

Haemoglobin, anaemia and haematological malignancies

The Tromsø Study 1974-1995

Institute of community medicine
University of Tromsø, Norway

Department of Medicine
University Hospital of North Norway

ISM skriftserie
blir utgitt av Institutt for samfunnsmedisin Universitetet i Tromsø.

> Forfatterne er selv ansvarlige for sine funn og konklusjoner. Innholdet er derfor ikke uttrykk for ISM's syn.

The opinions expressed in this publication are those of the authors and do not necessarily reflect the official policy of the institutions supporting this research.

ISBN 82-90262-96-5
2006

Åssen gjør'n når'n teller da?" spurte purka.
"Jeg gjør bare sånn," sa geitekillingen. "En for meg og to for kalven og tre for kua og fire for oksen og fem for hesten og seks for purka. $1-2-3-4-5-6$."
" \AA ! Nå telte han deg også," rautet kalven.

Fra Geitekillingen som kunne telle til ti av Alf Prøysen.

CONTENTS

Acknowledgements 9
List of papers 11

1. Introduction 12
2. Aims of the thesis 13
3. Subjects and Methods 14
3.1. Data sources 14
3.1.1. The Tromsø Study 15
3.1.2. Statistics Norway 17
3.I.3. Hospital records 17
3.1.4. Cancer Registry 18
3.2. Blood sampling and analysis 18
3.3. Classification criteria 19
3.3.1. Anaemia 19
3.3.2. Haematological malignancies 19
3.4. Statistics 20
3.5. Ethics 20
4. Main results and conclusions 20
4.1. Haemoglobin and anaemia in a gender perspective 20
4.2. Changes in lifestyle influence change in haemoglobin levels in men 21
4.3. Heamoglobin predicts mortality in a male population 21
4.4. Haematological malignancies in a general population 22
5. General discussion 23
5.1. Methodological considerations 23
5.1.1. Bias 23
5.1.2. Interaction and confounding 26
5.1.3. Generalizability 28
5.2. Risk factors 29
5.3. Screening for anaemia and haematological malignancies 30
5.4. Haemoglobin 31
5.5. Anaemia 32
5.6. Prevalence and incidence of haematological malignancies 34
5.7. Gender differences in risk factors and disease 36
6. Implications for clinical practice and further research 37
References 39
Errata 48
Appendices 1-7
The papers I-IV

ACKNOWLEDGEMENTS

First of all I have to thank the Institute of Community Medicine for providing me with study facilities and access to The Tromsø Study. The friendly atmosphere and open doors into each and every office have been crucial for both my well-being and my education. The Department of Medicine at the University Hospital of North Norway has provided my salaries for all this years. Thanks for all the flexibility shown by the Department to meet my different requirement regarding specialising within internal medicine, haematology and writing my thesis.

The contribution from my tutor Maja-Lisa Lachen has been essential. I am indebted to her P. for the constructive criticism, interest and endless patience with my performances and me. I am also greatly thankful to my second tutor Inger Marie S. Dahl. She has always given me constructive help and space to absorb into scientific work.

The invaluable help from all my co-authors is appreciated. A special thanks goes to Tom Wilsgaard for his educational and patient approach to statistics. I am also greatly indebted to Egil Arnesen for his ideas and methodological contributions from the very beginning up until today. I give special thanks also to Bjarne Koster Jacobsen for helpful advice when I struggled with my manuscripts. I appreciate Arne Nordøy and Malvin Sjo who contributed to design and evaluation of the haematological assessement in 1994-95. Bodil Langbakk and the Department of Clinical Chemistry at the University Hospital of North Norway carefully evaluated all haematological samples. I am grateful for the data provided from the Cancer Registry of Norway and from the Department of Information Technology at the University Hospital of North Norway. I also wish to extend my gratitude to Peter McCourt for editing some of my papers including this thesis.

Thanks also to the administrative staff and the IT consultants at the Institute of Community Medicine for their support. I am indebted to many colleagues both at the Department of

Haematology and the Institute of Community Medicine. Most of all I am grateful to my friend and colleague Ann Ragnhild Broderstad. After she moved I have missed our daily conversations and her laughter! Fortunately there are such things as telephone and e-mail.

Thanks to my brother Arne for being there, and my parents May and Olav who raised me and encourage me to believe that everything is possible. My mother in-law Ranveig has taken a valuable part of this thesis. I am grateful for all the love and care she have provided the children and me. Tor André, my best friend and husband, I will always be grateful for your ever-lasting optimism, encouragement and love.

Finally, thanks to my children Dina, Frida and Eirik. They have opened my mind and made me understand the true meaning of life.

LIST OF PAPERS

The thesis is based on the following papers, referred to in the text by their Roman numerals:
I. Skjelbakken T, Langbakk B, Dahl IMS, Løchen M-L: Haemoglobin and anaemia in a gender perspective: The Tromsø Study. Eur J Haematol. 2005: 74: 381-388
II. Skjelbakken T, Dahl IMS, Wilsgaard T, Langbakk B, Løchen M-L: Changes in lifestyle influence change in haemoglobin levels in men in a general population. The Tromsø Study 1974-1995. Submitted.
III. Skjelbakken T, Wilsgaard T, Førde OH, Arnesen E, Løchen M-L: Haemoglobin predicts mortality in a general young and middle-aged male population. The Tromsø Study. Submitted.
IV. Skjelbakken T, Løchen M-L, Dahl IMS: Haematological malignancies in a general population, based on information collected from a population study, hospital records, and the Cancer Registry of Norway. The Tromsø Study. Eur J Haematol 2002: 69: 67-75.

1. INTRODUCTION

Haemoglobin measurement is one of the most frequently performed laboratory tests. The haemoglobin level has well known variability according to age and gender [13]. However, the reference values are often from elderly cross sectional studies of younger subjects, and may not reflect the populations' actual distribution today.

Several lifestyle factors, including body mass index (BMI) and smoking habits, are associated with haemoglobin [4-7]. The last decade's changes in nutritional status and lifestyle may influence on the distribution of haemoglobin.

Although the interpretation of the significance of high or low Ievels of haemoglobin is central in clinical settings, possible population based changes in haemoglobin distribution have not been subject to much study. Because haemoglobin Ievels predict mortality and morbidity [8-12], a population-based change in haemoglobin level could have significant implications for health.

Little is known about the distribution of haematological malignancies within a general population. Since haematological malignancies comprise a heterogeneous group of conditions [13], with various grades of aggressiveness, several sources of information are needed to address the prevalence and incidence of the diseases. Automated blood cell count including haemoglobin measurement within a setting of a population study, could be one of these sources.

2. AIMS OF THE THESIS

The present thesis is from a populationbased study of 20-49 year old men in 1974, and from a study of men and women more than 24 years in 1994-95. The aims of the thesis were:

1. To examine the gender specific distribution of haemoglobin and the applicability of the World Health Organization (WHO) criteria for anaemia compared to the 2.5 percentile for haemoglobin.
2. To investigate how changes in lifestyle factors with time influence the longitudinal changes on haemoglobin in men.
3. To assess whether haemoglobin predicts total mortality in a 20 -year follow-up study of men.
4. To investigate the prevalence and incidence of haematological malignancies in a general population of men and women.

3. SUBJECTS AND METHODS

3.1. Data sources

Table 1 lists the different data sources used
in the subprojects. The surveys in

1979-80 and 1986-87 are presented in parenthesis due to the minor contributions from these surveys.

Table 1. Data sources.

	Paper I	Paper II	Paper III	Paper IV
Tromsø 1 (1974)		X	X	
Tromsø II (1979-80)		$\left(\mathrm{X}^{\mathrm{a}}\right)$		
Tromsø III (1986-87)		$\left(\mathrm{X}^{\mathrm{b}}\right)$		
Tromsø IV (1994-95)	X	X		X
Statistics Norway			X	
The Hospital records				X
The Cancer Registry			X	

[^0]${ }^{\text {b) }}$ Changes in physical activity were calculated as the difference between 1994-95 and 1986-87.

3.1.1. The Tromse Study

The municipality of Tromsø is situated at sea level in the northern part of Norway. The population is predominately middleclass of Norwegian origin, but also Finnish and Sami origins are relatively prevalent. From 1974, repeated health surveys (The Tromsø Study) have been carried out in the municipality.

In 1974 (Tromsø I), all men born between 1925 and 1954 were invited (aged 20-49). In all 8867 men were invited, but 935 men lived outside the municipality. In total, $6595(83.1 \%$ of the eligible population) attended the examination [14], and 6542 had their haemoglobin analyzed (paper III). The second survey (Tromsø II) was conducted in 1979-1980. All men born between 1925 and 1959 (aged 20-54) and all women born between 1930 and 1959 (aged 20-49) were invited. A total of 16621 (78\%) attended [15]. In 1986-87, the third survey (Tromsø III) was conducted. All men born between 1925
and 1966 and all women born between [930 and 1966 were invited, 20602 (75%) of the invited population attended [16]. In 1994-95, all inhabitants born before 1970 (aged 25+) were invited (Tromsø IV). In total, 27153 (77\%) of the invited population participated. The population size is presented in paper IV (see errata).

Tromsø I was conducted by the University of Tromsø. Tromsø II and the following surveys were conducted in a cooperation between the Institute of Community Medicine, University of Tromsø and the National Health Screening Service. The study is a multipurpose, populationbased, prospective study of total birth cohorts, and was initiated in order to investigate predictors and prevalence of coronary heart disease. Later on, the study has expanded; the aim of the study is now to identify potentially modifiable causes of chronic disease in order to develop preventive or therapeutic strategies.

Figure 1. Flow chart of the study population. The Tromse Study 1974-1994-95.

At each survey, the persons invited received a mailed letter with an invitation along with a one- page questionnaire on the reverse side. The procedures and the questionnaires in each survey have been mainly the same $[14,17,18]$. The first questionnaire included the following main topics: current, previous and family history of cardiovascular disease; physical
activity; smoking habits. The first questionnaires were returned and checked for inconsistency when participants met for the physical examination of blood pressure, non-fasting blood samples, weight and height conducted by specially trained personnel. From Tromsø II, the participants were also given a stamped and addressed envelope with the second
questionnaire. They were asked to answer the questionnaire at home and return it by mail. The following main topics were covered: dietary and alcohol habits; current, previous and family history of illnesses; social and psychological conditions (appendices 1-6, questionnaires relevant for this thesis).

Figure 1 shows a flow cart of the populations included in the subprojects of this thesis.

3.1.2. Statistics Norway

The study file from 1974 was matched with the Registry of Death at Statistics Norway of 1 September 1994, and 495 deaths were found (paper III).

3.1.3. Hospital records

In order to find subjects with haematological malignancies, a computer search through the patient administrative system for in- and outpatients from the University Hospital of North Norway was conducted (paper IV). All subjects invited to the
survey in 1994-95 were searched for possible haematological diseases using the International Classification System, ninth revision (ICD-9) during the period from 1 January 1991 to 31 December 1996. In appendix 7, the main ICD-9 codes used for detecting cases from the hospital records are listed. The records from patients with possible haematological diseases were manually read through and validated. A total of 689 of the invited inhabitants were registered with one of these codes. The medical records were read and classified by T Skjelbakken (TS) consulting IMS Dahl (IMSD) when required. Haematological malignancies were verified in 83 of the subjects (36 non-participants and 47 participants). Forty-five records (6.5\%) were obviously miscoded (e.g. 250.0 Diabetes mellitus was coded as 205.0 Acute myeloid leukaemia). Until 1998 a diagnostic code was not obligatory for registration in the hospital's patient administrative system. We found that 18%
of the outpatient consultations did not have a diagnostic code.

The Department of Information Technology at the University Hospital of North Norway conducted all the electronic searches.

3.1.4. Cancer registry

The author's affiliation to the Department of Haematology provided the opportunity to receive personal identifiable information from the Cancer Registry of Norway. In paper IV, all identified cases of haematological malignancies from the screening or hospital records were matched with cases in the Cancer Registry of Norway using the national 11-digit personal identification number for matching. Additionally, we received information about all cases from the municipality who were registered with haematological malignancies. The medical records were checked when discrepancies were found. The information from the Cancer Registry was based on ICD-7 or

ICD-10 codes and converted into to ICD-9 codes for comparison.

3.2. Blood sampling and analysis

In 1974 (paper II, III), the haemoglobin analyses and standardizations were performed manually by the cyanomethemoglobin method [19]. The 1994 1995 haemoglobin samples (paper I, II, IV) were analyzed within 12 hours of sampling with an automated blood cell counter (Coulter Counter ®). Additionally, the automated blood cell counter conducted a whole blood examination with red cell indices, differential count of white blood cells and platelet counts and size. A specialist in clinical chemistry evaluated the blood results and one of three experienced haematologists determined further action according to predefined criteria (Paper IV). Two experienced physicians (TS and M-L Løchen) retrospectively classified the records of the 303 subjects. An experienced haematologist was consulted (IMSD) in call of questions.

Total cholesterol (paper III), was determined manually by the LiebermannBurchard procedure [20].

All blood determinations were from venous blood samples. The Department of Clinical Chemistry, University Hospital of North Norway, conducted the analyses except for determination of total cholesterol in 1974 that was conducted by the Division of Clinical Chemistry, Institute of Medical Biology, University of Tromsø.

3.3. Classification criteria

3.3.1. Anaemia

Anaemia was defined according to the WHO criteria: Hemoglobin $<130 \mathrm{~g} / \mathrm{L}$ in men and $<120 \mathrm{~g} / \mathrm{L}$ in non-pregnant women [21]. In total, 351 (2.8%) men and 860 (6.3\%) women were anaemic according to the WHO criteria (paper I).

In 1994-95, 30 subjects had haemoglobin below the predefined criteria for follow up; $<100 \mathrm{~g} / \mathrm{L}$ for men and $<90 \mathrm{~g} / \mathrm{L}$ for women (paper I). After a second blood sample, 14 subjects had haemoglobin
consistently below the criteria and were classified as having severe anaemia. In 1974, haemoglobin $<125 \mathrm{~g} / \mathrm{L}$ was one of the recall criteria. After re-examination of 59 men, 10 (0.2%) men still had haemoglobin below the criteria [22].

3.3.2. Haematological malignancies

We used the diagnostic criteria and the categories of disease currently used by clinical haematologists [23]. According to the WHO's definition of haematological malignancies [13], lymphomas were included. A total of 170 samples fulfilled the predefined criteria for follow-up, based on haemoglobin, white blood cells or platelets counts. In all, 17 of these subjects suffered from a haematological malignancy. Nine were diagnosed due to the screening. Additionally 133 subjects were selected due to minor combined criteria and evaluated. Among these subjects; eight suffered from a haematological malignancy and four of them had not been diagnosed previously.

3.4. Statistics

Results were considered statistically significant with a p-value of 0.05 or less. Epilnfo (Version 6, Center for Disease Control, Atlanta, Georgia) or SAS software package (Version 6-9.1, SAS Institute Inc., Cary, NC) were used for all analyses.

3.5. Ethics

The Committee for Medical Research Ethics was not established during the first three Tromsø Studies, but has approved the Tromsø Study 1994-1995. In 1994-1995 the attendees gave signed informed consent.

4. MAIN RESULTS AND

CONCLUSIONS

4.1. Haemoglobin and anaemia in a

 gender perspectiveThe gender specific distribution of haemoglobin was presented, and the WHO criteria for anaemia were compared with the 2.5 percentile for haemoglobin, using the 12542 men and 13689 non-pregnant women who attended the survey in 1994 95 (Tromsø IV). The 2.5-97.5 percentile for haemoglobin was $129-166 \mathrm{~g} / \mathrm{L}$ for men and 114-152 g / L for women. In men, mean haemoglobin decreased by age, particularly between 55-64 years to $85+$ years old, where haemoglobin decreased from $148 \mathrm{~g} / \mathrm{L}$ to $137 \mathrm{~g} / \mathrm{L}$. In women, mean haemoglobin peaked after menopause; from $132 \mathrm{~g} / \mathrm{L}$ at age $35-44$ to $137 \mathrm{~g} / \mathrm{L}$ at age $65-74$ years, then decreased to $131 \mathrm{~g} / \mathrm{L}$ among the $85+$ years old. In total, 1211 subjects (4.5\%) were anaemic according to the WHO criteria. In men, the difference between the WHO critera ($<130 \mathrm{~g} / \mathrm{L}$) and the 2.5 percentile ($<129 \mathrm{~g} / \mathrm{L}$) was small
and clinically unimportant. However, in women the WHO criteria ($<120 \mathrm{~g} / \mathrm{L}$) gave a two to three times higher prevalence of anaemia than the 2.5 percentile ($<114 \mathrm{~g} / \mathrm{L}$).

4.2. Changes in lifestyle influence change

 in haemoglobin levels in menWe wanted to examine how changes in lifestyle factors such as body mass index (BMI), and smoking habits influenced changes in haemoglobin levels. The cohort consisted of 4159 men who at age 20-49 attended the survey in 1974 and then again were re-examined in 1994-95. Mean haemoglobin ($148 \mathrm{~g} / \mathrm{L}$) did not change between the two surveys despite the ageing of the cohort. During the same period, mean BMI increased by $2.1 \mathrm{~kg} / \mathrm{m}^{2}$, more so among the youngest. The prevalence of daily smokers decreased for all age groups, more so among the oldest (-24.6 percentage points). In a multiple regression model, BMI change was positively associated with haemoglobin change, whereas smoking cessation was negatively
associated with haemoglobin change compared to those who never smoked. We found that the effect of smoking cessation was weakened if BMI increased. Those who stopped smoking and whose BMI increased $>2.5 \mathrm{~kg} / \mathrm{m}^{2}$ had an increase in haemoglobin of $0.8 \mathrm{~g} / \mathrm{L}$ compared to a decrease of $6.7 \mathrm{~g} / \mathrm{L}$ in those who lost weight. Although smoking cessation was related to lower haemoglobin levels, this probably healthy effect was partly counteracted by the increased prevalence of obesity.

4.3. Heamoglobin predicts mortality in a male population

To assess whether the haemoglobin levels could predict total mortality, we followed the 6542 men from the first survey in 1974 until 1 September 1994. During follow-up (127120 person-years), 495 deaths were identified. Total crude and age adjusted mortality rates were 3.89 and 3.69 per 1000 person-years, respectively. Compared to quintile 3 of haemoglobin, the multiple adjusted hazard ratios (95% confidence
interval) among 35-49 years old were 1.83 (1.31-2.57) and 1.72 (1.23-2.41), in quintile 1 and quintile 5 , respectively. We found that a U-shaped relationship between quintiles of haemoglobin and total mortality was present in smokers as well as in non-smokers. However, the relationship was most pronounced in smokers in a dose response manner. Adjustments for other risk factors like body mass index, total cholesterol and systolic blood pressure did not change the estimates. Haemoglobin was a possible independent predictor of total mortality. Smokers in quintile 1 and quintile 5 of haemoglobin were at increased risk of dying.

4.4. Haematological malignancies in a general population

Different data sources were used in order to investigate the prevalence and incidence of haematological malignancies. The three sources were automated blood cell count from 27145 subjects attending the Tromsø study in 1994-1995, medical records from
the only hospital serving the area and the Cancer Registry of Norway. We also compared the rates found in the screening and hospital data with those reported from the Cancer Registry. During 1991-1996 there were $114(4 \%)$ period prevalent cases. We found the point prevalence of leukaemia, lymphoma and myleoma to be 2.2%, of which 86% of the cases were reported to the Cancer Registry. The age adjusted incidence between 1 January 1994 to 31 December 1996 was 1.6% in our study, approximately the same as reported from the Cancer Registry of Norway. None of the three sources were complete and it was therefore recommended to use several sources of information to find the prevalence and incidence of haematological malignancies.
with respect to lifestyle, morbidity and
5. GENERAL DISCUSSION

5.1. Methodological considerations

5.1.1. Bias

Bias is defined as any systematic error in an epidemiological study that distorts the results of the research [24]. The results are potentially biased if the selection of participants is different between groups, or if the collection, interpretation or reporting of information is different between groups. If the individuals included in the study are not representative for the total source population, selection bias may be present (lack of internal validity) [24]. In prospective cohort studies such as the Tromsø study, potential selection bias is most likely due to non-participation. Nonparticipants may differ from participants

Table 2. Population size according to age and participation. The Tromso Study
1974-1994-95. 1974-1994-95.

Invited 1974

The participation rates from the 1994

95 survey are presented in paper IV. In contrast to the youngest non-participants, the low representation among the very oldest may be due to health related issues and could probably alter the age related
haemoglobin distribution (paper I). In paper IV, no differences in occurrence of haematological malignancies were found between participants and non-participants, but the complete number of cases was probably not found.

Table 3. Descriptive characteristics of men who attended both the baseline examination in 1974 and the follow-up examination in 1994-95, compared to those who did not attend the follow-up. Values are mean (SD) or percentages. The Tromsø Study 1974-1995.

Characteristics in 1974	Attended follow-up Did not attend follow up	
	$\mathrm{N}=4159$	$\mathrm{~N}=2383$
Haemoglobin (g/L)	$148.2(9.3)$	$148.7(9.7)$
Age (years)	$34.0(8.2)$	$33.3(8.5)$
Body mass index (kg/m²)	$24.0(2.7)$	$23.9(2.9)$
Diastolic blood pressure (mm/Hg)	$78(12)$	$78(12)$
Systolic blood pressure (mm/Hg)	$126(15)$	$127(16)$
Total cholesterol mmol/L	$6.61(1.45)$	$6.59(1.49)$
Daily smoking (\%)	58.9	63.9
Number of cigarettes among smokers	$14.7(7.3)$	$15.7(7.7)$
Leisure regular or hard physical activity (\%)	24.8	23.0
Reporting chronic diseases (\%)	3.3	4.5

[^1]
Information bias

Information bias is the misclassification due to measurement errors, or misclassification of disease or a risk factor [33]. Systematic, differential or non-random
classifications are potentially serious since they can cause invalid conclusions. Nondifferential errors produce findings that are too high or too low at random, and true associations are underestimated.

By using the same well-established, validated laboratory within a short distance from the place of the examination, the quality of the laboratory data became very high and the chance of informational bias became less. The personnel at the survey were trained to conduct the procedures, but some degree of error is always possible. Different medical doctors diagnosed the haematological malignancies. This author later validated all diagnoses.

Self-administered questionnaires can cause bias due to imperfect memory of the individuals. Recall bias refers to the phenomenon that occurs when subjects who have experienced an adverse event or disease are more likely to recall previous risk factors than subjects that do not have this experience. In our population study, the subjects were not aware of haematological disorders as possible endpoints. The recall bias would therefore tend to be random and the associations would then be weakened.

5.1.2. Interaction and confounding

Interaction is present if the relationship of interest varies at different levels of the predictor [34]. Multivariate techniques make it possible to determine whether interaction is present. The proper way to deal with interaction is stratification with different levels of the explanatory variable.

In Paper I all predictors were presented as dummy variables. Interaction between smoking status and BMI was present. Figure 2 demonstrates how the association between haemoglobin and BMI is somewhat stronger among smokers, especially in men.

Interaction was also present between age group and different levels of BMI. Figure 3 demonstrates that the association between haemoglobin and BMI tended to be strongest among those above 64 years.

Figure 2. Haemoglobin by categories of BMI, smoking status and sex, adjusted for age and self-rated health by using proc GLM (SAS).

Figure 3. Haemoglobin by categories of BMI, age groups and sex, adjusted for smoking status and self-rated health by using proc GLM (SAS).

In Paper II and III, different two-way interactions were modelled but no interactions were present. In paper IV, two-way interactions were modelled as the products of participation and sex- or agegroup. The association between malignant haematological disease and age was stronger for participants than nonparticipants.

Confounding is present if the effect of the exposure variable is confused or mixed together with the effect of another variable [33]. Part or all of the expressed effect of one variable is then actually due to the other [35]. The confounder must be associated with both the predictor and the response and may even change the direction of an association. There are several methods to control confounding: 1) In 1974, no women were invited to the survey. The survey was restricted to men only, consequently; confounding by gender was avoided. 2) In the data analysis, we used multivariate statistical modelling (paper I, II and III), and thus included the
possible confounders as covariates. 3) The final method was stratification; by age (paper I, III, IV); by sex (paper I, IV); by BMI (paper I, II, III), by total cholesterol and systolic blood pressure (paper III) and; by smoking habits (paper II, III).

In paper III, both low and high levels of haemoglobin predicted mortality, and the association was most pronounced in smokers. Since smoking was associated both to the response (mortality) and the predictor (haemoglobin), smoking could be a possible confounder. However, adjusting for smoking did not change the relationship between quintiles of haemoglobin and mortality.

5.1.3. Generalizability

In epidemiological studies there is a question as to whether the results from the source population are applicable to other populations, i.e. generalizability or external validity. Generalization regarding women cannot be made from the first study in 1974 (paper II and III). With respect to age
distribution, the Tromsø population is representative at large for the Norwegian population [36]. However, the population in Tromsø, as in other parts of Northern Norway, consists mainly of a mixture of people of Norwegian, Samii and Finnish origin. Apart from this, few ethnic differences are present. About 30% of the population report education from college or university, compared to 23.5% in Norway [37]. The location at 69 degrees north results in extreme seasonal variations in hours of daylight. However, there is no reason to expect the distribution of haemoglobin, or the prevalence of anaemia or haematological malignancies in Tromsø to differ from the population of Norway.

5.2. Risk factors

In epidemiology, a risk factor may be defined as a characteristic that increases the probability of a disease in subjects who have the characteristic compared with subjects who do not [35]. Statistical associations are often called risk factors or
predictors. The risk factor is however, not a necessary or a causal factor of the disease, even if a statistical significant association is observed. Sir Bradford Hill published nine features to answer the question: "...what ought we specifically to consider in drawing conclusions about the nature of the relationship - causation or merely association?" [38]. These features, later known as "The Hill criteria", were never intended to be a checklist determining whether an observed relation is causal. However, many have applied them as such, and this has been criticised [33, 39].

Changes in haemoglobin levels influence blood viscosity, flow and oxygen carrying capacity [40]. Many studies on haemoglobin as a predictor for mortality and morbidity have used haemoglobin as a continuous or dichotomous variable, and by this failed to recognise the associations [9-12, 41, 42]. In paper III, we evaluated how different levels of haemoglobin predicted total mortality. We found a
significantly increased risk for mortality in the lowest and highest quintile of haemoglobin compared to the mid quintiles. Adjustment for the other risk factors did not change the U-shaped relationship between haemoglobin level and mortality, suggesting that haemoglobin is an independent risk factor of total mortality.

WHO has recommended other criteria for anaemia in smokers [43, 44]. Within quintile 1 of haemoglobin, some of the heavy smokers could in fact have been anaemic even if haemoglobin was within normal reference values. A haemoglobin level in the lowest and highest quintile among smokers should be accompanied by clinical evaluation and smoking cessation should be recommended. The prevalence of male smokers is decreasing in industrial countries [45]. At the same time, the prevalence of obesity increases and by this the risk of mortality also increases [46]. There is a possibility that this obesity
epidemic could counteract some of the gains on mortality from smoking cessation.

5.3. Screening for anaemia and

 haematological malignanciesTo be suitable for screening programmes several requirements regarding the disease, the tests and the feasibility of the screening programme should be fulfilled [24]. The disease should be serious, treatment given before symptoms compared to after debut of symptoms should reduce morbidity and mortality, and the prevalence of disease should be high. The screening test used should be inexpensive, easy to administer, give minimal discomfort for the subject, and the result should be valid and reproducible. Evaluation of potential screening programmes should evaluate the feasibility and the efficacy of the programme.

Anaemia could be serious, however, mild iron deficiency is most common and early treatment hardly improves the prognosis. The prevalence of anaemia is
highest among fertile women and the elderly. The haemoglobin blood test fulfils all the above-mentioned criteria for screening tests. However, a widespread screening programme towards anaemia is probably not feasible or effective in industrial countries. Today's policy with screening during pregnancy and with low threshold for haemoglobin test among subgroups as young women and the elderly is probably adequate.

Haematological malignancies are heterogeneous with regard to seriousness and the benefit of early detection. The prevalence of the diseases is low. No single test could detect all the different entities, but an automated blood count could detect most entities affecting the bone marrow. This test fulfils all the above-mentioned criteria for screening tests. In all, a screening programme for haematological malignancies would not be feasible or effective and is not recommended.

5.4. Haemoglobin

The methods of haemoglobin measurement in The Tromsø Study changed between 1974 and 1994-95. Both haemoglobin measurement methods were based on the cyanomethhaemoglobin method. The manual method was the gold standard and analytically very stable, but the automated blood cell count is even more precise with low analytic variance. Others have reported haemoglobin values measured by the automated method to be lower than the manual method [47, 48]. We were not able to directly compare the two methods used for haemoglobin measurements. However, most of the haemoglobin values were within the normal range, and the methods used were the same for all subjects. We therefore assume that the change in method would effect all measurements similarly. The effect of lifestyle factors changes on haemoglobin change was probably not affected by methodological differences (paper II).

In the cross sectional study (paper I), BMI and increasing number of cigarettes smoked were positively associated to haemoglobin. The associations between these lifestyle factors and haemoglobin were confirmed in the longitudinal study (paper II). However, influence of age on the haemoglobin level differed between the cross sectional (paper I) and the longitudinal (paper II) analyses. While haemoglobin in men tended to decrease with advancing age in the cross sectional perspective, the repeated measurement of haemoglobin from the same cohort demonstrated a stable haemoglobin level with ageing. We explained this phenolmenon by changes in lifestyle. In the cross sectional study (paper I), other lifestyle factors such as alcohol and coffee consumption, and leisure time physical activity were associated with haemoglobin. Table 4 demonstrates the dose response relationship between haemoglobin and these lifestyle factors. We were not able to
confirm these associations in the longitudinal study on men (paper II).

5.5. Anaemia

WHO's definition of anaemia was modified in 1968. The modification was based on a limited set of reports where young, non-pregnant women and the elderly were not represented [21]. Due to the limited reports on the distribution of haemoglobin in women, the arbitrarily set WHO criteria for anaemia may not be suitable for women in our population and medicalization of healthy subjects may occur. In men, a study of 15-21 year old Norwegian male industrial workers contributed to the WHO modification [49]. The overall 2.5 percentile for haemoglobin in Tromsø IV men corresponded well with the WHO criteria (paper I). The Tromsø IV cohort is on average older compared to the cohorts that the WHO based their criteria on [49, 50]. BMI was probably considerably higher in the Tromsø IV

Table 4. Age adjusted haemoglobin and p for trend in stratified groups of alcohol and coffee consumption, and physical activity. The Tromse Study 1974-1994-95.

	Men			Women		
	n	Mean	p for trend ${ }^{*}$	n	Mean	p for trend ${ }^{*}$
Alcohol per fortnight (Glasses)						
0	1968	145		3556	132	
1-4	3467	145		4642	133	
5-14	4348	145		2462	133	
15+	1181	146	0.01	235	134	<0.0001
Coffee per day (Cups)						
0	1029	146		1472	133	
1-5	5227	145		6925	133	
6-9	3082	144		3154	134	
$10+$	2314	144	<0.0001	1223	135	<0.0001
Hard physical activity						
None	5125	146		7723	134	
< 1 hour per week	2717	146		2588	133	
1+ hours per week	4632	144	<0.0001	3257	133	0.00031

*p for trend with independent variables as $1,2,3$ and if necessary 4.
cohorts, and this may explain why the WHO criteria is still suitable for men in our population. How an increasing
epidemic of obesity would affect the prevalence of anaemia is not clear. Since BMI and haemoglobin are positively
associated to each other one could expect a decrease in the prevalence of anaemia. However, in children and adolescents there are some reports on an increasing prevalence of iron deficiency with increasing BMI, probably due to limited intake of iron-rich food [51, 52]. It is not known if this is representative for adults, but increasing iron deficiency could lead to an increased prevalence of anaemia.

Anaemia is a widespread global health problem. WHO estimates anaemia to affect $4-23 \%$ of the population in industrial countries and $30-50 \%$ of the population in non-industrial countries [44]. Children and childbearing women are especially at risk mainly due to nutritional iron-deficiency, but in non-industrial countries the problems are exaggerated by infections such as malaria, hockworms, schistosomiasis and HIV/AIDS, and a high prevalence of haemoglobinopathies or other nutritional deficiencies. Severe anaemia during pregnancy increases maternal mortality $[44,53]$. The anaemic women in
our study (paper I) were mainly mildly affected, and causal evidence is lacking or contradictory for mother and child consequences of mild anaemia [53]. However, the Norwegian screening programme during pregnancy takes irondeficiency into consideration. Even if anaemia is prevalent in subgroups of populations from industrial countries, the risk and problems are minor compared to the challenges of non-industrial countries.

5.6. Prevalence and incidence of

haematological malignancies

Prevalence is defined as the number of subjects in a given population who have a specified disease. By prevalence we usually mean point prevalence, which is the prevalence at a point in time [35]. Period prevalence is the number of persons who have the disease during a specified period in time, including both cases present at the start of the period but also new cases that develop during the period.

Haematological malignancies are heterogeneous entities. Some of them have a long preclinical phase. After treatment some malignancies have a long stable plateau phase without signs of disease but without being defined as cured. To be able to include the non-participants in the estimates, we chose to use period prevalence with a long pre-survey phase and a drawn out phase after the survey. The period was assumed to be long enough to find treated subjects without signs of disease, and to expect some of the nonparticipants to potentially have become symptomatic and being diagnosed anyway.

