Experimental setup. Filled lines is sound transmitted through
air. Dashed arrow represent audio transference between de-
vices. Rectangular box is the sound absorption barrier. Pen is
the sound emitting device. 30

6.2 Screenshot of registered sound waves without markings . . . 31
6.3 Screenshot of registered sound waves with markings 31
6.4 Picture of the physical experimental setup with all components 32

7.1 End-to-end latency and internal processing time for recording
and receiving device . 36

7.2 Latency and average of internal processing time for recording
and receiving device for all experiments 37

7.3 Experiments end-to-end latency 38
7.4 Initialization time of AVAudioEngine for recording 39

xi

List of Tables
3.1 Results from delay measurements 17

xiii

1
Introduction
Hearing impairment affects nearly 20% of the world’s population, an estimated
1.5 billion people. 430 million of these have a disabling hearing loss, where the
most affected population comes from low- and middle-income countries [1].
In Norway, a survey from National Hearing Impaired society (hlf) found that
every fifth Norwegian has difficulties with hearing.

Having a hearing impairment has a physical and mental impact on the hearing
impaired. In Norway, the societal cost of hearing impairment, ranging from
health care services to reduction of life quality, is estimated to be 40 billion
Norwegian kroner [2].

Assistive technologies like hearing aids, cochlear implants, and external micro-
phones have improved the quality of life for many hearing impaired. External
microphones and telecoils connected to the hearing aids assist in providing
adequate sound to the hearing impaired in situations where the hearing aids
alone are not sufficient. An in-depth interview, from our previous work [3], with
representatives from hlf mentioned that using and showing the hearing aids
are often socially stigmatizing and therefore a sizable percentage of people who
would benefit from hearing aids choose not to wear ones in public. Carneiro et
al. [4] support this claim with their research on assistive technologies (focused
on wheelchair users) and their social effect on both the users and the society
around them.

In [3] a theoretical mobile application is proposed to solve the café problem.

1

2 chapter 1 introduction

The application transmits sound from a smartphone microphone to the hearing
aids. Multiple smartphones can be used collaboratively to provide this audio.
By utilizing smartphones, that are readily available, the socially stigmatizing
effect of assistive technologies is reduced.

Based on [3] we know that one of the essential requirements is low audio
latency. This latency sensitivity encompasses the time from speech until the
hearing impaired hear it. Lowering the latency is vital sincemanywith disabling
hearing loss depend on being able to read the lips of the speaker.

The proposed application from [3] has many latency-inducing components.
The fundamental architecture must have as low latency as possible to enable
the inclusion of more functionalities.

1.1 Thesis statement

To realize this application, we investigate if creating such a system is feasible.
From [3] we can assume that there are no physical obstacles to overcoming the
latency requirements in a modern smartphone hearing aids application. We
need to determine if the latency requirements can be fulfilled in practice.

To investigate the practicality, we pose the following research questions that
we aim to solve in this thesis:

• How can we measure the latency from the smartphone microphone to
the hearing aids activation?

• How much latency can we expect from a naive implementation of such
an application?

• Which part of the architecture introduces latency into the system?

1.2 Thesis contributions

This thesis has three primary contributions—first, an experimental setup to
measure latency between two devices handling audio transference. The design
will simulate a real-life experience applicable to hearing aids users. Secondly,
an application that runs on smartphones to share real-time audio. Lastly, an
overview of the latency barriers in such a system.

1.2 thesis contributions 3

1.2.1 Methodology

In this thesis, we work toward answering the research questions. In Chapter 2:
Background, we familiarize ourselves with some required elements that impact
this investigation.

The first research question asks how we can measure the latency from the
smartphone to the hearing aids activation. We simulate the process using two
smartphones and a microphone and gather the end-to-end latency measure-
ments by creating an experimental setup. Chapter 3: RelatedWork looks at how
similar experimental setups have been used to measure user-activated end-to-
end latency through a system. In Chapter 6: Experimental Design, we propose
our take on the experimental setup to measure the end-to-end latency.

In the chapters 4: Application Architecture and Design, and 5: Implementation,
we create a system that will be used as a prototype when exploring how much
latency we can expect from a naive implementation proposed in [3]. The
chapter Results will give us precise measurements of the end-to-end latency
from the prototype.

We analyze, process, and discuss the experimental setup and the implementa-
tion in the chapters 8: Evaluation and 9: Discussion. Here we get an overview of
the parts in the architecture where latency is introduced and why. Additionally,
in Chapter 10: Future Work, we propose ways to improve this system and the
experimental setup. Moreover, we bring forward the factors that must be con-
sidered in the future when continuing the development of this system.

We summarize and bring forth the concluding findings from this thesis in
Chapter 11: Conclusion.

2
Background
2.1 Sound

Figure 2.1: Vibration in air pressure with corresponding sinusoidal wave

Sound waves are longitudinal waves that travel in an expanding sphere from
the source [5]. However, sound waves are often depicted in two-dimensional
graphs with a fixed direction for visualization purposes. In figure 2.1 we see an
example of how vibrations create air pressure and can be depicted as a wave.
The compression of air particles can be seen as the amplitude of the wave, and
the fluctuation of one amplitude length, or from one peek to the next, is a
wavelength.

The frequency of sound is the number of waves that occur in a fixed unit of
time. Frequency is expressed as Hz, where the literature generally states that

5

6 chapter 2 background

the human ear can hear sounds from 20 Hz to 20,000 Hz. The amplitude of
a sound wave describes the sound’s volume. The frequency of a sound wave
describes the pitch of the sound.

2.1.1 Audio

Audio is the electrical representation of sound. Audio can be divided into analog
audio and digital audio [6].

2.1.2 Analog audio

Analog audio represents sound with an AC voltage that coincides with the
sound. When converting the sound to the AC voltage, the AC voltage should
have the same frequencies and amplitude that the sound waves have. Analog
audio technologies are used in microphone and speakers. The analog signal is
continuous and has a constant change of amplitude and frequency.

2.1.3 Digital audio

Digital audio is introduced as a way to store audio. It is a computer-readable
interpretation of sound [7]. The sample rate values describe the amplitude
measurements from the analog audio. For creating accurate digital audio from
sound, a concept arriving from digital sampling theory states that the signal
of a specific frequency needs to have twice the number of samples. E.g. for
creating a digital representation of a sound with a frequency of 20 Hz, the
sample rate must be a minimum of 20 Hz.

The bit depth signifies the quality and audio resolution of digital audio. The
more bits used for each sample (16, 24, or 32), the more accurate the amplitude
measurements are.

2.2 Hearing impairment

A person without hearing impairment is said to have a hearing threshold of 20
dB or better in both ears. From this threshold of normal hearing at 20 dB, there
is a gradient in the severity of the hearing loss, where a hearing threshold of
80 dB and higher is defined as being deaf [8].

The reason for impairment can be one or a combination of multiple reasons.

2.2 hearing impairment 7

Some of the major causes of hearing loss as listed by [1] include congenital or
early-onset childhood hearing loss, chronic middle ear infections, age-related
hearing loss, and noise-induced hearing loss. Uses of ototoxic drugs can also
damage the inner ear [1].

Some hearing loss is temporary with treatment, but a majority is permanent
regardless of treatment. It is shown that untreated hearing impairment has a
significant effect on the physical and mental well-being of the individual and
those around them.

2.2.1 Hearing aids

Hearing aids are an assistive technology used by hearing impaired people. The
hearing aids consist of three main components; the microphone, an amplifier,
and the speaker. The microphone catches and translates the surrounding
sounds to digital audio. The amplifier strengthens this digital signal before the
speaker transforms the digital signal into detectable human sound and plays it.
Additionally, hearing aids have a fitted earplug connecting the hearing device
to the ear opening [9].

Analog hearing aids

The introductory capabilities of analog hearing aids are to amplify all incoming
sounds equally without distinguishing between speech and noise [10]. Some
analog hearing aids have progressed by having programmable microchips
installed with settings to improve hearing in different listening environments,
deducting speech from noise.

Analog hearing aids have a low hearing aid delay, meaning the amount of
time taken from sound is received in the hearing aid microphone until it is
processed and output. In [11], the analog hearing aids delay was tested by
Frey as a contrast to digital hearing aids and showed a hearing aid delay of 0.5
milliseconds.

Digital hearing aids

Digital hearing aids convert the sound received to digital audio before ampli-
fying it [10]. They have all the features of analog hearing aids but allow for
more complex sound processing. This functionality improves the hearing qual-
ity, compared to analog hearing aids, in some environments. Digital hearing
aids are more flexible and can be customized for specific patterns of hearing

8 chapter 2 background

loss.

In the hearing aid delay comparison from [11], the digital hearing aids have
ten times the hearing aid delay as the analog hearing aids, with a delay of 5.5
milliseconds.

