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“Nothing can stop the man with the right mental attitude from achieving his
goal; nothing on earth can help the man with the wrong mental attitude.”

–Thomas Jefferson

“The opposite of a correct statement is a false statement. But the opposite of a
profound truth may well be another profound truth.”

–Niels Bohr



Abstract
Scientific workflows have become a prevailing means of achieving significant
scientific advances at an ever-increasing rate. Scheduling mechanisms and
approaches are vital to automating these large-scale scientific workflows effi-
ciently. On the other hand, with the advent of cloud computing and its easier
availability and lower cost of use, more attention has been paid to the execu-
tion and scheduling of scientific workflows in this new paradigm environment.
For scheduling large-scale workflows, a multi-cloud environment will typically
have a more significant advantage in various computing resources than a single
cloud provider. Also, the scheduling makespan and cost can be reduced if the
computing resources are used optimally in a multi-cloud environment. Accord-
ingly, this thesis addressed the problem of scientific workflow scheduling in
the multi-cloud environment under budget constraints to minimize associated
makespan. Furthermore, this study tries to minimize costs, including fees for
running VMs and data transfer, minimize the data transfer time, and fulfill
budget and resource constraints in the multi-clouds scenario. To this end, we
proposedMixed-Integer Linear Programming (MILP) models that can be solved
in a reasonable time by available solvers. We divided the workflow tasks into
small segments, distributed them among VMs with multi-vCPU, and formulated
them in mathematical programming. In the proposed mathematical model, the
objective of a problem and real and physical constraints or restrictions are
formulated using exact mathematical functions. We analyzed the treatment
of optimal makespan under variations in budget, workflow size, and different
segment sizes. The evaluation’s results signify that our proposed approach has
achieved logical and expected results in meeting the set objectives.
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1
Introduction
Scientific workflows are collections of several structured activities and fine-
grained computational tasks that enable data analysis in a structured and
distributed manner. Indeed, scientific workflows contain a set of computational
tasks linked via control and data dependencies. These tasks within a workflow
may have different sizes and require different running times ranging from a
fraction of seconds to several hours [1]. Scientific workflows have been success-
fully used to make significant scientific advances in various domains such as
biology, medicine, planetary science, astronomy, physics, bioinformatics, and
environmental science [2]. Their importance is exacerbated in today’s big-data
era, as they become a compelling means to process and extract knowledge
from the ever-growing data produced by increasingly powerful tools such
as telescopes, particle accelerators, and gravitational wave detectors. There
are several examples of scientific workflows’ applications, such as Montage
in Astronomy, Cybershake in Earthquake science, Epigenomics, and SIPHT in
Bioinformatics, and LIGO in Astrophysics). Therefore, similar to other com-
putational systems, workflows have scheduling stag which tasks within them
are allocated to the desired resources optimally. Formally expressed, scientific
workflow scheduling is the analysis of application structures to optimally assign
tasks to computational resources based on application characteristics and re-
source availability. Workflow schedulers aim to produce a satisfactory solution
in a relatively short time and low cost. Hence, scheduling scientific workflow
is an open challenge in this regard.

1
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1.1 Problem Definition

The scientific workflows often involve simulations of large-scale complex ap-
plications for validating the behavior of different real-world activities. Due
to their large-scale, data, and compute-intensive nature, scientific workflows
require high-performance computing environments to execute in an accept-
able time and cost. In past decades, workflows were scheduled on distributed
systems by providing own computing infrastructures and dedicated HPCs
(High-Performance Computing platforms). Nevertheless, in recent years, the
emergence of the cloud computing, as a new distributed systems paradigm,
brings with it tremendous opportunities to run scientific workflows at low costs
without the need of owning any infrastructure. Indeed, the cloud-computing
paradigm has revolutionized the way of assessing computing resources by
proposing a highly versatile availability of resources through a Pay-As-You-Go
model. These features have enabled users to migrate their application pro-
cessing to cloud platforms. In particular, Infrastructure as a Service (IaaS) in
cloud providers allows workflow management systems (or brokers) to access
a virtually infinite pool of resources that can be acquired, configured, and
used as needed and are charged on a pay-per-use basis. IaaS providers offer
virtualized computing resources called Virtual Machines (VMs) for lease. They
have a predefined CPU,memory, storage, and bandwidth capacity, and different
resource bundles (i.e., VM types) are available at differing prices. They can be
elastically acquired and released and are generally charged per time frame or
billing period.