Incidence is the number of new cases of a disease, with the total population at risk as the denominator (incidence proportion), or the total person-time under observation as the denominator (incidence rate) [33]. The long observational time was the reason why the 13 newly diagnosed cases after the screening were not excluded from the analysis. The observational period was probably so long, that one could expect
some of these to have been diagnosed anyway. Screening for diseases may increase incidences, especially if the preclinical phase is long. The number of cases with haematological malignancies among the participants became artificially high due to the effect of screening (paper IV).

The Norwegian age-adjusted incidence rates for cancers in lymphatic and haematopoietic tissues were 27.1 per 100 000 males and 18.1 per 100000 females in 1996 [54]. Most registries report sex and entity specific rates and directly comparable rates are not readily available. However, the incidence of leukaemia, multiple myeloma and lymphoma has shown little geographical variation within countries in northern Europe [55, 56]. The rates in Norway are about 20% lower than the rates for northern America but about 70% higher than for Japan [57].

Three compulsory sources of information provide the Cancer Registry of Norway with data on new cancer cases:
death certificates from Statistics Norway; a clinical form from the physician; and reports from the pathology laboratories [54]. The Cancer Registry of Norway is known for its completeness [54, 58-60]. However, an underreporting of haematological malignancies has been reported [54, 60]. The haematological malignancies are often diagnosed without assistance from the pathology laboratory, and many patients with these malignancies survive for years. A systematic reporting from the haematological laboratories is not established. The compulsory clinical form from the physician who diagnosed the patient was therefore often the only source of information to the Cancer Registry. In most clinical practices, there has been no automatic reminder or systematic electronic reporting of these forms. We found an underreporting of 14% of the haematological malignancies to the Cancer Registry of Norway. However, from 1998 the Cancer Registry has received information from the patient administrative
systems on all patients treated for malignant disorders [54]. As a result, the completeness has improved also for the years before 1998. The development within information technology allows for new and better reporting routines, independent of the physicians' memory, and this provides as complete statistics as possible.

5.7. Gender differences in risk factors and disease

Women are more susceptible than males to the detrimental effect of smoking with regards to risk for myocardial infarction, lung cancer and chronic obstructive pulmonary disease [61-63]. The detectable difference of higher mean haemoglobin in smokers compared to non-smokers was strongest in women (paper I). The effect of smoking on haemoglobin was present even in low dose female smokers (1-10 cigarettes per day). This finding is in contrast to male smokers, where the dose related increase in haemoglobin was most
pronounced in more excessive smokers. The increase in haemoglobin by smoking may have implications for the detection of anaemia [7, 43]. However, the possible dose response gender difference is not reflected in WHO's adjusted cut off values for anaemia in smokers [44].

The incidence rates for cancers in lymphatic and haematopoietic tissues are generally higher for men than women [55, 64]. We found the prevalence of haematological malignancies to be higher in men than women (paper IV). The increase in prevalence with age was present somewhat 10 years earlier in men compared to women. The same time lag in women is found in the prevalence of anaemia in the elderly (paper I), and in coronary mortality [65]. Perhaps the biological ageing of men is faster than in women?

6. IMPLICATIONS FOR CLINICAL

PRACTICE AND FURTHER

RESEARCH

Findings of anaemia in men are likely to represent disease and further evaluation is needed. Haemoglobin is a predictor of morbidity [11, 12]. Future changes in lifestyle may contribute to a change in the distribution of haemoglobin, and lack of awareness of these changes may increase the risk of missing early signs of disease. Haemoglobin within normal reference values have prognostic value among smokers in particular. Haemoglobin values within quintile 1 among some smokers could be regarded as anaemia and should be followed by clinical evaluation. Haemoglobin values within quintile 5 among smokers are even more predicative for mortality and smoking cessation should be encouraged.

Despite the frequency of haemoglobin measurements, the epidemiological interest in this field is scarce. The Tromsø Study has given us the opportunity to future
research. In 2001 the fifth survey was conducted and we were then able to measure not only haemoglobin, but also white blood cells and platelets counts. The study reinvestigated 6961 subjects who attended a more extended examination of the 1994-95 survey (89% of those invited: all men born 1925-39, all women born 1925-44 and a 5-10\% random selection of the other age groups). In addition, all inhabitants born 1971, $-61,-56$ and -41 were invited in 2001. The data are now ready for analysis.

We will now be able to evaluate how changes in lifestyle factors predict changes in other haematological variables as well as haemoglobin. How white blood cells and platelets can predict mortality and morbidity in general populations is still unclear. The haematological variables' significance as predictors of chronic diseases should be evaluated. Since these cohorts are older than the 1974 cohorts, the death rates are probably higher, allowing for evaluation of haematological variables
as predictors of different causes of death in addition to total mortality.

The 1974 study was restricted to men only and the gender perspective was therefore absent in two of the subprojects of this thesis. Since women differ from men in a number of aspects, including the distribution of haemoglobin, the gender perspective should be central in future projects.

REFERENCES

1. Garn SM, Ryan AS, Abraham S, Owen G. Suggested sex and age appropriate values for "low" and "deficient" hemoglobin leveIs. Am J Clin Nutr 1981;34:1648-1651.
2. Yip R, Johnson C, Dallman PR. Agerelated changes in laboratory values used in the diagnosis of anemia and iron deficiency. Am J Clin Nutr 1984;39:427-436.
3. Natvig H. Studies on hemoglobin values in Norway. I. Hemoglobin levels in adults. Acta Med Scand 1963;173:423-434.
4. Garn SM, Clark DC. Haemoglobin and fatness. Ecol Food Nutr 1975;4: 131-133.
5. Micozzi MS, Albanes D, Stevens RG. Relation of body size and composition to clinical biochemical and hematologic indices in US men
and women. Am J Clin Nutr 1989;50:
1276-1281.
6. Milman N, Byg KE, Mulvad G, Pedersen HS, Bjerregaard P. Haemoglobin concentrations appear to be lower in indigenous Greenlanders than in Danes: assessment of haemoglobin in 234 Greenlanders and in 2804 Danes. Eur J Haematol 2001; 67:23-29.
7. Nordenberg D, Yip R, Binkin NJ. The effect of cigarette smoking on hemoglobin levels and anemia screening. JAMA 1990;264:15561559.
8. Waters WE, Withey JL, Kilpatrick GS, Wood PH, Abernethy M. Tenyear haematological follow-up: mortality and haematological changes. Br Med J 1969;4:761-764.
9. Cullen KJ, Stenhouse NS, Wearne KL. Raised haemoglobin and risk of
cardiovascular disease. Lancet 1981; 2:1288-1289.
10. Böttiger LE, Carlson LA. Risk factors for death for males and females. A study of the death pattern in the Stockholm prospective study. Acta Med Scand 1982;211:437-442.
11. Carlson LA, Böttiger LE. Risk factors for ischaemic heart disease in men and women. Results of the 19year follow-up of the Stockholm Prospective Study. Acta Med Scand 1985;218:207-211.
12. Sarnak MJ, Tighiouart H, Manjunath G et al. Anemia as a risk factor for cardiovascular disease in The Atherosclerosis Risk in Communities (ARIC) study. J Am Coll Cardiol 2002;40:27-33.
13. Harris NL, Jaffe ES, Diebold J et al. The World Health Organization classification of neoplastic diseases
of the haematopoietic and lymphoid tissues: Report of the Clinical Advisory Committee Meeting, Airlie

House, Virginia, November 1997. Histopathology 2000;36: 9-86.
14. Thelle DS, Førde OH , Try K , Lehmann EH. The Tromsø heart study. Methods and main results of the cross-sectional study. Acta Med Scand 1976;200:107-118.
15. Bønaa KH, Thelle DS. Association between blood pressure and serum lipids in a population. The Tromsø Study. Circulation 1991;83:13051314.
16. Wilsgaard T, Schirmer H, Arnesen E. Impact of body weight on blood pressure with a focus on sex differences: the Tromsø Study, 1986-1995. Arch Intern Med 2000;160:28472853.
17. Bønaa KH, Arnesen E. Association between heart rate and atherogenic blood lipid fractions in a population. The Tromsø Study. Circulation 1992; 86:394-405.
18. Thune I, Njølstad I, Løchen ML, Førde OH. Physical activity improves the metabolic risk profiles in men and women: the Tromsø Study. Arch Intern Med 1998;158:1633-1640.
19. International Committee for Standardization in Haematology. Reccommendations and requirements for haemoglobinometry in human blood. Scand J Clin Lab Invest 1965; 17:617-620.
20. Huang TC, Chen CP, Wefler V, Raftery A. A Stable Reagent for the Liebermann-Burchard Reaction. Analyt Chem 1961;33:1405-1407.
21. World Health Organization. Nutritional anaemias. Report of a WHO

Scientific Group. WHO Techn Rep Ser 1968; 405:9-10.
22. Førde OH , Thelle DS. The Tromsø Heart Study. Population studies of coronary risk factors with special emphasis on high density lipoprotein and the family occurence of myocardial infarction. Tromsø: Institute of Community Medicine, 1979.
23. Evensen SA, Brinch L, Tjønnfjord GE, Wisløff F. Blodsykdommer. Fifth. ed. Oslo: Universitetsforlaget, 1999.
24. Hennekens CH, Buring JE. Epidemiology in medicine. First ed. Philadelphia: Lippincott-Raven Publishers, 1987.
25. Gordon T, Moore FE, Shurtleff D, Dawber TR. Some methodologic problems in the long-term study of cardiovascular disease:observations
on the Framingham study. J Chronic Dis 1959;10:186-206.
26. Bergstrand R, Vedin A, Wilhelmsson C, Wilhelmsen L. Bias due to nonparticipation and heterogenous subgroups in population surveys. J Chronic Dis 1983;36:725-728.
27. Rosengren A , Wilhelmsen L , Berglund G, Elmfeldt D. Nonparticipants in a general population study of men, with special reference to social and alcoholic problems. Acta Med Scand 1987;221:243-251.
28. Jacobsen BK, Thelle DS. The Tromsø Heart Study: responders and non-responders to a health questionnaire, do they differ? Scand J Soc Med 1988;16:101-104.
29. Tverdal A. A mortality follow-up of persons invited to a cardiovascular disease study in five areas in

Norway. Oslo: National Health Screening Service, 1989.
30. Holmen J, Midthjell K, Forsen L, Skjerve K, Gorseth M, Oseland A. [A health survey in Nord-Trendelag 1984-86. Participation and comparison of attendants and nonattendants]. Helseundersøkelsen i

Nord-Trøndelag 1984-86. Fremmøtet og sammenlikning av dem som mette og dem som ikke møtte. Tidsskr Nor Laegeforen 1990;110:1973-1977.
31. Melton LJ, Dyck PJ, Karnes JL, O'Brien PC, Service FJ. Nonresponse bias in studies of diabetic complications: the Rochester Diabetic Neuropathy Study. J Clin Epidemiol 1993;46:341-348.
32. Hansen V, Jacobsen BK, Arnesen E. Prevalence of serious psychiatric morbidity in attenders and nonattenders to a health survey of a general population: the Tromsø

Health Study. Am J Epidemiol 2001; 154:891-894.
33. Rothman KJ. Epidemiology: an introduction. Oxford: Oxford University Press, 2002.
34. Kleinbaum DG, Kupper LL, Muller KE, Nizam A. Applied Regression Analysisi and Multivariable Methods. Third ed. Pacific Grove; CA: Brooks/ Cole Publishing Company, 1998.
35. Jekel JF, Katz DL, Elmore JG. Epidemiology, Biostatistics and Preventive Medicine. Second ed. Philadelphia: W.B. Saunders Company, 2001.
36. Statistics Norway. Population, by age and county. 1 Jan. 2005. Per cent. http://www.ssb.no/folkemengde en/t ab-2005-03-11-03-en.html. Statistics Norway, 2005.
37. Statistics Norway. Persons 16 years and above by level of education and municipality of residence. 1 Okt. 2003. http://www.ssb.no/english/subjects/04/ 01/utniv_en/tab-2004-09-23-02en.html. Statistics Norway, 2005.
38. Hill AB. Principles of medical statistics. Ninth ed. London: The Lancet Limited, 1971.
39. Rothman KJ, Greenland S. Modern

Epidemiology. Second ed. Philadelphia: Lippincott-Raven, 1998.
40. Lee R, Foerster J, Lukens J, Paraskevas F, Greer JP, Rodgers GM. Wintrobe's Clinical Hematology. Tenth ed. Philadelphia: Lippincott Wiliams Wilkins, 1999.
41. Cullen K, Stenhouse NS, Wearne KL, Welborn TA. Multiple regression analysis of risk factors for
cardiovascular disease and cancer mortality in Busselton, Western Australia--13-year study. J Chronic Dis 1983;36:371-377.
42. Kannel WB, Gordon T, Wolf PA, McNamara P. Hemoglobin and the risk of cerebral infarction: the Framingham Study. Stroke 1972;3: 409-420.
43. Nestel P. Adjusting Hemoglobin Values in Program Surveys. http://inacg.ilsi.org/publications/.

Washington, DC: INACG Secretariat, 2002.
44. WHO/UNICEF/UNO (ed). Iron Deficiency Anaemia. Asscssment, Prevention, and Control. A guide for programme managers. Geneva: World Health Organization, 2001.
45. Molarius A, Parsons RW, Dobson AJ et al. Trends in cigarette smoking in 36 populations from the early 1980 s
to the mid-1990s: findings from the
WHO MONICA Project. Am J Public Health 2001;91:206-212.
46. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. WHO Techn Rep Ser 1997.
47. Koepke JA. The calibration of automated instruments for accuracy in hemoglobinometry. Am J Clin Pathol 1977; 68: 180-184.
48. Salvati AM, Samoggia P, Taggi F, Tentori L. Hemoglobinometry: A comparison between the hemiglobincyanide method and the Coulter S counter. Clin Chim Acta 1977;77:13-20.
49. Natvig K. Studies on hemoglobin values in Norway. V. Hemoglobin concentration and hematocrit in men aged 15-21 years. Acta Med Scand 1966;180:613-620.
50. Kilpatrick GS, Hardisty RM. The prevalence of anaemia in the community. A survey on a random sample of the population. Br Med J 1961;1:778-782.
51. Pinhas-Hamiel O, Newfield RS, Koren I, Agmon A, Lilos P, Phillip M. Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int J Obes Relat Metab Disord 2003;27:416418.
52. Nead KG, Halterman JS, Kaczorowski JM, Auinger P, Weitzman M. Overweight children and adolescents: a risk group for iron deficiency. Pediatrics 2004;114:104108.
53. Stoltzfus RJ. Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research
and programs. J Nutr 2001;131:697S700 S .
54. Hansen S, Norstein J, Næss \AA. Cancer in Norway 2001. Oslo, Cancer Registry of Norway, 2004.
55. GLOBOCAN 2002. Ferlay J (ed) Lyon: International Agency for Research on Cancer, 2005.
56. Pukkala E, Södeman B, Okeanov A et al. Cancer Atlas of Northern Europe.
http://www.cancerregistry.fi/atlasweb /index.htm. Helsinki: Cancer Society of Finland, 2001.
57. Ferlay J, Bray F, Pisani P, Parkin DM (ed). GLOBOCAN 2000: Cancer Incidens, Mortality and Prevalence Worldwide, Version 1.0. IARC CanserBase No.5.Lyon: IARC Press, 2001.
58. Mork J, Thoresen S, Faye-Lund H, Langmark F, Glattre E. Head and neck cancer in Norway. A study of the quality of the Cancer Registry of Norway's data on head and neck cancer for the period 1953-1991. APMIS 1995;103:375-382.
59. Harvei S, Tretli S, Langmark F. Quality of prostate cancer data in the Cancer Registry of Norway. Eur J Cancer 1996;32A:104-110.
60. Lund E. Pilot Study for the Evaluation of Completeness of Reporting to the Cancer Registry. Incidence of Cancer in Norway 1978. Oslo: The Cancer Registry of Norway, 1981.
61. Njølstad I, Arnesen E, Lund-Larsen PG. Smoking, serum lipids, blood pressure, and sex differences in myocardial infarction. A 12-year
follow-up of the Finnmark Study. Circulation 1996;93:450-456.
62. Risch HA, Howe GR, Jain M, Burch JD, Holowaty EJ, Miller AB. Are female smokers at higher risk for lung cancer than male smokers? A case-control analysis by histologic type. Am J Epidemiol 1993;138:281293.
63. Prescott E, Bjerg AM, Andersen PK, Lange P, Vestbo J. Gender difference in smoking effects on lung function and risk of hospitalization for COPD: results from a Danish longitudinal population study. Eur Respir J 1997; 10:822-827.
64. Hansen S, Norstein J, Næss A. Cancer in Norway 1998. Oslo: Institute of population-based cancer research, 2001.
65. Statistics Norway. Deaths by sex, age
and underlying cause of death. The whole country. 2003.
http://www.ssb.no/english/subjects/0
3/01/10/dodsarsak en/tab-2005-03-
30-03-en.html. Statistics Norway, 2005

ERRATA

Paper I

Page 387 , column 1, section 2, line 3-4: ..,8130 subject (78% of the invited) were reinvestigated. In total, 8130 subjects (78 $\%$ of total invited) were investigated, 6961 subjects were from the cohort of Tromsø IV (89\%).

Paper IV

Last number in the conclusion of the abstract; 2.2% should be 2.2%.

Table 5 presents incidence proportions not incidence rates.

In general

Participation to the survey implicates that the individual was registered at the screening, but in a few cases, this is about all that is registered about the subject. In different publications from the Tromsø study the number of participants have varied slightly. In paper I of this thesis the participated population was reported to be 27 153, and in paper IV; 27145.

The eligible population of the Tromsø Study 1994-95 has recently been revised to be 35420 .

Appendix 1

Questionnaire I Tromsø Study 1974
Original Norwegian version and English translation

MELDING OM SKJERMBILDEFOTOGRAFERING OG HJERTE-KARUNDERSOKELSE
(Glelder bare den person brevet er adressert til)
Γ

L

Kommune

Skjermbildefolograferingen kommer ná til Deres distrikt.
Tid og sted for Deres framrnete vil De finne nedenfor.
Denne gangen vil en del av befolkningen ogsá fa tilbud om hjerte-karundersekelse. De tilherer denne gruppe. En orientering om undersekelsen er gitt i vedlagte brosjyre.
7 Vennligst fyll ut sperreskjemaet pá baksiden og ta det med til undersokelsen. Ta ogsá med tuberkulinkort eller frelsebok; om Ḋè har.
Fravær bes eventuelt meldt pà vedlagte seddel. Undersekelsen koster 1,- krone.

Med hilsen

- HELSERADET FYLKESLEGEN STATENS SKJERMBILDEFOTOGRAFERING

Kretsnr

Har De, eller har De hate : Hjerteinfarkt? ss Angina pectoris (hjertekrampe)? 24 Annen hiertesykdom? se Areforkalkning i bens? Herneslag? Sukkersyke? Er De under behandling for: Hoyt blodtrykk? Bruker De: Nitroglycerin? B Fär De smerter eller ubehag i brystet närDe: Gär i bakker, trapper eller fort pà flat, mark? Gorr i vanlig takt pa flat mark? Hvis De fär smerter eller ubahagi bryctet ved gange, pleier de da a: 1 Stanse? 2 Saktne farten? 3 Fortsette i sammo takt? Hvis De stanser eller saktner farten, forsvinner smertens da: 1 Etter mindre enn 10 minutter? 2 Etter mer enn 10 minutter? ... Fär De smarter i tykkleggan när De Goir ? Eriro? Hvis De fär leggsmerter, bosvor da: Forverres amertane vad raskere tempo eller i bakker? Gir smertane reg natr De stopper? .. Har De vanliguis: Hoste am morgenen? Oppspytt fra brystet om morganen? . . C Bevegelse og kroppalig anstrengelse i Bere iritid. Hvis aktiviteten varierer meget f.ek. mellom sommer og vinter sa ta et gjennomsnitt. Sporsmoilat gielder bare det siate fret. Sett krys i den ruten hvor .WA"passer beat. 1 Leger ser på fiernoyn eller annen sbillesttende beakiaftigalaa? 2 Spaserer sukler elier peveger Dem p annen mbte minst 4 timer if uken? (Heri medranas ogmi game ellar sykling) (til arbeidestadot, sendogsturer m.m.' 3 Driver mosiomsidrett, tymgre hagaarbeid ach? (Mark at yirksombeten skol vare minst) 4 Trener hardt eller driver konkurranseidrett, regalmossig og flare ganger i uken?			

English translation of the questionnaire used in the cardiovascular disease study in Oslo* 1972-73, Norwegian counties 1974-78 (Finnmark, Oppland and Sogn og Fjordane) and Tromsø 1974.

English translation; Mr. Kevin McCafferty

Tick "yes/no" or "yes", as appropriate.

Part A

Have you, or have you had:
a heart attack?
angina pectoris (heart cramp)?
any other heart disease?
hardened arteries in the legs?
a cerebral stroke?
diabetes?
Are you being treated for:
high blood pressure?
Do you use:
nitroglycerine?

Part B

Do you have pain or discomfort in the chest when:

- walking up hills or stairs, or walking fast on level ground?
- walking at normal pace on level ground?

If you get pain or discomfort in the chest when walking, do you usually:
(I) stop?
(2) slow down?
(3) carry on at the same pace?

If you stop or slow down, does the pain disappear:
(1) within 10 minutes?
(2) after more than 10 minutes?

Do you have pain in the calf while:

- walking?
- resting?

If you get pain in the calf, then:

- does the pain increase when you walk
faster or uphill?
- does the pain disappear if you stop?

Do you usually have:

- cough in the morning?
- phlegm chest in the morning?

Part C

Exercise and physical exertion in leisure time. If your activity varies much, for example between summer and winter, then give an average. The questions refer only to the last twelve months.

Tick "YES" beside the description that fits best:
(I) Reading, watching TV, or other sedentary activity?
(2) Walking, cycling, or other forms of exercise at least 4 hours a week? (including walking or cycling to place of work, Sunday-walking, etc.)
(3) Participation in recreational sports, heavy gardening, etc.? (note: duration of activity at least 4 hours a week).
(4) Participation in hard training or sports competitions, regularly several times a week?

Part D*

Do you smoke daily at present?
If "Yes":
Do you smoke cigarettes daily?
(handrolled or factory made)
If you do not smoke cigarettes at present: Have you previously smoked cigarettes daily?

If "Yes", how long is it since you stopped?
(1) Less than 3 months?
(2) 3 months to 1 year?
(3) 1 to 5 years?
(4) More than 5 years?

For those who smoke or have smoked previously:

How many years altogether have you
smoked daily? Number of years
How many cigarettes do you, or did you, smoke daily? Give number of cigarettes per day (handrolled + factory made)

Number of cigarettes
Do you smoke tobacco products other than cigarettes daily?

- cigars or cigarillos?
- a pipe?

If you smoke a pipe, how many packs of tobacco (50 grams) do you smoke per week?

Give average number of packs per week
Number of tobacco packs \qquad

Part E

Do you usually work shifts or at night?
Can you usually come home from work:

- every day?
- every weekend?

Are there periods during which your working days are longer than usual? (e.g.: fishing season, harvest)

During the last year, have you had: (Tick
"YES" beside description that fits best):
(I) mostly sedentary work? (e.g., office
work, watchmaker, light manual work)
(2) work that requires a lot of walking? (e.g., shop assistant, light industrial work, teaching)
(3) work that requires at lot of walking and lifting? (e.g., postman, heavy industrial work, construction)
(4) heavy manual labour? (e.g., forestry, heavy farmwork, heavy construction)

During the last 12 months, have you had to move house for work reasons?
Is housekeeping your main occupation? Have you within the last 12 months received unemployment benefit?
Are you at present on sick leave, or receiving rehabilitation allowance?
Do you receive a complete or partial disability pension?

Part F (alternatives: yes, no, don't know)
Have one or more of your parents or sisters or brothers had a heart attack (heart wound) or angina pectoris (heart cramp)?

In Finnmark and Tromse only:
Are two or more of your grandparents of Finnish origin?
Are two or more of your grandparents of Lapp origin?

Appendix 2
Questionnaire II Tromsø Study 1979-1980
Original Norwegian version and English translation
\square

Sammen med innkallingen fikk De et spdreeskijema fra Statens Skjermbildefotogratering. Dette leverte. De ved undersokelisen.

Hjertekarsykdommene er imidertid en mangeartet sykdomsgruppe med tiddels därlig kjente årsaksforhold. I Tromso vil vi derfor forsskle à fà en mer fullstendig kartlegging av forhold som kan vaere ay betydning for sykdommens forldp, feks. Kosthold, psykisk press ""stress"), sosiale forhold ag sykdomstorekomst blant slektninger. Vi happer De vil vare brydd med à tyllle ut cogsà dette skjenna, cg sende det tillakke til Troms ϕ Helseråd iden utteverte konvolutt.

Alle opplysninger i forbindelise med skjermbildeundersobkelsen vil bi behandlet strengt konfidensielt.

I Eget KOSTHOLD

1. Hva slags browd spiser De ottest?

Selt kyss iden ruten der "JA passerbest.
Loff (lyst) bred, aminnelia bred

Grout (merkt) brod, kneipp ol
Hijmmebakt (grovt) brad
2. Hya slags smof eller margarin bunker De oftest?
Sett kryss iden ruten deer, JA pas paser best.

3. Hvor mange. bredskkiver spiser De varliguis daglig?
Sett kryss rden rutender, IA P" passerbest.
Mindreenn askiver.
2-6 skiver.
7-12, skiver.
13 skiver eller flere
4. Hua slass melk drikker De variligus? Seft kyss idenatender, LA P passerbest.

Driker ikke melk.
Melk (hemmek), ssts, sur
Skummet melk, spit, sur.
Blandingay skumnet og hielmelk
5. Tegningen nedentor forestiller teminger av smor eller margarin i naturlig storrelse. Kryss av for denterning som likner mest páden mengde De bruker til 1skive brod.
Er De itvil, forsolk à próvesmpre en skive
Bruker ikke smфr elier mamarin

2.

3.

4

b. Hvor manqe glass/Kopper melk drikker De vanlignis daglig?
Sett leryss i den ruten der. WA" passerbest.
Drikker ikke eller mindre emn et glass /ey kopo. 1-2 glass /kopper Seller Here glass/kopper
7. Hver mange kopper kaffe drikker Devanligưis daglig?
Selt knyss iden ruten der "UA pasiser best Drikker ikke, eller mindre
exn en kopp. 1-4 kopper. 5.8 kopper. geller flere kopper.
8. Er De !otalavheldsmann/kvinne? Hvis nei,

- Hvor ofte pleier De ádrikke фl? Settkiyss iden nutender "dit passer best.
 Aldri, eller noen fö ganger i arest. 1 - - ganger imåneden. Omtrent 1 gang i west 2-3gangeri oken Omtrent hver dag
- Hvor atte pleier De à drikke brennevin? Sett knss iden ruten der JA" passer best.
Abri, eller moen faganger I áret.
1.a anner i màneaen Omftent \backslash gang iuken
2-3angeri uken
Omtrent hiverdag

9. Ontrent hvor ofte har De ilppet av de siste 作 måneder drukket sa mye. ϕ, vin eller brennevin at De har vert beruset?

Sett knyssiden ruten der "JA" passer best. Har aldri vart beruset ellex ikke. vart berusct i mpet av siste ar.. Noen | a gamer: 1 aret |
| :--- |

10. Hvor ofte bestar middansmallidet av fisk eller retter med fisk?
Settkryss iden ruten der IA" passer best.

11. Hyor otte bruker De frukt eller grónn saker?
Sett kryss iden ruten der "JA"passer best.
Broker aldri frukt eller gromnsaker. Noen fà ganger i drett 1. g ganger imanedes Ontrent laana I uken 2-3aanget itken Omtrent huver dag.
12. Hvor mange ganger i måneden spiser De kokte eller stekte pobser, kiothuaker eller annen opplaget kydtmat?
Sett kryss i den ruten der "IA" passer best.
Aldri eller sjeldnere enn I gang

13. Har De ilppet av de siste 5 airene forandet? Deres kosthold när det gjelderdisse varene? Selt ett kryss for hwer eakelt vare.

	Som	Mer	Mande
Vanlig margarin eller smbr.			
Skummet melk.			
Magert kjott			
Helmelk.			
Soua (sot) mararin			
Kiglt med mive fett			

II Tipligere/niverende egne sykdommer	1 A NEI
14. Har De noen gang hatt?	
Plutselig lammelse eller nummenhet ien side av krope eller ansikt,	
Plutselig tap ay talecrmen.	
Putselig tap av synet hett eller detvis, eller plutselig dobbeltsyn	
15. Har De hatt mapejar ?	
Har De ofte sugende smenter evers's i magen ?	
Har De mye plager med sure	
Er De mye plaget av appblásthet cg numling i magen Har Deofte knipsmerter imazen	
Har De neen gany tatt rentgenbilde av tykktarmen?	
Har De hatt oallestein?	
16. Har De hatt nyresteinsantall (nyregrus) eller'stein i urinveler? Hvis ja, hvor mange ganger? ognar hadde De siste antall?	A NEI
	Themal.
	(A NEI
17. Har De noen gang hatt kreftsykdom? Hvis ja, hvilket år ble sykdommen oppdacet?	
	mava

18. Har De eller har De hatt
hudsykdommen psoriasis?
19. Har De i ippet av de siste 12 mane. der halt allergisk eksem pá hendene?
20. Har De ilppet av de siste 3 ar vaert sykemeldt eller arbeidsufor pg.a. allergisk eksem på hendene?
21. Har De, eller har De hatt Jeddgikt?
(Kionisk reumatisk artritt)
22. Har De ilppet av de siste th máneder vart plaget av smerter ingogen sum harvart tenger enn 4 uker? Hvis ia bedter ryogsmertent stg dersom De beveater Dem?
23. Har De vaert piaget or stivhet i rapen sm momener: som varte letger enn 30 minutter?
24. Har De ilqpet av de siste 3 ar veert planet av smerter I neen av de folgende ledd i mer enn 3 màneder?

kneleddeve
 Albuleddene
 De imerste fingerleaddene
 Andre ledd

Hvis ja, merket De strunet ; leddene om morgenen av mer enn 30 minutters varighet?

> 25. Har De hatt noen infetesjonssykdom de siste 14 dagene? (Influensa, torkjdelse, "raeksjuka", ell)
26. Har De brukt erntabletter de siste 14 degene?

ADDITIONAL OUESTIONS FOR PERSONS ATTENDING THE MASS X-RAY EXAMINATION IN TROMSØ.

English translation; Mrs. Anne Clancy and Mr. Kevin McCafferty
Together with the invitation to attend you received a questionnaire from the National Mass Radiography Service. You delivered this questionnaire at the examination.

Cardiovascular diseases are, however, a complex group of diseases. The causes are still partly unknown. In Tromsø we are therefore trying to obtain a more complete description of factors which may be of importance for the course of these diseases, such as diet, psychological pressure ("stress"), social conditions, and occurrence of disease in relatives. We hope you will take the trouble to complete this questionnaire as well, and return it to the Tromsø Board of Health in the enclosed envelope.

All information in connection with the mass x-ray examination will be treated as strictly confidential.

I YOUR OWN DIET

1. What type of bread do you usually eat?

Tick the most appropriate box;
White bread (e.g. French bread) Ordinary bread (light texture)
Whole meal (brown) bread
Home-made (brown) bread
2. What type of butter or margarine do you usually eat?
Tick the most appropriate box; Yes
Butter
Ordinary margarine
Plant margarine
Soft margarine spread
3. How many slices of bread do you usually eat daily?
Tick the most appropriate box; Yes Less than two slices
2-6 slices
7-12 slices
13 or more slices
4. What type of milk do you usually drink? Tick the most appropriate box; Yes Do not drink milk Full cream milk: ordinary type or curdled
Skimmed milk: ordinary type or curdled
Mixture of full cream and skimmed milk

Tick the box above the cube which best resembles the amount you spread on a slice of bread. If in doubt, try buttering a slice.

Do not use butter or margarine 3

1. 3
2. (3)
3. (3)
4. 3
5. How many glasses/cups of milk do you usually drink daily?
Tick the most appropriate box
Do not drink milk, or drink less than
I glass/cup
I-2 glasses
3-4 glasses/cups
5 or more glasses/cups
6. How many cups of coffee do you usually drink daily?
Tick the most appropriate box Yes
Do not drink coffee or drink less than
1 cup
1-4 cups
5-8 cups
9 or more cups

Yes No
 B

If " $N o$ ":
How often do you usually drink beer?
Tick the most appropriate box
Never or just a few times a year
Once or twice a month
About once a week
2-3 times a week
More or less daily

How often do you usually drink wine?
Tick the most appropriate box
Never or just a few times a year
Once or twice a month
About once a week
2-3 times a week
More or less daily

How often do you usually drink spirits?
Tick the most appropriate box
Never or a just few times a year
Once or twice a month
About once a week
2-3 times a week
More or less daily
9. Approximately how often during the past 12 months have you drunk so much wine, beer or spirits that you got drunk?
Tick the most appropriate box
Have never been drunk, or have not Yes been drunk during the past year
A few times during the last year
Once or twice a month
Once or twice a week
3 or more times a week
10. How often does your main meal consist of fish or fish dishes?
Tick the most appropriate box Yes
Less than once a week
Once or twice a week
3-4 times a week
5-6 times a week
7 days a week
11. How often do you eat fruit or vegetables? Tick the most appropriate box Never eat fruit or vegetables
A few times a year
Once or twice a month
About once a week
2 to 3 times a week
More or less daily
12. How many times a month do you eat boiled sausages or fried meat balls, processed meat, etc.?
Tick the most appropriate box Yes Never or less than once a month 3 Once or twice a month
3-4 times a month (up to once a week)
5-8 times a month (up to twice a week)
More than 8 times a month, (more than twice a week)
13. Have you made any changes in your diet during the last 5 years as regards the following food items?
Tick each item in the appropriate box

	As before		More
now	Less		
now			

II. OWN ILLNESSES PAST OR

PRESENT

Tick the appropriate box "Yes" or "No"
14. Have you ever had?