2.3 Swift

Swift is an open-sourced general-purpose programming language intended
as a replacement for C-based languages (C, C++, Objective-C) [12]. The lan-
guage is relatively new and modern (first appearance in 2014). It is built to
match the performance and swiftness of C-based languages but with a more
straightforward syntax that matches the preferred ways for developers to write
code and maintain programs.

The language encompasses functionalities from low-level primitives such as
type and flow control to object-oriented programming language design as
classes, generics, and protocols [13]. Swift has automatic memory management
and continuously checks arrays and integers for overflow. Swift can use C
extensions through an Objective-C wrapper.

2.3.1 Mutlipeer Connectivity

Multipeer Connectivity is a framework provided by Apple to discover other iOS
devices nearby, connecting and communicating between them [14]. Supported
communication services between devices are message-based data, streaming
data, and other resources, such as files. Multipeer Connectivity uses a variety of
infrastructures for transporting data, such as Bluetooth personal area networks,
Ethernet, peer-to-peer WiFi, and infrastructure WiFi.

The architecture of Multipeer Connectivity consists of multiple intractable
objects. Integration and use of Multipeer Connectivity consist of two phases;
the discovery phase and the session phase.

2.3.2 AVAudioEngine

AVAudioEngine is an object that manages a group of audio nodes and controls
playback [15]. A node is a collections of available functionalities. These node
instances must be attached to the engine before use and can be disconnected
and removed during run time. The audio nodes have input and output busses

2.3 swift 9

to serve as a connection point for the audio devices and are used for generating
and processing audio [16].

A bus contains a format the framework expresses in terms of sample rate
and channel count for managing audio input and output. For some nodes, the
format must match strictly between the connected nodes, where a mixer node
and an output node are the exceptions. The mixer node can correctly upmix
or downmix any incoming channel count to the output channel and convert
sample rates.

3
Related Work
3.1 Investigating the café problem for hearing

impaired

The report Investigating the café problem for hearing impaired [3] was the result
of a capstone project done at the University of Tromsø, the Arctic University of
Norway, in 2021. In this report, the author proposes a theoretical application
that provides audio from a collection of smartphones to a hearing aid user.
It contains an in-depth interview with hearing aids users, an architectural
proposal for the application based on the interview, and discussions mapping
the difficulties of such an application.

The in-depth interview was with hard-of-hearing representatives from hlf
Tromsø. The questions used in the interview were made to get the representa-
tives to reflect on their daily problems as hearing aids users. The questions were
phrased as "high-level" questions to let the representatives steer the discussion
toward what is essential for them.

The purpose of the interview was to create the functionalities in the application
based on the user’s needs. The interview revealed the following wishes from
the participants:

R.1 The application should be a cross-platform solution regardless of the
smartphone and hearing aids vendor.

11

12 chapter 3 related work

R.2 The application should provide noise cancellation without impacting
speech.

R.3 The application should provide speech fidelity for the user without being
face-to-face.

R.4 The application should provide support for personalizing the frequency
of audio.

The architectural design from [3] tries to integrate the features requested
by the participants and looks to related work on how to fulfill these in the
proposed system. To address R.1 the architectural design consists of research,
evaluation, and proposals on how to achieve cross-platform communication
between smartphones with different operating systems. To address R.2 a
noise cancellation feature is used on the recording devices to reduce the
background noise and present a clear speech for the hearing aid user. By
utilizing multiple smartphones and introducing speaker identification features,
we fulfill request R.3 by giving the user the option to choose and hear any given
speaker. To address R.4, a feature for personalizing the frequency of incoming
audio is applied to the hearing aid user’s smartphone. This enables the user to
comprehend speech better.

Combining these functionalities will help fulfill the participants’ wishes. How-
ever, the system’s latency is heightened for each added functionality. It is then
imperative that the fundamental structure of the system has such low latency
that these functionalities can be applied while maintaining tolerable audio
latency.

3.1.1 User story

A user story of the proposed system was conducted before the interview with
the hlf representatives to show them its intent to solve the café problem.
Later, this user story was modified to include the desired functionalities from
the in-depth interview.

Scenario

Nora has hearing aids and meets three friends in a crowded café one Saturday
afternoon. To allow Nora to participate in the conversations around the table,
everyone in the group takes up their smartphones with the (h)ear application
installed. Nora creates a united session and invites her friends to join it. This
session will create a local network topology using the smartphone’s WiFi chips

3.2 hearing aid delay and current drain in modern digital devices13

and Bluetooth. When the invitation is approved, everyone will put their smart-
phones on the table, with the microphones directed towards themselves.

Nora has a visual overview of all connected devices on her smartphone. She
can choose whom to mute and whom to listen to. If they are unmuted and talk,
Nora will be able to hear them. The microphone on the devices will catch the
sound and send it to Nora’s smartphone, where the audio will is assembled and
sent to her hearing aids. Before the audio is sent to Nora’s smartphone, a local
machine learning algorithm will remove the background noise and unwanted
speech from the recorded audio segment.

Nora has the option to adjust the incoming frequency of the audio. This
functionality will enable Nora to hear the speech regardless of whom is talking.
Some people with hearing loss may not hear some voices’ pitch compared to
others, so this functionality allows Nora to hear everyone.

3.2 Hearing Aid Delay and Current Drain in
Modern Digital Devices

In [17], Alexander presents his research and investigation of throughput delay
(hearing aid delay) and battery drain in digital hearing aids. Alexander provides
comparative data and benchmarks from testing the hearing aids in his paper.
The hearing aids used in these tests are from seven different vendors, with 62
hearing aids manufactured between 2009 and 2015.

Alexander uses the Frye Fonix 7000 Hearing Aid Test System to measure the
delaywithin the hearing aids and the battery current drain with the appropriate
battery substitution pill in the hearing aids. The 7000 Test System microphone
collects information on the hearing aids for 20 milliseconds after an impulse is
sent from sound chamber speakers to the hearing aids to measure the digital
processing delay. The information gathered is a series of varying amplitudes,
where the 7000 Test System finds the max amplitude peak and considers this
the processing delay in the hearing aids.

In his paper, Alexander highlights the factors that influence delay and its
acoustic and perceptual consequences. When talking about throughput delay,
we refer to digital signal processing (DSP) hearing aids and not analog hearing
aids. Analog hearing aids have a throughput delay but are inconsequentially
small, unlike DSP hearing aids.

There are some factors that impact the delay when converting the audio signal

14 chapter 3 related work

from the analog microphone to a digital representation. These factors are the
resolution used, the sample rate, bit depth, the number of channels, and the
algorithm’s efficiency in converting the analog-to-digital representation. The
higher the resolution is, and the more algorithms are needed, the processing
time of the conversion increase.

Another determinant of delay for DSP hearing aids is the frequency specificity
filters. These filters will analyze and adjust the incoming signal amplitude for
each sample in time. It is not the filter bank that creates the delay but rather
the amount of data arriving from input to output that needs to be processed
and stored.

All hardware has its constraints and range from the processor clock and the
number of transistors to the memory capabilities.

In some instances, the delay is not the problem, but it is the cause of the problem.
These incidents are when the delayed signals interact with non-delayed or
relatively less-delayed reference signals. We have audio-video dyssynchrony
when audio is streamed to hearing aids but is notably slower than the visual
from the tv. The same concept of audio-video dyssynchrony can be applied
to delay when reading lips. Alexander points out that proficient lip readers
express discomfort when the delay exceeds 40 ms, while other lip readers
experience the same when the delay exceeds 80 ms.

Reference signals can be bone-conducted signals from the hearing aid user’s
voice through their skull or indirect sound coming through a large vent or open
canal fittings. When the acoustic interaction between these signals is within
+/- 10 dB they become most pronounced.

Humans are good at detecting audio delay, so engineers focus more on what
delay is tolerable. They differentiate between delays caused by their voice
and others’ voices via direct acoustic pathways. There is also a difference in
tolerance when the delay varies across frequency, which is often the case with
filter banks in the hearing aids. Speech by others has been reported tolerable
between 24 to 30 ms delay when the frequency is constant and 15 ms when
the frequency varies. The tolerable delay of a person’s own voice is 9 to 10
ms, so this has been the unofficial limit for engineers when designing hearing
aids.

3.3 measuring latency in virtual reality systems 15

3.3 Measuring Latency in Virtual Reality Systems

Virtual reality (VR) systems have many complex, interacting components that
affect the latency in the system. Raaen et al. have created an experimental
setup that measures the end-to-end latency of a VR system, registering the
time taken by a user triggers an action until the application processes it and
the system outputs a response.

Raaen et al. have in [18] conducted and created an experimental setup for
measuring the exact delay in VR applications. They define delay as the time a
user takes to trigger an action until it is visible on a screen. They state that there
is no linear relationship between frame rate and delay in traditional computer
graphics setups and thereby assume that measurements through frame rate
alone are not the best metrics.

Experimental setup component A VR device is attached to a camera tripod.
The VR device alters between being smartphones with VR capabilities and VR
headsets. If moved, the device will alter its virtual screen from white to black
coloring.