Yes No

- Sudden paralysis or numbness on one side of your face or body, in your hand or foot -Sudden loss of ability to speak -Sudden loss of eyesight, complete or partial, or sudden onset of double vision

15. Have you had a peptic ulcer?

Do you often have a gnawing pain in the upper part of your stomach?

Do you suffer much from heartburn or regurgitation of gastric juices? Do you suffer much from wind and rumbling in your stomach? Do you often get cramps in your stomach ?
Have you ever had your large intestine x-rayed? Have you ever had gall stones?
16. Have you had kidney stones or stones in the urinary tract?

If yes, how many times? and
When did you have your last attack? Year:.....

17. Have you ever had cancer?	Yes No
1f "yes", in what year was the	© 3 (3)
disease discovered?	Year:

21. Have you ever had arthritis?	Yes No
(chronic rheumatoid arthritis)	3 3

22. Have you suffered from back pain during the past 12 months lasting for more than 4 weeks? Yes No (3) 3

If "Yes" did the back pain	Yes No
improve if you exercised?	3

23. Have you suffered from moming stiffness in your back lasting more than Yes No 30 minutes?
(3) 3
24. Have you suffered from pains lasting more than 3 months, in the joints listed below during the last 3 years? Yes No Knees:

Elbows: Innermost finger joints: (3) 3 Other joints:

| 13 | 3 |
| :--- | :--- | :--- |
| 3 | 3 |
| 3 | 3 |
| 3 | 3 |

If "Yes", did you suffer from stiff joints in the
momings lasting more than
30 minutes?
25. Have you had any infectious Yes No disease during the past 14 days? (influenza, common cold, vomiting, diarrhoea, etc.)
26. Have you taken iron tablets Yes No during the past 14 days?
27. How often do you take painkillers such as Globoid, Novid, Dispril, Albyl, etc.?

Tick the appropriate box	Yes
$1-3$ times a week	3
$1-3$ times a month	3
Seldom or never	3

19. Have you had allergy-induced eczema on your hands during the last Yes No 12 months?
20. Have you been on sick leave, or been unable to work due to allergic eczema on your hands at any time during the past 3 years?
Yes No

Have you used such painkillers Yes No during the past 14 days?
28. Have you changed the amount of physical exercise you take in leisure during time the last five years?
Tick the most appropriate box.
More than before
Less than before

III ILLNESS IN PARENTS AND SIBLINGS

29. Have any of these relatives had:	mother	father	sister	brother	
Cerebral stroke or brain haemorrhage	3	3	3	3	
Diabetes	3	3	3	3	
Arthritis (chronic rheumatoid arthritis)	3	3	3	3	
Cancer	3	3	3	3	3
Kidney stones or stone in urinary tract	3	3	3	3	
Psoriasis	3	3	3	3	
Peptic ulcer	3	3	3	3	
None of the above-mentioned illnesses	3	3	3	3	

IV SOCIAL CONDITIONS AND PSYCHOLOGICAL PRESSURE "STRESS")
30. How many years schooling have you had? (including secondary and folk high schools) number of years
31. What was your family's financial situation when you were growing up? Tick the appropriate box
Very good
Good
3
3
3

Very poor
Yes No
32 .Do you suffer from sleeplessness?
(3) (3)

If "yes", at what time of the year do you
suffer from sleeplessness?
Tick the appropriate box
No particular time
Especially during the 'dark time' Especially during the arctic summer (midnight sun)
Especially in spring and autumn
What form your sleeplessness take?
Tick the most appropriate box Yes
Difficult to fall asleep at night?
Wake up a lot during the night ? 3
3
Wake up very early in the morning?
33. Have you had difficulty sleeping in the past couple of weeks?
Tick the most appropriate box
Not at all
No more than usual
Rather more than usual
Much more than usual
34. Have you felt unhappy and depressed during the past couple of weeks?
35. Have you felt unable to cope with your difficulties during the past couple of weeks? Tick the appropriate box Not at all
No more than usual
Rather more than usual
Much more than usual

Tick the appropriate box
Not at all
No more than usual
Rather more than usual
Much more than usual

Appendix 3
Questionnaire I Tromsø Study 1986-1987
Original Norwegian version and English translation

HELSEUNDERSØKELSEN I TROMS®
(Gjelder bare den person som brevet er adressert til.)
Helsaundersøkelsen kommer ná ill Deres distrikt Tid og sted for frammate vil De finne nedenfor.

De finner en orientering om undersøkelseni den vedlagte brosjyren.

Vi ber Dem venntigst fylle ut sparreskjemaet pá baksiden og ta med dette til undersøkelsen.

- Vi ber Dem eventuelt melde fra om fravar pá den vedlagte fraværsmeldingen.

Med hilsen

KOMMUNEHELSETJENESTEN : TROMSQ FYLKESLEGENI TROMS UNIVERSITETET I TROMSC STATENS HELSEUNDERSOKELSER Kretsm

Forste
bokstav i
boksiavina
Dag og dato
Klokkesleyt

OUESTIONNAIRE I, TROMSØ SURVEY 1986-87

English translation; Mrs. Anne Clancy and Mr. Kevin McCafferty

A FAMILY

Have one or both of your parents, or any of your siblings (brothers and sisters) had a heart attack or angina pectoris
(heart cramp)?

B OWN ILLNESSES

Have you, or have you had: A heart attack?
Angina pectoris (heart cramp)?
A cerebral stroke?
Diabetes?

Are you receiving treatment for: Yes No High blood pressure?
(3) 3

Do you use nitroglycerine? \square

C SYMPTOMS

Do you get pain or discomfort in the chest, when:

Yes No
Walking up hills, stairs or walking
fast on level ground?
Walking at ordinary pace
on level ground?

If you get pain or discomfort in your chest when walking, do you usually:

	Yes
Stop	3
Slow down	3
Carry on at the same pace	3

If you stop or slow down, does the pain disappear:

After less than 10 minutes? Yes

After more than 10 minutes?

D EXERCISE

Exercise and physical exertion in leisure
time. If your activity varies much, for
example between summer and winter, then give an average. The questions refer only to the last twelve months.
Tick "yes" in the most appropriate box:

- Reading, watching TV or other Yes sedentary activity?
- Walking, cycling or other forms of exercise at least 4 hours a week? (including walking or cycling to place of work, Sunday walking ,etc.)
- Participation in recreational sports, heavy gardening, etc.? (Note: duration of activity at least 4 hours a week)
- Participation in hard training or sports competitions regularly several times a week?

E SALT/ FAT

How often do you use salted meat or salted fish for dinner?
Tick the appropriate box
Never or less than once a month
Once a week or less
Twice a week or less More than twice a week

How often do you add extra salt to your dinner?
Tick the appropriate box Yes
Rarely or never
Sometimes or often
Always or nearly always
What type of margarine or butter do you usually use on your bread?
Tick the most appropriate box
Do not use margarine or butter on bread
Butter
Margarine
Soft (soya) margarine spread
Butter/ margarine mixtures
What type of cooking fat do you normally use in your household?
Tick the appropriate box.
Butter or hard margarine
Soft (soya) margarine or oil
Butter/ margarine mixtures

F SMOKING
Do you smoke daily at present? Yes No If "Yes":
Do you smoke cigarettes daily?
(hand-rolled or factory made)
If you do not smoke cigarettes at present:
Have you previously smoked Yes No cigarettes on a daily basis? 33
If "Yes", how long is it since you gave up smoking?
More than 3 months?
3 months to I year?
1 - 5 years?
More than 5 years?
The following questions are to be answered by those who smoke at present or who have smoked previously.
How many years altogether have you smoked on a daily basis:
How many cigarettes do you smoke or did you smoke daily:
(hand-rolled + factory made)
Do you smoke anything else other than cigarettes daily?

Yes
Cigars, cigarillos, cheroots ? Pipe?
If you smoke a pipe, how many packets of tobacco (50 gr.) do you smoke in a week? Give the average number of packets a week:

G COFFEE

How many cups of coffee do you usually drink daily?
Tick the most appropriate box Yes
Do not drink coffee, or less than one cup
1-4 cups
5-8 cups
9 or more cups
What type of coffee do you usually drink daily?
Coarse ground coffee for brewing (boiled)
Finely ground filter coffee
Instant coffee

H EMPLOYMENT

Have you received unemployment

benefit within the past Yes No

12 months?

Are you at present on sick leave, or receiving rehabilitation allowance?

Are you on a full time or partial Yes No disability pension? (3) (3)

Do you usually work shifts or do night work?

During the past year have you had :
Tick the most appropriate box. Ye

- Mostly sedentary work? (office work, watchmaker, light manual work)
- Work requiring a lot of walking?
(shop assistant, light industrial work, teaching)
- Work requiring a lot of walking and lifting? (postman, heavy industrial work, construction)
- Heavy manual labour?
(forestry, heavy farmwork, heavy construction)

Is house-keeping your main	Yes No
occupation?	3 3 3

I FOLLOW - UP EXAMINATION

Has any one in your household (other than yourself) been called in to a doctor for further medical examination after the previous cardiovascular Yes No disease survey?

If as a result of this survey you need further medical examination, which general practitioner do you wish to be referred to? Write the doctor's name here:

No particular doctor

Questionnaire I Tromsø Study 1994-1995
Original Norwegian version and English translation

Innbydelse til HELSEUNDERSØKELSEN

Velkommen til helseundersøkelsen i Tromsø!

Helseundersokelsen kommer ná til Tromsa.
Til og sted for frammote finner du nedenfor. Du finmer ogsả en orlenterng on undersokelsen i den vedlagte brosjyren.

Vi ber deg fylle ut sparreskjemaet pd baksiden og ta det med til undersokelsen.

Undersokelsen blir mest verdifull om frammotet blir sả fulistendig som mulig. Vt háper derfor at du har
mulighet til a kamme. Mot selv om du kjenner deg trisk on du er under legebehandling, eller om du har fátt mált kolesterol og blodirykk i den senere tid

Vennhg hilsen

Kommunehelsetjenesten
Fagomrảdel medisin, UnIversiletel I Tromsa Statens helseundersakelser

Hyordan or helsen din na? Sett bare ett kryss

Dârlig...........	12
Ikke hell god.	
God...	
Svart god.....	

Hap du, aller har du halt: Hjerteinfarkt.,. Angina pectoris (hjerlekrampe) 1
Hjerneslag/hjerneblodning.................. is
Astma
Diabetes (sukkersyke) \qquad
Bruker du medisin mot heyt blodtrykk?
Ná .. 2 2
Far: men ikke ná
Aldrl brukt \qquad

Har du tlapet av det siste âras vert plaget med smerter og/eller stivhet I muskler og ledid som har vart I minat 3 mànocier sammanhengende? 29

Har du de siste to ukene folt deg

	Noi	Lith	$\begin{aligned} & \text { En god } \\ & \text { doil } \end{aligned}$	$\begin{gathered} \text { Suaent } \\ \text { mye } \end{gathered}$
Nervas og urolig? 30	I	\square	\square	\square
Plaget av angst?, 31	\square	\square	\square	\square
Trygg og rolig? 32	\square	\square	\square	
Irritabal? 33	\square	\square	\square	
Glad og optimistisk? 34				
Nedlor/deprimeri? 35	\square			
Ensom?.................. 30	\square	\square		

Hvordan har din fysiske aldivitet I frltiden vaert det siste àret? Tenk deg et ukentlig gjennomsnitt: for ảret. Arbeidsval regnes som fritid.

Er du total avholdsmann/-hvinne?- ... B2
Hyor mange ganger I mảneden drikker du vanllg-
vis alkohal? Ragn ikke med lettol.
Sett o hvis mindre enn 1 gang imnd.
Hivor mange glass ol, vin efler brennevin ditkker du vanllguls \} lopet av to uker? bs ol VIn Brennevin Regn itke med lottor.

Sett 0 hvis dusikke onkker allohol.

Hva slags margarln ellor smor bruker du vanliguls pal
bradet? Selt ett knss.

Meierismor \qquad 7

Hard margarin
Bla! (soft) margarin \qquad
\qquad
Smorimargarin blanding. \qquad
Letimargarin

HVilken utdanning er den hoyeste du har fullfort?
Grunnskole, 7-10 ar, framhaldsskole,
folkehogskole.
Realskole, middalskole, yrkesskole, 1-2-árig
videregảende skole.
Artium, ok.gymnas, allmennaglig retning
i videregáende skole
Hagskole/universital, mindre enn 4 ảr
Hogskole/universitet, 4 ảr eller mer \qquad
Hva slags arbeidssituasjon har du na?
Lonnet arbeid. \qquad
Heltids husarbeid 74
75
Uidanning, militartieneste \qquad
Arbeicsledig, permittert
Hvor manae timar lamnet artuid har du i ukat ... it
Moltar du na noen av folgende ytelser?
Syketrygd (sykmeldi) \qquad 79

Attoring B0
Utorepension -
Alderspensjon ${ }^{81}$

Sosialstolte.的
Arbeidsloshetstrygd

Har en alior flere av foreldre nalor sosken hatt hienteinfarkt (sâr pa hjertat) ofler
angina pectoris (hjertekrampe)?

Roykte noen av de vaksne hifemme

Bor du, eltar har dut bodd. sammen med noen efagligraykere etter at du iytite 20 Ar? 38

Hwor lenge er du vanllgvis daglig
ilstece l roykfylt rom?.

Royker du sely.
Sigaretter daglig?
Per darnen

Hivis du har roykt daglig ildiligere, hvor lienge er det sitien dus sluttel?

Huls ư royker daglig na eller hay roykt tidiligere:

English translation of invitation with the first questionnaire used in the health survey in Tromsø 1994/95

Translation based on translations by Kevin McCafferty and Anne Clancy

HEALTH SURVEY
 INVITATION

"This is your chance"

Date of birth Social security No.
Municipality Electoral ward No.

Welcome to the Tromsø Health Survey!

The Health Survey is coming to Tromsø. This leaflet will tell you when and where. You will also find information about the survey in the enclosed brochure.

We would like you to fill in the form overleaf and take it with you to the examination.

The more people take part in the survey, the more valuable its results will be. We hope, therefore, that you will be able to come. Come along even if you feel healthy, if you are currently receiving medical treatment, or if you have had your cholesterol and blood pressure levels taken recently.

Yours sincerely, Municipal Health Authorities
Faculty of Medicine - University of Tromse National Health Screening Service
"This is a real opportunity - Take it!"

Your own health

What is your current state of health?
Tick one box only.
Poor
Not so good
Good
\square
\square
\square
\square
Very good
Do you have, or have you ever had:
YES NO Age first time

Myocardial infarction	\square	\square	\quad years
Angina pectoris	\square	\square	\quad years
Stroke/	\square	\square	$\square \quad$ years
brain haemorrhage			
Asthma	\square	\square	years
Diabetes	\square	\square	$\square \quad$ years

Do you take medicine for high blood pressure?
At the moment
Used to, but not any longer
Never have
\square

Have you during the last year suffered from pains and/or stiffness in muscles and joints that have lasted continuously for at least 3 months?

YES \square NO \square
Have you in the last two weeks felt:

| No A little | A lot Very |
| :---: | :---: | :---: | :---: |
| much | |

Smoking

Did any of the adults at home smoke while you were growing up?

Do you now, or have you previously, lived with daily smokers after your $20^{\text {th }}$ birthday?

$$
\text { YES } \square \text { NO } \square
$$

If "YES", for how many years in all? \qquad
How many hours a day do you normally spend in smoke-filled rooms?
Put 0 if you do not spend time in smoke-filled rooms.

Do you yourself smoke:	YES	NO
Cigarettes daily?	\square	\square
Cigars/cigarillos daily?	\square	\square
Pipe daily ?	\square	\square

If you previously smoked daily, how long is it since you stopped?

If you smoke daily at the moment, or have smoked before:

How many cigarettes do you smoke/did you smoke per day? \qquad Cigarettes

How old were you when you began smoking daily? Age ___ Years

How many years in all have you smoked daily? Years

Exercise

How has your physical activity in leisure time been during this last year? Think of your weekly average for the year. Time spent going to work counts as leisure time.

| | Hours pr. week
 None Less than 1 | 1-2 | 3 or more |
| :--- | :---: | :---: | :---: | :---: |

How many cups of coffee do you drink daily? Put 0 if you do not drink coffee daily.

Boiled coffee
(i.e., grind boiled and allowed to draw) Other coffee

Alcohol
Are you a teetotaler? YES \square NO \square

How many times a month do you normally drink alcohol? Do not count low-alcohol beer.
Put 0 if less than once a month
How many glasses of beer, wine or spirits do you normally drink in a fortnight? Do not count low-alcohol beer. Put 0 if less than once a month.

Beer	Wine	Spirits
Glasses	Glasses	Glasses
$\square \square$	$\square \square$	$\square \square$

Fat
What kind of margarine or butter do you normally use on bread? Tick one box only.

Don't use butter/margarine	\square
Creamery butter	\square
Hard margarine	\square
Soft margarine	\square
Butter/margarine blend	\square
Light margarine	\square

Education/work

What is the highest level of education you have completed?

7-10 years primary/secondary school, modern secondary school, folk high school
Technical school, middle school, vocational.. school, 1-2 years' senior high school
A-levels/High school diploma, (3-4 years)
College/university, less than 4 years
College/university, 4 or more years

What is your current work situation?
$\begin{array}{ll}\text { Full-time housework } & \square \\ \text { Education, military service }\end{array}$
Unemployed, redundant
ロ

How many hours of paid work do you have pr. week?
\qquad

Do you receive any of the following benefits?
Sickness benefit (sick leave) $\quad \square$
Rehabilitation benefit \square
Disability pension
Old-age pension
Social welfare benefits
Unemployment benefis

Illness in the family

Have one or more of your parents or siblings had a heart attack or had angina (heart cramp)?

YES	NO	DON'T KNOW
\square	\square	\square

Questionnaire II (subjects aged <70 years) Tromsø Study 1994-1995
Original Norwegian version and English translation

Helseundersøkelsen i Tromsø

Hovedformálet med Tromssundersakelsene er à skaffe ny kunnskap om hjerte-karsykdommer for à kunne forebygge dem. I tillegg skal undersakeIsen ake kunnskapen om kreftsykdommer og andre alminnelige plager som f.eks. allergier, smerter i muskulatur og nervese lidelser. Vi ber deg derfor suare pá noen sparsmal om forhold som kan ha betydning for risikoen for disse og andre sykdommer.

Skjemaet er en del av Helseundersakelsen som er godkjent av Datatilsynet og av Regional komite for medisinsk forskningsetikk. Svarene brukes bare til forskning og behandles strengt fortrolig. Opplysningene kan senere bli sammenholdt med informasjon fra andre offentlige helseregistre etter de regler som Datatilsynet og Regional komite for medisinsk forskningsetikk gir.

Hvis du er i tuil om hva du skal svare, sett kryss i den ruten som du synes passer best.

Det uthylte skjema sendes i vedlagte svarkonvolutt. Portoen er betall

Pả forhảnd takk for hjelpen!

Med vennlig hilsen

Fagomrádat medisin
Universitetet i Tromsa Statens helseundersakelser

Hvis du ikke onsker á besvare sporreskjemaet, sett kryss i ruten under og returner skjemaet. Da slipper du purring.

Jeg onsker ikke á besvare sporreskjemaet

Dag Mind Ar
Dato for utfylling av skjema:

OPPVEXST

I hvilken kommune bodde du da du fylte 1 arr?

Hvordan var de ohonomiske forhold i familien under din oppyekst?
Meget gode
Gode
Vanskelige
Meget vanskelige

Hoor mange av de forste 3 arene ay ditt liv

- bodde du i by?
- hadde dere katt eller hund i hiemmet? \qquad a!

Hoor mange av de forste 15 årene av ditt liv
-bodde du i by?

- hadde dere katt eller hund i hiemmet? \qquad ar
ár

Heem bor du sammen med?
Sett att kyyss for heert sporsmall og angi anta
Ektetelle/samboer
Andre personer over 18 är
Personer under 18 af
\qquad

Hvor mange av barna har plass i barneliage?
43 \qquad
$\begin{array}{ll}\text { Hvilken type bolig bor du i? } \\ \text { Enebalig/vilia } \\ \text { Gärdsbruk } \\ \text { Blokkiterrasseleilighet } & \\ \text { Rekkehus/2-4 mannsbolig } & \text { Annen bolig }\end{array}$
Hvor stor er din boenhet? \qquad m^{-}
I omtrent hvilket âr ble boligen bygget?
Er boligen isolert etter 1970?
Bor du i underetasje/kjeller?
Hvis "Ja", er gulvelegget lagt pá betong?
Hvordan er boligen hovedsakelig oppvarmet?
Elektrisk oppvarming ...
Vedfyring
Sentralvarmeanlegg oppwarmet med:
\quad Parafin
Elektrisitet
Er det heldekkende tepper i stua?
Er det katt i bollgen?
Er det hund i boligen?

Er det hund i boligen?

ARBEDB

Hvis du eri lonnet eller ulonnet arbeid. fwordan vil du beskrive ditt arbeid?
For det meste stillesittende arbeid?
(f eks skrivebordsarbeid, montering)
Arbeid som krever at du gar mye?
(f ehss ahspedtorarb. fetf industriarb, undervissing)
Arbeid hvor du gâr og tofter mye?
(f.eks. postbud plerer bygningsarbeid)
Tungt kroppsarbeid?
(f.eks, skogsarh. lungt jordoruksarb. tungt byon arh)

Kan du selv bestemme hvordan arbeidet dift skal

legges opp?

Nei, ikke i det hete tatt
l liten grad
Ja, i stor grad
Ja. det bestemmer jee selv
a du skiftarbeid, nattarbeid eller gảr vakter?

Har du noen av folgende yrker (heltid eller delticl)?
Sett ett kryss for huert sporsma!
Sjafor
Bonde/gârdbruker
Fisker

EATE SYCIDMME:

Har du noen gang hatt
Sett ett hryss for hwert sporsmatl. Oppgi alderen ved hendelsen. Huis det hat skjedd flere ganger, hoor gammel var du sisto gang?

du eller har du hatt:	
Sett eft kryss for huert sporsmal.	Ja Nei
Kreftsykdom	$\square \square$
Epilepsi (tallesyke)	\square
Migrene	\square
Kronisk bronkitt	$\square \square$
Psoriasis	$\square]$
Benskjorlei (osteoporose)	$\square \square$
Fibromyalgifitibrosittkronisk smertesyndram	$\square \square$
Psykiske player som du har sokt hjelp for	$\square \square$
Stoffskiftesykdom (skjoldbruskkjertel)	$\square 1]$
Sykdom i leveren	$\square \square$
Nyrestein.... 103	$\square \square$
Blindtarmsoperasjon	$\square \square$
Allergi og overiolsomhet	
Alopisk eksem (f.eks, barneeksem)	\square
Hảndeksem.	$\square \square$
Haysnue.	\square
Matuareallergi.........tos	$\square \square$
Annen overfolsomhet (ikke allergi)	$\square \square$

Hvor mange ganger har du hatt forkjolelse,
inituensa, "ræksjuka" og lignende siste halvarr?...11 \qquad
Ja Nei
Har du hatt dette siste 14 dager?

Kryss av for de slekiningene som har
eller har hatt noen av sykdommene:
Kryss av for "fngerf" his ingen av slektningene har hatt sykdommen.

SYMPTOME:

Hoster du omtrent daglig I penoder av áret? Hvis "Ja":
Er hosten vanligvis ledsaget av oppspytt? 776
Har du hatt slik hoste så lenge som i en 3 manneders periode í begge de to siste ár?m
Has du hatt episoder med piping i brystel? 153
Hvis "Ja", har dette oppstâtt
Sett ett kryss for Iwert sporsmal.
On natten \qquad 1 n 11
Ved luttveisinfeksjoner
Ved fysiske anstrengelser
Ved sterk kulde.
Har du merket anfall med plutselig endring i pulsen eller hjerterytmen siste arr? \qquad 185
Hvor otte er du plaget av sommeshet? Aldri, eller noen fax ganger I året.. 1-2 ganger i manneden. \qquad $18 \square$
Omtrent en gang i uken
\qquad ?
Mer enn en gang i uken

Hvis du er plaget ay sounloshet i perioder, nảr på âret er du mest plaget?

Har du det siste àret vart plaget av sounloshet slik at det har gått ut over arbeidsevnen?

Hvor ofte er du plaget av hodepine?
Sjelden eller aldri. \qquad1 限

En eller flere ganger i mảneden.
En eller flere ganger i uken. I2 Dadio

Hender det at tanken på å fả alvortig sykdom bekymrer deg?

Ganske mye 1

Hvor mange ganger har du siste året, på grunn av egen helse eller sykdom, vart:

Antall ganger Seff O hvis du Ikke har hatt slik kontakt. siste dr

Hos annen legespesialist utentor sykehusPå poliklinikk	
	Innlagt i sykehus
	Hos bedriftslege.
	Hos fysioterapeut. 203
	Hos kiropraktor.
	Hos akupunktor
	Hos naturmedisiner (homoopat, soneterapeut o.l.)
	Hos hảndspảlegger, synsk eller "leser*

Har du del sisle årel periodevis brukt noen av de folgende midier daglig eller nesten daglig？
Angi hvor mange máneder du brukte dem．
Soft a fuis du ikke har bruki milliene．
Legemidler

Har du de siste 14 dager brukt fulgende legemidler eller kosttilskudd？

Sett eft kryss for hivert sporsmall．	Ja
Legemidler	
Smertestillende medisin ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．23：	
Febersenkende medisin	
Migrenemedisin	
Eksemsalve．	
Hjertemedisin（ikke blodtrykksmedisin）	
Kolesterolsenkende medisin ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．24？	
Sovemedisin．	
Beroligende medisin．	
Medisin mot depresion	
Annen nervermedis	
Syrenovtraliserende midler ．．．．．．．．．．．．．．．．．．．．．．．．．． 24 ．	
Magesârsmedisin	
Insulin．	
Tabletter mot diabetes（sukkersyke）．	
Tabletter mot lavt stofiskifte（thyroxin）	
Kortisontabletter，．．．2s＊	
Annen medisin．．	
Kosttilskudd	
derntabletter	－
Kalktabletter eller benmel	
Vitamin D－tilskudd	－
Andre vitamintilskudd．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 25 ？	\square
Tran eller liskeoljeka	

Hwor mange av disse gode vemene har du kontakt med minst en gang I måneden？ \qquad 26 \qquad la Nei
Faler du at du har nok gode venner？．．．．．．．．．．．．．．．363 NeI

Heor ofte tar du vanliguis del i foreningsvirksomhe som f．eks．syklubb，idrettslag．politiske lag． religiose eller andre foreninger？
I．

Heis ilu bruker smor eller margarin pa⿱夂口 brodet．Iver mange skiver reker en liten porsjonspakning vanligvis til？Vi tenker pă slik porsjonspakning som du fât på fly，pả kafé o．l．（10－12 gram）．

Den rekker til omtrent
. .255 \qquad skiver

Hua slags fett hili vanliguis brukt til matlaging
（ikke pá brodet）i din husholdning？

Hva slags type brod（Kjopt eller hjemmebakl）spiser du vanligvis？ Sett eft eller to kryss！Loft Fint Kneip－Grov－Knekke－

Hoor mye（i antall glass，kopper，poteter eller bradskiver）spiser eller drikker du vanliguis daglig av folgende matvarer？
Kryss av for alte matuarene．
 Lettmelk（sot eller sur）（glass）

0 enn 1 1－2 3.4 Mer

Hyor mange ganger 1 uka spiser du vanligvis lolgende matvarer？
Kryss ar for alle masharene．
Farre
Aldri $\begin{array}{r}\text { ennt } \\ 1\end{array}$
Yoghurt
Kokt eller stekt egg \qquad $200 \square$
\square Frokostblanding／havregryn o．l． \square
\square
\square 1
\square
\square
\square $\begin{array}{ll}2 \cdot 3 & 4.5 \\ \square & \square \\ \square & \square \\ \square & \square\end{array}$
Middag med
－rent kjott．
－polserfkjottpudding／－kaker
－feit fisk（f．eks．laksfuer）．．．．
－mager tisk（i，eks，torsk）．
－flskeboller／－pudding／－kaker．
－gronnsaker
Majones，remulade o．I．
Gulrotter．． \qquad
Blomkalkallbrokkoli
Epler／parer
Appelsiner mancariner o．
Sukketholdige leskedrikker
Sukkerfrie（＂Light n ）leskedrikker
Sjokolade．
Vafler．kaker 0．1．．．．．．．．．．．．．．．．．sor －LLLLULLLLLLLLL

 ～ロロロロடロロローロロロロロ ロாロロロロロாடロロロロロロ

SION	
Hvor gammel var du da du fikk menstruasjon forste gang? ..7x \qquad àr	
Hyis du fke lenger far menstruasjor. hoor gammel var du da den sluttet? \qquad \qquad àr	
Nảr du sor bont fra svangerskap og barselsperiotle. har du noen gang vael bladningstri i minst 6 manneder? \qquad 133	
Hvis "Ja", hvor mange ganger? ${ }^{3 / 3}$ -	3._ganger
Hvis du fremdeles har menstruasjon eller er gravid: Huilken dato startet din siste menstruasjon? 333	thag! mndl ap $33+1$
Bruker du vanligvis smertestillende legemidler for at dempe menstruasjonsplager? \qquad 339	$\begin{array}{lll} \\ & \text { Ja } & \text { Nei } \\ 39 & \square & \square \end{array}$

Omtrent hvor mange ganger har du bevisst provd å slanke deg? Sett 0 hvis ingen forsok.

$- \text { for } 20$								
- sene								

Hvis du har slanket deg, omtrent hvor mange kilo har du pả det meste gâtt ned i vekt?

- for 20 ar \qquad .. 216 \qquad kg
- senere. .320 \qquad kg

Hvilken vekt ville du være tllfreds med (din "trivselsvekt)?

3 \qquad kp

UFRTMILIE DIMTISRNASUE

Hear ofte har du ufrivillig ufinlekkasje?

Dlne kommentarer:

BMATHEBGIR

Hvor mange barn har du fodt? \qquad
\qquad barn
Er ou gravid nâ?n.. 312 Ja Nel Uslkizer

Har du i forbindefse med svangerskap
hatt for hayl blodtrykk og/eller eggebvile Ja Nei
(protein) I urinen?

Hvis "Jax, i hvilket svangerskap?	Svangerskap	
	Farste	Senere
For		-
Eggehvire i u		

Hyis du har fodt, iyll ut for huert barn bamets lodselsắr og omtrent antall mảneder du ammet barnet,

Hus du bruker p-pille, hormonspiral eller ostrogen: huilket merke bruker du nå?

37

Hvis du bruker eller har brukt p-pille:
Alder da du begynte med P-piller? $3 \times n$
Hvor mange ảr har du thsammen brukt p-piller?38? ___ arr
Dersom du har fodt hvor mange âr brukte du
P-piller for lorste fodsel? \qquad ar

Hvis ou har sluttet a bruke P-piller: Alder da du sluttet? \qquad and

English translation of the second questionnaire used in the health survey in Tromsø 1994/95 for subjects younger than 70 years.

Based on translations by K. McCafferty and A. Clancy

TROMSØ HEALTH SURVEY

The main aim of the Tromse survey is to improve our knowledge of heart and circulatory conditions in order to aid prevention. The survey is also intended to improve our knowledge of cancer and other general conditions, such as allergies, muscle pains and nervous conditions. We would therefore like you to answer some questions about factors that may be relevant for your risk of getting these and other illnesses.

This form is part of the Health Survey, which has been approved by the Norwegian Data Inspectorate and the Regional Board of Research Ethics. The answers will only be used for research purposes and will be treated in strict confidence. The information you give us may later be stored along with information from other public health registers in accordance with the rules laid down by the Data Inspectorate and the Regional Board of Research Ethics.

If you are unsure about what to answer, tick the box that you feel fits best.

The completed form should be sent to us in the enclosed pre-paid envelope.

Thank you in advance for helping us.
Yours sincerely,

Faculty of Medicine	National Health
University of Troms	Screening Service

If you do not wish to answer the questionnaire, tick the box below and return the form. Then you will not receive reminders.

1 do not wish to answer the questionnaire.

Date for filling in this form: Day/Month/Year

CHILDHOOD/YOUTH
What Norwegian municipality did you live in at the age of 1 year?

If you did not live in Norway, give country of residence instead of municipality.

How was your family's economic situation while you were growing up?

Very good	\square
Good	\square
Difficult	\square
Very difficult	\square

For how much of the first three years of your life
-did you live in a town/city? __ Years

- did your family have a cat or dog in the home?
\qquad
For how much of the first 15 years of your life
- did you live in a town/city? \qquad
- did your family have a cat or dog in the home?

Years
HOME
Who do you live with?
Tick once for each item and give the number of persons.
YES NO Number

Spouse/partner	\square	\square	-
Other persons over 18 years	\square	\square	-
Persons under 18 years	\square	\square	

How many of the children go to day care/kindergarten/ nursery school?

What type of home do you live in?
Villa/ detached house
Farm

Flat / Apartment \square
Terraced /semi-detached house \square
Other \square
How big is your home? ___m2
Approximately what year was your home built?
YES NO

Has your home been insulated after 1970?
Do you live on the bottom floor/cellar level? $\quad \square \quad \square$
If "YES", is the floor laid on concrete? $\quad \square$

SYMPTOMS

Do you cough approximately every day of the year?	YES	NO
If "Yes": Is your cough productive?	\square	\square
Have you had this kind of cough for as long as 3 months in each of the last two years?	\square	\square
Have you had periods of wheezing in your chest?	\square	\square
If "Yes", has this occurred:		
Tick one box only for each item.		
At night	\square	\square
In connection with respiratory infections	\square	\square
In connection with physical exertion	\square	\square
In connection with very cold weather	\square	\square
Have you noticed sudden changes in your pu or heart rhythm in the last year?	\square	\square
How often do you suffer from sleeplessness?		
Never, or just a few times a year		\square
1-2 times a month		-
Approximately once a week		\square
More than once a week		\square

If you suffer from periods of sleeplessness, what times of the year does it affect you most?

No particular time of year
Especially during the dark winter months
\square
Especially during the midnight sun period
\square
Especially in spring and autumn
Have you in the last twelve months suffered from
sleeplessness to the extent that it has affected your ability to work?

YES - NO \square
How often do you suffer from headaches?
Seldom/Never
\square
Once a month or more
Once a week or more
\square
Every day
\square

Does the thought of getting a serious illness ever worry you?

Not at all
\square
Only a little
\square
Some
-

USE OF HEALTH SERVICES

How many visits have you made during the past year due to your own health or illness?Tick 0 if you have not had such contact

Number of times the past year
To a general practitioner (GP)/
Emergency GP
Psychologist or psychiatrist
Other medical specialist (not at a hospital) \qquad
Hospital out-patient clinic

Hospital admission
Medical officer at work
Physiotherapist
Chiropractor
Acupuncturist
Dentist
Alternative medical practitioner
(homoeopath, foot zone therapist, etc.)
Healer, Faith healer, clairvoyant

MEDICATION AND DIETARY SUPPLEMENTS

Have you for any length of time in the past year used any of the following medicines every day or almost daily?
Indicate how many months you used them for.
Write 0 for items you have not used.
Medication:
Medication:
Painkillers
Sleeping pills
Tranquilizers
Antidepressants
Allergy drugs
Asthma drugs
Dietary supplements
Iron tablets
Calcium tablets or bonemeal
Vitamin D supplement
Other vitamin supplements
Cod liver oil or fish oil capsules
mths
mths
mths
mths
mths
me_ms

Have you in the last 14 days used the following medicines or dietary supplements?
Tick one box only for each item.

Medicines	YES	NO
Painkillers	\square	\square
Antipyretic drugs (to reduce fever)	\square	\square
Migraine drugs	\square	\square
Eczema cream/ointment	\square	\square
Heart medicine (not blood pressure)	\square	\square
Lipid lowering drugs	\square	\square
Sleeping pills	\square	\square
Tranquilizers	\square	\square
Artidepressants	\square	\square
Other drugs for nervous conditions	\square	\square
Antacids	\square	\square
Gastric ulcer drugs	\square	\square
Insulin	\square	\square
Diabetes tablets	\square	\square
Thyroxin tablets (for metabolic disorder)	\square	\square
Cortisone tablets	\square	\square
Other medicine(s)	\square	\square
Dietary supplements		
Iron tablets	YES	NO
Calcium tablets or bonemeal	\square	\square
Vitamin D supplement	\square	\square
Other vitamin supplements	\square	\square
Cod liver oil or fish oil capsules	\square	\square

FRIENDS

How many good friends do you have whom you can talk confidentially with and who give you help when you need it? good friends Do not count people you live with, but do include other relatives!

How many of these good friends do you have contact with at least once a month?

Do you feel you have enough good friends? YES NO \square
How often do you normally take part in organised gatherings, e.g., sewing circles, sports clubs, political meetings, religious or other associations?

Never, or just a few times a year	\square
1-2 times a month	\square
Approximately once a week	\square
More than once a week	\square

More than once a week

DIET

If you use butter or margarine on your bread, how many slices does a small catering portion normally cover? By this, we mean the portion packs served on planes, in cafés, etc. (i.e., $10-12 \mathrm{~g}$)

A catering portion is enough for about ___ slices.
What kind of fat is normally used in cooking (not on the bread) in your home?

Creamery butter	\square
Hard margarine	\square
Soft margarine	\square
Butter/margarine blend	\square
Oils	\square

What kind of bread (bought or home-made) do you usually eat? Tick one or two boxes!
The bread I eat is most similar to
White bread
Light textured brown bread
\square
Ordinary brown bread
Coarse brown bread
Crisp bread
How much (in number of glasses, cups, potatoes or slices) do you usually eat or drink daily of the following foodstuffs? Tick one box for each foodstuff.
Less More

Full cream milk
(fresh or soured) (glasses)
Semi-skimmed milk (low-fat)
(fresh or soured) (glasses) Skimmed milk (fresh or soured) (glasses)
Tea (cups)
Orange juice (glasses)
Potatoes
Slices of bread in total (incl. crispbread)

\square	\square	\square	\square	\square	\square
\square	\square	\square	\square	\square	\square
\square	\square	\square	\square	\square	\square
\square	\square	\square	\square	\square	\square
\square	\square	\square	\square	\square	\square
\square	\square	\square	\square	\square	\square
\square	\square	\square	\square	\square	\square

Slices of bread with fish
(e.g., mackerel in tomato sauce - lean meat (e.g., ham)

- fat meat (e.g., salami)
- cheese (e.g. Gouda/ Norvegia)
- brown cheese
- smoked cod caviar
- jam and other sweet spreads
Less

More

0 than 1 1-2 3-4 5-6 than 6

How many times per week do you normally eat the
following foodstuffs? Tick a box for all foodstuffs listed.
Less Roughly

	Never than 1 12-3 4-5 every day					
Yoghurt	\square	\square	\square	-	\square	\square
Boiled or fried egg	\square	\square	\square	-	\square	\square
Breakfast cereal/ oat meal, etc.	\square	\square	\square	\square	\square	\square
For dinner						
- meat	\square	\square	\square	\square	\square	\square
- sausage/meatloaf/ meatballs	\square	\square	\square	\square	\square	\square
- fat fish (e.g., salmon/ redfish)	\square	\square	\square	\square	\square	口
- lean fish (e.g., cod)						
- fishballs/fishpudding/ fishcakes	/	\square	\square	\square	\square	\square
- vegetables	\square	\square	\square	\square	\square	\square
Mayonnaise, remoulade	\square	\square	\square	\square	\square	\square
Carrots	\square	\square	\square	\square	\square	\square
Cauliflower/cabbage/						
broccoli	\square	\square	\square	\square	\square	\square
Apples/ pears	\square	\square	\square	\square	\square	\square
Oranges, mandarines	\square	\square	\square	\square	\square	\square
Sweetened soft drinks	\square	\square	\square	\square	\square	\square
Sugarfree ("Light")						
soft drinks	\square	\square	\square	\square	\square	\square
Chocolate	\square	\square	\square	\square	\square	\square
Waffles, cakes, etc.	\square	\square	-	\square	\square	\square

ALCOHOL

How often do you usually drink beer? wine? spirits?
Never, or just a few times a year
1-2 times a month
Roughly once a week
2-3 times a week
Roughly every day

WEIGHT REDUCTION

About how many times have you deliberately tried to lose weight? Write 0 if you never have

- before age 20
- after age 20
\qquad times
\qquad times

If you have lost weight, about how many kilos have you ever lost at the most?

$$
\begin{array}{lll}
\text { - before age } 20 & \text { times } \\
\text { - after age } 20 & = & \text { times }
\end{array} \quad \begin{aligned}
& \mathrm{kg} \\
& \mathrm{~kg}
\end{aligned}
$$

What weight would you be satisfied with (your "ideal weight")? \qquad
URINARY INCONTINENCE
How often do you suffer from urinary incontinence?
Never
Not more than once a month
Two or more times a month
\square
Once a week or more
\square

Your comments:

TO BE ANSWERED BY WOMEN ONLY

MENSTRUATION

How old were you when you had your first menstruation? years
If you no longer menstruate, how old were you when you stopped having menstruation? years

Apart from pregnancy and after giving birth, have you ever stopped having menstruation for 6 months or more?
If "Yes", how many times?

If you still menstruate or are pregnant:
What date did your last menstruation begin?
day/month/year
\qquad
Do you normally use painkillers to relieve period pains? YES [NO
PREGNANCY
How many children have you
given birth to? \qquad children
Are you pregnant at the moment? YES NO Don't know
During pregnancy, have you had high blood pressure YES \square NO

If "Yes", during which pregnancy?	Pregnancy	
	First	Later
High blood pressure	\square	\square
Proteinuria	\square	\square

If you have given birth, fill out for each child the year of birth and approximately how many months you breastfed the child.
Child: Year of birth: Number of months breastfed:

If you use contraceptive pills, hormonal intrauterine device, or oestrogen, what brand do you currently use?

If you use, or have ever used, contraceptive pills:
Age when you began taking the pill?
How many years in total have you taken the pill?
years
If you have given birth, how many years did you take the pill before your first child?
If you have stopped taking the pill:
Age when you stopped? \qquad

Appendix 6
Questionnaire II (subjects aged ≥ 70 years) Tromsø Study 1994-1995
Original Norwegian version and English translation

Helseundersøkelsen i Tromsø

for dem som er 70 år og eldre.

Hovediormålet med Tromsqundersgkelsene er à skaffe ny kunnskap om hjerte-karsykdommer for à kunne forebygge dem. De skal ogsà ake kunnskapen om kreftsykdommer og alminnelige plager som f.eks. allergier, smerter i muskulatur og nervase lidelser. Endelig skal de gi kunnskap om hvorledes den eldste delen av befolkningen har det. Vi ber deg derior svare pà spersmảlene nedenfor.

Skjemaet er en del av Helseundersakelsen som er godkjent av Datatilsynet og av Regional komite for medisinsk forskningsetikk. Svarene brukes bare til forskning og behandles strengt fortrolig. Opplysningene kan senere bli sammenholdt med informasjon fra andre offentlige helseregistre etter de regler som Datatilsynet og Regional komite for medisinsk forskningsetikk gir.

Hvis du er i tvil om hva du skal suare, sett kryss i den ruten som du synes passer best.

Det utfylte skjema sendes i vedlagte svarkonvolutt. Portoen er betalt.

Pà Iorhånd takk for hjelpenl

Med vennlig hilsen

Fagområdel medisin
Universitetet i Tromss
Statens helseundersakelser

Hyis du ikke ansker ả besvare sporreskjemaet, seft kryss I ruten under og returner skjemaet. Da slipper du purring.

Jeg ansker ikke å besvare sparreskjemaet. \qquad 17

Dag Mnd Ár
Dato for utfylling av skjema: \qquad 18 \qquad

I huilken kommune bodde du da du fylte 1 är?

Hvis tu Ihke bodde I Norge, oppgi land I sledel for hommune.
Hvordan var de gkonomiske lorhold i familien under din oppvekst?
Meget gode
Gode
Vanskelige
Meget vanskelige

Hvor gamle ble dine loreldre?
Mor ble. .30 àr
Far ble
32 \qquad

B0116	
Hvem bor du sammen med?	
Sett eft kryss for huert sparsmál og angi antall. Ja	Nel Antall
Ektefelle/samboer.....................................34	\square
Andre personer over 18 àr	\square
Personer under 18 àr $\quad \square$	\square
Hvilken type bolig bor du i?	
Enebolig/villa $\square_{\text {l }}$	
Gärdstruk \square_{2}	
Blokk/terrasselellighet	
Rekkehus/2-4 mannsholig	
Annen bolig \square_{5}	
Heor lenge har du bodd i bollgen du bor I ná? a _ _ ár	
, Ja	Nel
Er boligen tilpasset til dine behov?	」
Hvis "Nei", er det probiemer med:	
Plassen i boligen \quad [\square	\square
Ujevn, for hay eller for lav temperatur \qquad	\square
	\square
Toalet	\square
	\square
Vedlikehold - 5_{0}	\square
Annel (spestliser) [5^{\square}	-
Unsker du à flytte till en eldrebolig? ${ }^{\text {a }}$	\square

TIDLIEERE ARSEID OE BKONOMI

Hyordan vil du beskrive det arbeidet du hadde de siste 5-10 årene for du ble pensjonist?

For del meste stillesittende arbeid?	$\square 1$
(l.eks. skrivebordsarbeld, montering)	
Arbeid som krever at du går mye?	
Arbeid huor du gār og lafter mye?	■s
(l.eks. postbud, pleier, bygningsarbieid)	
Tungt kroppsarbeid?	$\square+$
(t.als. skogsart., iungl jordbruksart., lungt bygn. art	

Har du hatt noen av filgende yrker (hellid eller deltid)?

Hvor gammel var du da du ble pensjonert? \qquad .57 \qquad ár

Hva slags pension har du?
Minstepensjon \qquad 59

Hvordan er din bkonomi nå?
Meget god
God
Vanskelig
Meget vanskelig
\qquad

HELSE OE STKODM

Er helsen dln blilt forandret det siste àret?
Ja, därligere
Nel , tiforandret
Ja, hedre

Hvordan synes du at helsen din er nả i forhold til andre på samme alder?

Mye dârligere	Litt dărligere
Omtrent lik	Litt bedre
Mye bedre	

ECNE SYKOOMMER

Har du noen gang hatt:
Sefl ell kryss for heart sparsmal. Oppgi alderen ved hendelsen.
Huls det har skjedd flere ganger, hvor gammel var du siste gang?

Lảrhalsbrudd	Alder
Brudd ved håndledd/underarm Bi,	
Nakkesleng (whiplash)............................0	
Skada som ferte til sykehuslnnleggelse 73	
Sår pà magesekken................................nヶ	
Sår pả tolvtingertarmen79	
Magesår-operasjon82 \square	
Dperasion pả halsen ._L	
Har du eller har du hatt:	
Selt elt kryss for hvert sparsmal.	Nel
Krefitsykdom .]
Epilepsl (Iallesyke)	$\square \square$
Migrene	\square
Parkinsons sykdom	\square
Kronisk bronkitt	\square
Psoriasis	\square
Benskjarhet (osteoporose)	\square
Flbromyalg//ilbrosith/kronisk smertesyndrom	\square
Psykiske plager som du har selt hjelp for.	\square
Stofiskiftesykdom (skjoldbruskkjertel)	\square
Sykdom I leveren...	\square
Gjenlatt, ufrlvilllg urinlakkasje	\square
Grann stær	\square
Grả stær	$1 \square$
Slltasjegikt (artrose)	\square
Leddgikt	-
Nyrestein	-
Blindtarmsoperasjon.	\square
Allargi og overiglsomhet	
Atopisk eksem (I.eks. barneeksem)	\square
Hảndeksem.	\square
Heysnue... 108	\square
Matvareallergi.	\square
Annen overiflsomhat (ikke allergi)	\square

Hyor mange ganger har du hatt forkjaleise,
influensa, "ræksjuka" og Ilgnende siste halvàr? \qquad ganger

SYKIOM I FAMIIIEN

Kryss av for de slekiningene som har eller har halt noen av sykdommene:
Kryss av for "ingent" huis ingen av slehtningene har hatt syidommen.

Hyor ofte er du plaget av savnlashet?
Aldrl, eller noen tå ganger I áret. ${ }_{106}$ D.
1-2 ganger I máneden. m_{2}
Omtrent en gang i uken
Mer enn en gang I uken a

Hyis du er plagef av savnlashet I perioder,
nảr pảa ảret er du mest plaget?

Ingen spesiell tld
Sarilg I marketiden
Sarilg i midnattsoltiden
Smrlig vå 0 g hast

Pleier du à ta en lur pả dagen?
Fgler du at du vanllguls tảr nok sgvn?

Ja Vanskelig Nei
Kan du hare vanlig tale
(evt. med hereapparat)?
Kan du lese (evt. med briller)?
Er du avhengig av noen av disse hjelpemidlene?

BRUK AV HELSEVESENET	
Hvor mange ganger har du siste àret, pȧ grunn av egen helse eller sykdom, vært: Antall ganger Sett Q huis du ikke har hatt sill konlakt. siste ár	
Hos vanlig lege/legevakt	238
Hos psykolog eller psykiater.	
Hos annen legespesialist utenfor sykehus.	
Pȧ poliklinlkk	. 24
Innlagt i sykehus	
Hos fysioterapeut	
Hos kiropraktor	240
Hos akupunkigr	
Hos tannlege	
Hos fotterapeut	246
Hos naturmedisinet (homeopat, sonalerapeut o.I.	
Hos hẻndspảlegger, synsk eller "leser"	

Har du hiemmehjelp?
Privat
Kommunal

Har du hiemmesykeplele?

Er du forngyd med helse- og

Er du trygg pả at du kan fả hjelp av helse- og hjemmetienesten hvis du trenger det?
Trygg
Ikke tryg
Svan utryg
Vet ikke

LEAEMDLER OE KOSTTISKUDI

Har du det slste äret periodevls brukt noen av de felgende midler daglig eller nesten daglig?
Angl hvor mange mảneder du brukte dem.
Sett Q huis du lhe har brukt midiene.
Legemidler

Smertestiltende .. 259	mad.
Sovemedisin	nnd.
Beroligende midler,	mad.
Medisln mot depresjon 265	mod.
Allergimedisin	mad.
Astmamedisin.	nnd.
Hjertemedisin (ikke blodtrykksmedisin).........271	nnd.
Insulin	and.
Tabletter mot dlabetes (sukkersyke)	mod.
Tabletter mot lavt stofiskifte (thyroxin)277	nod.
Kortisontabtetter	and.
Midler mot forstoppelse	mnd.
Kosttilskudd	
Jerntabletter	mnd.
Vitamin D-tilskudd	mad.
Andre vitamintilskudd	mnd.
Kalktabletter eller benmel289	and.
Tran eller fiskeoljekapsler.	mnd.

Hvor ofte tar du vanligvis de I foreningsvirksomhat som I.eks. syklubb, idreltslag, politiske lag. rellglose eller andre foreninger?

Aldri, eller noen fa ga
1-2 ganger I mảnaden.
Omtrent en gang i uken
Mer enn en gang i uken

KOSTVANE:
Hyor mange måltuder spiser du vanliguis daglig Antall (middag og bradmáltid)?

$$
302-
$$

\qquad
Hvor mange ganger i uken spiser du varm middag?..304 \qquad
Hva slags type brad (kjapt eller hjemmebakt) splser du vanllgvis?

S	Lot				
Sot	Loff	hint	Knelp"	Grove	Knekk bred
radtypen Ilgner mest på:		\square	\square	\square	3
	306				3%

Hva slags fett blir tll vanilgvis brukt tll
matlaging (ikke pà brgdet) i din husholdning?
Melerlsmar... 311
Hard margarln..
8løt (Soft) margarin
Smar/margarin blanding
Oljer

Hvor mye (I antail glass, poteter eller brodsklver) splser/drikker du vanligvis daglig av ielgende matvarer?

Hvor mange ganger L uka spiser du vanligvis
İlgende matvarer?

TRIVSEL

Hvordan trives du med à bll gammel - alt l alt?

Godt. Ganske bra. Opp og ned

Hvordan ser du pã livet fremover?

BESVARES BARE AV KVINNER

Hvor gammel var du da menstruasjonen sluttet?33 \qquad ar
SVaNIM ERSKAP
Hyor mange barn har du fadt?

Hyls du har igdt, fyll ut lor hvert barn barnets
fadselsår og omtrent antall måneder du ammet barnet.
Hvis du har ladt mer enn 6 barn, noter todselsår og antall máneder med amming for dem nederst pả siden.

Barn:	Fadselsàr:	Antall mȧneder med amming:
1	$3+2$	
2	316	
3		
4		
5	${ }_{3} 38$	
6		
Har du i forblndelse med suangerskap		
hatt for hoyt blodtrykk og/eller eggehvite Ja Nel		
(prote	urinen? .-...............................	
Hvis "Ja", i hvilket svangerskap? Svangerskap		
For hayt blodtrykk Farste Senere		
Eggehvlte i urinen...................................369		
BSTEOHENMEISSIM		
Bruker du, eller har du brukt, astrogen-medisin?		
Nă Far Aldiri		
Tabletter eller plaster		
Krem eller stikkpiller - .-.......... 372		
Hyis du bruker astrogen, hvilket merke bruker du nå?		

Dine kommentarer:

English translation of the second questionnaire used in the health survey in Tromsø 1994/95 for subjects 70 years or older.
 Based on translations by Kevin McCafferty and Anne Clancy.

TROMSØ HEALTH SURVEY
 for the over 70s

The main aim of the Tromsø survey is to improve our knowledge of heart and circulatory conditions in order to aid prevention. The survey is also intended to improve our knowledge of cancer and other general conditions, such as allergies, muscle pains and nervous conditions. The ultimate aim is to gain an overview of the general health of the elderly population. We would therefore like you to answer the questions below.

This form is part of the Health Survey, which has been approved by the Norwegian Data Inspectorate and the Regional Board of Research Ethics. The answers will only be used for research purposes and will be treated in strict confidence. The information you give us may later be stored along with information from other public health registers in accordance with the rules laid down by the Data Inspectorate and the Regional Board of Research Ethics.

If you are unsure about what to answer, tick the box that you feel fits best.

The completed form should be sent to us in the enclosed pre-paid envelope.

Thank you in advance for helping us.
Yours sincerely,

Faculty of Medicine	National Health
University of Tromsø	Screening Service

If you do not wish to answer the questionnaire, tick the box below and return the form. Then you will not receive reminders.

I do not wish to answer the questionnaire.
\square

Date for filling in this form:
Day/Month/Year

CHILDHOOD/YOUTH

What Norwegian municipality did you live in at the age of 1 year?

If you did not live in Norway, give country instead of municipality.
How was your family's financial situation while you were growing up?

Very good	\square
Good	\square
Difficult	\square
Very difficult	\square

Very difficult
\square
How old were your parents when they died? Mother
years
Father \qquad

HOME

Who do you live with?
Tick one box for each item and give the number of persons. YES NO Number
Spouse/partner $\square \square$
Other persons over 18 years
Persons under 18 years

\qquad

What type of home do you live in?
Villa/detached house \square
Farm \square
Apartment/flat in block/terrace
Terraced/semi-detached house \square
Other \square
How long have you lived in your present home? \qquad
Is your home adapted to your needs?
YES \square NO \square
If "No", do you have problems with:
Space
Variable temperature/too cold/too warm \quad
Stars\square

Toilet \square
Bath/shower $\quad \square$
Maintenance\square

Other (please specify)

Would you like to move into a retirement home?

PREVIOUS WORK AND FINANCIAL SITUATION

Which statement best describes the type of work you did for the last 5-10 years before you retired?

I was mainly seated while working
(e.g., desk/assembly work)

My work required a lot of walking
(e.g., shop assistant, housewife, teaching)
My work required a lot of walking and lifting
(e.g., postman, nurse, construction work)

I did heavy physical work
\square
(e.g., forestry, heavy agricultural work,
heary construction work)
Did you do any of the following jobs (full- or part-time)?
Tick one box only for each item. YES NO

Driver $\quad \square \quad \square$
Farmer \square

Fisherman
How old were you when you retired? \qquad
What kind of pension do you have?
Basic state pension
\square
Additional pension

How is your current financial situation?	
Very good	
Good	\square
Difficult	\square
Very difficult	\square

HEALTH AND ILLNESS
Has your state of health changed in the last year? Yes, it has got worse No, unchanged Yes, it has got better

How do you feel your health is now compared to others of your age?

Much worse	\square
A little worse	\square
About the same	\square
A little better	\square
Much better	\square

YOUR OWN ILLNESSES

Have you ever had:
Tick one box only for each item. Give your age at the time. If you have had the condition several times, how old were you last time?

	YES	NO	AGE
Hip fracture	\square	\square	-
Wrist / forearm fracture	\square	\square	-
Whiplash	\square	\square	\square
Injury requiring	\square	\square	-
hospital admission			
Stomach ulcer	\square	\square	-
Duodenal ulcer Stomach/duodenal ulcer operation	\square	\square	\square
Throat/neck surgery	\square	\square	\square

Have you ever had, or do you still have:
Tick one box only for each item.
YES

Epilepsy
Migraine \square

Chronic bronchitis \square

Psoriasis

Osteoporosis
Fibromyalgia/fibrositis/
chronic pain syndrom Psychological problems for which you have sought help
Thyroid disease
Liver disease
Thyroid disease
Liver disease Glaucoma
Cataract
Arthrosis (osteoarthritis)
Rheumatoid arthritis
Kidney stone
Appendectomy
Allergy and hypersensitivity
Atopic eczema (e.g., childhood eczema) \square
Hand eczema
Hay fever
\square
Food allergy
Other hypersensitivity (not allergy)

How many times have you had a cold, influenza (flue), diarrhea/vomiting, or similar in the last six months?
Have you had any of these in the last two weeks?
YES \square NO

ILLNESS IN THE FAMILY

Tick off relatives who have, or have ever had, any of the following conditions:
Tick "None" for conditions which none of your relatives have had. Mother Father Brother Sister Child None

	No	A little	A lot
Do you suffer from:	\square	\square	\square
Dizziness	\square	\square	\square
Poor memory	\square	\square	\square
Lack of energy	\square	\square	\square
Constipation	\square	\square	\square

Does the thought of getting a serious illness ever worry you?

Not at all	\square
Only a little	\square
Some	\square
Very much	\square

Very much

Dentist

Chiropodist
Alternative medical practitioner
(homoeopath, foot zone therapist, etc.)
Healer, Faith healer, clairvoyant
Do you have domestic help?
Yes No
Private
Municipal
Do you receive services from the district nurse? \square
Are you pleased with the health care and home assistance services your municipality supplies?

	Yes	No	Don't know
Assigned family GP	\square	\square	\square
District nurse	\square	\square	\square
Home assistance	\square	\square	\square

Do you feel confident that you can receive the health care and home assistance you require if you need it?

Confident	\square
Not confident	\square
Very unsure	\square
Don't know	\square

MEDICATION AND DIETARY SUPPLEMENTS

Have you for any length of time in the past year used any of the following medicines every day or almost daily?
Indicate how many months you used them for.
Write 0 for items you have not used.
Medication:

FAMILY AND FRIENDS

Do you have close relatives who can give you help and support when you need it? Yes \square No \square If "Yes", who can give you help?
Spouse/partner

Children	\square
Others	\square

How many good friends do you have whom you can talk confidentially with and who give you help when you need it? good friends
Do not count people you live with, but do include other relatives!
Do you feel you have enough good friends? Yes \square No \square

Do you feel that you belong to a community or group of people who can depend on each other and who feel committed to each other（e．g．，a political party，religious group，relatives，neighbours，work place，or organisation）？ Strong sense of belonging
Some sense of belonging
Not sure－

Little or no sense of beIonging
How often do you normally take part in organised gatherings，e．g．，sewing circles，sports clubs，political meetings，religious or other associations？
Never，or just a few times a year
1－2 times a month
Approximately once a week
More than once a week

DIET

How many meals a day do you normally eat（dinner and smaller meals）？

How many times a week do you eat a hot dinner？
\qquad
What kind of bread（bought or home－made）do you usually eat？Tick one or two boxes！

The bread I eat is most similar to
$\begin{array}{ll}\text { Light textured brown bread } & \square \\ \text { Ordinary brown bread } & \square\end{array}$
\square

Coarse brown bread \square

Crisp bread
What kind of fat is normally used in cooking（not on the bread）in your home？
Creamery butter
\square
Hard margarine
\square
Soft margarine
Butter／margarine blend
Oils
How much（in number of glasses，cups，potatoes or slices）
do you usually eat or drink daily of the following
foodstuffs？Tick one box for each foodstuff．
than 1－2 3－4 56
Milk of all types（glasses）$\quad \square \quad \square \quad \square \quad \square \quad \square \quad \square$
Orange juice（glasses）
Potatoes ロ ロ ロ ロ ロ ロ

Slices of bread in total
（incl．crispbread）
$\square \quad \square \quad \square \square \square$
Slices of bread with fish
（e．g．，mackerel in tomato sauce）$\quad \square \quad \square \quad \square \quad \square \quad \square \quad \square$
－cheese（e．g．，Norwegia）$\quad \square \quad \square \quad \square \quad \square \quad \square \quad \square$
－smoked cod caviar

> you normally eat the
following foodstuffs？Tick a box for all foodstuffs listed．
Less Roughly

	Never	than 1	1			ery day
Yoghurt	\square	\square	\square	\square	\square	\square
Boiled or fried egg	\square	\square	\square	\square	\square	\square
Breakfast cereal／ oat meal，etc．	\square	\square	［	\square	\square	\square
For dinner －meat	\square	\square	［	\square	\square	\square
－fat fish（e．g．，salmon／ redfish）	\square	\square	\square	\square	\square	\square
－lean fish（e．g．，cod）						

－vegetables（raw or cooked）	\square	\square	\square	\square	\square	\square
Carrots（raw or cooked）	\square	\square	\square	\square	\square	\square
Cauliflower／cabbage／brocooli	\square	\square	\square	\square	\square	\square
Apples／pears	\square	\square	\square	\square	\square	\square
Oranges，mandarines，etc．	\square	\square	\square	\square	\square	\square

WELL BEING

How content do you generally feel with growing old？ Good
Up and down \square
Bad

What is your view of the future？ Not too bad \square Quite worried \square

TO BE ANSWERED BY WOMEN ONLY

MENSTRUATION

How old were you when you had your first menstruation？
\qquad
How old were you when you stopped having menstruations？ \qquad

PREGNANCY

How many children have you given birth to？
\qquad
If you have given birth，fill out for each child the year of birth and approximately how many months you breastfed the child．If you have given birth to more than 6 children， note their birthyear and number of months you breastfed at the space provided below for comments．
Child：Year of birth：Number of months breastfed：

1		＿months
2		＿months
3		＿months
4		＿months
5		＿months
6		months
During pregnancy，have you had high blood pressure		
	nd／or proteinuria？	$\text { Yes } \square \text { No }$
If＂Yes＂，during which pregnancy？		
		Pregnancy
		First Later
	High blood pressure	ure $\quad \square$
	Proteinuria	$\square \square$

OESTROGEN

Do you，or have you ever used oestrogen：

	Now	Used to	Never
Tablets or patches	\square	\square	\square
Cream or suppositories	\square	\square	\square

If you use oestrogen，what brand do you currently use？

[^2]
Main ICD-9 codes
200 Non-Hodgkin lymphoma201 Hodgkin's disease
202 Other malignant neoplasms of lymphoid and histiocytic tissue
203 Multiple myeloma and immunoproliferative neoplasms
204 Lymphoid leukaemia
205 Myeloid leukaemia
206 Monocytic leukaemia
207 Other specified leukaemia
208 Leukaemia of unspecified cell type
238 Tumor of uncertain behaviour of other and unspecified sites and tissues
273 Disorders of plasma protein metabolism
280 Iron deficiency anaemia
281 Other deficiency anaemias
282 Hereditary haemolytic anaemias
283 Acquired haemolytic anaemias
284 Aplastic anaemia
285 Other and unspecified anaemias
286 Coagulation defects
287 Purpura and other haemorrhagic conditions
288 Diseases of white blood cells
289 Other diseases of blood and blood-forming organs

Haemoglobin and anaemia in a gender perspective: The Tromsø Study*

Abstract

Skjelbakken T, Langbakk B, Dahl IMS, Løchen M-L. Haemoglobin and anaemia in a gender perspective: The Tromsø Study. Eur J Hacmatol 2005: 74: 381-388. © Blackwell Munksgaard 2005. Abstract: Objectives: To examine the gender-specific distribution of hacmoglobin (Hb) and the World Health Organization (WHO) criteria for anaemia compared with the 2.5 percentile for Hb . Methods: A pop-ulation-based study from Tromsø, Northern Norway. All inhabitants above 24 yr were invited. In total, 26530 (75\%) had their Hb analysed. Results: The 2.5-97.5 percentile of Hb was 129-166 and 114-152 g/L for all men and women, respectively. In men, mean Hb decreased from 148 to $137 \mathrm{~g} / \mathrm{L}$ between 55-64 and $85+\mathrm{yr}$. In women, mean Hb increased from 132 to $137 \mathrm{~g} / \mathrm{L}$ between $35-44$ and $65-74 \mathrm{yr}$ and then decreased to $13 \mathrm{I} \mathrm{g} /$ L among the oldest.Using the WHO criteria for anaemia ($\mathrm{Hb}:<130$ and $<120 \mathrm{~g} / \mathrm{L}$, men and women respectively), the prevalence of anaemia in men increased with age from 0.6% aged $25-34$ to 29.6% aged $85+$. For women, the prevalence of anaemia varied from $9.1 \%, 2.2 \%$ and 16.5% in the age groups of $35-44,55-64$ and $85+\mathrm{yr}$, respectively. The WHO criteria gave a two to three times higher prevalence of anaemia compared with the 2.5 percentile of Hb in women, but the difference was small in men. Poor self-rated health was not associated with low values of Hb in women. In men, there was an association in some age groups. Conclusion: The WHO criteria for anaemia and the 2.5 percentile for Hb corresponded well for men, but not for women. The WHO criteria of anaemia may result in medicalization of healthy women.