One light sensor is connected to the VR device’s screen and will capture the
color switch. A laser pen is attached to the tripos and points towards a light
sensor stationed one meter away from the tripod. When the tripod alters, the
laser pen will signal this to the light sensor. Both light sensors connect to an
oscilloscope, where the waveform and electrical signals’ bandwidth will be
captured and displayed.

The experimental setup flow is as follows: The laser pen signals the light sensor
of its movement. The VR device’s screen alters its color due to the movement,
and the light sensor connected to it registered this shift. The oscilloscope
registers the signals from both light sensors. The measurement between the
first and second light sensors reflects the VR device’s delay from a triggered
action to the visual aspect rendered.

Raaen et al. conduct their experiments using Oculus Rift, iPhone, and Samsung
as their VR device. The results provided are an average of 10 runs. For the
Oculus devices, they test the experiment with and without VSync (vertical
sync). VSync is a graphic technology that synchronizes the application’s frame
rate with the screen’s refresh rate1. When not using VSync, the monitor has
a chance of displaying portions of multiple frames in one go. This will create
straight lines on the monitor and give the viewer a sense of cut and overlapping

1. Nvidia Adaptive VSync: https://www.nvidia.com/en-gb/geforce/
technologies/adaptive-vsync/

https://www.nvidia.com/en-gb/geforce/technologies/adaptive-vsync/
https://www.nvidia.com/en-gb/geforce/technologies/adaptive-vsync/

16 chapter 3 related work

images. From the tests performed by Raaen et al., the Oculus Rift devices not
using VSync have the least delay. The results can be viewed in table 3.1.

3.3 measuring latency in virtual reality systems 17

VR Display Average in ms

Oculus Rift dev kit 1, VSync ON 63
Oculus Rift dev kit 1, VSync OFF 14
Oculus Rift dev kit 2, VSync ON 41
Oculus Rift dev kit 2, VSync OFF 4
Samsung Galaxy S4(GT-I9505) 96

Samsung Galaxy S5 46
iPhone 5s 78
iPhone 6 78

Table 3.1: Results from delay measurements

Their paper mentions that the visible results of not using VSync might not be
preferable to the user but that this is out of scope for the goal of the experimental
setup. The goal is to provide a correct and trustworthy experimental setup that
can measure the delay in VR devices and their applications.

4
Application Architecture
and Design

This chapter will describe the architecture and design of the system. Within
this and the following chapters, devices will be referred to as smartphones that
have the applications installed.

4.1 Architectural overview

The system’s primary purpose is to handle audio recording, audio transference
between devices, and playing. A user activates a recording session through
the device’s user interface. The surrounding sound is recorded and sent to
a connected device in its vicinity. Here it is played instantaneously from the
device upon receiving the audio.

The system has three main architectural divisions: the part shared between all
devices and the two individual parts for recording and receiving audio.

The shared part of the system handles the identification of nearby devices and
audio transference between them. The individual part of the system consists
of the recording and the receiving applications. The application consists of the
module, the local storage, and the user interface with the shared components.

19

20 chapter 4 application architecture and design

The recording and receiving applications must be installed on at least one
device. As the naming implies, the recording application is responsible for
recording the sound and the receiving application for playing it.

In figure 4.1 we can see an overview of the shared and the individual parts of
the system.

Figure 4.1: Architectural overview. Components between striped line is shared by
devices.

The connection will be maintained regardless of the applications being in
a recording session when the devices are connected. Only if an application
terminates will the connection disband.

If there is a session with more than two devices, the devices construct a many-
to-many relationship. For the experimental evaluation of the prototype, this
thesis focuses solely on the connected pair of one recording application and
one receiving application.

4.2 design 21

4.2 Design

4.2.1 Audio transport handler

Connecting peers

The audio transport handler is responsible for identifying and connecting
the devices in a joint session. When first activated, it will attempt this and
consistently maintain the connection if the applications are not terminated.
The system will search for devices to connect to in its vicinity and continue
this search after the first initial connections.

The connected devices, referred to as peers, are displayed through the applica-
tion’s user interface. The system does not need acceptance from another device
to approve this connection.

Transference of audio

Sending and receiving packets is done by the audio transport handler. When
sending a packet, it broadcasts this packet to all connected peers, if they exist.
The handler does this immediately when the method is called.

The receiving method inside the handler is constantly listening for new packets.
When a packet is received, it will restructure the raw data to an object that
other modules can use further.

4.2.2 Recording application

The recording application consists of the recording user interface, a recording
module, local storage, the audio transport handler, and shared helper func-
tions.

The recording module is activated through the application’s user interface. It is
responsible for continuously gathering data from the microphone on its device.
The application uses the audio transport handler to broadcast the gathered
data to its connected peers. The helper functions assist in seamless converting
data to correct types for processing.

22 chapter 4 application architecture and design

4.2.3 Receiving application

Except for the receiving module, the receiving application consists of the same
architectural components as the recording application. The receiving applica-
tion utilizes these shared components differently than the recording applica-
tion.

The application’s user interface readies the receiving module through a button.
The receiving module accesses its local storage to prepare itself to receive
packets from a recording application.

The audio transport handler receives a packet consisting of an audio segment
and additional information on how to play it. This packet is dispatched to
the receiving module. The receiving module will use the helper functions to
convert the audio segment before scheduling it to be played on the device. The
receiving module then starts to play the audio accessible.

4.2.4 Experimental design

There are some specific functionalities for measuring the application’s perfor-
mance during run time. These measurements with time stamps are stored as
logs. Both the recorder and the receiver applications have these.

Two buttons are available for interacting with the logs through the user inter-
face. One is for deleting the locally stored logs, and the other is for gaining
access and printing the logs when the device is connected to a computer.

During run-time, the logging activates and begins according to when the
recorder and receiving mode is started. All logs for both devices are written
down to a locally stored file when the recording and receiving session is
over.

5
Implementation
This chapter will discuss the implementation-specific detail of the components
in the system. We describe the method used to assess the system performance
for the experimental evaluation and the development tools used with their
versioning.

5.1 Development tools

The user interface uses SwiftUI1 to create the user interface elements and
attach them to correct actions. There are two primary user interfaces that
the user can interact with, as seen in figures 5.1 and 5.2. Figure 5.1 shows
the user interface for the recorder application, and figure 5.2 the receiving
application.

1. SwiftUI Documentation: https://developer.apple.com/documentation/
swiftui/

23

https://developer.apple.com/documentation/swiftui/
https://developer.apple.com/documentation/swiftui/

24 chapter 5 implementation

Figure 5.1: Screenshot of the
user interface for the
recorder device

Figure 5.2: Screenshot of the user
interface the for re-
ceiver device

Xcode2 is the integrated development environment the system has used for
compiling and building the applications. The specifics of versioning used are
listed below:

• Xcode version 13.3.1

• Swift language version 5

• iOS Deployment Target: 15.2

• Simulator version 13.3.1 (977.2), using iPhone 13 iOS 15.4

• SwiftUI version follows the iOS target, where the lowest possible target
is iOS 13.0

2. Xcode Documentation: https://developer.apple.com/documentation/xcode

https://developer.apple.com/documentation/xcode

5.2 audio formatting 25

5.2 Audio formatting

The recording module predefines a format to represent the incoming sound
as digital audio. The format must consist of the sample rate, bit depth, and
the number of channels. The module uses AVAudioFormat3 to create the audio
format object. The formatting object is treated as unique for each recording
session. The format information from the recording module is needed in the
receiving module to interpret and play the audio. The information is sent
alongside the audio segment to the receiver application.

To initialize the receiver module’s audio subsystem, it sets a formatting object.
The audio subsystem uses an audio file from the local storage to get a formatting
object baseline. When the receiver module receives the first packet from the
recording application, it updates the current formatting object.

The values used for the audio formatting object are

• Bit depth: float 32-bit

• Sample rate: 44,1 kHz

• The number of channels: 1

5.3 Audio subsystem

The audio subsystem uses AVAudioEngine, referred to in Chapter 2.3.2, for
handling all audio I/O in the system. The engine in the recording module
consists of three nodes⁴ and uses two nodes in the receiving module.

An input node is attached to a mixer node in the recording module, and the
mixer node is attached to the main mixer node. The main mixer node is a
property of the engine that is directly connected to an output node by default
when first initialized.

The input node connects to a bus that receives the audio stream from the
microphone on the device. The audio stream data is sent from the input node
to the mixer node. The mixer node applies the proper formatting properties for
interpreting the audio signal as digital audio. Lastly, the mixer node’s output

3. AvAudioFormat documentation: https://developer.apple.com/
documentation/avfaudio/avaudioformat

4. Functional elements for handling audio

https://developer.apple.com/documentation/avfaudio/avaudioformat
https://developer.apple.com/documentation/avfaudio/avaudioformat

26 chapter 5 implementation

is attached to the engine’s main mixer node.