Tove Skjelbakken ${ }^{1,2}$, Bodil Langbakk ${ }^{3}$, Inger Marie S. Dahl ${ }^{2}$, Maja-Lisa Lachen ${ }^{1,4}$
${ }^{1}$ Instutute of Communtry Medicine, University of Tromse. Tromse: ${ }^{2}$ Department of Medicine, University Hospital of North Norway, Tromsg; ${ }^{3}$ Depantment of Clinical Chemistry, University Hosptal of North Norway, Tromse: ${ }^{4}$ Department of Cardiology, University Hospital of North Norway, Tromse, Norway

Key words: haemoglobin, anaemia; prevalence, crasssectional, lifestyle, self-rated heaith, men; women

Correspondence. Tove Skjelbakken, Institute of Community Medicine. University of Tromse,
N-9037 Tromsa, Norway
Tel: +4777644816
Fax: +4777644831
e-mail: tove.skjelbakken@1sm.ut.no

Accepted for publication 2 December 2004

Measurement of haemoglobin (Hb) is one of the most frequently performed laboratory test in medical general practice as well as in hospitals. Mean Hb levels differ by age, gender and ethnicity ($1-5$), declines especially in elderly men and peaks after menopause for women (6,7). Not all doctors are aware of how Hb is related to age. Reference values are often defined from healthy younger subjects. The use of young adults as basis for reference values of Hb may lead to a large percentage of elderly subjects being misdiagnosed with anaemia. Anaemia may be defined by the World Health Organization (WHO) criteria (8) or by the values below the 2.5 percentile of the population.

The Tromse Study provided the opportunity to examine total birth cohorts of a free-living

[^3]population of men and women in Northern Norway. We studied the distribution of Hb and compared the application of the WHO criteria for anaemia with the 2.5 percentile for Hb . We also investigated the association between different modifiable lifestyle variables and Hb . In order to study the clinical effects of anaemia, we further assessed whether lower Hb levels were related to a lower self-rated health.

Materials and methods

Subjects

Tromsø is situated at sea level in Northern Norway. The population is predominately middle-class of Norwegian, Finnish and Sami origin. The Tromsø Study is a multipurpose, population-based, prospective study of total birth cohorts. Since 1974, the Institute of Community Medicine, University of Tromsø, has conducted the surveys, in cooperation with the National Health Screening Service.

Skjelbakken et al.

In 1994-95, all inhabitants above 24 yr were invited, and 27 I 53 subjects (77%) participated. In total, 75% of the invited population had their Hb analysed (12 542 men, I3 689 non-pregnant and 299 pregnant women). A protocol similar to that used during the previous surveys was followed (9 , 10). The Regional Board of Research Ethics approved the study. Each subject gave written informed consent.

Measurements

Two self-administrated questionnaires covered previous and present diseases and symptoms, self-rated health, use of drugs, tobacco and alcohol, food habits, physical activity and length of education.

A 5 mL non-fasting blood sample was drawn in a sitting position, from a cubital vein, into vacutainer tubes containing ethylenediaminetetraacetic acid (EDTA) as anticoagulant (K_{3}-EDTA $40 \mu \mathrm{~L}$, 0.37 m per tube) and analysed within $12 \mathrm{~h} . \mathrm{Hb}$ was analysed in an automated blood cell counter (Coulter Counter®); Coulter Electronics, Luton, UK) by the cyanmethhaemoglobin method. In case of pathological findings and for ethical reasons, the persons were offered further evaluation and follow up. Predefined criteria for evaluation was Hb $<100 \mathrm{~g} / \mathrm{L}$ or $\geq 180 \mathrm{~g} / \mathrm{L}$ for men and $<90 \mathrm{~g} / \mathrm{L}$ or $\geq 170 \mathrm{~g} / \mathrm{L}$ for women. One of three haematologists examined these subjects at the outpatients' clinic at the University Hospital of North Norway, Tromsø. Two doctors classified the medical records.

According to WHO, anaemia should be considered to exist if $\mathrm{Hb}<130 \mathrm{~g} / \mathrm{L}$ for men and $<120 \mathrm{~g} /$ L for non-pregnant women (8). In order to test these criteria's applicability to our population, we compared the WHO criteria with the 2.5 percentile for Hb .

Statistical analyses

Age-adjusted mean values were calculated with anova. The Pearson chi-square test for cross-tables was used for analysing differences between Hb classes and self-rated health. Adjusting of crude prevalence rates for age was performed according to the direct method, using the European standard population (II). A linear regression model was used for evaluating the changes of Hb levels with age. The Hb interval between 2.5 and 97.5 percentile (central 95\% interval) was estimated. Information on health problems that could influence on Hb were from the questionnaire: 'Have you or do you still have: cancer, chronic bronchitis, thyroid disease, liver disease, stomach/duodenal ulcers or ulcer operation, asthma, myocardial infarction, angina pectoris, stroke/brain haemorrhage, diabetes,
suffered from pain/stiffiness last year, iron medication last year'?

Haemoglobin was the dependent variable in a predefined multiple regression model, and analyses were performed separately for each gender. The independent variables were as follow: age [25-34 (reference group), 35-44, 45-54, 55-64, 65-74 and $75+\mathrm{yr}]$, body mass index (BMI, $\mathrm{kg} / \mathrm{m}^{2}$) [<22 (reference group), 22-24, 24-25, 25-27 and $27+\mathrm{kg} / \mathrm{m}^{2} \mathrm{l}$, daily smoking (yes $=1$, no $=0$). Self-rated health status was based on the question: 'How is your current state of health'? Four alternatives were given: poor, not so good, good or very good. Poor or not so good were added and used as reference group. In addition, the model was tested for: education [compulsory school (reference group), college or university, high-school], daily alcohol consumption (beer, wine or spirit per fortnight) [0 (reference group), 1-4, 5-14 and [5+ glasses], coffee consumption [0 (reference group), $1-5,6-9$ and $10+$ cups], hard physical activity during leisure time in the past year (sweating/out of breath) [none (reference group), <l h, $\mathrm{I}-2 \mathrm{~h},>2 \mathrm{~h} / \mathrm{wk}]$. For women, pregnancy and parity [0 (reference group), $\mathrm{I}-2$ and $3+$ children] were included. Pregnant women were excluded from all analyses except from the multiple regression model where pregnancy was included as an independent variable.

All analyses were conducted with the Sas software package version 8.02.

Results

Characteristics of the population

Table I presents age-adjusted baseline characteristics of the population. Mean age was 47.3 yr for men (maximum 95 yr) and 48.2 yr for women (maximum 104 yr). Mean age-adjusted Hb [95\% confidence interval (CI)] was I 4.9 ($14.7-15.2$) g / L higher in men than women. For both genders, mean corpuscular volume (MCV) and mean corpuscular $\mathrm{Hb}(\mathrm{MCH})$ were 89 fL and 30 pg , respectively. The 2.5 percentile of MCV and MCH were, 82 fL and 28 pg , respectively in men, 79 fL and 26 pg , respectively in women (data not shown). About 37% of both genders were daily smokers. Mean BMI was between 25 and 26 for both genders.

Distribution of haemoglobin

The minimum and maximum level of Hb was $80-$ $188 \mathrm{~g} / \mathrm{L}$ and $60-184 \mathrm{~g} / \mathrm{L}$, in men and women, respectively (data not shown). Hb was almost normally distributed with a small tail to the left in both genders. The coefficients of kurtosis and

Table 1. Age-adjusted baseline characteristics of study population, values are mean \pm SD or percentages (The Trornse Study 1994-95)

Variable	Males	Females	
Age \|yr		47.3 ± 145	482 ± 15.5
Haemoglobin (g/L)	147 ± 9	132 ± 10	
Mean corpuscular volume \{ (L)	69 ± 4	69 ± 5	
Mean corpuscular haemoglobin (pg)	30 ± 1	30 ± 2	
Education, $\mathbf{z 4} \mathrm{yr}$ coilege/university (\%)	30.0	262	
Body mass index ($\mathrm{kg} / \mathrm{m}^{2}$)	259 ± 33	251 ± 4.3	
Daily smokers (\%)	367	362	
Number of cigarettes among smokers (per d)	12.4 ± 7.1	96 ± 5.4	
Glasses of atcohel among non-teetotallers (per fortnight)	5.6 ± 7.6	22 ± 41	
Cups of coffee among coffee drinkers (pea d)	6.0 ± 3.9	4.8 ± 2.9	
Hard physical activity $\geq 1 \mathrm{~h} / \mathrm{wk}$ (\%)	35.4	23.0	
Poor or not so good selfirated healit (\%)	280	35.1	
Number of childbirth		25 ± 15	

skewness were 1.48 and -0.35 in men, and 2.32 and -0.46 in women.

Figure I presents the percentiles of Hb by age. The central 95% interval was $129-166 \mathrm{~g} / \mathrm{L}$ for men and $114-152 \mathrm{~g} / \mathrm{L}$ for women. For men, the range of variation increased by age because of more subjects with low Hb values. The variation for women was smallest around 60 yr , and largest during the years before menopause and in the oldest subjects. In men, Hb declined with age. The mean annual decline was most pronounced from 25-34, 65-74 (both $0.03 \mathrm{~g} / \mathrm{L}$) and $75-84 \mathrm{yr}(0.05 \mathrm{~g} / \mathrm{L})$. In women, Hb declined by age among those below 35 yr $(0.02 \mathrm{~g} / \mathrm{L} / \mathrm{yr})$ and among women aged 75-84 $(0.03 \mathrm{~g} / \mathrm{L} / \mathrm{yr})$. In the age group $45-54 \mathrm{yr}$, there was an annual increase in mean $\mathrm{Hb}(0.03 \mathrm{~g} / \mathrm{L})$.

Categorization between subjects who reported previous or present diseases that could influence on Hb and those who did not report these diseases, gave mean $\mathrm{Hb}(95 \% \mathrm{CI})$ of 145.3 (144.8-145.8) g/L and 145.5 ($145.0-146.0$) g / L, respectively in men, $133.4(133.0-133.9) \mathrm{g} / \mathrm{L}$ and $133.3(132.8-133.8) \mathrm{g} /$ L , respectively in women.

Prevalence of anaemia

Table 2 presents the prevalence of anaemia according to the WHO criteria, and according to the 2.5 percentile for all ages. According to the WHO criteria, the prevalence of anaemia for men $(\mathrm{Hb}<130 \mathrm{~g} / \mathrm{L})$ increased with age from 0.6 to 29.6%, compared with an increase from 0.5 to 27.8% according to the overall 2.5 percentile for men ($\mathrm{Hb}<129 \mathrm{~g} / \mathrm{L}$). For women, the highest prevalence was among the oldest where 16.5% were anaemic according to $\mathrm{WHO}(\mathrm{Hb}<120 \mathrm{~g} / \mathrm{L})$, in contrast to 8.7% anaemic according to the overall 2.5 percentile ($\mathrm{Hb}<114 \mathrm{~g} / \mathrm{L}$). The lowest prevalence of anaemia was among those aged 5564 yr , where the prevalence was 2.2 and 0.7%

Fig. l. Distribution of hacmoglobin (g / L) in men and women according to age (The Tromse Study 1994-95).
(WHO definition and the overall 2.5 percentile, respectively).
Table 3 presents mean Hb stratified by age and gender. For men, Hb declined from age group

Skjelbakken et al.

Table 2 Prevalence (\%) of low haemogiobin (Hb) values according to the WH0 criteria ($\mathrm{Hb}<130 \mathrm{~g} / \mathrm{L}$ for men, $<120 \mathrm{~g} / \mathrm{h}$ for non-pregnant women), and as values below the overall 2.5 percentile values ($\mathrm{Hb}<129 \mathrm{~g}$ / for men and $\mathrm{Hb}<114 \mathrm{~g} /$ L for women, The Tromse Study 1994-95)

Age	Men					Women				
	N	WHO criteria (<130 g/L)		$\begin{gathered} 2.5 \text { percentile } \\ \mathrm{K} 129 \mathrm{~g} / \mathrm{L}) \end{gathered}$		N	WHO criteria (<120 g/L)		2.5 percentile ($<114 \mathrm{~g} / \mathrm{L}$)	
		n	\%	n	\%		ก	\%	π	\%
25-34	2999	18	0.6	15	0.5	3265	206	6.3	66	2.0
35-44	3244	49	1.5	39	1.2	3421	310	9.1	119	3.5
45-54	2845	47	1.7	32	1.1	2880	185	6.4	81	2.8
55-64	1669	58	3.5	46	2.8	1680	37	2.2	11	0.7
65-74	1250	91	7.3	77	6.2	1521	46	3.0	15	1.0
75-84	481	72	15.0	66	13.7	807	57	7.1	29	3.6
$85+$	54	16	29.6	15	27.8	115	19	16.5	10	8.7
Crude	12542	351	2.8	290	2.3	13689	860	6.3	331	2.4
Age adjusted			3.5		2.9			6.1		2.4

$55-64 \mathrm{yr}$, whereas mean Hb was lowest in both the youngest and the oldest women. The variation in Hb levels as measured by the SD increased with age among men, but was fairly constant up to 85 yr of age for women. The number of anaemic subjects who, due to our predefined criteria, needed further evaluation after the screening is shown. Six men and 24 women (1.1%) had Hb below the predefined criteria. Two women did not attend the follow up. After a control blood sample, Hb of nine subjects was partially normalized. Another three had their Hb completely normalized, two of them because of iron supplement. Two men had chronic diseases. Among the two men and 12 women still severely anaemic (0.5%), II subjects had chronic blood loss from menorrhagia or gastrointestinal tractus, and three subjects had insufficient food.

Elevated haemoglobin

Twelve subjects (0.5%; seven men and five women) had a Hb value above the predefined criteria (Table 3). Two did not attend to follow
up. After a control blood sample five had completely or partially normalized Hb . Five subjects $(0.2 \%$) still had elevated Hb . One had previously diagnosed polycythemia vera, the other four subjects had chronic diseases or smoked excessively.

Lifestyle, self-rated health and haemoglobin

Table 4 presents the effect on $\mathrm{Hb}(\mathrm{g} / \mathrm{L})$ of age, BMI, smoking, self-rated health and pregnancy from the multiple linear regression analysis. For men, age was negatively associated with Hb compared with the reference group $25-34$ yr old, the estimated Hb decreased with age. For women, 3544 yr old were negatively associated to Hb when compare with the $25-34 \mathrm{yr}$ old, whereas the other age groups were positively associated to Hb . The effect was strongest among the $55-74 \mathrm{yr}$ old. For both genders, BMl was positively associated to Hb when compare with the reference group ($<22 \mathrm{~kg}$ / m^{2}). The effect increased with increasing BMI. Smoking was positively associated with Hb , the effect was strongest in women. In either gender,

Table 3. Mean $\pm S D$ of haemogiobin (g / L) according to gender and age. Number of subjects fulfilling the criteria for further evaluation after the screening (The Tromsa Study 1994-95)

Age	Men		Women		Men				Women					
			Anaemia (<100 g/L)	Elevated haemoglobin ($2180 \mathrm{~g} / \mathrm{L}$)		$\begin{aligned} & \text { Anaemia } \\ & \text { (<90 } \mathrm{g} / \mathrm{L}) \end{aligned}$		Elevated haemoglobin ($2170 \mathrm{~g} / \mathrm{L}$)						
	N	Mean \pm SD			N	Mean \pm SD	π	\%	n	\%	n	\%	n	\%
25-34	2999	150 ± 8	3265	132 ± 9	1	0.03	0	0	2	0.06	0	0		
35-44	3244	148 ± 9	3421	132 ± 10	0	0	1	0.03	8	0.23	0	0		
45-54	2845	148 ± 9	2880	134 ± 10	0	0	4	0.14	10	0.35	1	0.03		
55-64	1669	148 ± 10	1680	137 ± 9	1	0.06	2	0.12	0	0	2	0.12		
65-74	1250	146 ± 11	1521	137 ± 10	1	0.08	0	0	1	0.07	1	0.07		
75-84	481	142 ± 13	807	135 ± 11	3	0.62	0	0	1	0.12	1	0.12		
$85+$	54	137 ± 13	115	131 ± 15	0	0	0	0	2	1.74	0	0		
	12542	148 ± 9	13689	134 ± 10	6	0.05	7	0.06	24	0.18	5	0.04		

Table 4. Effect on haemoglobin concentration $\mid g / L)$ of lifestyle factors and self-rated health (multivariate analysis, The Tromsp Study 1994-95)

	Men $\left(R^{2}=9.5 \%\right)$		Wornen ($R^{2}=12.2 \%$)	
	Effect on haemoglobin concentration	95\% Cl	Effect on haemoglobin concentration	95\% Cl
Age groups				
25-34	Hefarence group			
35-44	-2.22	-2.67 to -1.77	-0.83	-1.28 to -0.39
45-54	-2.86	-3.33 to -2.39	0.97	0.49-145
55-64	-3.49	-4.05 to -2.93	3.40	283-3.98
65-74	-4.63	-5.25 to -4.01	390	3.29-4.50
75+	-8.72	-9.57 to -7.86	178	1.05-2 50
BMI (kg/m ${ }^{2}$)				
<22	Reference group			
22-24	2.15	1.58-2.73	0.80	0.36-1.24
24-25	3.12	2.49-3.75	1.74	1.16-2.31
25-27	4.17	361-473	2.75	2.25-3.25
27+	6.92	6.37-7.47	4.43	3.98-4.88
Smoke ($\mathrm{no}=0$, yes $=1$)	1.43	1.10-177	3.64	3.31-3.97
Self-rated health				
Poor or not so good	Heference group			
Good	0.25	-0.14 to 0.64	-0.34	-0.70 to 0.02
Very good	-0.24	-0.78 to 0.30	-0.43	-0.95 to 0.10
Pregnant ($\mathrm{n} 0=0$, yes $=1$)			-10.49	-11.58 to -9.39

good or very good self-rated health was not associated to Hb when compare with poor or not so good health.
A second model was also assessed, adding other lifestyle factors as education, alcohol and coffee consumption, physical activity and parity (data not shown). Addition of these lifestyle factors did not change the associations presented in Table 4. The effect on Hb of these additional lifestyle factors was small. In women not men, education from high school, college or university was to some extend negatively associated to $\mathrm{Hb}(0.23 \mathrm{~g} / \mathrm{L}$ and $0.39 \mathrm{~g} / \mathrm{L}$ respectively) compared with compulsory school. Increasing amount of alcohol consumption showed a linear trend in both genders with the maximum effect on Hb when drinking $15+$ glasses per fortnight compared with zero glasses ($0.69 \mathrm{~g} / \mathrm{L}$ and $0.98 \mathrm{~g} / \mathrm{L}$, men and women respectively). Coffee consumption and hard physical activity were to some extend negatively and linearly associated with Hb in men, but not in women. The strongest associations were at $10+$ cups of coffee $(-1.63 \mathrm{~g} / \mathrm{L})$ and with more than 2 h of hard physical activity per week ($-1.22 \mathrm{~g} / \mathrm{L}$) compared with the reference groups. For women, three or more children were negatively associated with $\mathrm{Hb}(-1.02 \mathrm{~g} / \mathrm{L})$ compared with no children.

BMI had the largest impact on explained variance of Hb , contributing 5.6% and 2.7% for men and women, respectively. Age and smoking contributed 3.8% and 0.5% in men, and 2.3% and 2.9% in women. The effect of smoking was dose-dependent in both genders (data not shown). Cigarette smoking of $0,1-10,11-20$ and $21+$ cigarettes $/ \mathrm{d}$ was associated with a Hb of $144 \mathrm{~g} / \mathrm{L}, 144 \mathrm{~g} / \mathrm{L}$,
$146 \mathrm{~g} / \mathrm{L}$ and $148 \mathrm{~g} / \mathrm{L}$ in men, respectively, and $132 \mathrm{~g} / \mathrm{L}, 135 \mathrm{~g} / \mathrm{L}, 137 \mathrm{~g} / \mathrm{L}$ and $141 \mathrm{~g} / \mathrm{L}$ in women respectively.
Self-rated poor or not so good health increased with age in both genders, but the trend levelled off among the oldest men (data not shown). The prevalence increased from about 14% among young subjects, to 57% and 79% in the oldest men and women. Figure 2 presents the crude- and age-adjusted association between poor or not so good self-rated health and quintiles of Hb . For men, the association between Hb and poor or not so good health was U-shaped with the lowest rates in the second and third quintile. For women, the association between Hb and poor or not so good health was J-shaped with the lowest rate in the second quintile. The difference of poor or not so good health between the first and second quintile of Hb was significant in men but not women. However, when stratified by age, there was no significant difference in self-rated poor or not so good health between the first and second quintile in either gender among those aged $25-44 \mathrm{yr}$. In contrast, there was a significant difference between the first and second quintile among men aged 65-74 yr and women above 74 yr .

Discussion

Haemoglobin

This is the first Norwegian study on distribution of Hb in total birth cohorts of a free-living population. The participation rates in this study increased from 55% among the youngest, to a maximum of

Skjelbakken et al.

91% in women aged $55-64 \mathrm{yr}$. The high participation rates reinforce our results.
As in other studies $(2,6)$, mean Hb decreased with age for men. In women, Hb was highest after menopause and then declined among the oldest subjects. It has been discussed whether the mild anaemia in the elderly is likely to reflect physiological or pathological processes (2, 12-15). Nilsson-Ehle et al. have previously demonstrated an age-related decline in Hb also among healthy elderly subgroups of the population (16). This decline was most pronounced in men and might be explained by a reduced erythroid bone marrow capacity (13, 17).
Subjects who reported previous or present diseases that could influence on Hb did not differ in mean Hb compared with those who did not report these diseases. The overall mean $\pm \mathrm{SD}$ of Hb in our study was $148 \pm 9 \mathrm{~g} / \mathrm{L}$ for men and $134 \pm 10 \mathrm{~g} / \mathrm{L}$ for women. In contrast, a previous Norwegian study reported mean Hb values of $156 \pm 10 \mathrm{~g} / \mathrm{L}$ for men, and $142 \pm 10 \mathrm{~g} / \mathrm{L}$ for women (18). The participants were highly selected employees from an electro-technical company, and smoking was probably more prevalent. Several Norwegian subgroups were investigated from 1952

Fig. 2. Crude and age-adjusted association between poor self-rated health and quintiles of haemoglobin among men and women (The Tromse Study 1994-95).
to 1966 (6, 18-22). The cohorts consisted of industrial workers and old people from residential homes, and were not representative for the Norwegian population. As in our study, the method of cyanmethhaemoglobin was used in the analysis of Hb . Specially trained medical staff performed finger pricks from capillary blood ($6,19-22$) or venopuncture from a cubital vein (18). Capillary blood specimens have slightly lower values than venous blood specimens. Different laboratories conducted their analyses. We used venous blood only, and a more precise, standardized automated blood cell counter from one laboratory with an analytic variance of $<\mathrm{I} \%$. The distribution of Hb is probably more representative in our general population.
Several cross-sectional studies report a positive association between BMI and $\mathrm{Hb}(3,23,24)$. Why obese people have higher Hb than lean people is not clear. Our finding of higher mean Hb among smokers compared with non-smokers confirms earlier studies ($3,14,25$). For women, the detectable difference was strongest between non-smokers and smokers, whereas among men, higher Hb levels were most pronounced among excessive smokers. This is in accordance with data presented by others $(4,5,14)$. The habit of coffee consumption to meals is prevalent in our population. To some extend, the negative association between Hb and coffee in men, may be explained by inhibited iron absorption (5, 26, 27). The negative association between Hb and education in women might be elucidated by smoking habits. Likewise, fewer smokers in the high activity cohort could explain the negative association between Hb and hard physical activity in men. The amount of exercise was probably too low to be explained by haemolyses or iron loss (28). The positive association between Hb and alcohol have been reported by Milman et al. (3). The association may be explained by the close relationship between alcohol and smoking, but Milman et al. have also found a positive association between alcohol and ferritin (26) that may be due to increased iron absorption or liver cell damage.
The total explained variance was 9.5% and $I 2.2 \%$, men and women respectively, indicating that the observed variation in Hb also could be explained by other factors not included in the model.

Generalizability of the WHO criteria for anaemia
WHO modified the arbitrary cut off values for when anaemia should be considered to exist in 1968. A report from a Norwegian male population aged 15-2I yr contributed to this modification (19). Another report contributing to this modification was a population-based study from South Wales,
with random samples of male miners and nonminers aged $35-64 \mathrm{yr}$ and women aged $55-64 \mathrm{yr}$ (29). In this report, they arbitrarily defined anaemia as Hb below $125 \mathrm{~g} / \mathrm{L}$ for men and $120 \mathrm{~g} / \mathrm{L}$ for women. In total, 3.3% of the men and 13.9% of the women were defined to be anaemic. The figure for women is strikingly high compared with our study where the same age group has the lowest prevalence of anaemia (2.2%). None of the other reports contributing to the WHO criteria was based on populations comparative with our population. The WHO criteria were based on a limited number of reports where especially the elderly of both genders and the younger non-pregnant women were not investigated.

Are the WHO criteria for anaemia appropriate in our population?
Mean BMI was above the WHO classification of overweight in both genders (30). We did not measure iron stores, but in 2001,8130 subjects (78% of the invited) were reinvestigated. The subset consisted of those who attended a more extended examination of the 1994-95 survey (all men born 1925-39, all women born 1925-44 and a 5-10\% random selection of the other age groups, in total 78% of the invited), in addition, all inhabitants born 1971, 1961, 1956 and 1941 were invited in 200I. The mean transferrin saturation (serum iron/ total iron-binding capacity percentage) was 26.8% and 25.2% in men and women respectively (A. R. Broderstad, personal communication). Although our population is mainly well-fed, anaemia was relatively prevalent, especially among fertile women and in the elderly. By using the WHO criteria in our study, 16% of males above 75 yr were anaemic, and 8% of females between $35-44$ and $75+$ yr were anaemic. In men, the difference between the WHO criteria and the 2.5 percentile was small and not practically important. In women, however, the WHO criteria gave a two to three times higher prevalence of anaemia compared with the 2.5 percentile. If we exclude subjects with MCV below the gender-specific 2.5 percentile, the 2.5 percentile of Hb would be $130 \mathrm{~g} / \mathrm{L}$ and $117 \mathrm{~g} / \mathrm{L}$, men and women respectively. In women, the crude prevalence of anaemia would then be 4.7% according to the WHO criteria, compared with 2.4% according to the 2.5 percentile of Hb . Although the central 95% interval is a common method for defining reference intervals, the 2.5 percentile in our study might also not be valid as criteria for anaemia. Our material is not sufficient to decide this matter.

Our clinical evaluation of severely anaemic women confirms that the dominating cause of anaemia among women is iron deficiency (3I). The high prevalence of anaemia among older men
is well-documented and often due to chronic disease, inflammatory conditions or reduced haematopoiesis rather than iron deficiency ($12,31-33$). In our study, six subjects above 74 yr had severe anaemia because of iron insufficient diet or gastrointestinal bleeding.

The question 'How would you evaluate your own overall health?' is previously evaluated according to coronary risk profile in our population (34). Both self-rated health and Hb have in separate studies demonstrated to be independent predictors of mortality (33,35). Salive et al. (14) found that self-rated health was not a strong independent correlate for neither anaemia nor Hb . Self-rated health in our study was associated with the Hb level among the oldest subjects only. This could be explained by comorbidity other than anaemia. We compared the age-specific prevalence of self-rated poor and not so good health among anaemic subjects and subjects with normal Hb . In women, there was no significant difference in poor and not so good health between the two groups. In men, there was a significant association between poor self-rated health and anaemia in some age groups ($35-44$ and $65-74 \mathrm{yr}$). Our findings support that the WHO criteria for anaemia is probably too high in women.

Elevated haemoglobin

The definition of elevated Hb varies from 169 to $180 \mathrm{~g} / \mathrm{L}$ for men and 150 to $165 \mathrm{~g} / \mathrm{L}$ for women (36). Normal values are often defined as the mean $\pm 2 \mathrm{SD}$, representing approximately the 2.5-97.5 percentile. In this study, the 97.5 percentile was $166 \mathrm{~g} / \mathrm{L}$ for men and $152 \mathrm{~g} / \mathrm{L}$ for women. The predefined criteria for further evaluation after the screening were $\mathrm{Hb} \geq 180 \mathrm{~g} / \mathrm{L}$ (men) and $\geq 170 \mathrm{~g} / \mathrm{L}$ (women). Despite of this high level, none of the evaluated subjects suffered from undiagnosed severe haematological disease.

Conclusion

In a free-living and well-fed population, the WHO criteria for anaemia and the 2.5 percentile for Hb corresponded well for Norwegian men, but not for women. The association between self-rated health and anaemia was weak. The WHO criteria of anaemia may result in medicalization of healthy women.

References

1. Garn SM, Ryan AS, Owen GM, Abraham S. Income matched black-white hemoglobin differences after correction for low transferrin saturations. Am J Clin Nutr 1981;34:1645-I647.
2. Yip R, Johnson C, Dallman PR. Age-related changes in laboratory values used in the diagnosis of anemia and iron deficiency. Am J Clin Nutr 1984;39:427-436.
3. Milman N, Byg KE, Mulvad G, Pedersen HS, Bierregantd P. Hacmoglobin concentrations appear to be lower in indigenous Greenlanders than in Dancs: assessment of haemoglobin in 234 Greenlanders and in 2804 Dancs. Eur J Hacmatol 2001;67:23-29.
4. Nestel P. Adjusting Hemoglobin Valucs in Program Surveys. In http://inacg.ilsi.org/publications/. Washington, DC, USA: Inacg Secretariat, 2002.
5. WHO/UNICEF/UNU (cd.) Iron Deficiency Anaemia. Assessment, Prevention, and Control. A Guide for Programme Managers. WHO/NHD/01.3. Geneva: World Health Organization, 2001.
6. Natvig H. Studies on hemoglobin values in Norway: I. Hemoglobin levels in adults. Acta Med Scand 1963;173:423-434.
7. Yamada M, Wong FL, Suzuki G. Longitudinal trends of hemoglobin levels in a Japanese population - RERF's Adult Health Study Subjects. Eur J Haematol 2003;70:129135.
8. World Health Organization. Nutritional anaemias. Report of a WHO Scientific Group. WHO Techn Rep Ser 1968;405:9-10.
9. Thelle DS, Førde OH, Try K, Lehmann EH. The Tromse Heart Study. Methods and main results of the cross-sectional study. Acta Med Scand 1976;200:107-118.
10. Bønaa KH, Arnesen E. Association between heart rate and atherogenic blood lipid fractions in a population. The Tromsø Study. Circulation 1992;86:394-405.
11. Jekel JF, Katz DL, Elmore JG. Epidemiology, Biostatistics and Preventive Medicine, 2nd cdn. Philadelphia, USA: W.B. Saunders Company, 2001.
12. Lipschitz DA, Mitchell CO, Thompson C. The anemia of senescence. Am J Hematol 1981;11:47-54.
13. Lipschitz DA, Udupa KB, Milton KY, Thompson CO. Eflect of age on hematopoiesis in man. Blood 1984;63:502509.
14. Salive ME, Cornoni HJ, Guralnik JM, Phillips CL, Wallace RB, Ostfeld AM, Cohen HJ. Anemia and hemoglobin levels in older persons: relationship with age, gender, and health status. J Am Geriatr Soc 1992;40:489496.
15. Nilsson-Ehle H, Jagenburg R, Landahl S, Svanborg A. Blood haemoglobin declines in the elderly: implications for reference intervals from age 70 to 88 . Eur J Hacmatol 2000;65:297-305.
16. Nilsson-Ehle H, Jagenburg R, Landahl S, Svanborg A, Westin J. Decline of blood haemoglobin in the aged: a longitudinal study of an Urban Swedish population from age 70 to 81. Br J Hamatol 1989;71:437-442.
17. Nilsson-Ehle H, Swolin B, Westin J. Bone marrow progenitor cell growth and karyotype changes in healthy 88-year-old subjects. Eur J Hacmatol 1995;55:14-18.
18. Natvig H, Vellar OD. Studies on hemoglobin values in Norway: 8. Hemoglobin, hematocrit and MCHC values in adult men and women. Acta Med Scand 1967;182:193205.
19. Natvig H. Studies on hemoglobin values in Norway: V Hemoglobin concentration and hematocrit in men aged 1521 years. Acta Med Scand 1966;180:613-620.
20. Natvig H, Bjerkedal T, Jonassen \varnothing. Studies on hemoglobin values in Norway: Il. The effect of supplementary intake of ascorbic acid and iron on the hemoglobin level of school children and men. Acta Med Scand 1963;174:341350.
21. Natvig H, Bierkedal T, Jonassen \varnothing. Studics on hemoglobin values in Norway: III. Scasonal variations. Acta Med Scand 1963;174:351-359.
22. Vellar OD. Studies on hemoglobin values in Norway: IX. Hemoglobin, hematocrit and MCHC values in old men and women. Acta Med Scand 1967;182:681-689.
23. Garn SM, Clark DC. Hacmoglobin and fatness. Ecol Food Nutr 1975;4:131-133.
24. Micozzi MS, Albanes D, Stevens RG. Relation of body size and composition to clinical biochemical and hematologic indices in US men and women. Am J Clin Nutr 1989;50:1276-1281.
25. Nordenberg D, Yip R, Binkin NJ. The effect of cigarette smoking on hemoglobin levels and anemia screening. JAMA 1990;264:1556-1559.
26. Milman N, Ovesen L, Byg K, Graudal N. Iron status in Dancs updated 1994: I. Prevalence of iron deficiency and iron overioad in 1332 men aged $40-70$ years. Influence of blood donation, alcohol intake, and iron supplementation. Ann Hematol 1999;78:393-400.
27. Skikne B, Baynes RD. Iron absorption. In Brock JH, Halliday JW, Pippard MJ, Powell LW, Eds. Iron Mctabolism in Health and Discase. London, UK: Saunders, 1994:151-187.
28. Shaskey DJ, Green GA. Sports hamatology. Sports Med 2000;29:27-38.
29. Kilpatrick GS, Hardisty RM. The prevalence of anaemia in the community. A survey on a random sample of the population. Br Med J 1961;1:778-782.
30. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation on obesity. Geneva: World Health Organization, 1997.
31. Dallman PR, Yip R, Johnson C. Prevalence and causes of anemia in the United States, 1976 to 1980. Am J Clin Nutr 1984;39:437-445.
32. Nilsson-Ehle H, Jagenaurg R, Landahl S, Svanborg A, Westin J. Hacmatological abnormalitics in a 75 -year-old population. Consequences for health-related reference intervals. Eur J Haematol 1988;41:136-146.
33. Izaks GJ, Westendorp RG, Knook DL. The definition of anemia in older persons. JAMA 1999;281:1714-1717.
34. Fylkesnes K, Fqrde OH. The Tromse Study: predictors of self-evaluated health - has society adopted the expanded health concept? Soc Sci Med 1991;32:141-146.
35. Kaplan GA, Camacho T. Perceived health and mortality: a nine-year follow-up of the human population laboratory cohort. Am J Epidemiol 1983;117:292-304.
36. Fairbanks VF, Tefferi A. Normal ranges for packed cell volume and hemoglobin concentration in adults: relevance to 'apparent polycythemia'. Eur J Haematol 2000;65:285-296.