The receiving module has a player node that supports scheduling the playback
of a PCM buffer⁵. The player node connects to the engine’s main mixer node.
Here the audio is delivered to the device’s speaker.

A mixer node can convert the formatting object of an audio sample. This
property is desirable if the devices used to record and play audio have different
hardware restrictions and diverge from each other. E.g., the microphone used
for recording comes from a Bluetooth headset, while the audio sample is played
through a smartphone speaker. The prototype does not utilize this functionality
since the devices have the same sample rate in the experimental setup.

5.3.1 Recording method

The recording module instantiates the mixer node to access and process the
audio from the input node. The mixer node uses a function called installTap
to buffer up the audio data from the microphone. The size of this buffer is
predecided before the installTap function is activated. A code block is called
to handle the audio data when the microphone buffer is full. The audio data
is structured into a value type called Packet with its corresponding formatting
information and sent to the audio transport handler. The audio data from the
buffer is not compressed before transportation.

5.4 Audio transport handler

The audio transport handler utilized the Multipeer Connectivity framework,
see Chapter 2.3.1, for establishing a connection and sharing audio between
devices. The framework uses the Bonjour⁶ protocol to discover, initiate and
connect to nearby devices.

The handler provides a list of all connected peers to the user interface. The data
recorded by the recording module is broadcast to said peers by the handler.
When the handler receives the broadcast data, it dispatches the data to the
receiving module for playing.

5. AVAudioPCMBuffer documentation: https://developer.apple.com/
documentation/avfaudio/avaudiopcmbuffer

6. Bonjour documentation: https://developer.apple.com/bonjour/

https://developer.apple.com/documentation/avfaudio/avaudiopcmbuffer
https://developer.apple.com/documentation/avfaudio/avaudiopcmbuffer
https://developer.apple.com/bonjour/

5.5 logging the system performance 27

Packet

The packet transmitted between devices consists of the audio data and its
corresponding formatting object. These are converted and combined to a Data⁷
object, which is a byte buffer object that can be manipulated as a Foundation⁸
object. When reverted to a string form, the formatting object has a known byte
count. When received by the receiver application, it can easily be parsed out
from the Data object and remade into a formatting object.

Dispatch queue

DispatchQueue⁹ is a DispatchObject that manages the execution of tasks. These
tasks can be serial or concurrently done on the application through a pool of
threads but are associated with the application’s main thread. The queue used
in this system is a serial FIFO (First in - first out) queue, running tasks in
parallel with the rest of the system. The tasks submitted are in the form of
a block object and behave similarly to the dispatch function used in other
languages.

A dispatch queue is used in the recording module to dispatch the collected
audio data in a Packet to the audio transport handler. The audio transport
handler uses a queue to broadcast the Packet to the connected peers. The
queues might be excessive, depending on the buffer size. It is a precaution to
utilize multiple threads so that data intake from the microphone buffer is not
halted.

In the receiving application, the audio transport handler uses a dispatch queue
to assemble the incoming byte data to a Packet object and dispatch it to the
receiving module

5.5 Logging the system performance

The system stores log with timestamps in an internal queue when activating
a recording session from the user interface. When the session terminates, the
log is written to a file in the local storage on the device.

7. Data documentation: https://developer.apple.com/documentation/
foundation/data

8. Foundation documentation: https://developer.apple.com/documentation/
foundation

9. DispatchQueue documentation : https://developer.apple.com/
documentation/dispatch/dispatchqueue

https://developer.apple.com/documentation/foundation/data
https://developer.apple.com/documentation/foundation/data
https://developer.apple.com/documentation/foundation
https://developer.apple.com/documentation/foundation
https://developer.apple.com/documentation/dispatch/dispatchqueue
https://developer.apple.com/documentation/dispatch/dispatchqueue

28 chapter 5 implementation

These files can be accessed when the device is connected to a computer and
runs the application. All stored files are viewed in the compiler through a
button on the user interface.

We log the system where we assume latency is introduced. In the recording
module, we log the start and end of the recording process. We get the time used
for filling the buffer with audio data alongside the time used for dispatching
this data to the audio transport handler. The time used for transferring the
packets between devices is not available.

The logging starts after the packet is first received in the audio transfer handler
in the receiving application. We log the time in the receiver module from
receiving a packet until the audio segment is scheduled for playing.

6
Experimental Design
This chapter will describe the design of the physical experimental setup and
the purpose and motivation of the different components.

The objective of the experimental setup is to measure end-to-end latency of a
multi-device application through audio transmission. The experimental setup
will simulate a real life use case for hearing impaired people using hearing aids
and assistive technologies.

6.1 Design

The experimental setup consist of the following equipment:

• 2 x smartphones with recorder and receiver application

• Computer with spectrogram analysis

• Microphone

• Sound absorption barrier

• Sound emitting device (clicker)

29

30 chapter 6 experimental design

Figure 6.1: Experimental setup. Filled lines is sound transmitted through air. Dashed
arrow represent audio transference between devices. Rectangular box is
the sound absorption barrier. Pen is the sound emitting device.

6.1.1 Computer and microphone

The microphone is connected to the computer as the input. The microphone
will pick up the sound from the clicker and the receiving device.

The computer runs a spectrogram program called Sonic Visualiser1. When
recording from the microphone, all sound waves are pictured in real time. The
program allows for precision in measuring the time span between registered
sound waves.

Figures 6.2 and 6.3 shows examples of how the soundwaves are displayed in the
spectrogram program with and without marking the time differences.

6.1.2 Sound absorption barrier and sound emitting device

The sound emitting device, clicker, must emit the same type of sound for every
time its used. The ideal sound gives a high amplitude when made and will
thereby give as clear an image analysis as possible. After experimenting with

1. Sonic Visualiser: https://www.sonicvisualiser.org/

https://www.sonicvisualiser.org/

6.1 design 31

Figure 6.2: Screenshot of regis-
tered sound waves
without markings

Figure 6.3: Screenshot of regis-
tered sound waves
with markings

different types of sound sources, a large marker with a cap was found to be
most proficient.

The purpose of the sound absorption barrier is to dampen the feedback be-
tween the software devices. It is built up with cardboard and tape to create a
rectangular shape.

6.1.3 Device

The device have build-in microphones and speakers. In the experiment the
devices must be connected and able to record, transfer and play the audio to
be measured by the microphone and computer.

32 chapter 6 experimental design

6.2 Experiment setup and execution

Figure 6.4: Picture of the physical experimental setup with all components

6.2.1 Setup

To give as consistent experiment through eventual iterations and runs, all
components layout have been measured up and marked. The distances to
notice of importance is between the recording device and the clicker, the
clicker and the microphone and the receiving device and the microphone. The
distances between the microphone and both devices is even, where the clicker
is placed in proximity of the recording device. These distances is to to balance
out the time sound travels through air, and the introduced delay this will take
is even from both recorder and receiver side. With doing this, the latency will
be equal on both sides.

The environment the experiment is set up in has been maintained the same.
This is to reduce the human and environmental error factors. The microphone
is connected to the computer and tested before the experiment begin. The
baseline of the sound intake from the environment is checked and inspected
before every experiment. This is viewed through the spectrogram and give an
indication of the background noise in the room.

6.3 limitations 33

6.2.2 Execution

After the setup is done and both smartphones are prepared the experiment
can begin. The spectrogram on the computer starts recording. The devices is
readied to record, transmit and play sound. The clicker is then activated and
makes a clear sound while the experimenter views the spectrogram to make
sure it is registered. The smartphones is paused before much of the feedback is
registered by the spectrogram after the clicker sounds are registered by both
devices. The spectrogram program is paused and the sound wave spikes can
be analysed and saved.

6.3 Limitations

Error factors that must be considered in this experiment is divided in human
and environmental errors.

6.3.1 Human error

The experiments results depends on the experimenter being able to correctly
mark and read the sound wave spikes in the spectrogram. Depending on the
sound emitting device and its amplitude and frequency, the beginning of the
original registered sound and the sound registered from the second device can
vary and be hard to precisely know when it is starting if the amplitude is not
pictured precisely enough.

The sound emitting device used gives a sharp click sound. The sound emanated
from the cap pushing on a marker can vary based on how it is pressed. This
will vary the sound made and must be taken into consideration when analysing
the spectrogram.

The recording device is turned on right before the clicker is clicked, to reduce
the time of feedback as much as possible. There is a correlation between when
the device is starting to record, the sound is emanated and when the software
in the device transfer the audio that can variate between each experiment run.
This has to do with the microphone buffer on the device, but the human error
here is where the length of time from starting the recording session on the
device and creating the clicker sound can vary.

34 chapter 6 experimental design

6.3.2 Environmental error

The environmental errors is tied to the room used and the physical setup of
the experiment in relation to each other including outside sound sources. The
errors in regard to the setup of the experimental components is reduced by
marking each device positions.

Since the experiment is sound sensitive, the sound levels of the room must
be known and consistent if there is some. The consistent sound levels, e.g.
ventilation system, should be registered and seen on the spectrogram before
the experiment run. With knowing the baseline of environmental sounds, the
sound emitting device must give a sound that clearly breaks from the baseline
to get as accurate measurements as possible. If there is other noises that occurs
during the experiment, the experimental interval must be evaluated if it can
continue.

7
Results
This chapter will cover the results from experiments conducted with the exper-
imental setup from Chapter 6 and the application logs from Chapter 4.2.4. The
results will indicate what the end-to-end latency of the system is, and where
this latency internally arrives from. The analysis will give indication on where
future work efforts should be focused.

There have been three experiments conducted in an iterative fashion. For
each experiment alterations on the system was made. Every experiment is
run six times, where the results provided is the average of these. At the end
of this chapter an overall visualization of the end-to-end latency and system
performance measurement will be provided. The evaluation of these results
will be discussed further in Chapter 8.

7.1 First experiment creating the baseline

The first experiment was run after the initial version of the system was finished.
This experiment was to evaluate if the experimental setup held true, and to get
a baseline on the end-to-end latency from the system to compare for further
testing.

The average results from the overall latency in this first iteration was 361.8 ms.
The logs from the applications output indicates that the time used for filling

35

36 chapter 7 results

the microphone buffer is large. With a microphone buffer of size 9216 (36 864
bytes) it was seen likely as a large amount of the latency was connected to this
buffer.

In figure 7.1 an overview of the end-to-end latency from the physical experi-
mental setup, the time of filling the microphone buffer and dispatching one
packet, and at last, the time from receiving to processing is done for one packet
on the device.

Figure 7.1: End-to-end latency and internal processing time for recording and receiv-
ing device

7.2 Reducing the microphone buffer

The microphone buffer was first reduced to a size of 2304. The audio transfer-
ence was first checked by the developer to get a sense of the quality. The sound
on the receiving device was perceived as stilted and unintelligible. The second
test was then performed with a microphone buffer with a size of 4608, which
is half the size of the microphone buffer from the first experiment.

The average result on the end-to-end latency from the experiment after this
modification was 246.5 ms. This is 115.3 ms less than the first iteration.

7.3 receiver buffer 37

7.3 Receiver buffer

To reduce the the microphone input buffer even more, and without getting the
stilted experience in the audio, we introduced a queue on the receiving side
for handling the incoming audio packages. The audio would start to play the
queues content if the queue contained at least two packages. The microphone
buffer size was reduced to a size of 512.

Before testing with the experimental setup, the quality was evaluated and
there was no stuttering or unintelligible sound and the queue was checked
to be working as expected. The experiment was carried out and the end-to-
end latency resulted in 301.7 ms, which is 55.2 ms more than the previous
experiment.

7.4 Graphs

7.4.1 Combining all results from experiments

Figure 7.2 shows the combined end-to-end latency and internal buffering time
for the recording and receiving device. Aswith figure 7.1,we see that the average
latency from receiving a packet is low and not significant in comparison.

Figure 7.2: Latency and average of internal processing time for recording and receiving
device for all experiments

Between the first and second experiment, reducing the microphone buffer

38 chapter 7 results

shows a drastic decrease in the end-to-end latency. However, the thirds exper-
iment where the receiver queue is introduced and the microphone buffer is
of a supposedly size of 512, has an increased end-to-end latency. The column
depicting the microphone buffer time is exact the same as for experiment
2.

The processing time for receiving and scheduling the audio packet on the
receiver device is only increased with 0.1 ms indicating that the queue does
not have much affect on the higher end-to-end latency seen in the experi-
ment.

7.4.2 End-to-end latency

In figure 7.3 we see a box plot overview of the end-to-end latency for all 3
experiments from the physical experiment. Experiment 1 has the most spread
results in the end-to-end latency of all three experiments, where the lowest
measurement is the same at experiment 2’s median.

We see that both experiment 2 and 3 is more consistent in all their measure-
ments, compared with experiment 1.

Figure 7.3: Experiments end-to-end latency

7.4 graphs 39

7.4.3 AVAudioEngine initialization

Figure 7.4: Initialization time of AVAudioEngine for recording

In figure 7.4 we see the time used from activating a recording session by
pushing the button on the user interface until the recording module begins
to gather the microphone data. The figures’ measurements do not affect the
end-to-end latency values or other measurements taken in the experiment that
has been presented.

The time does not waver that much between the experiments, where the spread
is 8.3 ms between experiment 1 at 173 ms and experiment 3 at~165 ms.

8
Evaluation
In this chapter, we will look at the results provided by the experimental setup
from Chapter 7 and evaluate the registered measurements.

8.1 Audio length calculation

Before we start the evaluation, we need to understand how the buffer size,
sample rate, and bit depth affect the audio file size and its quality, and from
there, we can calculate the number of seconds with audio the packets consists
of.

The formulas that will be used and explained in this section are based on the
OMNI calculator1. First, the number of bits per second (dubbed bit rate) is
calculated by multiplying the bit depth with the sample rate.

bit rate = bit depth ∗ sample rate

1. OMNI calculator: https://www.omnicalculator.com/other/audio-file-
size#audio-file-size-calculation-formula-and-how-to-calculate-
audio-file-sizes

41

https://www.omnicalculator.com/other/audio-file-size##audio-file-size-calculation-formula-and-how-to-calculate-audio-file-sizes
https://www.omnicalculator.com/other/audio-file-size##audio-file-size-calculation-formula-and-how-to-calculate-audio-file-sizes
https://www.omnicalculator.com/other/audio-file-size##audio-file-size-calculation-formula-and-how-to-calculate-audio-file-sizes

42 chapter 8 evaluation

The bit rate is consistent throughout all the experiments and the value is
32 ∗ 44100 = 1 411 200, with gives 176 400 bytes per second when divided by
8.

The number of channels used when recording the audio affects the number of
recorded waveforms in the audio samples. Each waveform has its designated
speaker to give an immersing effect. One channel is used for all experiments
in this thesis.

The formula for calculating audio file size is then as follows:

audio file size = bit rate ∗ audio length in seconds ∗ number of channels

Furthermore, since we know the audio file size from the microphone buffer
size, we can restructure the formula to produce the audio length in seconds to
this:

audio length in seconds =
audio file size

bit rate ∗ number of channels

8.2 Buffer size impact

From figure 7.1 we see our first overview of the end-to-end latency and process-
ing delay in the system. The Recorder-Application and Receiver-Application
column represents the processing time for one packet, while the Physical ex-
periment column can be the result of more than one package.

The processing time for the receiving device is barely visible and represents
the time the device uses to receive and process one packet. It does not include
the actual time for playing this packet, but using the formula from Chapter 8.1
we can calculate the audio length it received in one packet. The audio length
for one packet in experiment 1 is 209 ms.

The processing time used by the receiver, regarding the audio length played,
is of such a nominal length that this should be disregarded compared to the
processing time used by the recording device for now.

It is clear that the recording device, and the time used to gather the microphone
data, are more prominent regarding the high end-to-end latency. As with the
time used in the receiving module, the processing time used to access the
microphone buffer and dispatch the data has minimal impact.

We know the calculated audio length in a packet is 209 ms for experiment 1.
While we do not know precisely how many packets are needed to transport

8.2 buffer size impact 43

the sound emitted from the clicker device, we can assume that the maximum
number of packets used is two, based on the end-to-end latency. Combining
the time used for recording and playing the audio sample, one packet amounts
to an audio length of 418 ms.

8.2.1 Reducing the microphone buffer

In figure 7.2 we see a comparison between all experiments and their results.
Reducing the microphone buffer size has affected the end-to-end latency be-
tween experiments 1 and 2. The graphs reinforce the first statement that the
microphone buffer size affected the first experiments’ end-to-end latency.

What is curious about this observation is that the supposed microphone buffer
size of 512 (2048 bytes) in experiment 3 shows the same processing as for
experiment 2. The end-to-end latency measurements for experiment 3 are
higher than for experiment 2.

installTap

With this observation and results from figure 7.2, the installTap function needs
to be looked at more. Some measurement confirmation tests are run by altering
the microphone buffer size and comparing the size by validating the data length
received from the buffer. It shows that regardless of the buffer size set, the
function uses a minimum of 19200 bytes to allocate the microphone buffer.
This is a buffer size of 4800.

The documentation from Apple regarding installTap is not incredibly elaborate,
but when reading it carefully, it states: .. bufferSize: The size of the incoming
buffers. The implementation may choose another size. The installTap function
will not be less than 19200 bytes, regardless of the preset buffer size.

We know that the correct microphone buffer size for experiments 2 and 3 is
19200 bytes with this additional information.

8.2.2 Theoretical impact

There are some inconsistencies within the theoretical number of audio length
that is recorded and the physical measurements of the end-to-end latency when
we look at figure 7.2.