Changes in lifestyle influence change in haemoglobin levels in men in a general population.

The Tromse Study 1974-1995.

Tove Skjelbakken $\mathrm{MD}^{1,2}$, Inger Marie S Dahl MD, PhD^{2}, Tom Wilsgaard MSc, PhD^{1}, Bodil Langbakk MD^{3} and Maja-Lisa Løchen $\mathrm{MD}, \mathrm{PhD}^{1,4}$
${ }^{1}$ Institute of Community Medicine, University of Tromsø, Tromsø, Norway
${ }^{2}$ Department of Medicine, University Hospital of North Norway, Tromsø, Norway
${ }^{3}$ Department of Clinical Chemistry, University Hospital of North Norway, Tromsø, Norway
${ }^{4}$ Department of Cardiology, University Hospital of North Norway, Tromsø, Norway

Correspondence address:

Tove Skjelbakken
Institute of Community Medicine, University of Tromsø, N-9037 Tromsø, Norway
Telephone: +4777644816
Fax: +4777644831
e-mail: tove.skjelbakken@,ism.uit.no

Key words: Haemoglobin; body mass index; smoking; longitudinal; lifestyle

Abbreviations: $\mathrm{BMI}=$ body mass index; $\mathrm{CI}=$ confidence interval; $\mathrm{SD}=$ standard deviation

Abstract

Haemoglobin declines with increasing age in cross sectional studies. Little is known about the longitudinal changes of haemoglobin. Because both high or low haemoglobin levels increase mortality and morbidity we examined how changes in lifestyle factors like body mass index (BMI) and smoking habits influence changes in haemoglobin level. In all, 4159 men aged 2049 years at baseline were examined in 1974 and 1994-95 in a longitudinal, population based study from the municipality of Tromsø, Northern Norway. Mean haemoglobin was $148 \mathrm{~g} / \mathrm{L}$. There was no difference in mean haemoglobin between the two surveys in any strata of age. Mean BMI increased $2.1 \mathrm{~kg} / \mathrm{m}^{2}$. The prevalence of smokers decreased 20.1 percentage points. In a multiple regression analysis increase in BMI was positively associated with haemoglobin change. Smoking cessation lowered mean haemoglobin $1.6 \mathrm{~g} / \mathrm{L}$ compared to never smokers. This effect was attenuated in men who put on weight. Haemoglobin increased $0.8 \mathrm{~g} / \mathrm{L}$ in smoking quitters whose BMI increased $>2.5 \mathrm{~kg} / \mathrm{m}^{2}$ compared to a decrease of $6.7 \mathrm{~g} / \mathrm{L}$ in weight reducers. There was a positive dose response relationship between cigarettes smoked per day and change in haemoglobin among consistent smokers. In conclusion, in contrast to cross sectional studies, mean haemoglobin did not change during 20 years ageing of relatively young men. This could be explained by higher BMI and less smoking. The increase in BMI affected haemoglobin change to such an extent, that the haemoglobin reduction due to smoking cessation was counteracted. Prospective studies are needed to address the health implications.

INTRODUCTION

Haemoglobin levels predict morbidity and mortality. Some previous studies have found that high haemoglobin increases mortality from heart disease [1]. Others have found that low haemoglobin is a risk factor for cardiovascular disease [2], and chronic diseases [3, 4]. A change in haemoglobin may thus have health implications.

In cross sectional studies, haemoglobin declines with increasing age [5-7]. There are only a few longitudinal studies on the cohort changes of haemoglobin with ageing. Two studies including men aged 13 to 80 years [8] and 20 to 45 years [9], have found an increase in mean haemoglobin up to men's forties. Cohorts of healthy 70 to 81 years old subjects showed a decline in haemoglobin with advancing age [10].

Body mass index (BMI) and smoking are positively associated with haemoglobin [7, 1113], as well as risk factors for cardiovascular disease [14, 15]. Nutritional status and smoking habits have changed in the past decades in the developed world. The prevalence of obesity is increasing [16], whereas the prevalence of male smokers is decreasing [17]. Smoking cessation has previously demonstrated to be associated with a decrease in haemoglobin level in male industrial workers [18].

No previous studies have presented prospectively how changes in different lifestyle factors can predict changes in haemoglobin in a general population. The aim of the present study was to assess the effect of these changes in a cohort of young and middle-aged men in a general population followed for 20 years. We evaluated these associations in different categories of change of smoking status and in strata of baseline age and BMI.

METHODS

Subjects

Tromsø is situated at sea level in the northern part of Norway. The population is predominately middle-class of Norwegian, Finnish or Sami origin. The Tromsø Study is a multipurpose, population-based, prospective study of total birth cohorts, initiated in 1974 with repeated surveys in 1979-80, 1986-87 and 1994-95. In 1974, the survey was conducted by the University of Tromsø and called the Tromsø Heart Study. All men aged 20-49 years were invited ($\mathrm{n}=8867$) [19]. Of these, $6542(74 \%)$ attended and had their haemoglobin analyzed. In 1994-95, the Institute of Community Medicine, University of Tromsø, conducted the survey in co-operation with the National Health Screening Service. All inhabitants aged 25 and above were invited. A total of 4159 men were from the first cohort of $1974,64 \%$ of the men who attended the screening in 1974. The total population of the 1994-95 study has been described earlier [20].

The Committee for Medical Recearch Ethics was not established during the first three Tromsø studies, but has recommended the Tromsø Study 1994-95.

Measurements

The procedures and questionnaires at each survey have been described in details elsewhere [19, 21, 22]. The Department of Clinical Chemistry, University Hospital of North Norway analysed all blood samples.

The cyanomethaemoglobin method was used for haemoglobin determinations from a venous blood sample. In 1974, the analyses and standardisations were performed manually (Drabkin's method) [23], whereas an automated blood cell counter (Coulter Counter ${ }^{\circledR}$) was used in the 1994-95 analyses. Height and weight were measured with participants wearing
light clothing and no shoes. Body mass index was calculated as weight in kilograms divided by the square of height in meters. The results did not change if subjects with increased height of more than three $\mathrm{cm}(\mathrm{n}=34)$ or decreased height of more than five $\mathrm{cm}(\mathrm{n}=26)$ between the surveys were excluded.

The smoking question in 1974 was: "Do you smoke daily at present?" (Yes/no). In 199495 the question was: "Do you yourself smoke: Cigarettes or cigars/cigarillos or pipe daily?" (Yes $=$ yes to any of these three questions, $\mathrm{No}=$ no to all of these three questions). Consistent smokers were those reporting to be smokers both in 1974 and in 1994-95. Both surveys asked: "How many cigarettes do you smoke per day?", of which 95 answers were missing among consistent smokers. The question about leisure time physical activity changed between the two surveys. However, the questions were identical in the 1974 and 1986-87 surveys. Consequently we used change between these two surveys as our estimate of change in physical activity. Leisure time activity was graded from sedentary; moderate; hard; to very hard. There was no information on coffee consumption or alcohol habits in the first survey. Consequently, to include these variables, we used changes between the 1979-80 and the 199495 survey. The questions were: "Are you a teetotaller?" (Yes/no) and: "How many cups of coffee do you drink daily?" Coffee consumption was categorized as: $<1,1-4,5-8$, and ≥ 9 cups per day.

Statistical analysis

Tests for differences between 1974 and 1994-95 were performed with t-tests or chi-square (Mc Nemars test) for paired data. Cross sectional comparisons were made using two-sample ttests. Multiple linear regression analyses were used to investigate the impact of the various variables on haemoglobin change. Changes (Δ) were the differencs between two surveys (e.g., $\Delta \mathrm{BMI}=\mathrm{BMI}$ [1994-95]) - BMI [1974]). Baseline refers to the survey in 1974. Change in
haemoglobin was the dependent variable. Baseline age (5 year age groups), $\Delta \mathrm{BMI}$, and changes in; smoking habits, leisure time physical activity, alcohol and coffee consumption were possible predictors. Mean haemoglobin of the 1974 and 1994-95 surveys, and baseline BMI were included as covariates. The categorisation of smoking habits was based on the changes in the variable current daily smoker (yes/no) from both surveys (non-smoker [reference group], consistent smoker, started smoking and stopped smoking). Two-way interactions were modelled as the products between age and $\triangle \mathrm{BMI}$, or change in smoking habits, and products between baseline BMI and $\triangle \mathrm{BMI}$.

Analyses of covariance were used in order to estimate mean haemoglobin change in subgroups adjusted for different covariates. $\Delta \mathrm{BMI}$ was divided into 5 categories (cutpoints: 0 , $1,2,3$).

Owing to missing data, the number of subjects included in the analyses varied slightly. The data were processed using the SAS software package (SAS Institute Inc, Cary, NC; Version 8.2).

RESULTS

Table 1 presents baseline characteristics by age and the change in the characteristics compared to the follow up study in 1994-95. Mean haemoglobin decreased with age in both surveys (p for trend <0.0001). There was no significant difference between mean haemoglobin in 1974 and mean haemoglobin in 1994-95 in any age strata. At baseline, BMI increased with age. Between 1974 and 1994-95 mean BMI increased $2.1 \mathrm{~kg} / \mathrm{m}^{2}$ (data not shown), most pronounced among the youngest. At baseline, 55-60 \% of the population smoked daily. During the 20 years of follow up, the prevalence of daily smokers decreased for all age groups, more so among the oldest (24.6 percentage points). Among the youngest consistent smokers, the daily number of cigarettes was on average 0.9 cigarettes higher in 1994-95 than in 1974. In contrast, there was a decrease in number of cigarettes among those aged 30-49 years. There were more teetotallers in all age groups in 1994-95, and fewer who carried out regular or hard physical activity.

Figure 1 demonstrates the age specific mean haemoglobin in the 1974 and in the 1994-95 surveys (for men <70 years). Mean haemoglobin of men aged 25-49 years was higher in 1994-95 compared to the 25-49 years old in 1974 ($p<0.0001$). The result did not change if those who did not attend the follow-up in 1994-95 were included. In total, 47% of the 40-69 year old men in 1994-95 were from the cohort who attended both surveys (20-49 years old in 1974). The curve from the 40-69 years old that attended both surveys was concurrent with the curve from all attended 40-69 years old in 1994-95.

Table 2 presents the association between change of haemoglobin and baseline age, $\triangle \mathrm{BMI}$ and smoking status. Both age and $\triangle \mathrm{BMI}$ were positive predictors of haemoglobin change. A significant decrease in haemoglobin change ($1.56 \mathrm{~g} / \mathrm{L}$) was demonstrated in men who stopped smoking compared to never smokers. There was no evidence of interactions or that the covariates confounded the variables of interest. Changes of physical activity, alcohol
consumption and coffee drinking were not significant in this model, and were therefore not included.

Table 3 presents haemoglobin change stratified by change in BMI and smoking habits adjusted for several covariates. When BMI decreased between the two surveys, haemoglobin decreased for all categories of change in smoking habits, but most pronounced among those who stopped smoking ($6.7 \mathrm{~g} / \mathrm{L}$). The decrease in haemoglobin after smoking cessation was weakened when BMI increased. When BMI increased more than $2.5 \mathrm{~kg} / \mathrm{m}^{2}$, haemoglobin increased for all categories of change in smoking habits including those who stopped smoking.

Figure 2 demonstrates age adjusted mean haemoglobin change across levels of change in number of cigarette among consistent smokers. Changes in number of cigarettes smoked per day were categorised as: Reduction of more than five cigarettes (${ }^{〔}<-5^{\prime}, \mathrm{n}=221$), reduction of $1-5$ cigarettes (${ }^{(}-5--1$ ', $\mathrm{n}=333$), no change (${ }^{\prime} 0$ ', $\mathrm{n}=316$), increase of $1-5$ cigarettes (' $1-5$ ', $\mathrm{n}=302$), increase of more than five cigarettes per day (' >5 ', $\mathrm{n}=141$). Among consistent smokers, there was a dose-response relationship between change in haemoglobin and change in number of cigarettes per day (p for trend 0.0035). Adjustment for $\Delta \mathrm{BMI}$ did not change the relationship (p for trend 0.007).

DISCUSSION

To our knowledge, this is the first longitudinal study on how changes in lifestyle factors can influence haemoglobin changes in a general male population. BMI was positively associated with haemoglobin change, whereas smoking cessation compared to never smoking was negatively associated with haemoglobin change. We have shown that this effect was attenuated when BMI increased. There was a positive dose-response relationship between haemoglobin change and change in amount of cigarettes smoked.

Methodological aspects

Our study was population based, had a prospective design and included a large number of men with a relatively high follow-up rate. Any generalisation regarding women cannot be made. A comparison of baseline characteristics between the study group who attended both surveys and those who did not attend the follow up (dropout group) gave us no reason to suspect any significant selection bias. However, mean haemoglobin was $0.5 \mathrm{~g} / \mathrm{L}$ higher in the dropout group compared to attendees. This difference was probably due to a 5-percentage points higher prevalence of smokers and more cigarettes smoked in the dropout group. The dropout group was also 0.7 years younger. Younger subjects are more likely to move and are known to attend health studies less often. This could explain the age difference. Chronic diseases (angina, heart attack, stroke, diabetes or gastric /duodenal ulcers) were reported by 3.3\% (attendees) and 4.5% (dropouts). A significant number of subjects with chronic diseases might have confounded haemoglobin changes in the follow up group as well. Excluding the 21% participants, who in either survey reported to have had a history of chronic disease or used antihypertensive drugs at present, did not change the presented results or trends.

The cyanomethhaemoglobin method was the basis for all haemoglobin measurements. The manual Drabkin's method (1974) was the gold standard, but the automated blood cell count (1994-95) is even more precise. Others have reported the automated haemoglobin values to be lower than the manual method $[24,25]$. We assume that the change in method would effect all measurements similarly, and believe that this did not effect the associations between lifestyle factors changes and haemoglobin change.

Haemoglobin

Mean haemoglobin was higher in 1994-95 compared to haemoglobin in the same age groups in 1974, more so in the youngest (Figure 1). During the same period the youngest also had the most extensive increase in BMI. This change could contribute to the mean increase in haemoglobin. However, the smoking prevalence decreased 20.1 percentage points between the two surveys, which contributes to a decrease in mean haemoglobin, less so in the youngest that stopped smoking to a lesser extent.

In the cross sectional perspective, haemoglobin decreased $1.7 \mathrm{~g} / \mathrm{L}$ between $25-29$ and 45 49 years old in 1974, and $2.3 \mathrm{~g} / \mathrm{L}$ between 25-29 and 45-49 years old in 1994-95. The age related fall in haemoglobin is in accordance with other cross sectional studies [5, 6]. A longitudinal change in subjects aged 25-29 years in 1974 to 45-49 years in 1994-95 demonstrated however, a non-significant decrease in mean haemoglobin of $0.4 \mathrm{~g} / \mathrm{L}$. In the regression analysis, baseline age (20-49 years) was even positively associated to haemoglobin change, which is in accordance to a Japanese [8] and a Russian study [9]. If we could adjust for the possible systematic lowered automated cell count in 1994-95, the longitudinal trend in haemoglobin would probably be an increase by age, especially in the youngest. The World Health Organization (WHO) defined the cut off values for low haemoglobin (anaemia) in

1968 [26]. The last decade's possible development towards a higher distribution level of haemoglobin is not accounted for.

Lifestyle factors and haemoglobin

In 1994-95, the $25-49$ years old had a BMI $1.1 \mathrm{~kg} / \mathrm{m}^{2}$ higher compared to the $25-49$ years old in 1974. This means that a 170 cm tall man in 1994-95 would be 3.2 kg heavier compared to a man of the same height in 1974. The increasing BMI in this population is described in detail earlier [27]. Overweight and obesity lead to adverse metabolic effects. But why obese people have higher haemoglobin values than lean people is not clear. The difference is probably in the red cell mass rather than in the nutritional differences [28]. Garn and Clark [28] demonstrated that obese men had $3 \mathrm{~g} / \mathrm{L}$ higher mean haemoglobin compared to lean men. We were able to confirm the cross sectional $[7,11,12]$ association between haemoglobin and BMI in this longitudinal study.

Smoking increases carboxyhaemoglobin concentration [29], the oxygen delivery to the tissue decreases and synthesis of haemoglobin is stimulated. Green and Harari [18] presented a 1-4 years follow up study of 987 male industrial workers aged $20-64$ years. They found in an age adjusted regression analysis that haemoglobin declined $3.7 \mathrm{~g} / \mathrm{L}$ in those who quit smoking compared to never smokers. In an age-adjusted regression analysis of our population, haemoglobin declined $0.8 \mathrm{~g} / \mathrm{L}$ in those who quit smoking compared to never smokers. A possible explanation for this difference could be that industrial workers smoke more cigarettes per day than men from a general population. We demonstrated a positive dose-response association between haemoglobin change and change in amount of cigarettes among consistent smokers (Figure 2). Cross sectional findings have also demonstrated a doseresponse relationship between mean haemoglobin and amount of cigarettes per day [7, 29].

Our findings support the WHO's recommendation of adjustment of haemoglobin reference values for smokers [30].

In a cross sectional study from the Tromsø population of the 1994-95 survey, significant associations between haemoglobin and hard physical activity, alcohol- and coffee consumption were observed [7]. These relations were not confirmed in this longitudinal study.

Implications

A population-based increase in haemoglobin may have health implications. Increased haemoglobin levels increase blood viscosity, and this could partly explain why haemoglobin is an independent risk factor for cardiovascular events [31]. Additionally, low haemoglobin can be a predictor of chronic diseases [3]. If the definition of low haemoglobin is not reflecting the population's true distribution of haemoglobin, early signs of disease could be overlooked.

Conclusions

Mean haemoglobin did not change during 20 years of observation. This could be explained by changes in lifestyle factors. Although smoking cessation decreased haemoglobin levels, this probably healthy effect was partly counteracted by the increased prevalence of obesity. Prospective studies of mortality are needed to address the health implications of a possible population based increase in haemoglobin.

ACKNOWLEDGEMENT

The Institute of Community Medicine, University of Tromsø, conducted the survey, in 1994-95 in co-operation with the National Health Screening Service. The authors' salaries were from the University Hospital of North Norway and the University of Tromsø.

References

1. CarIson LA, Böttiger LE. Risk factors for ischaemic heart disease in men and women. Results of the 19-year follow-up of the Stockholm Prospective Study. Acta Med Scand 1985; 218: 207-211.
2. Sarnak MJ, Tighiouart H, Manjunath G, et al. Anemia as a risk factor for cardiovascular disease in The Atherosclerosis Risk in Communities (ARIC) study. J Am Coll Cardiol 2002; 40: 27-33.
3. Salive ME, Cornoni HJ, Guralnik JM, et al. Anemia and hemoglobin levels in older persons: relationship with age, gender, and health status. J Am Geriatr Soc 1992; 40: 489-496.
4. Bentley DP. Anaemia and chronic disease. Clin Haematol 1982; 11: 465479.
5. Natvig H. Studies on hemoglobin values in Norway. I. Hemoglobin levels in adults. Acta Med Scand 1963; 173: 423-434.
6. Yip R, Johnson C, Dallman PR. Age-related changes in laboratory values used in the diagnosis of anemia and iron deficiency. Am J Clin Nutr 1984; 39: 427-436.
7. Skjelbakken T, Langbakk B, Dahl IM, et al. Haemoglobin and anaemia in a gender perspective: The Tromsø Study. Eur J Haematol 2005; 74: 381388.
8. Yamada M, Wong FL, Suzuki G. Longitudinal trends of hemoglobin levels in a Japanese population--RERF's Adult Health Study subjects. Eur J Haematol 2003; 70: 129-135.
9. Vlassov VV. Changes in blood hemoglobin concentration of middle-aged healthy men. Mil Med 1999; 164: 311-315.
10. Nilsson-Ehle H, Jagenburg R, Landahl S, et al. Decline of blood haemoglobin in the aged: a longitudinal study of an urban Swedish population from age 70 to $81 . \mathrm{Br}$ J Haematol 1989; 71: 437-442.
11. Micozzi MS, Albanes D, Stevens RG. Relation of body size and composition to clinical biochemical and hematologic indices in US men and women. Am J Clin Nutr 1989; 50: 1276-1281.
12. Milman N, Byg KE, Mulvad G, et al. Haemoglobin concentrations appear to be lower in indigenous Greenlanders than in Danes: assessment of haemoglobin in 234 Greenlanders and in 2804 Danes. Eur J Haematol 2001; 67: 23-29.
13. Shimakawa T, Bild DE. Relationship between hemoglobin and cardiovascular risk factors in young adults. J Clin Epidemiol 1993; 46: 1257-1266.
14. Njølstad I, Arnesen E, Lund-Larsen PG. Smoking, serum lipids, blood pressure, and sex differences in myocardial infarction. A 12-year followup of the Finnmark Study. Circulation 1996; 93: 450-456.
15. Rimm EB, Stampfer MJ, Giovannucci E, et al. Body size and fat distribution as predictors of coronary heart disease among middle-aged and older US men. Am J Epidemiol 1995; 141: 1117-1127.
16. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. WHO Techn Rep Ser 2000; 894: i-253.
17. Molarius A, Parsons RW, Dobson AJ, et al. Trends in cigarette smoking in 36 populations from the early 1980s to the mid-1990s: findings from the WHO MONICA Project. Am J Public Health 2001; 91: 206-212.
18. Green MS, Harari G. A prospective study of the effects of changes in smoking habits on blood count, serum lipids and lipoproteins, body weight and blood pressure in occupationally active men. The Israeli CORDIS Study. J Clin Epidemiol 1995; 48: 1159-1166.
19. Thelle DS, Førde OH, Try K, et al. The Tromsø heart study. Methods and main results of the cross-sectional study. Acta Med Scand 1976; 200:

107-118.
20. Skjelbakken T, Løchen ML, Dahl IM. Haematological malignancies in a general population, based on information collected from a population study, hospital records, and the Cancer Registry of Norway: the Tromsø Study. Eur J Haematol 2002; 69: 67-75.
21. Bønaa KH, Arnesen E. Association between heart rate and atherogenic blood lipid fractions in a population. The Tromsø Study. Circulation 1992; 86: 394-405.
22. Thune I, Njøistad I, Løchen ML, et al. Physical activity improves the metabolic risk profiles in men and women: the Tromsø Study. Arch Intern Med 1998; 158: 1633-1640.
23. International Committee for Standardization in Haematology.

Reccommendations and requirements for haemoglobinometry in human blood. Scand J Clin Lab Invest 1965; 17: 617-620.
24. Koepke JA. The calibration of automated instruments for accuracy in hemoglobinometry. Am J Clin Pathol 1977; 68: 180-184.
25. Salvati AM, Samoggia P, Taggi F, et al. Hemoglobinometry: A comparison between the hemiglobincyanide method and the Coulter S counter. Clin Chim Acta 1977; 77: 13-20.
26. World Health Organization. Nutritional anaemias. WHO Techn Rep Ser 1968; 405.
27. Jacobsen BK, Njølstad I, Thune I, et al. Increase in weight in all birth cohorts in a general population: The Tromsø Study, 1974-1994. Arch Intern Med 2001; 161: 466-472.
28. Garn SM, Clark DC. Haemoglobin and fatness. Ecology of Food and Nutrition 1975; 4: 131-133.
29. Nordenberg D, Yip R, Binkin NJ. The effect of cigarette smoking on hemoglobin levels and anemia screening. JAMA 1990; 264: 1556-1559.
30. WHO/UNICEF/UNO, eds. Iron Deficiency Anaemia. Assessment, Prevention, and Control. A guide for programme managers.

WHO/NHD/01.3. Geneva, World Health Organization, 2001.
31. Knottnerus JA, Swaen GM, Slangen JJ, et al. Haematologic parameters as risk factors for cardiac infarction, in an occupational health care setting. J Clin Epidemiol 1988; 41: 67-74.

Table 1 Baseline characteristics and the follow-up changes, by baseline age. Values are means (SD) or percentages. The Tromsø Study 1974-1994-95.

	Age	Baseline	Change	p-value*	
	(1974)	N	1974	$1994-95$	
Haemoglobin (g/L)	$20-29$	1433	$149.0(9.4)$	$-0.5(9.3)$	0.051
	$30-39$	1525	$148.1(9.2)$	$0.1(9.4)$	0.742
Body mass index (kg/m ${ }^{2}$)	$40-49$	1201	$147.4(9.3)$	$-0.3(10.8)$	0.318
	$20-29$	1430	$23.3(2.7)$	$2.7(2.5)$	<0.0001
Daily smoking (\%)	$30-39$	1523	$24.2(2.5)$	$2.1(2.1)$	<0.0001
	$40-49$	1199	$24.7(2.8)$	$1.3(2.4)$	<0.0001
Cigarettes (n)					

*) For difference between 1974 and 1994-95. ${ }^{\dagger}$) Smokers both in 1974 and 1994-95. ${ }^{\ddagger}$) Data from the 1979-80 and 1994-95 surveys. ${ }^{5}$) Data from the 1974 and 1986-87 surveys.

Table 2 Multiple linear regression analysis of how change in different lifestyle factors effect on haemoglobin (g/L) change. The Tromsø Study 1974-1994-95.

	Δ Haemoglobin (g/L)		t-value
	β^{*}	95\% CI	
Age in 1974 (5 years)	0.44	0.25-0.63	4.49
$\Delta \mathrm{BMI}\left(1 \mathrm{~kg} / \mathrm{m}^{2}\right)$	0.89	0.76-1.03	13.06
Smoking status			
Never smoker ($\mathrm{n}=1585$)	0	Reference group	
Consistent smoker ($\mathrm{n}=1405$)	0.70	0.00-1.40	1.97
Started smoking ($\mathrm{n}=162$)	1.13	-0.43-2.69	1.42
Stopped smoking ($\mathrm{n}=997$)	-1.56	$-2.33-0.79$	-3.97
Baseline BMI ($1 \mathrm{~kg} / \mathrm{m}^{2}$)	-0.04	-0.15-0.08	-0.60
R^{2} (\%)	4.3		

[^4]Table 3 Adjusted ${ }^{*)}$ change in haemoglobin (g / L) by change in BMI and smoking habits. The Tromsø Study 1974-1994-95.

[^5]

Figure 1. Mean haemoglobin by age in men. The Tromsø Study 1974-1994-95.

Figure 2. Mean change of haemoglobin (Δ Haemoglobin) according to change in number of cigarettes per day among those who smoked both in 1974 and 1994-95, adjusted for baseline age. The Tromsø Study 1974 - 1994-95.

Haemoglobin predicts total mortality in a general young and middle-aged male population. The Tromsø Study.

Tove Skjelbakken ${ }^{\text {a,b }}$, Tom Wilsgaard ${ }^{\text {a }}$, Olav Helge Førde ${ }^{\text {a }}$, Egil Arnesen ${ }^{\text {a }}$, Maja-Lisa Løchen ${ }^{\text {a,c }}$

${ }^{a}$ Institute of Community Medicine, University of Tromsa, Tromsø, Norway
${ }^{b}$ Department of Medicine, University Hospital of North Norway, Tromsa, Norway
${ }^{c}$ Department of Cardiology, University Hospital of North Norway, Tromsø, Norway

Address of correspondence:

Tove Skjelbakken
Institute of Community Medicine, University of Tromsø, N-9037 Tromsø, Norway
Telephone: +4777644816
Fax: +4777644831
e-mail: tove.skjelbakken@ism.uit.no

Abstract

Objective: The prognostic value of haemoglobin within normal references is seldom emphasized. The relationship between haemoglobin and mortality has been questioned due to possible confounding of other risk factors. We investigated the relationship between haemoglobin and total mortality, and evaluated the possible modifying effects of smoking, body mass index, total cholesterol and systolic blood pressure.

Study Design and Setting: In a population study from Tromsø, Northern Norway, 6,541 men aged 20-49 years were examined in 1974. During 20 years follow-up (127,120 person years), 495 deaths were identified.

Results: We found a U-shaped relationship between quintiles of haemoglobin and total mortality. Among the 35-49 years old the multiple adjusted hazard ratios ($95 \% \mathrm{CI}$) were 1.83 (1.31-2.57) in quintile 1 and 1.72 (1.23-2.41) in quintile 5, compared to quintile 3 of haemoglobin. Compared to the age adjusted hazard ratios, the multiple adjustments tended to non-significantly enhance the association in the lowest quintiles and non-significantly attenuate the association in the highest quintiles. The relationship was most pronounced in smokers in a dose response manner, but also present in non-smokers.

Conclusion: Haemoglobin level had prognostic value. Smokers in quintile 1 and quintile 5 of haemoglobin were at increased risk of dying.

Key words: haemoglobin, total mortality, smoking, risk factor, predictor, epidemiology.
Running title: Haemoglobin predicts mortality
Word count: 2355

1. Introduction

Whereas the clinical significance of low and high haemoglobin is a common question in daily life medicine, the prognostic value is seldom emphasized. Haemoglobin has shown to be a predictor of mortality in some studies [1-5]. Lower death rates have been reported among subjects with haemoglobin values near the mean compared to subjects with haemoglobin one or more standard deviations (SD) from the mean [1]. High haemoglobin increases the risk for mortality from heart disease $[2,4]$, whereas persons with low haemoglobin are at increased risk for cardiovascular and other chronic diseases, cancer, and all-cause mortality [5-8].

Haemoglobin is positively associated with smoking, body mass index (BMI), blood pressure and total cholesterol [9-13]. These cardiovascular risk factors are therefore possible confounders in a model that addresses the relationship between haemoglobin and total mortality.

We assessed the association between haemoglobin concentration and total mortality in men in a 20-years' follow-up study. Analyses of the relationship between quintiles of haemoglobin and total mortality were performed. We stratified according to smoking habits. Other cardiovascular risk factors were assessed as confounders.

2. Materials and methods

2.1 Subjects

Tromse is situated at sea level in the northern part of Norway. The population is predominately middle-class of Norwegian, Finnish or Sami origin. The Tromsø Study is a multipurpose, prospective population study of total birth cohorts in the municipality of Tromsø, initiated in 1974 with repeated surveys in 1979-80, 1986-87, 1994-95 and 2001. In 1974, all men who were 20-49 years of age were invited. The total number of men registered on the official census of 1 September 1973 was 8,867 , of which 935 lived outside the municipality. The total number of examined was 6,595 , of whom 6,542 had their haemoglobin analysed (82.5% of the eligible population). One subject was later lost to follow-up, leaving 6,541 subjects for the following analyses.

In 1974, the survey was carried out by the University of Tromsø and named the Tromsø Heart study. The Committee for Medical Recearch Ethics was not established during the first three Tromsø studies, but has recommended the later surveys.

2.2 Measurements

Information on the procedures and questionnaires is available elsewhere [14-16]. The Department of Clinical Chemistry, University Hospital of North Norway analyzed all blood samples.

Non-fasting blood samples were taken of the participants in a sitting position.
Haemoglobin was measured on venous blood samples by using the cyanomethaemoglobin method. Determination and standardization were performed according to the recommendations of the International Committee of Standardization in Haematology [17].

The minimum and maximum levels of haemoglobin were 85 and $225 \mathrm{~g} / \mathrm{L}$. The central 95%
interval was $130-166 \mathrm{~g} / \mathrm{L}$. Total cholesterol was analyzed according to a LiebermannBurchard procedure [18]. Height and weight were measured with participants wearing light clothing and no shoes. Body mass index (BMI) was calculated as weight in kilograms divided by the square of height in meters. Systolic blood pressure was read to the nearest even number of mmHg after 4 minutes of rest. Two readings were taken at 4-5 minutes intervals with a mercury sphygmomanometer on the left upper arm with the subject in a sitting position. The lowest reading of the appearance of the first Korotkoff sound (phase 1) was used for analysis.

2.3 Case identification

The national 11-digit personal identification numbers from the study file were matched with the Registry of Death at Statistics Norway. The subjects were followed from the date of examination through 1 September 1994.