While the end-to-end latency has been reduced from experiments 1 to 2, this

44 chapter 8 evaluation

reduction is not linear with the reduction of latency from the microphone buffer.
The end-to-end latency has declined with 32% from experiments 1 to 2, and
the latency from the microphone data buffering has declined with 48%. This
indicates that the microphone buffer size is not the only latency-inducing factor
in the system. If it was, the latency should have downscaled linearly.

In experiment 1, we know that the audio length provided by one packet that
is recorded and played is 418 ms. The end-to-end latency is 361.8 ms. We
know that the system can have other unidentified latency factors. However,
if we calculate the numbers we have access to, the remaining 56.2 ms of the
theoretical audio length is not reflected in the end-to-end latency. It indicates
that the microphone buffer size is more extensive than necessary.

In experiment 2, the audio length recorded and played assembles to 216 ms. It
is 30.5 ms less than the end-to-end latency from experiment 2. It can either
indicate that more than one packet is used, that there is unknown latency
introduced of at least 30.5 ms, or that the intervals used for measuring these
are too few to give exact representative measurements of latency.

In experiment 3, the end-to-end latency increases by 22% from experiment 2,
and the microphone buffer latency is the same. This increase can be tied to the
additional queue on the receiver application or tied up to another unknown
factor that introduces latency.

8.3 End-to-end latency

In figure 7.3 we see a box plot representing the end-to-end latency of the
experiments. In experiment 1, there was a large microphone buffer. We can
see in the plot that the minimum and maximum points of the numbers varied
a lot. It can indicate that the sound throughput has varied, which is consistent
with the first assumptions made in Chapter 8.2.

For experiments 2 and 3, we observe fewer variations and less dispersion with
smaller microphone buffer sizes. Some size differences between the experi-
ments can indicate that the size of the microphone buffer still exceeds the
audio length that the sound emitting device makes and that this has influenced
the varying data points. Alternatively, it can imply that there are unknown
latency-inducing factors. In experiment 2, we see that the median is high in
the interquartile range, indicating that over half of the latency measurement
was closely related to each other. The same can be said for experiment 3, only
with a reversed, positive skewness instead of negative skewness.

8.4 one-t ime induced latency 45

The skewness further indicates that the data points on the skew side (the
smallest part of the box) are closer to each other in forms of value than the
rest of the data points. Experiments 2 and 3 have a reversed skewness but
are the closest relative. It tells us they have had many similar values in their
end-to-end latency. This is understandable when they have operated with the
same microphone buffer size, whereas experiment 3 has had some added delay
with the receiving devices queue.

The box plot’s overall dispersion for the experiments indicates that the end-
to-end latency has varied a lot. More intervals to create an intermediate
representation could have given a more accurate indication of the system’s
end-to-end latency.

8.4 One-time induced latency

Figure 7.4 shows the measured time used when the recording session is first
initialized. This period consists of the recording button being pushed, the time
allocation of the microphone buffer, and the startup of the engines.

The time used is considerable enough that it should be noted and should be
handled, but it only happens once for every recording session. This does not
affect the end-to-end latency measurements but can affect the overall user
experience of the system. Especially if the user often switches between whom
to listen to. The added latency can be subtracted from the session. The results of
this profoundly depend on how the end-user uses the system and how multiple
connected devices will interact with each other.

9
Discussion
The discussion in this chapter will reflect on the research questions from
Chapter 1.1 by looking at the experimental setup, the systems design and
implementation choices, and the results gathered from the evaluation.

9.1 Experimental setup

The experimental setup disclosed in Chapter 6 is one of the thesis contributions.
This section will evaluate the experimental setup’s design and equipment and
provide ideas on how the setup can evolve in the future. Before we start
to evaluate the different components, the experimental setup goal should be
clarified again. The goal of the experimental setup is to measure the end-to-end
latency in an audio sharing system, simulating how a user would interact and
perceive the transferred sound in as realistic circumstances as possible.

The reading of the end-to-end latency strictly depends on the exactness of the
spectrogram. The exactness entails the visualization of the recorded sound
and the reading of this recording. How reliable and precise the spectrogram in
and of itself is can not be known for sure. The spectrogram software has not
been cross-referenced for accurateness with other spectrogram software. If we
assume that the visualization of the sound is accurate in the software, we still
have the error factor of reading the output of the spectrogram accurately. While
it is somewhat dependent on the sound registered, it can be hard to know the

47

48 chapter 9 discussion

precise start of the sound wave. In the best case, this could add milliseconds
of uncertainty to the presented results.

The sound-emitting device used is a marker with a cap. The sound registered
was deemed good enough when testing, but it should preferably be a more
reliable sound that does not alternate based on how it is clicked. The sound
used should follow some specific properties to ensure a good reading. With
this in mind, a device specifically designed to produce consistent clicks can be
applied to these experiments and perhaps give a more accurate reading.

Even though each experiment execution involves a few steps, it contains enough
human-made steps that can give the experiments uncertainty and lack repeti-
tiveness. More of the experiment should be automatized. This ensures that if
there are external error factors, they will be constant and more transparent
when analyzing the data.

Isolating the experiments in a more contained environment, as done in [17]
with the 7000 Test System, will reduce some external error factors. However,
the experimental setup will lose its quality as it focuses more on the end-to-end
latency of the system from a user’s use-case perspective.

The experimental setup is made distinctively for having one recorder and
one receiving device. In the future, it should be changed to accommodate
more devices. The experimental setup can evolve, opening up for testing and
evaluating additional functionalities, such as the audio quality and the noise-
canceling capabilities. These features need to be tested to measure their effect
and correctness in a group setting. This thesis contribution can contribute to
more extensive development that measures and evaluates these things and the
end-to-end latency.

In the results of the experiments, we have some unknown latency factors and
dispersion of the end-to-end latencymeasurements. We think that runningmore
iterations to acquire the average will give more insight into these unknown
factors and the dispersion of measurements.

9.2 System improvement

9.2.1 Restructure and make alternations of code to
remove latency

We have known and unknown factors that add excessive latency in the system.
The system logs have documented the ones we know of, which can be seen in

9.2 system improvement 49

the experiment results. The unknown factor can only be discovered by adding
additional logs throughout the system and reducing the known factor to the
extent that makes this more transparent.

Not all of these known factors have impacted the end-to-end latency but affected
the system’s overall latency. Some of these are the time used for allocating
buffers for both the recording and receiving applications and the redundant
computing time used for sending the formatting object of the audio with each
audio sample. These things can be executed before the recording session
initiates or only once per recording session by restructuring the source code.
In figure 7.4 we see an example of how much time is used for initiating the
recording engine.

We know from [17] that the higher resolution of the audio samples is, the
processing time increases. To decrease the end-to-end latency of the system,
we can downgrade the audio quality. The system uses a bit dept of float 32-bit
and a sample rate of 44.1 kHz, which gives 176,4 kbps (kilobytes per second).
The music streaming service Spotify has options for using between low (23
kbps), normal (96 kbps), high (160 kbps), and very high (320 kbps)1. Since
their normal audio quality is 96 kbps, it is worth testing this out in the future
and seeing its effect on the end-to-end latency.

9.2.2 Alternatives for accessing microphone buffer

From Chapter 8.2.1 we discover that the installTap function has a minimum
buffer size of 19200 bytes. We still believe that reducing the microphone buffer
size and having shorter audio segments will significantly affect the end-to-end
latency.

We have not discovered alternatives to installTap when using AvAudioEngine
as of now. An alternative to installTap is to create our own module for accessing
the microphone bus. Swift can have C functions run in its application if one
uses an Objective-C wrapper.

Using C, there will be more ways to utilize the microphone intake buffer
and give the developers more control in regulating the audio length in the
audio segments. One tradeoff is that this new module must also handle audio
formatting. Nevertheless, we believe that having this module in C makes it
possible to be used by the system when it runs on Android devices. We also
think that we can more easily identify the other unknown latency factors in

1. Spotify audio quality: https://support.spotify.com/us/article/audio-
quality/

https://support.spotify.com/us/article/audio-quality/
https://support.spotify.com/us/article/audio-quality/

50 chapter 9 discussion

the system by controlling the microphone buffer size.

9.2.3 Alternatives to Multipeer Connectivity

Multipeer Connectivity is only available for iOS devices. The latency of Mul-
tipeer Connectivity is not measured in this project. Other latency-inducing
processes, such as the microphone buffer, heavily influence the end-to-end
latency results from the experimental setup to the extent that the amount of
Multipeer Connectivity’s influence can not be given an accurate guess. To eval-
uate this, we need a more detailed and extensive experimental setup where the
device’s internal processing clocks are synchronized to give a precise reading.
Alternating between TCP and UDP standards would also be interesting to see.
The system uses TCP now.

From Chapter 3.1 we know that one essential attribute of this system is cross-
platform capabilities. MultipeerConnectivity as the communication handlerwill
not meet this criterion when combining Android and iOS device participation
in a session.

In [3] Bridgefy2 is a messaging application that does not use cellular or
internet connections to work but instead creates a local mesh network between
devices operating their app. Bridgefy is available for both Android and iOS
devices. For Android devices, Bridgefy utilized Bluetooth Low Energy (BLE) for
communication between devices. BLE is faster and more efficient than other
local communication methods and protocols, such as Classic Bluetooth and
WiFi Direct.

While WiFi Direct has shown promise, it is not suitable since it is not compatible
with iOS devices. BLE has been integrated into Android3 and iOS⁴ devices as
the new standard. We believe, like with Bridgefy, a module utilizing BLE can
be used as an audio transport handler in this system.

2. Bridgefy: https://bridgefy.me/
3. Bluetooth Low Energy Android: https://developer.android.com/guide/

topics/connectivity/bluetooth/ble-overview
4. Bluetooth Low Energy iOS: https://developer.apple.com/library/archive/

releasenotes/General/WhatsNewIniOS/Articles/iOS5.html#//apple_
ref/doc/uid/TP30915195-SW1

https://bridgefy.me/
https://developer.android.com/guide/topics/connectivity/bluetooth/ble-overview
https://developer.android.com/guide/topics/connectivity/bluetooth/ble-overview
https://developer.apple.com/library/archive/releasenotes/General/WhatsNewIniOS/Articles/iOS5.html##//apple_ref/doc/uid/TP30915195-SW1
https://developer.apple.com/library/archive/releasenotes/General/WhatsNewIniOS/Articles/iOS5.html##//apple_ref/doc/uid/TP30915195-SW1
https://developer.apple.com/library/archive/releasenotes/General/WhatsNewIniOS/Articles/iOS5.html##//apple_ref/doc/uid/TP30915195-SW1

9.3 delay in general 51

9.3 Delay in general

When this project started, the total amount of tolerable latency was perceived to
be between 24-30 ms, based on [3]. We know from [17] that there is a plateau of
sorts with a 10 ms delay that the hearing aid engineers try to stay under when
designing hearing aids. This 10 ms barrier is used with consideration to the
reference audio signal that comes from a hearing aid user’s own voice.

We can assume that majority of people with hearing loss have developed a
decent ability to read lips, and based on [17] we can assume that the toler-
able delay for audio-video dyssynchrony of 40 ms can be applied. With this
knowledge, the latency criterion we first perceived as the tolerable latency can
most likely be adjusted to be higher than 24-30 ms. The system still needs to
decrease its latency, but the threshold to reach can be somewhat adjusted for
future versions.

9.3.1 Handling audio delay in the system from a user
perspective

We have two options for how the hearing aids interact with the system. The
first is if the hearing aids only audio input is from the system and not from
their own microphones. The second is a combination, where the hearing aids
get input from the system and their internal microphones.

For the first option, we need to consider these things. For the system to be
experienced as good, everyone in the group must participate in the session. The
hearing aids user’s smartphone must transfer the user’s voice to the hearing
aids. This would demand that the latency in the system between the hearing
aids user’s smartphone and the hearing aids is equal to that of the hearing aids
as a standalone assistive technology. Other audio latency from the connected
devices can be somewhat less.

If the second option is used, there is a much higher demand for the system
latency to be as low as possible. There will be a delay reference signal from the
speakers and the input from the system. Furthermore, if there are to be applied
noise cancellation features on the speech received by the system, this can be
negated by the sounds the hearing aids will pick up from their microphones.
This solution sounds the most taxing on the hearing aids user.

In the first solution, we need to consider the latency of the hearing aid user’s
voice and how it affects their comfort when using the system. The delay from
the other users in the system has more room to be tolerable but still will need
to be adjusted to be minimized.

52 chapter 9 discussion

9.4 Human-centered design

Deciding and validating the system is best done when real users evaluate it.
One can follow different methodologies to ensure the best-developing practices
and give the best system and application results. One highly favored in soft-
ware development is the Agile software development method [19]. The Agile
methods have shown to be very effective with small to medium-sized products
and with other software development where the customer is committed to
being a regular part of the development chain.

Another popular software development methodology connects the end-user
directly with the developers, following the human-centered design (hcd)
principles. As stated by ISO 9241-210 [20], hcd aims to enhance effectiveness
and efficiency while improving human well-being by introducing human factors
throughout the developing process. Throughout the entire developing phase,
the human factors will contribute by enforcing the focus on the users, their
needs, and the system’s requirements in the making. Continuous evaluation
of the system given by the users will also ensure cost-effectiveness to the
developers. hcd is essential when creating systems for minorities, where the
developers might not have the needed insight.

10
Future Work
To realize this system as a usable application much remains to be done. We
want to include in the system all wishes presented in Chapter 3.1 by the
representatives from hlf. This chapter will cover some of the future remarks
that need to be handled, but not all.

10.1 Reducing microphone buffering

When this system is developed further, the audio segments recorded must
be reduced for the system to be feasible. For using Swift and AVAudioEngine
on iOS devices, the installTap function must be replaced since Apple has a
minimum enforced limit on the buffer size.

Another framework or library must be used, or more realistically, this needs to
be written on the author’s own accord in Swift, C or Objective-C for best per-
formance. Writing this functionality in a more general-purpose language will
make room for the convertibility of this code to Android devices later. However,
doing this will be time-consuming, but we believe that the knowledge gathered
throughout this project will make it attainable. It should be mentioned that
there has been no effort done to research this system’s applicability to Android
devices, except for the network communication between devices.

53

54 chapter 10 future work

10.2 User Interface - Human-centered design

Creating a universal design is an art form, and it must be prioritized to the
same extent as that of the rest of the system. It will be beneficial for creating
the backend system and the user interface to follow the hcd principles by
regularly getting input from the end-users. However, to use hcd as a practice,
we need to locate devoted end-users that will participate in the developing
process.

The majority of hearing-impaired in Norway are of the older generation, which
will impact how the user interface looks and is operated. The user interface in
the created system is basic and only made to access the specific functionalities
that allow for the conducted experiments.

The user interface diverges today from what the future application should
have. The receiving device should decide when the recording device starts and
stops a recording session. Today, the recording device activates this, where the
receiver device receives the audio samples without choice. It is not enough to
only get the hearing aids users’ perspective on the user interface. To ensure a
good user experience for everyone using the application, we need input from
the other people who will operate the recording devices. Therefore what all
participants think of the user interface and the features utilizing their devices
is equally important.

10.3 Security

As with all systems, many risk factors must be considered. Maintaining the
users’ privacy policies is one of the most important things. There are some
facets of the system that must gain a throughout risk analysis to accomplish.
We need to set questions on who can join the session and how that procedure is
secured. The system was initially designed to be used in close-quarter groups.
A physical nearness, such as scanning a code from one device, can be used to
access the session. This, alongside a handshake protocol, will enforce that only
trusted parties are accepted to join.

Audio segments should not be stored longer than necessary on either of the
devices, except during processing and transporting. Even though we hope that
the local network is secure when it is initiated, added security can be applied
by encrypting the audio segment during transportation. There is a tradeoff
between increasing security by encrypting the segments and the end-to-end
latency, so this process must be researched and evaluated for its benefits.

10.4 hearing aids compatibil ity 55

As with most applications today, some user information must be stored to create
user accounts. This information will be stored in a central database, where the
user’s preferences and other information can be accessed. These practices are
widely researched, and there is a community standard to follow, so it is not
believed to cause problems.

10.4 Hearing aids compatibility

This thesis assumes that every hearing aid with Bluetooth compatibility can
be connected to any smartphone. We know from [3] that this is not always
the case. Time to ensure that, or discover which, if not, must be invested to
provide the requested cross-platform solution.

There can be a range of hearing aids models and vendors with hardware
limitations in their products, enabling a smartphone application to connect to
the hearing aids. Such limitations would halter the purpose of the system, and
other solutions for the original problem must be discussed.

11
Conclusion
We conclude this thesis by comparing the summarized outcome of the project
with the original thesis statement. When we do this, the contributions from
the thesis will also become apparent and reinforced.

How can we measure the latency from the smartphone microphone to the hearing
aids (ha) activation?
We did this by creating an experimental setup. We did not simulate the trans-
ference time from a smartphone to hearing aids and instead recorded the
sound output from the receiving smartphone. The experiment did not cover
the transportation time of sound through Bluetooth the hearing aids.

How much latency can we expect from a naive implementation of such an appli-
cation?
Through the experimental setup, we pushed the end-to-end latency from 361.8
ms to 246.5 ms. This decrease was apparent when reducing the microphone
buffer. The reduction could not be pushed down even more with the implemen-
tation of specific choices made. We believe that the microphone buffer can be
decreased by circumventing the functions as a minimum microphone buffer
and creating this functionality ourselves.