2.4 Statistical analyses

Mortality rates were based on the number of person-years calculated from date of examination until date of death, date of emigration ($n=40$), or the end of follow-up. Age adjustment of mortality rates was performed according to the direct method on 5-year age groups with all invited men as the standard population. Linear trends across categories were tested by linear regression or logistic regression (smoking). Tests for differences between binary variables were performed using chi-square test for cross tables. The 95% confidence intervals $(95 \% \mathrm{CI})$ of rates were calculated according to the Poisson distribution.

We used a Cox proportional hazards model to assess the independent association between haemoglobin and mortality after adjustment for covariates. The cohort was divided into approximate quintiles on the basis of haemoglobin concentrations: $<141 \mathrm{~g} / \mathrm{L}$ (quintile 1), 141-
$145 \mathrm{~g} / \mathrm{L}$ (quintile 2), $146-150 \mathrm{~g} / \mathrm{L}$ (quintile 3), $151-156 \mathrm{~g} / \mathrm{L}$ (quintile 4) and $>156 \mathrm{~g} / \mathrm{L}$ (quintile 5). The mid quintile (quintile 3) or the three middle quintiles (quintiles 2-4) were used as reference.

The variables BMI ($\mathrm{kg} / \mathrm{m}^{2}$), total cholesterol ($\mathrm{mmol} / \mathrm{L}$) and systolic blood pressure (mmHg) were included as continuous covariates. Daily smoking was included as a binary variable. The question was 'Do you smoke daily at present? (Yes/no)'. Current smokers were asked ' How many cigarettes do you smoke per day?'. Two-way interactions were modelled as the products between quintiles of haemoglobin and age, smoking, body mass index, total cholesterol, or systolic blood pressure. Due to missing data, the number of subjects included in the different analyses varied slightly. P-values $<.05$ were regarded statistically significant. The SAS statistical package version 9.1 was used (SAS Institute Inc., Cary, NC).

3. Results

Table 1 presents baseline characteristics of the participants according to quintiles of haemoglobin. Mean age decreased by increasing haemoglobin level ($\mathrm{p}<.001$), whereas BMI, total cholesterol, systolic blood pressure, the prevalence of smokers and daily number of cigarettes, increased with increasing haemoglobin level (all $\mathrm{p}<.001$).

During 20 years of follow-up (127,120 person-years), 495 (7.6%) deaths were identified. Total crude and age adjusted mortality rates were 3.89 and 3.69 per 1,000 person-years, respectively. The age adjusted mortality rates followed a U-shaped pattern with increasing haemoglobin level. Table 2 presents the association between quintiles of haemoglobin and total mortality by age. The effect sizes were given as hazard ratios and adjusted for age, smoking, BMI, total cholesterol and systolic blood pressure. Quintile 3 of haemoglobin was the reference group. Among 20-34 years old, there was no significant association between haemoglobin and mortality. Among 35-49 years old, a significant U-shaped relationship was observed. The hazard ratios with $95 \% \mathrm{CI}$ in the lowest and highest quintile of haemoglobin were 1.83 (1.31-2.57) and 1.72 (1.23-2.41), respectively.

The covariates did not confound the associations. However, compared to the age adjusted hazard ratios, the multiple adjustment demonstrated a weak non-significant tendency of enhancing the association in quintile 1 and quintile 2 and attenuating the association in quintile 4 and quintile 5 . There was no evidence of other interactions than the variation with age. Analyses by strata of BMI, total cholesterol and systolic blood pressure were nevertheless performed (data not shown, cut-off around median values). Compared to quintile 3 of haemoglobin, $\mathrm{BMI} \leq 23.4 \mathrm{~kg} / \mathrm{m}^{2}$ or systolic blood pressure $>124 \mathrm{mmHg}$ tended to nonsignificantly increase the adjusted hazard ratio of mortality in quintile 1 of haemoglobin. BMI $>23.4 \mathrm{~kg} / \mathrm{m}^{2}$ or total cholesterol $>6.4 \mathrm{mmol} / \mathrm{L}$ tended to non-significantly increase the adjusted hazard ratio of total mortality in quintile 5 of haemoglobin.

Persons who smoked had a greater risk of dying than those who did not smoke. The age adjusted mortality rates per 1,000 person-years were 2.1 times higher in smokers (4.94) than in non-smokers (2.35). Table 3 presents adjusted mortality rates and hazard ratios for smoking habits within haemoglobin quintiles. Haemoglobin between $141-156 \mathrm{~g} / \mathrm{L}$ (quintiles 2-4) was categorized as the middle group, and non-smokers within this group were set as the reference category. The association between haemoglobin levels and age adjusted mortality for nonsmokers was U-shaped. The rate for non-smokers in quintile 1 was 1.30 times, and in quintile $5,1.18$ times that of non-smokers in quintiles 2-4. However, there was no significant difference in hazard ratios between non-smokers in different quintiles of haemoglobin. Smoking increased mortality rates in all categories of haemoglobin. In subjects with the lowest and highest haemoglobin concentrations, smoking predicted an approximate 2 - fold increase in mortality.

Table 4 demonstrates the dose response relationship in mortality rates and hazard ratios among current smokers within haemoglobin quintiles. Number of cigarettes was categorized as low dose ($1-14$ cigarettes) and high dose ($15+$ cigarettes). The age adjusted mortality rate of high dose smokers was 1.24 times higher than that of low dose smokers within quintile 1 , and 1.60 times higher than that of low dose smokers within quintile 5 . Close to no differences in mortality rates were observed between high and low dose smokers within the middle three quintiles. Compared to non-smokers in quintiles 2-4, the hazard ratio for mortality increased with increasing dose of cigarettes. The increase was most pronounced in quintile 5 where the hazard ratio increased from 1.93 in low dose to 3.09 in high dose smokers.

4. Discussion

To our knowledge, this is the first population-based study on relatively young and middleaged men that demonstrates an independent U-shaped relationship between total mortality and of haemoglobin levels.

The participation rates in this study were generally high, making selection bias due to nonparticipation less likely. However, in a 9 -year follow-up of this survey, higher mortality rates among non-participants compared to participants were reported (3.55 versus 2.13 per 1,000 person years, respectively) [19]. A total of 4,159 (64\%) of the participants were re-examined in 1994-95. We observed no significant change in mean haemoglobin over this 20 -year period (unpublished data). In total, 2% of the participants reported to suffer or have suffered from heart disease, chest pain, cerebral stroke or diabetes. Excluding these subjects from the analyses did not change the presented results. Nevertheless, we cannot rule out the residual confounding with other unknown risk factors. No generalization with regard to women can be made.

Haematocrit (the volume of packed red cells) and haemoglobin are highly correlated. A number of studies report on how haemoglobin or haematocrit predict mortality and morbidity. However, most of the studies included older men than our study [1-6, 20-23]. Some studies were population based [1,5,20-23], and some reported on total mortality [1, 5, 6, 20-22]. Others have reported haemoglobin to be a risk factor for ischaemic vascular deaths [2-4], and that the crude death rates from myocardial infarction correlated positively to quintiles of haemoglobin [4]. More recently, the Atherosclerosis Risk in Community (ARIC) study found anaemia as an independent risk factor for cardiovascular disease and all-cause mortality in men [5]. Other studies have either failed to find any significant relationship between haemoglobin or haematocrit and mortality or morbidity, or have found the associations to disappear when other cardiovascular risk factors have been accounted for [23-25].

Some studies have found the relationship between haematocrit and mortality to be Ushaped, not linear [20-22]. This is in accordance with our study. We also entered a continuous measure of haemoglobin into the total multivariate adjusted model. There was no linear trend present. Most of the other studies on haemoglobin and mortality or morbidity used haemoglobin as a continuous variable in a linear regression model, or compared high and low levels of haemoglobin [2-6, 23]. These methods may have failed to recognise the U-shaped association between haemoglobin and mortality or morbidity.

The level of haemoglobin influences viscosity, flow and oxygen carrying capacity of the blood. Elevation of haemoglobin causes increased viscosity and low haemoglobin could cause left ventricular hypertrophia and / or ischemia. This may explain haemoglobins' role as an independent predictor of cardiovascular disease.

The population attributable risk of smoking was 36%. If the mortality rate in the total study population was held on the same level as for non-smokers, 196 deaths would not have occurred. In total, 57 deaths in quintile 1, and 62 deaths in quintile 5 would not have occurred if the mortality rates in quintile 1 and quintile 5 were the same as for non-smokers in quintiles 2-4 of haemoglobin.

Smokers have increased risk of mortality from cardiovascular diseases and cancers.
Smoking increases carboxyhaemoglobin concentrations [9], decreases the oxygen delivery to the tissue and stimulates the synthesis of haemoglobin, and hence increases blood viscosity. The alterations in viscosity caused by smoking are reversible by smoking cessation [26]. It is possible that the effect of haemoglobin is secondary to the effect of smoking on mortality. On the other hand, some of the increased mortality among smokers in our study could be due to increased plasma viscosity $[27,28]$. Haemoglobin could thus be an independent predictor of mortality though being associated to smoking.

Haemoglobin and smoking are positively associated in a dose response manner [9, 10, 29]. High dose smokers in quintile 5 smoked one cigarette more than those in quintile $1(\mathrm{p}=.01)$. This could explain some of the increased risk of mortality for high dose smokers within quintile 5 of haemoglobin. However, there was no difference in average cigarette consumption between high dose smokers in quintile 1 and quintiles 2-4. The World Health Organization has recommended higher haemoglobin levels for defining anaemia in smokers than non-smokers [30]. Some of the smokers within quintile 1 of haemoglobin could in fact be regarded as anaemic and this may explain some of the increased risk of mortality among smokers within quintile 1.

Overweight and obesity lead to adverse metabolic effects, and the risk of mortality increases [31]. Why obese have higher haemoglobin than lean subjects is not clear, the difference is probably in the red cell masses [11]. Total cholesterol is positively associated with both haemoglobin and body weight [12, 13, 32]. Systolic blood pressure was positively correlated with haemoglobin (Pearson correlation coefficient 0.16) and is also associated with plasma viscosity, cardiovascular disease and mortality [4, 6, 33-35]. There was no evidence of interactions between haemoglobin and any of the assessed cardiovascular risk factors.

Adjusting for the risk factors did not change the relationships between haemoglobin level and mortality, suggesting that haemoglobin is an independent risk factor of total mortality.

In conclusion, haemoglobin values within normal reference values have prognostic value. This should be implicated in clinical practice. Haemoglobin values in the lowest quintile among smokers could be a marker of chronic disease, and should be followed by clinical evaluation. However, haemoglobin values in the upper quintile are even more predicative for mortality in smokers, and smoking cessation should be recommended.

Future studies should address the possible sex differences between haemoglobin and cause specific mortality. Older and larger cohorts may give sufficient power to examine these risk relationships further.

Acknowledgements

The Institute of Community Medicine, University of Tromsø, conducted the survey in 1994-95 in co-operation with the National Health Screening Service. The authors' salaries were from the University Hospital of North Norway and the University of Tromsø.

Table 1

Basclinc characteristics by quintiles of haemoglobin. Values are mean \pm standard deviation (SD) or percentages. The Tromsø Study 1974-1994.

					Systolic		Cigarettes
			Body mass	Total	blood		among
		Age	index	cholesterol	pressure	Smokers	smokers
		(years)	$\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	$(\mathrm{mmol} / \mathrm{L})$	$(\mathrm{mm} / \mathrm{Hg})$	$(\%)$	(n)
Haemoglobin g / L							
<141	1,260	34.6 ± 8.3	23.3 ± 2.4	6.4 ± 1.4	123 ± 14	57.9	14.6 ± 6.9
$141-145$	1,210	33.8 ± 8.4	23.6 ± 2.6	6.4 ± 1.4	125 ± 14	58.4	14.5 ± 7.0
$146-150$	1,423	33.7 ± 8.2	24.0 ± 2.7	6.6 ± 1.4	126 ± 14	58.6	15.0 ± 7.2
$151-156$	1,443	33.4 ± 8.2	24.2 ± 2.7	6.7 ± 1.5	128 ± 15	60.2	15.0 ± 7.6
>156	1,205	33.2 ± 8.3	24.7 ± 3.2	6.9 ± 1.5	130 ± 16	65.5	16.4 ± 8.2
Total	6,541	33.7 ± 8.3	24.0 ± 2.8	$6.6 \pm \mathrm{I} .5$	127 ± 15	60.1	15.1 ± 7.4

Table 2
Association between quintiles of haemoglobin and mortality by age. The Tromsø Study 1974-1994.

[^6]Table 3
Association between mortality and smoking habits within quintiles of haemoglobin (Hb). The Tromsø Study 1974-1994.

Person Cases Rate per								
Smoking habits	-years (n)	$1,000^{\mathrm{a}}$	$95 \% \mathrm{Cl}^{\mathrm{b}}$	HR^{c}	HR^{d}	$95 \% \mathrm{Cl}^{\mathrm{b}}$		
Quintile $1(\mathrm{Hb}<141 \mathrm{~g} / \mathrm{L})$								
Non smokers	10,373	30	2.76	$1.86-3.94$	1.30	1.38	$0.89-2.13$	
Current smokers	13,993	79	4.67	$3.70-5.82$	2.33	2.65	$1.89-3.72$	
Total	24,366	109	3.87	$3.18-4.67$	1.91	2.08	$1.53-2.85$	
Quintiles 2-4 (Hb 141-156 g/L)								
Non smokers	32,842	70	2.13	$1.66-2.69$	1.00	1.00	Ref	
Current smokers	46,645	204	4.12	$3.57-4.73$	2.02	1.96	$1.49-2.58$	
Total	79,487	274	3.31	$2.93-3.73$				
Quintile 5 (Hb >156 g/L)								
Non smokers	8,188	21	2.52	$1.56-3.85$	1.23	1.04	$0.64-1.71$	
Current smokers	15,079	91	5.95	$4.79-7.31$	2.93	2.59	$1.89-3.56$	
Total	23,267	112	4.77	$3.93-5.74$	2.32	2.04	$1.50-2.77$	

[^7]Table 4
Association between mortality and cigarettes per day within quintiles of haemoglobin (Hb). The Tromsø Study 1974-1994.

Person Cases Rate per							
Smoking habits	-years	(n)	$1,000^{\text {a }}$	$95 \% \mathrm{Cl}^{\text {b }}$	$\mathrm{HR}^{\text {c }}$	$\mathrm{HR}^{\text {d }}$	95\% CI ${ }^{\text {b }}$
Quintile $1(\mathrm{Hb}<141 \mathrm{~g} / \mathrm{L})$							
1-14 cigarettes (day)	6,461	32	4.14	2.83-5.84	2.06	2.58	1.67-4.00
15+ cigarettes (day)	6,894	42	5.13	3.70-6.93	2.61	2.91	1.95-4.33
Cigars, pipes or unknown	638	5					
Quintiles 2-4 (Hb 141-156g/L)							
Non smokers					1.00	1.00	Ref
1-14 cigarettes (day)	20,237	91	4.23	3.41-5.19	2.07	2.01	1.47-2.75
15+ cigarettes (day)	23,885	108	4.39	$3.60-5.30$	2.15	2.07	1.53-2.81
Cigars, pipes or unknown	2,523	5					
Quintile $5(\mathrm{Hb}>156 \mathrm{~g} / \mathrm{L})$							
1-14 cigarettes (day)	5,441	23	4.45	2.82-6.68	2.20	1.93	1.20-3.16
15+ cigarettes (day)	8,677	63	7.11	5.46-9.10	3.56	3.09	2.18-4.37
Cigars, pipes or unknown	961	5					

[^8]
References

1. Waters WE, Withey JL, Kilpatrick GS, Wood PH, Abernethy M. Ten-year haematological follow-up: mortality and haematological changes. Br Med J 1969; 4: 761-764.
2. Böttiger LE, Carlson LA. Risk factors for death for males and females. A study of the death pattern in the Stockholm prospective study. Acta Med Scand 1982; 211: 437-442.
3. Cullen KJ, Stenhouse NS, Wearne KL. Raised haemoglobin and risk of cardiovascular disease. Lancet 1981; 2: 1288-1289.
4. Carlson LA, Böttiger LE. Risk factors for ischaemic heart disease in men and women. Results of the 19-year follow-up of the Stockholm Prospective Study. Acta Med Scand 1985; 218: 207-211.
5. Sarnak MJ, Tighiouart H, Manjunath G, MacLeod B, Griffith J, Salem D, Levey AS. Anemia as a risk factor for cardiovascular disease in The Atherosclerosis Risk in Communities (ARIC) study. J Am Coll Cardiol 2002; 40: 27-33.
6. Cullen K, Stenhouse NS, Wearne KL, Welborn TA. Multiple regression analysis of risk factors for cardiovascular disease and cancer mortality in Busselton, Western Australia--13-year study. J Chronic Dis 1983; 36: 371377.
7. Salive ME, Cornoni HJ, Guralnik JM, Phillips CL, Wallace RB, Ostfeld AM, Cohen HJ. Anemia and hemoglobin levels in older persons: relationship with age, gender, and health status. J Am Geriatr Soc 1992; 40: 489-496.
8. Bentley DP. Anaemia and chronic disease. Clin Haematol 1982; 11: 465479.
9. Nordenberg D, Yip R, Binkin NJ. The effect of cigarette smoking on hemoglobin levels and anemia screening. JAMA 1990; 264: 1556-1559.
10. Skjelbakken T, Langbakk B, Dahl IM, Løchen ML. Haemoglobin and anaemia in a gender perspective: The Tromsø Study. Eur J Haematol 2005; 74: 381-388.
11. Garn SM, Clark DC. Haemoglobin and fatness. Ecol Food Nutr 1975; 4: 131-133.
12. Böttiger LE, Carlson LA. Relation between serum cholesterol and triglyceride concentration and haemoglobin values in non-anaemic healthy persons. Br Med J 1972; 3: 731-733.
13. Shimakawa T, Bild DE. Relationship between hemoglobin and cardiovascular risk factors in young adults. J Clin Epidemiol 1993; 46: 1257-1266
14. Thelle DS, Førde OH, Try K, Lehmann EH. The Tromsø heart study. Methods and main results of the cross-sectional study. Acta Med Scand 1976; 200: 107-118.
15. Bønaa KH, Thelle DS. Association between blood pressure and serum lipids in a population. The Tromsø Study. Circulation 1991; 83: 13051314.
16. Bønaa KH, Arnesen E. Association between heart rate and atherogenic blood lipid fractions in a population. The Tromsø Study. Circulation 1992; 86: 394-405.
17. International Committee for Standardization in Haematology. Reccommendations and requirements for haemoglobinometry in human blood. Scand J Clin Lab Invest 1965; 17: 617-620.
18. Huang TC, Chen CP, Wefler V, Raftery A. A Stable Reagent for the Liebermann-Burchard Reaction. Analyt Chem 1961; 33: 1405-1407.
19. Tverdal A. A mortality follow-up of persons invited to a cardiovascular disease study in five areas in Norway. Oslo: National Health Screening Service, 1989.
20. Sorlie PD, Garcia-Palmieri MR, Costas R, Jr., Havlik RJ. Hematocrit and risk of coronary heart disease: the Puerto Rico Health Program. Am Heart J 1981; 101: 456-461.
21. Gagnon DR, Zhang TJ, Brand FN, Kannel WB. Hematocrit and the risk of cardiovascular disease--the Framingham study: a 34-year follow-up. Am Heart J 1994; 127: 674-682.
22. Brown DW, Giles WH, Croft JB. Hematocrit and the risk of coronary heart disease mortality. Am Heart J 2001; 142: 657-663.
23. Kannel WB, Gordon T, Wolf PA, McNamara P. Hemoglobin and the risk of cerebral infarction: the Framingham Study. Stroke 1972; 3: 409-420.
24. Erikssen G, Thaulow E, Sandvik L, Stormorken H, Erikssen J.

Haematocrit: a predictor of cardiovascular mortality? J Intern Med 1993; 234: 493-499.
25. Abu-Zeid HA, Chapman JM. The relation between hemoglobin level and the risk for ischemic heart disease: a prospective study. J Chronic Dis 1976; 29: 395-403.
26. Ernst E, Matrai A. Abstention from chronic cigarette smoking normalizes blood rheology. Atherosclerosis 1987; 64: 75-77.
27. Koenig W, Sund M, Filipiak B, Doring A, Lowel H, Ernst E. Plasma viscosity and the risk of coronary heart disease: results from the MONICA-Augsburg Cohort Study, 1984 to 1992. Arterioscler Thromb Vasc Biol 1998; 18: 768-772.
28. Koenig W, Sund M, Lowel H, Doring A, Ernst E. Association between plasma viscosity and all-cause mortality: results from the MONICAAugsburg Cohort Study 1984-92. Br J Haematol 2000; 109: 453-458.
29. Nestel P. Adjusting Hemoglobin Values in Program Surveys. In: http://inacg.ilsi.org/publications/. Washington, DC: INACG Secretariat, 2002.
30. WHO/UNICEF/UNO. Iron Deficiency Anaemia. Assessment, Prevention, and Control. A guide for programme managers. Geneva: World Health Organization, 2001.
31. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. WHO Techn Rep Ser 1997.
32. Micozzi MS, Albanes D, Stevens RG. Relation of body size and composition to clinical biochemical and hematologic indices in US men and women. Am J Clin Nutr 1989; 50: 1276-1281.
33. Koenig W, Sund M, Ernst E, Keil U, Rosenthal J, Hombach V. Association between plasma viscosity and blood pressure. Results from the MONICA-project Augsburg. Am J Hypertens 1991; 4: 529-536.
34. Njølstad I, Arnesen E, Lund-Larsen PG. Smoking, serum lipids, blood pressure, and sex differences in myocardial infarction. A 12-year followup of the Finnmark Study. Circulation 1996; 93: 450-456.
35. Njølstad I, Arnesen E. Preinfarction blood pressure and smoking are determinants for a fatal outcome of myocardial infarction: a prospective analysis from the Finnmark Study. Arch Intern Med 1998; 158: 13261332.

Haematological malignancies in a general population, based on information collected from a population study, hospital records, and the Cancer Registry of Norway

The Tromsø Study

Skjelbakken T, Lachen M-L, Dahl IMS. Haematological malignancies in a general population, based on information collected from a population study, hospital records, and the Cancer Registry of Norway. The Tromse Study.
Eur J Haematol 2002: 69: 67-75. © Blackwell Munksgaard 2002.
Abstract: Objectives: To investigate the prevalence and incidence of hacmatological malignancies, and to compare the rates found with those reported from the Cancer Registry of Norway. Methods: Three sources of information were used: (1) automated blood cell counts from 27145 persons older than 24 yr (72% of those invited), participating in a population study (the Tromsø Study 1994-95); (2) patient medical records at the University Hospital of Tromsø during 1991-96; (3) the Cancer Registry of Norway. Results: (1) In the population study, 13 new cases of haematological malignancies were diagnosed. For five of these the carly detection was probably beneficial. (2) From the hospital records another 59 participants and 36 non-participants to the population study were found to have haematological malignancies. (3) Additionally, six cases were identified from the Cancer Registry. Totally, we thus identified 114 period prevalent cases, of which 86% had been reported to the Cancer Registry. Age-adjusted period prevalence of haematological malignancies was 4.7% in men and 2.9% in women. The prevalence increased with age. There were 84 cases with leukacmia, lymphoma, or multiple myeloma diagnosed at any time and still alive at 31 December 1996 (point prevalence 2.2%). Our estimated incidence of haematological malignancies did not differ significantly from that reported from the Cancer Registry. Conclusion: We found approximately the same rates of hacmatological malignancies as the Cancer Registry, although an underreporting of 14% to the Cancer Registry was detected. The point prevalence of leukacmia, lymphoma, and multiple mycloma was 2.2%.

T. Skjelbakken ${ }^{1,2}$, M.-L. Lachen ${ }^{1,2}$,

 I.M.S. Dahl ${ }^{1}$${ }^{1}$ Department of Madicine, University Hospital of Tromse: ${ }^{2}$ Institute of Community Medicine. University of Tromsø. Tromss, Norway

Key words: epidemiology; haematology, malignancies: population study, prevalence, incidence, men, women, cancer registry

Corresponderce Tove Skjelpakken, Institute of Community Medicine, University of Tromse, N-9037 Tromse, Norway
Tel +4777644816
Fax + 4777644831
e-mail tove skjelbakken(9) sm uit no

Accepted for publication 29 April 2002

Haematological malignancies comprise a heterogeneous group of conditions originating in the blood and lymphatic system. There are three major groups of haematological malignancies: leukaemia, lymphoma, and plasma cell neoplasm. These diseases represented $6-7 \%$ of all new malignancies in the adult Norwegian population during 1982-91 (1). We have been unable to find any report on distribution of haematological
malignancies within the setting of a population study.

The aim of our study was to investigate the prevalence and incidence of haematological malignancies in a general population of both sexes. To achieve as complete data as possible, the following sources of information were used: automated blood cell counts from persons taking part in a large population-based study, hospital records from the

Skjelbakken et al.

only hospital serving this area, and the Cancer Registry of Norway.

Material and mathods

Diagnostic groups

We used the diagnostic criteria and the categories of disease currently in use by clinical haematologists. The lymphomas were included, according to WHO's definition of haematological malignancies (2). The diagnostic groups were as follows: acute leukaemia, subdivided into acute lymphatic leukaemia and acute myeloid leukaemia; chronic leukaemia subdivided into chronic lymphatic leukaemia and chronic myeloid leukaemia; non-Hodgkin lymphoma; Hodgkin's disease; plasma cell neoplasm, including multiple myeloma, solitary plasmacytoma and Waldenström's macroglobulinemia; myeloproliferative disorders including essential thrombocythemia, polycythemia vera and myelofibrosis; myelodysplastic syndromes.

Design of the population study: the Tromsa Study

The Tromsø Study was initiated in 1974 with repeated surveys in 1979-80, 1986-87, and 1994-95 The study is a single-centre population-based prospective study of total birth cohorts in the municipality of Tromsø, Northern Norway. Epidemiological and clinical methods are used to investigate the distribution and determinants of chronic diseases. The aim of the Tromsø Study is to identify potentially modifiable causes of disease in order to develop preventive or therapeutic strategies.

The fourth survey of the Tromsø population started 5 September 1994 and was completed 30 June 1995. The Institute of Community Medicine, University of Tromsø, in co-operation with the National Health Screening Service, conducted the survey. All inhabitants older than 24 yr were invited, and 27145 subjects (72%) participated. A protocol similar to that used during previous surveys in this population was followed (3, 4). The Regional Board of Research Ethics approved the study. Each subject gave written informed consent.

Identification of haematological malignancies from the population study

Five ml of blood were drawn from a cubital vein into vacutainer tubes containing disodium EDTA as anticoagulant (K_{3}-EDTA $40 \mu \mathrm{~L}, 0.37 \mathrm{~mol} \mathrm{~L}{ }^{-1}$ per tube). The blood samples were analysed with an automated blood cell counter (Coulter Counter ${ }^{\text {® }}$) within 12 h . Experienced staff conducted the
analyses, under the supervision of a specialist in clinical chemistry at the Department of Clinical Chemistry at the University Hospital of Tromsø. For ethical reasons, the population was given further evaluation and follow-up, in case of pathological findings. The following predefined levels of haematological variables were absolute criteria for further evaluation by one of three experienced haematologists: haemoglobin <100 or $\geq 180 \mathrm{~g} \mathrm{~L}^{-1}$ for men, <90 or $\geq 170 \mathrm{~g} \mathrm{~L}^{-1}$ for women; leukocytes $<3.0 \times 10^{9}$ or $\geq 14.9 \times 10^{9} \mathrm{~L}^{-1}$ for both sexes; platelets $<100 \times 10^{9}$ or $>500 \times 10^{9} \mathrm{~L}^{-1}$ for both sexes.

In addition, samples selected due to minor combined criteria, such as mild pancytopenia, mild anaemia combined with distinct hypochromia, microcytosis or macrocytosis, and mild increase or decrease in cell count combined with pathological leukocyte differential count, were evaluated. No diagnoses were established due to Coulter Counter ${ }^{\text {b }}$ results alone.

Identification of cases from the hospital records

Through the patient administrative system for inpatients and outpatients, the University Hospital of Tromsø's records of all subjects invited to the population study were searched for haematological disease. The geography of this region and the organisation of its health services ensure that virtually all residents with chronic or serious disease will attend the hospital for medical care. The records of patients with ICD-9 (International Classification of Diseases, ninth revision) codes $200-208.9,238-238.9,273-273.9$ or 280-289.9, as one of the three first-mentioned diagnoses at any hospital consultation, were further evaluated. In order to establish the degree of completeness of the diagnoses of the hospital records, we also conducted a computer search for missing codes in the hospital's patient administrative system. We searched for missing codes of outpatient consultations in the 6-yr period 1991-96.

Identification of cases from the Cancer Registry

The Cancer Registry of Norway is based on compulsory reporting of all new cases of cancers. The reports consist of clinical forms, copies of cytology, biopsy, and autopsy reports from pathology laboratories, and death certificates from Statistics Norway.

All cases of haematological malignancies among those invited to the population study were matched against the existing data of the Cancer Registry. We used the national 11-digit personal identification number for the matching. The cases with
haematological malignancies registered in the Cancer Registry were also matched against the cases found by the population study and in the hospital records. The medical records were checked when discrepancies were found.

Calculation of prevalence and incidence

Occurrence of a disease may be defined both as period prevalence and point prevalence. Period prevalence refers to the number of persons who had the disease at any time during a specified time interval. Period prevalence thus includes point prevalence at the beginning of the interval plus the incidence during the interval (5). The observational interval for hospital records was chosen from 1 January 1991 to 31 December 1996. Nine cases who died during the screening period, and 15 additional cases who died before the end of the observational interval, were included in the period prevalence. Patients with Hodgkin disease, highgrade non-Hodgkin lymphomas, or acute leukaemia in complete remission for more than 5 yr before 1 January 1991 were defined to be cured from cancer and excluded from the period prevalence (14 cases). Point prevalence is usually defined as the number of persons in a defined population having a specific disease at a specific point in time. The Cancer Registry of Norway presents prevalence as the number of cases still alive and ever diagnosed with malignancies (6). We therefore also present point prevalence for patients ever diagnosed with leukaemia, lymphoma, or multiple myeloma and still alive at 31 December 1996.

Incidence rates of haematological malignancies for the municipality of Tromsø and for Norway were estimated from reported cases diagnosed during and after the period of the population study (1994-96), as provided by the Cancer Registry of Norway (unpublished data). The incidence rates from the Cancer Registry were then compared to the incidence rates estimated from the population study and the hospital records during the same period. The data provided from the Cancer Registry contained the same age categories as in our study, except for the oldest age group, where the Cancer Registry merged all age groups older than 65 yr .

Statistical analyses

Age adjustment of the crude rates was performed according to the direct method, using both the European standard population and the World standard population. The Mantel-Haenszel chisquare test was used for analysing differences between participants and non-participants. Analysis was performed with age group stratification (age

25-54, 55-64, 65-74, 75-84, and $85+$) in the Statcalc procedure of the Epi Info statistical package (7). The Mantel-Haenszel chi-square test was also used for stratified analysis of age by haematological malignant disease. The test was performed with the Proc freq procedure of the SAS software package (8). In order to test for any interaction among age group, sex, and participation, a logistic regression model was used for analysing each sex separately and together, with occurrence of malignant haematological disease as the dependent variable. Interaction was assessed by the following terms: sex * participation and age group * participation. The 95% confidence intervals ($95 \% \mathrm{CI}$) of rates were calculated according to the Poisson distribution (SAS). Results were considered statistically significant with a P-value of 0.05 or less.

Results

Participation in the population study
Sex- and age-specific participation rates for the population study are summarised in Table 1. Worthy of note are the higher participating rates among women in all age groups up to 74 yr . The rates increased from 55% and 62% among the youngest men and women, respectively, to a maximum of 86% and 91% in the age group $55-64 \mathrm{yr}$, after which they decreased. For both sexes, participation was lowest in the oldest age group, and among these, 7.8% points higher in men.

Identification of new cases from the population study

Following the automated blood cell count, further evaluation was carried out on haematological variables from 303 subjects; 136 (1.1%) of 12858 men and 167 (1.2\%) of 14287 women (Fig. 1). Of these, samples from 170 subjects (56%) were selected by the predefined absolute criteria, and samples from 133 subjects were selected due to the

Table 1 frequency distribution of total population, and sex- and age- spacific participation rates IThe Fromsa Study 1994-95)

Age (y)	Total population		Partucipants	
	Men N	Women N	Men \%	Women \%
25-34	5571	5819	55.1	61.7
35-44	4798	4497	69.4	785
45-54	3689	3430	78.9	85.8
55-64	1983	1880	86.4	91.2
65-74	1543	1794	83.1	86.9
75-84	732	1245	67.6	66.8
85+	165	413	36.4	28.6
Total	18481	19078	696	74.9

Skjelbakken et al.

Fig. I. Flow chart of the identification of haematological malignancies in Tromsa 1 January 1991 to 31 December 1996. The cases positively identified in each group are represented by encircled figures.
minor combined criteria. Further evaluation was considered necessary for 207 (68%) of the 303 subjects. Of these, 87 were examined at the Outpatient Department. Thirteen of the cases (eight men and five women) that were found as a result of the population study had not been diagnosed previously. Table 2 presents the sex and age distribution of new haematological malignancies discovered
among participants in the population study. No subjects were younger than 40 yr of age.