Which part of the architecture introduces latency into the system?
The microphone buffer size is the most significant factor regarding the end-to-
end latency in the system. This factor has dominated the measurements and
results to such an extent that it is uncertain what other undiscovered factors

57

58 chapter 11 conclusion

have played into the end-to-end latency.

We know that the latency decline between experiments 1 and 2’s end-to-end
latency and size reduction of the microphone buffer is not linear. This enforced
our belief that there are unknown latency-inducing factors in the system.

We have, through this thesis, answered the research questions we stated in
Chapter 1: Introduction. The end-to-end latency in the system will need to be
reduced to be desirable to users. We have identified where latency is introduced
in the system and have determined how to identify other latency-introducing
facets. We will encompass hcd practices in developing the system in the
future, as we believe this will help establish a feasible system and solve the café
problem.

References
[1] Worlds Health Organization, Deafness and hearing loss, 2022. [Online].

Available: https://www.who.int/health-topics/hearing-loss#tab=
tab_1 (visited on 05/04/2022).

[2] Oslo Economics, Nedsatt hørsel i arbeidsfør alder, 2020. [Online]. Avail-
able: https://www.hlf.no/globalassets/dokumenter/dette-jobber-
vi-med/nedsatt-horsel-i-arbeidsfor-alder.pdf (visited on 05/04/2022).

[3] M. E. M. Ellingsen, Investigating the café problem for hearing impairde,
Unpublished report, Dec. 2021.

[4] L. Carneiro, T. Oliveira, P. Noriega, and F. Rebelo, “Can the context
stigmatize the assistive technology? a preliminary study using virtual
environments,” in Advances in Ergonomics in Design, F. Rebelo and M.
Soares, Eds., Cham: Springer International Publishing, 2016, pp. 289–297,
isbn: 978-3-319-41983-1.

[5] T. Gjestland, Lyd i store norske leksikon. [Online]. Available: https :
//snl.no/lyd (visited on 05/13/2022).

[6] A. Fox, What is the difference between sound and audio? [Online]. Avail-
able: https : / / mynewmicrophone . com / what - is - the - difference -
between-sound-and-audio/ (visited on 05/13/2022).

[7] P. Mantione, Digital audio 101: The basics. [Online]. Available: https:
//theproaudiofiles.com/digital-audio-101-the-basics/ (visited on
05/13/2022).

[8] S. Birkeland, Forekomst på hørselsområdet, 2021. [Online]. Available:
https://www.hlf.no/globalassets/prosjekter/prosjektdokumenter/
forekomst- pa- horselsomradet- hlf- 18.- mars- 2021.pdf (visited on
11/25/2021).

59

https://www.who.int/health-topics/hearing-loss#tab=tab_1
https://www.who.int/health-topics/hearing-loss#tab=tab_1
https://www.hlf.no/globalassets/dokumenter/dette-jobber-vi-med/nedsatt-horsel-i-arbeidsfor-alder.pdf
https://www.hlf.no/globalassets/dokumenter/dette-jobber-vi-med/nedsatt-horsel-i-arbeidsfor-alder.pdf
https://snl.no/lyd
https://snl.no/lyd
https://mynewmicrophone.com/what-is-the-difference-between-sound-and-audio/
https://mynewmicrophone.com/what-is-the-difference-between-sound-and-audio/
https://theproaudiofiles.com/digital-audio-101-the-basics/
https://theproaudiofiles.com/digital-audio-101-the-basics/
https://www.hlf.no/globalassets/prosjekter/prosjektdokumenter/forekomst-pa-horselsomradet-hlf-18.-mars-2021.pdf
https://www.hlf.no/globalassets/prosjekter/prosjektdokumenter/forekomst-pa-horselsomradet-hlf-18.-mars-2021.pdf

60 REFERENCES

[9] F. Ø. Winther, Høreapparat i store medisinske leksikon. [Online]. Avail-
able: https://sml.snl.no/h%C3%B8reapparat (visited on 12/16/2021).

[10] U.S. Food and Drugs - Administration, Types of hearing aids. [Online].
Available: https://www.fda.gov/medical- devices/hearing- aids/
types-hearing-aids (visited on 06/04/2022).

[11] G. J. Frye, “Testing digital and analog hearing instruments: Processing
time delays and phase measurements,” The Hearing Review, pp. 34–40,
Oct. 2001.

[12] Apple Inc., Swift. [Online]. Available: https://www.swift.org/ (visited
on 05/15/2022).

[13] ——, Swift. [Online]. Available: https://developer.apple.com/swift/
(visited on 05/15/2022).

[14] ——, Multipeer connectivity. [Online]. Available: https://developer.
apple.com/documentation/multipeerconnectivity (visited on 05/16/2022).

[15] ——, Avaudioengine. [Online]. Available: https://developer.apple.
com/documentation/avfaudio/avaudioengine (visited on 05/16/2022).

[16] ——, Avaudionode. [Online]. Available: https://developer.apple.com/
documentation/avfaudio/avaudionode (visited on 05/16/2022).

[17] J. Alexander, “Hearing aid delay and current drain in modern digital
devices,” Canadian Audiologist, vol. 3, Jul. 2016.

[18] K. Raaen and I. Kjellmo, “Measuring latency in virtual reality systems,”
in Entertainment Computing - ICEC 2015, K. Chorianopoulos, M. Divitini,
J. Baalsrud Hauge, L. Jaccheri, and R. Malaka, Eds., Cham: Springer
International Publishing, 2015, pp. 457–462, isbn: 978-3-319-24589-8.

[19] I. Sommerville, Engineering Software Products: An Introduction to Modern
Software Engineering, eBook, Global Edition, 1st ed. Pearson (Intl), 2020,
isbn: 9781292376356.

[20] Ergonomics of human-system interaction – part 210: Human-centred design
for interactive systems, ISO 9241-210:2019(E), International Organization
for Standardization, Geneva, CH, Jun. 2019.

https://sml.snl.no/h%C3%B8reapparat
https://www.fda.gov/medical-devices/hearing-aids/types-hearing-aids
https://www.fda.gov/medical-devices/hearing-aids/types-hearing-aids
https://www.swift.org/
https://developer.apple.com/swift/
https://developer.apple.com/documentation/multipeerconnectivity
https://developer.apple.com/documentation/multipeerconnectivity
https://developer.apple.com/documentation/avfaudio/avaudioengine
https://developer.apple.com/documentation/avfaudio/avaudioengine
https://developer.apple.com/documentation/avfaudio/avaudionode
https://developer.apple.com/documentation/avfaudio/avaudionode

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis statement
	1.2 Thesis contributions
	1.2.1 Methodology

	2 Background
	2.1 Sound
	2.1.1 Audio
	2.1.2 Analog audio
	2.1.3 Digital audio

	2.2 Hearing impairment
	2.2.1 Hearing aids

	2.3 Swift
	2.3.1 Mutlipeer Connectivity
	2.3.2 AVAudioEngine

	3 Related Work
	3.1 Investigating the café́ problem for hearing impaired
	3.1.1 User story

	3.2 Hearing Aid Delay and Current Drain in Modern Digital Devices
	3.3 Measuring Latency in Virtual Reality Systems

	4 Application Architecture and Design
	4.1 Architectural overview
	4.2 Design
	4.2.1 Audio transport handler
	4.2.2 Recording application
	4.2.3 Receiving application
	4.2.4 Experimental design

	5 Implementation
	5.1 Development tools
	5.2 Audio formatting
	5.3 Audio subsystem
	5.3.1 Recording method

	5.4 Audio transport handler
	5.5 Logging the system performance

	6 Experimental Design
	6.1 Design
	6.1.1 Computer and microphone
	6.1.2 Sound absorption barrier and sound emitting device
	6.1.3 Device

	6.2 Experiment setup and execution
	6.2.1 Setup
	6.2.2 Execution

	6.3 Limitations
	6.3.1 Human error
	6.3.2 Environmental error

	7 Results
	7.1 First experiment creating the baseline
	7.2 Reducing the microphone buffer
	7.3 Receiver buffer
	7.4 Graphs
	7.4.1 Combining all results from experiments
	7.4.2 End-to-end latency
	7.4.3 AVAudioEngine initialization

	8 Evaluation
	8.1 Audio length calculation
	8.2 Buffer size impact
	8.2.1 Reducing the microphone buffer
	8.2.2 Theoretical impact

	8.3 End-to-end latency
	8.4 One-time induced latency

	9 Discussion
	9.1 Experimental setup
	9.2 System improvement
	9.2.1 Restructure and make alternations of code to remove latency
	9.2.2 Alternatives for accessing microphone buffer
	9.2.3 Alternatives to Multipeer Connectivity

	9.3 Delay in general
	9.3.1 Handling audio delay in the system from a user perspective

	9.4 Human-centered design

	10 Future Work
	10.1 Reducing microphone buffering
	10.2 User Interface - Human-centered design
	10.3 Security
	10.4 Hearing aids compatibility

	11 Conclusion