Identification of cases from the hospital records
The automated blood cell counter identified 12 additional cases with previously diagnosed malignant blood disease, for whom medical records

Table 2. Frequency of new haematological malignancies among participants to the population study, according to sex and age (The Tromss Study 1994-95)

Age	All		Frequency of new malignancies		
	Men N	Women N	Men (\%) n	Women (\%ot n	
25-34	3058	3591	(0) 0	(0) 0	
35-44	3330	3528	10.612	1010	
45-54	2909	2944	(0.3) 1	(0.3) 1	
55-64	1713	1715	(0.6) 1	\|1.2	2
65-74	1283	1559	(1.6) 2	(0.6) 1	
75-84	495	832	(4.0) 2	10) 0	
85+	60	118	(0) 0	10.81 1	
Total	12858	14287	[0.6) 8	10.31 5	

already existed (Fig. 1). From the medical records, 47 additional cases with haematological malignancies were found among the participants in the population study. For these 47 patients, the results of the automated blood cell analysis were within the predefined limits. Furthermore, 36 cases were found from hospital records among the non-participants.
In about 7\% of the 689 manually coded hospital records, we found obvious miscoding of the disease, and we found that 18% of the Outpatient Department consultations did not have a diagnostic code.

Identification of cases from the Cancer Registry

There were six cases among participants to the population study which were found in the Cancer Registry (five lymphoma and one chronic leukaemia), but not identified through the population study or the search in the hospital records (Fig. 1). Three of these cases were not coded according to our ICD-9 search criteria. Due to lack of histopathological confirmation of lymphoma, one case was not classified as haematological malignancy during our classification of medical records. Two of the cases with lymphoma were coded with one of the ICD-9 search-criteria codes, but were not recognised by the computer search.
In total, we found 114 prevalent cases from the three different sources. Of these cases, 16 (14%) had not been reported to the Cancer Registry (seven cases of myeloproliferative disorders, six cases of chronic lymphatic leukaemia and three cases of Waldenström's macroglobulinemia).

Diagnostic categories

Table 3 presents the number of cases of haematological malignant diagnoses derived from the population study, the hospital records, and the Cancer Registry, and as age-group-specific observed numbers. During the population study five of 22 cases with chronic leukaemia (all chronic lymphatic leukaemia) were recognised for the first time. The

Table 3. Cases of haematological malignant diagnoses derived from the population study, the hospital records and the Cancer Fegistry, and presented as age groupspecific observed numbers

Diagnosis	Population study $N(n)^{3}$	Hospital zecords N	Cancer Registry N	Age (y)			
				25-54	55-74	$75+$	
Acute leukaemia	0	4	4	0	3	1	4
Chronic laukaemia	5(3)	16	16	5	6	11	22
Non-Hodgkin lymphorna	0	41	46	15	24	7	46
Hodgkin's disease	0	2	2	0	2	0	2
Plasma cell neoplasm	140)	24	22	1	11	13	25
Myeloproliferative disorders	6(6)	6	5	2	7	3	12
Myelodysplastic syndromes	1101	2	3	0	1	2	3
Total	1319)	95	98	23	54	37	114

${ }^{\text {a }}$ Number of subjects evaluated due to predefined absolute criteria in parentheses.
hospital records and Cancer Registry contained information of altogether 46 patients with nonHodgkin lymphoma and two patients with Hodgkin's disease, representing 40% of the patients with haematological malignancies. In contrast, no lymphomas were found during the population study. Only one (Waldenström's macroglobulinemia) of the 25 cases with plasma cell neoplasms was recognised for the first time during the population study. Among the myeloproliferative disorders, six of the 12 cases (all six with essential thrombocythemia) were recognised during the population study.

Prevalence

Table 4 presents the sex- and age-specific period prevalence of haematological malignancies according to participation in the population study. Among the 114 period prevalent cases of haematological malignancies, 78 cases were participants and 36 were non-participants in the population study. There was no significant difference in period prevalence of haematological malignancies between participants (2.9%) and non-participants (3.5%). As presented, the overall age-adjusted period prevalence was 50% higher among men compared to women. Period prevalence increased by age in both sexes ($P=0.001$). Analysing the data separately according to participation did not change this P-value. The period prevalence of haematological malignancies increased significantly after the age of 54 yr for both sexes.
In a logistic regression model, age and sex were the significant independent predictors of malignant haematological disease (data not shown). When analysed separately, adjustment for participation did not substantially change the estimates for men or women.

Skjelbakken et al.

table 4. Sex- and age-specific period prevalence (\%) of haematological malignancies in 18481 men and 19078 women accorcing to participation to the populition study (The Tromss Study 1994-95)

${ }^{\text {a }}$ From Cochran-Mantel-Haenszal chi-squares statistics.

Through combining the results of the population study, searches in the hospital records and the Cancer Registry, we found 49 men and 35 women ever diagnosed with leukaemia, multiple myeloma, or lymphoma and still alive at 31 December 1996. This gives a crude point prevalence of 2.2% (95% CI 1.8-2.8), and a male to female ratio of 1.4.

Incidence

Table 5 shows the age adjusted incidence rates for all haematological malignancies. The table presents

Table 5. Cuide and age adjusted incidence rates (\%) with 95\% confidence intervals (CII, of all haematological malignancies diagnosed from 1 January 1994 to 31 December 1996, in the present study, and in Norway and Tromse as reported by the Cancer Registry of Norway

	Cases N	Incidence rates				
		Crude $\%$	Age-adjusted			
			European ${ }^{\text {a }}$		World ${ }^{4}$	
			\%	95\% Cl	\%	95\% CI
The present study						
Men	39	2.1	25	1.8-3.4	2.2	1.6-3.0
Women	18	0.9	0.9	0.6-1.5	0.9	0.5-1.3
Total population ${ }^{\text {b }}$	57	1.5	1.6	1.2-2.1	14	1.1-1.8
The Cancer Registry of Norway						
Norway	4698	1.6	14	14-1.5	1.2	1.2-1.3
Tromsp	52	14	17	1.2-2.2	1.4	1.1-1.9
The present study ${ }^{\text {c }}$	57	15	1.8	1.3-2.3	1.5	1.2-2.0

${ }^{a}$ European and World standard population. ${ }^{\text {b }}$ Age-adjusted with the same age categories as the data from our study. ${ }^{\text {E }}$ Age-adjusted with the same age categories as the data provided from the Cancer Registry of Norway.
both the rates from the present study, including the cases identified by the population study, and the incidence rates from Tromsø and Norway as provided by the Cancer Registry of Norway. The incidence rates were higher in men as compared to women. There were no significant differences between participants and non-participants (data not shown). The rates from the present study were age-adjusted both according to the age groups defined in the present study, and then according to age groups provided from the Cancer Registry, where the age groups above 65 yr were merged. In our study, the age-adjusted incidence rate according to the European standard was 1.6% (World standard 1.4%). The incidence rates from the Cancer Registry were not significantly lower for Norway and for Tromsø than for the present study, when we used the same age-adjustment method.

Discussion

To our knowledge, this study is the first on the prevalence and incidence of haematological malignancies in a general population. The populationbased approach and the high participation rate in the population study strengthen our results. The selection of variables to be analysed in this population study was made to assess their distribution and their predictive power for the development of various serious diseases. This strategy allowed us to use data from the Tromsø Study, in addition to medical records and Cancer Registry files, to make
a comprehensive assessment of the prevalence and incidence of haematological malignancies.

Prevalence and incidence

The exact date for being cured from cancer is difficult to estimate. Comparing incidence or prevalence of haematological malignancies in different populations presents well known methodological problems arising from comparison data sources, different coding systems, different spectra of diseases, and different registry rules and analyses $(9,10)$. We have not been able to find prevalence rates comparable to our rates in the literature.

Based on rates from the publications of the International Agency for Research on Cancer (IARC), we found the total annual crude incidence rate for leukaemia, lymphoma, and multiple myeloma in Norway to be about 7.8 per 100000 persons at risk (age 15 yr and above) (11). This corresponds to other Northern European countries, but is higher than in Asia, particularly in Japan. In Norway the incidence of Hodgkin's disease is about five times higher compared to Japan, whereas nonHodgkin lymphoma, multiple myeloma, and leukaemia are about 1.5 times as frequent in Norway compared to Japan. Our findings support the result that haematological malignancies occur more frequently among adult males than among females (12), and that the incidence increases with age (13, 14).
By choosing period prevalence, our observational period includes time before, during, and one and a half years after the end of the screening. This gave us the opportunity to identify, as completely as possible, all cases in this well defined population.

For age adjustment, we have used both the World standard and the European standard as the standard populations. In the World standard population, almost half of the population is less than 25 yr old, whereas our study population is 25 yr or older. For comparison with other studies, we present age-adjusted rates according to the World standard population. The age distribution of the Norwegian population is comparable to the European population. The European Network of Cancer research (EUCAN) uses both the European standard population and the World standard population (15). To avoid underestimation of cancer in this study's adult population, and for comparison between cancer registries in the European Union, we have also used the European standard population.

Population studies of this nature, previously performed for cardiovascular diseases and serious psychiatric disorders, have shown that those not taking part have a higher morbidity and mortality
than those who do (16,17). In our study, no significant difference in occurrence of haematological malignancies between participants and nonparticipants in the population study was found. However, it is difficult to compare participants and non-participants, because the latter consist of selected cases from the hospital records. Actually, we do not know the complete number of cases with undiagnosed haematological malignancies among the participants, and particularly not among the non-participants, in the population study, even though the observation period probably was sufficiently long for latent cases to be diagnosed.

The Cancer Registry

The Cancer Registry of Norway is known to have a completeness of almost 100% for solid tumours $(18,19)$, but there is a tendency to under-reporting of haematological malignancies $(6,20)$. The same finding is reported from other cancer registries (10, 21, 22). In 1981, Lund evaluated the completeness of the Cancer Registry of Norway, and demonstrated an under-reporting, especially for myeloma, where only 78.6% of cases were reported to the Cancer Registry (20). Among the leukaemia cases, 91.8% were reported. Cancers of the lymphatic and haematopoietic tissues altogether were reported in 93.5% of cases. In the present study, all the cases of multiple myeloma and plasmacytoma were reported to the Cancer Registry. The leukaemias were reported in about 80.5% of cases. Altogether, the haematological malignancies were reported in 86% of cases. Our result is strengthened by the time delay between the end of the observational period and the matching.

Are haematological malignancies suitable for screening?

To be suitable for screening programmes, the condition should be serious and cause considerable morbidity and mortality, and as such be a public health problem (5). Detection and treatment in a pre-clinical phase should lead to treatment that is able to reduce morbidity and mortality. In terms of change in management, routine complete blood count of all patients at an outpatient clinic has been found to be of only 0.5% benefit (23). Mates et al. evaluated ambulatory abnormal blood counts encountered routinely at a clinical laboratory (24). Major new haematological abnormalities were found in 0.24% of all blood counts, and 0.04% were new cases of haematological malignancies. In comparison, we found that 0.05% (13 cases) were new haematological malignancies after screening of a free-living population. Altogether we detected, however, only 32% (25 cases) of the 78

Skjelbakken et al.

participating subjects with haematological malignancies. A majority of the patients with a haematological malignant disease, taking part in the population study, had been diagnosed earlier. They had already received treatment, and thus their blood counts were probably normalised.

A screening test should be cheap and acceptable for the population. The automatic blood cell examination fulfils these criteria. However, the test is not conclusive for diagnosis alone, and major groups of haematological malignancies such as the lymphomas, would not be recognised. Among the new cases, all without symptoms, the majority had essential thrombocythemia and chronic lymphatic leukaemia [all in Binet stadium A (25)], with extreme blood cell counts and a recognisable early stage. Three subjects with essential thrombocythemia were probably at high risk of developing thrombohaemorrhagic complications due to old age and high platelet count $(26,27)$. One patient diagnosed with myelodysplastic syndrome and one with hairy cell leukaemia were offered treatment. Thus, for five subjects only, the early diagnosis of haematological malignancies might have reduced morbidity. Detection of these diseases at an asymptomatic stage does not improve the prognosis. Regular hospital supervision and the awareness of having a potentially serious disorder might even reduce quality of life for these patients.
Automated blood cell count is probably not suitable for early detection of haematological malignancies in a general population.

Conclusion

The prevalence of haematological malignancies in this general population is low. It is higher in men than women, and increases with age. Our rates are comparable to the rates of the Cancer Registry, although an underreporting of 14% to the Cancer Registry was detected.

Acknowledgements

We are indebted to Bodil Langbakk, MD, and her staff at the Department of Clinical Chemistry, University Hospital of Tromse, for technical assistance and careful evaluation of the blood examinations.

References

1. The Cancer Registry of Norway. (Forckomst av kreftsykdommer I Norges Kommuner). Oslo, Norway: the Cancer Registry of Norway: Institute of Epidemiological Cancer Rescarch, 1993.
2. Harris NL, Jaffe ES, Diebold J et al. The World Health Organization classification of ncoplastic diseases of the hacmatopoictic and lymphoid tissues. Report of the Clinical Advisory Committec Meeting, Airlie

Housc, Virginia, November 1997. Histopathology 2000;36: 69-86.
3. Thelle DS, Førde OH, Try K, Lehmann EH. The Tromsø heart study. Methods and main results of the crosssectional study. Acta Med Scand 1976;200:107-1 18.
4. Bgnaa KH, Arnesen E. Association between heart rate and atherogenic blood lipid fractions in a population. The Tromse Study. Circulation 1992;86:394-405.
5. Hennekens, CH, Buring, JE. Epidemiology in Medicine, 1st edn. Philadelphia: Lippincott-Raven Publishers, 1987.
6. Hansen S, Nordstein J, Ness A. Cancer in Norway 1998. Oslo, Norway: Institute of Population-Based Cancer Research, 2001.
7. Dean, RC, Dean, JA, Coulombier, D, et al. Epilnfo, Version 6. In: A World Processing, Database and Statistics Program for Epidemiology on Microcomputers. Atlanta, Georgia: Center for Discases Control and Prevention, 1994.
8. SAS/STAT User's Guide, Version 6. 4th edn. Cary, NC: SAS Institutc Inc, 1989.
9. Cartwright RA, Gilman EA, Gurney KA. Time trends in incidence of haematological malignancies and related conditions. Br J Hacmatol 1999;106:281-295.
10. Hakulinen T. Methodological problems in comparing incidence and prevalence of leukaemias and lymphomas: ascertainment and age adjustment. Leukemia 1999;13:S37S41.
11. Ferlay J, Bray F, Pisani P, Parkin DM. Globocan 2000, Cancer incidens, Mortality and Prevalence Worldwide, Version 1.0. In: IARC Canserbase No. 5. Lyon: IARC Press, 2001.
12. Black RJ, Bray F, Ferlay J, Parkin DM. Cancer incidence and mortality in the European Union, cancer registry data and estimates of national incidence for 1990 (see comments) (published erratum appears in Eur J Cancer 1997;33:2440). Eur J Cancer 1997;33:1075-1 107.
13. Engeland A, Haldorsen T, Tretli S, et al. Prediction of cancer incidence in the Nordic countries up to the years 2000 and 2010. A collaborative study of the five Nordic Cancer Registries. APMIS Suppl 1993;38:1-124.
14. Mcnally RJ, Rowland D, Roman E, Cartwright RA. Age and sex distributions of hematological malignancies in the UK. Hematol Oncol 1997;15:173-189.
15. Ferlay J, Bray F, Sankila R, Parkin D. Eucan. Cancer incidens, Mortality and Prevalence in the European Union 1996, Version 3.1. In: IARC Cancerbase No. 4. Lyon: IARC Press, 1999.
16. Tverdal, A. A mortality follow-up of persons invited to a cardiovascular disease study in five areas in Norway. Oslo: National Health Screening Service, 1989.
17. Hansen V, Jacobsen BK, Arnesen E. Prevalence of scrious psychiatric morbidity in attenders and nonattenders to a health survey of a general population: the Tromse Health Study. Am J Epidemiol 2001;154:891-894.
18. Mork J, Thoresen S, Faye-Lund H, Langmark F, Glattre E. Head and neck cancer in Norway. A study of the quality of the Cancer Registry of Norway's data on head and neek cancer for the period 1953-91. APMIS 1995;103:375-382.
19. Harvei S, Tretli S, Langmark F. Quality of prostate cancer data in the cancer registry of Norway. Eur J Cancer 1996;32A:104-110.
20. Lund E. Pilot Study for the Evaluation of Completeness of Reporting to the Cancer Registry. Oslo, Norway: The Cancer Registry of Norway, 1981.
21. Alexander F, Ricketts TJ, Mckinney PA, Cartwright RA. Cancer registration of leukaemias and lymphomas: results of a comparison with a specialist registry. Community Med 1989;11:81-89.
22. Mattsson B, Wallgren A. Completeness of the Swedish Cancer Register. Non-notified cancer cases recorded on

Haematological malignancies in a population

death certificates in 1978. Acta Radiol Oncol 1984;23:305313.
23. Ruttimann S, Clemencon D, Dubach UC. Usefulness of complete blood counts as a case-finding tool in medical outpatients (see comments). Ann Intern Med 1992;116:44-50.
24. Mates M, Heyd J, Souroujon M, el al. The hacmatologist as watchdog of community health by full blood count. Q J Med 1995;88:333-339.
25. Rozman C, Montserrat E. Chronic lymphocytic lcukemia (published erratum appears in N Engl J Medical 1995; 333: 1515) (see comments). N Engl J Med 1995;333:1052-i057.
26. Randi ML, Fabris F, Rossi C, et al. Sex and age as prognostic factors in essential thrombocythemia. Haematologica 1992;77:402-404.
27. Finazzi G, Barbui T. Treatment of essential thrombocythemia with special emphasis on leukemogenic risk. Ann Hematol 1999;78:389-392

1. Bidrag til belysning av medisinske og sosiale forhold i Finnmark fylke, med særlig vekt pả forholdene blant finskættede i Sør-Varanger kommune.
Av Anders Forsdahl, 1976. (nytt opplag 1990)
2. Sunnhetstilstanden, hygieniske og sosiale forhold i SørVaranger kommune 1869-1975 belyst ved medisinalberetningene.
Av Anders Forsdahl, 1977.
3. Hjerte-karundersøkelsen i Finnmark - et eksempel pả en populasjonsundersøkelse rettet mot cardiovasculære sykdommer. Beskrivelse og analyse av etterundersøkelsesgruppen.
Av Jan-Ivar Kvamme og Trond Haider, 1979.
4. D. The Tromsø Heart Study: Population studies of coronary risk factors with special emphasis on high density lipoprotein and the family occurrence of myocardial infarction.
Av Olav Helge Førde og Dag Steinax Thelle, 1979.
5. D. Reformer i distriktshelsetjenesten III: Hypertensjon i distriktshelsetjenesten.
Av Jan-Ivar Kvame, 1980.
6. Til professor Knut Westlund på hans 60-ärs dag, 1983.
7.* Blodtrykksovervåkning og blodtrykksmåling.

Av Jan-Ivar Kvamme, Bernt Nesje og Anders Forsdahl, 1983.
8.* Merkesteiner i norsk medisin reist av allmennpraktikere og enkelte utdrag av medisinalberetninger av kulturhistorisk verdi.
Av Anders Forsdahl, 1984.
9. "Balsfjordsystemet." EDB-basert journal, arkiv og statistikksystem for primærhelsetjenesten. Av Toralf Hasvold, 1984.
10. D. Tvunget psykisk helsevern i Norge. Rettsikkerheten ved slikt helsevern med særlig vurdering av kontrollkommisjonsordningen.
Av Georg Høyer, 1986.
11. D. The use of self-administered questionnaires about food habits. Relationships with risk factors for coronary heart disease and associations between coffee drinking and mortality and cancer incidence.
Av Bjarne Kostex Jacobsen, 1988.
12.* Helse og ulikhet. Vi trenger et handlingsprogram for Finnmark.
Av Anders Forsdahl, Atle Svendal, Aslak Syse og Dag Thelle, 1989.

13.	D.	Health education and self-care in dentistry - surveys and interventions. Av Anne Johanne Søgaard, 1989.
14.		Helsekontroller i praksis. Erfaringer fra prosjektet helsekontroller i Troms 1983-1985. Av Harald Siem og Arild Johansen, 1989.
15.		Til Anders Forsdahls 60-års dag, 1990.
16.	D.	Diagnosis of cancer in general practice. A study of delay problems and warning signals of cancer, with implications for public cancer information and for cancer diagnostic strategies in general practice. Av Knut Holtedahl, 1991.
17	D.	The Tromse Survey. The family intervention study. Feasibility of using a family approach to intervention on coronary heart disease. The effect of lifestyle intervention of coronary risk factors. Av Synnøve Fønnebø Knutsen, 1991.
18.		Helhetsforstảelse og kommunikasjon. Filosofi for klinikere. Av Áge Wifstad, 1991.
19.	D.	Factors affecting self-evaluated general health status and the use of professional health care services. Av Knut Fylkesnes, 1991.
20.	D.	```Serum gamma-glutamyltransferase: Population determinants and diagnostic characteristics in relation to intervention on risk drinkers. Av Odd Nilssen, 1992.```
21.	D.	The Healthy Faith. Pregnancy outcome, risk of disease, cancer morbidity and mortality in Norwegian Seventh-Day-Adventists. Av Vinjar Fønnebø, 1992.
22.	D.	Aspects of breast and cervical cancer screening. Av Inger Torhild Gram, 1992.
23.	D.	Population studies on dyspepsia and peptic ulcer disease: Occurrence, aetiology, and diagnosis. From The Tromsø Heart Study and The Sørreisa Gastrointestinal Disorder Studie. Av Roar Johnsen, 1992.
24.	D.	Diagnosis of pneumonia in adults in general practice. Av Hasse Melbye, 1992.
25.	D.	Relationship between hemodynamics and blood lipids in population surveys, and effects of $n-3$ fatty acids. Av Kaare Bønaa, 1992.

26. D. Risk factors for, and 13-year mortality from cardiovascular disease by socioeconomic status. A study of 44690 men and 17540 women, ages 40-49. Av Hanne Thürmex, 1993.
27. Utdrag av medisinalberetninger fra Sulitjelma 1891-1990. Av Anders Forsdahl, 1993.
28. Helse, livsstil og levekảr i Finnmark. Resultater fra Hjerte-karundersøkelsen i 1987-88. Finnmark III. Av Knut Westlund og Anne Johanne Søgaard, 1993.
29. D. Patterns and predictors of drug use.

A pharmacoepidemiologic study, linking the analgesic drug prescriptions to a population health survey in Tromsø, Norway.
Av Anne Elise Eggen, 1994.
30. D. ECG in health and disease. ECG findings in relation to CHD risk factors, constitutional variables and 16 -year mortality in 2990 asymptomatic Oslo men aged 40-49 years in 1972.
Av Per G. Lund-Larsen, 1994.
31. D. Arrhythmia, electrocardiographic signs, and physical activity in relation to coronary heart risk factors and disease. The Tromsø Study. Av Maja-Iisa Løchen, 1995.
32. D. The Military service: mental distress and changes in health behaviours among Norwegian army conscript. Av Edvin Schei, 1995.
33. D. The Harstad injury prevention study: Hospital-based injury recording and community-based intervention.
Av Børge Ytterstad, 1995.
34.* D. Vilkår for begrepsdannelse og praksis i psykiatri. En filosofisk undersøkelse.
Av Ȧge Wifstad, 1996. (utgitt Tano Aschehoug forlag 1997)
35. Dialog og refleksjon. Festskrift til professor Tom Andersen på hans 60-års dag, 1996.
36. D. Factors affecting doctors decision making.

Av Ivar Sønbø Kristiansen, 1996.
37. D. The Sørreisa gastrointestinal disorder study. Dyspepsia, peptic ulcer and endoscopic findings in a population. Av Bjørn Bernersen, 1996.
38. D. Headache and neck or shoulder pain. An analysis of musculoskeletal problems in three comprehensive population studies in Northern Norway. Av Toralf Hasvold, 1996.
39. Senfølger av kjernefysiske prøvespreninger på øygruppen Novaya Semlya i perioden 1955 til 1962. Rapport etter programmet "Liv". Arkangelsk 1994.
Av A.V. Tkatchev, I.K. Dobrodeeva, A.I. Isaev, T.S. Podjakova, 1996.
40. Helse og livskvalitet på 78 grader nord. Rapport fra en befolkningsstudie på Svalbard høsten 1988. Helge Schirmex, Georg Høyer, Odd Nilssen, Tormod Brenn og Siri Steine, 1997.
41.* D. Physical activity and risk of cancer. A population based cohort study including prostate, testicular, colorectal, lung and breast cancer.
Av Inger Thune, 1997.
42. The Norwegian - Russian Health Study 1994/95. A crosssectional study of pollution and health in the border area.
Av Tone Smith-Sivertsen, Valeri Tchachtchine, Eiliv Lund, Tor Norseth, vladimir Bykov, 1997.
43. D. Use of alternative medicine by Norwegian cancer patients Av Terje Risberg, 1998.

44 D. Incidence of and risk factors for myocardial infarction, stroke, and diabetes mellitus in a general population. The Finnmark Study 1974-1989.
Av Inger Njolstad, 1998.
45. D. General practitioner hospitals: Use and usefulness. A study from Finnmark County in North Norway. Av Ivar Aaraas, 1998.

45B Sykestuer i Finnmark. En studie av bruk og nytteverdi. Av Ivar Aaraas, 1998.
46. D. No går det på helsa laus. Helse, sykdom og risiko for sykdom i to nord-norske kystsamfunn. Ay Jorid Andersen, 1998.
47. D. The Tromsø Study: Risk factors for non-vertebral fractures in a middle-aged population.
Av Ragnar Martin Joakimsen, 1999.
48. D. The potential for reducing inappropriate hospital admissions: A study of health benefits and costs in a department of internal medicine.
Av Bjørn Odvar Eriksen, 1999.
49. D. Echocardiographic screening in a general population. Normal distribution of echocardiographic measurements and their relation to cardiovascular risk factors and disease. The Tromse Study.
Av Henrik Schirmer, 2000.
50. D. Environmental and occupational exposure, life-style factors and pregnancy outcome in artic and subartic populations of Norway and Russia. Av Jon Øyvind Odland, 2000.

50B
Окружающая и профессиональная экспозиция, факторы стиля жизни и исход беременности у населения арктической и субарктической частей Норвегии и России Юн Ойвин Удлан 2000
51. D. A population based study on coronary heart disease in families. The Finnmark Study 1974-1989. Av Tormod Brenn, 2000.

52 D. Ultrasound assessed carotid atherosclerosis in a general population. The Tromsø Study. Av Oddmund Joakimsen, 2000.
53. D. Risk factors for carotid intima-media thickness in a general population. The Tromsø Study 1979-1994. Av Eva Stensland-Bugge, 2000.
54. D. The South Asian cataract management study. Av Torkel Snellingen, 2000.
55. D. Air pollution and health in the Norwegian-Russian border area.
Av Tone Smith-Sivertsen, 2000.
56. D. Interpretation of forearm bone mineral density. The Tromse Study. Av Gro K. Rosvold Berntsen, 2000.
57. D. Individual fatty acids and cardiovascular risk factors. Av Sameline Grimsgaard, 2001.
58. Finnmarkundersøkelsene

Av Anders Forsdahl, Fylkesnes K , Hermansen R, Lund E, Lupton B, Selmer R, Straume E, 2001.
59. D. Dietary data in the Norwegian women and cancer study. Validation and analyses of health related aspects. Av Anette Hjartaiker, 2001.
60. D. The stenotic carotid artery plaque. Prevalence, risk factors and relations to clinical disease. The Tromsø Study.
Av Ellisiv B. Mathiesen, 2001.
61. D. Studies in perinatal care from a sparsely populated area. Av Jan Holt, 2001.
62. D. Fragile bones in patients with stroke? Bone mineral density in acute stroke patients and changes during one year of follow up.
Av Lone Jørgensen, 2001.
63. D. Psychiatric morbidity and mortality in northern Norway in the era of deinstitutionalisation. A psyhiatric case register study.
Av Vidje Hansen, 2001.
64. D. Ill health in two contrasting countries. Av Tom Andersen, 1978/2002.
65. D. Longitudinal analyses of cardiovascular risk factors. Av Tom Wilsgaard, 2002.
66. Helseundersøkelsen i Arkangelsk 2000. Av Odd Nilssen, Alexei Kalinin, Tormod Brenn, Maria Averina et al., 2003.
67. D. Bio-psycho-social aspects of severe multiple trauma. Av Audny G. W. Anke, 2003.
68. D. Persistent organic pollutants in human plasma from inhabitants of the artic. Av Torkjel Manning Sandanger, 2003.
69. D. Aspects of women's health in relation to use of hormonal contraceptives and pattern of child bearing.
Av Merethe Kunmle, 2003.
70. Pasienterfaringer i primærlegetjenesten før og etter fastlegereformen. Av Olaug Lian, 2003.
71. D. Vitamin D security in northern Norway in relation to marine food traditions.
Av Magritt Brustad, 2004.
72. D. Intervensjonsstudien i Finnmark. Evaluering av lokalsamfunns basert hjerte- og kar forebygging i kystkommunene Båtsfjord og Nordkapp. Av Beate Lupton, 2004.
73. D. Environmental factors, metabolic profile, hormones and breast and endiometrial cancer risk.
Av Anne-Sofie Furberg, 2004.
74. D. Det skapende mellomrommet i møtet mellom pasient og lege.
Av Eli Berg, 2004.
75. Kreftregisteret i Arkhangelsk oblast i nordvest Russland. Med en sammenligning av kreftforekomst i Arkhangelsk oblast og Norge 1993-2001.
Av Vaktskjold Arild, Lebedintseva Jelena, Korotov Dmitrij, Tkatsjov Anatolij, Podjakova Tatjana, Lund Eiliv, 2004
76. D. Characteristics and prognosis of long-term stroke survivors. The Tromsø Study.
Av Torgeir Engstad, 2004
77. D. Withdrawal and exclusion. A study of the spoken word as means of understanding schizophrenic patients.
Av Geir Fagerjord Lorem, 2005.
78.
"Søkelys på safunnsmedisinene." Evaluering av kommunal samfunnsmedisinsk legetjeneste, offentlig legearbeid og de forebyggende oppgaver i Fastlegeordningen.
Av Betty Pettersen og Roar Johnsen, 2005.
79. Prosjekt egenmelding Kristiansand kommune.

Evaluering av kontrollert intervensjonsforsøk i stor skala, med utvidet rett til egenmelding i kombinasjon med økt og formalisert samhandling mellom arbeidstaker og arbeidsplassen ved sykefravær.
Av Nils Fleten og Roar Johnsen, 2005.
80. D. Abdominal aortic aneurysms:Diagnosis and epidemiology. The Tromsø study.
Av Kulbir Singh, 2005.
81. D. A population based study on cardiovascular diseases in Northwest Russia. The Arkhangelsk study 2000. Av Maria Averina, 2005.
82. D. Exposure to exogenous hormones in women: risk factors for breast cancer and molecular signature. Av Vanessa Dumeaux, 2005.
83. D. Repeated ultrasound measurements of carotid artery plaques in a general population. The Tromsø Study 1994-2001.
Av Stein Harald Johnsen, 2005.
84. D. Risk Factors For Fractures In Tromsø. The Tromsø Study.
Av Luai Awad Ahmed, 2005.
85. D. The quality and use of two health registries in Russia. The Arkhangelsk Cancer Registry and the Kola Birth Registry
Качество и использование двух медицинских регистров в России. Архангельск регистр рака и Кольский регистр родов Av Arild Vaktskjold, 2005.

De som er merket med D er doktorgradsarbeid.
De som er merket med * har vi dessverre ikke flere eksemplar av.

[^0]: ${ }^{\text {n) }}$ Changes in alcohol habits and coffee consumption were calculated as the difference between the levels in 1994-95 and 1979-80.

[^1]: ${ }^{\text {a) }}$ Reporting to have or had suffered from heart attack, angina pectoris, cerebral stroke, diabetes or duodenal ulcers (yes/no).

[^2]: Your comments：
 Thank you for helping us！Remember to post the form today！Tromsø Health Survey

[^3]: *The Institute of Community Medicine, University of Tromsø conducted the survey in cooperation with the National Health Screening Service. Our salaries are from the University Hospital of North Norway and the University of Tromsa.

[^4]: *) All listed variables are adjusted for each other and for mean haemoglobin 1974-1994-95.

[^5]: *) Δ Haemoglobin adjusted for age and mean haemoglobin 1974-1994-95. ${ }^{\dagger}$) Change in number of cigarettes smoked per day.

[^6]: ${ }^{\text {a }}$ Hazard ratios (HR) adjusted for age, smoking, body mass index, total cholesterol and systolic blood pressure.
 ${ }^{\mathrm{b}} 95 \%$ confidence interval (CI)
 ${ }^{\text {c }}$ Overall test for equality between haemoglobin quintiles.

[^7]: ${ }^{\text {a }}$ Per 1,000 person-years. Age adjusted with total invited population as standard population.
 ${ }^{\mathrm{b}} 95 \%$ confidence interval (CI).
 ${ }^{\text {c }}$ Hazard ratios (HR), adjusted for age (Cox's proportional hazard model).
 ${ }^{\mathrm{d}}$ Hazard ratios (HR), adjusted for age, body mass index, total cholesterol and systolic blood pressure.

[^8]: ${ }^{a}$ Per 1,000 person-years. Age adjusted with total invited population as standard population.
 ${ }^{\mathrm{b}} 95 \%$ confidence interval (CI).
 ${ }^{\text {c }}$ Hazard ratios (HR), adjusted for age (Cox's proportional hazard model).
 ${ }^{\text {d }}$ Hazard ratios (HR), adjusted for age, body mass index, total cholesterol and systolic blood pressure.