The adoption of cloud computing for scientific workflow deployment has led
to extensive research on designing efficient scheduling algorithms capable of
elastically utilizing VMs. This ability to modify the underlying execution en-
vironment is a powerful tool that allows algorithms to scale the number of
resources to achieve both performance and cost efficiency. During scheduling
workflow applications in the cloud, both cloud providers and users are involved
with the makespan and monetary costs criteria. Makespans refer to the com-
pletion time of the entire workflow, and the price is that users need to pay
due to the usage of cloud resources in the monetary cost. In cloud computing,
resources of different capabilities at different prices are provided. Typically,
faster computing resources are more expensive than slower ones. Thus, dif-
ferent workflow applications scheduling strategies using different resources
may result in different makespan and monetary costs. Therefore, the problem
of scheduling workflow applications in the cloud requires both time and cost
constraints to be satisfied. But on the other hand, these two criteria are also
in conflict. On one side, optimal execution times (makespans) converge with
solutions employing the fastest and most expensive computer resources. On
the other hand, full optimization of monetary cost leads to poor performance
in terms of execution time. For the issues mentioned above, the scheduling of
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workflows is classified as an NP-complete problem, i.e., a problem that cannot
be solved within polynomial time using current computing systems [3]. Hence,
a trade-off must be found between these two criteria and should be done at the
right time and the right cost. Most scheduling approaches focus on minimizing
the total infrastructure cost while meeting a time constraint or deadline. Only
a small fraction of techniques focus on scheduling under budget constraints.
Others include a deadline constraint that guides the optimization process, and
the budget is only taken into consideration when deciding the feasibility of a
potential schedule. Contrary to this, in this thesis, a budget-driven algorithm
is proposed whose objective is to optimize the way in which the budget is
spent so that the makespan (i.e., total execution time) of the application is
minimized.

Scientific workflows may require more instance types of VMs than those pro-
visioned by a cloud provider. Many workflow scheduling approaches consider
a single public cloud provider for provisioning required resources in a cloud
environment. However, the demand for computational resources for execut-
ing large-scale workflow applications and using a multi-cloud environment,
which provides scalable services, is rising. Therefore, the problem of schedul-
ing workflow applications in multi-cloud has been considered in recent years.
Indeed, a multi-cloud environment consists of multiple IaaS cloud providers
that offer diverse instance types of VMs according to price and performance.
Multi-cloud environments present many advantages, such as high scalability
and prevention of vendor locking [1]. They are also more cost-effective set-
tings to schedule workflows than individual clouds because of the variety in
pricing and performance of instance types available from multiple providers.
In addition, in recent years, cloud providers introduced the concept of virtual
CPU (vCPU). Using this concept to measure the processing power of different
VM instance types will help better schedule and increase the utilization of the
VMs.

In terms of finding the optimal solution for scheduling workflow applications,
it can be noted that optimization-based scheduling workflow algorithms can
be classified into optimal and sub-optimal approaches [4]. Most approaches
focus on finding sub-optimal solutions for workflow applications scheduling
problems using heuristic and meta-heuristic methods. These approaches do
not scale well with the number of tasks in the workflow and produce a static
schedule unable to adapt to the inherent dynamicity of cloud environments.
On the other hand, valuable and practical approaches have been presented
based on mathematical programming, which can find optimal solutions.
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1.2 Objectives and contributions

The main goal of this thesis is to formulate the static scheduling of the scien-
tific workflow applications in multi-cloud environments by using mathematical
programming so that optimizing makespan while meeting the budget and op-
erational constraints. The intuition behind this strategy is to finish a workflow
at a given budget as soon as possible. The objective is to minimize makespan
under budget restrictions. A Mixed-Integer Linear Programming (MILP) for-
mulation is used for modeling, which can provide comprehensive, clear, and
flexible descriptions for our approach. The solution achieved is optimal, and
MILP formulations are widely used in the industry since they can be solved in
a reasonable time through efficient algorithms.

In this thesis, we make the following contributions:

– A novel scheduling approach that adopts a multi-cloud environment to
resource provisioning for scientific workflow applications.

– The use of a smaller unit called segment and an approach to calculate
the power of processing of each VM based on the virtual CPU (vCPU)
and the segments of the workflow.

– We are developing a linear programming model to minimize both com-
putation and communication costs for a budget-constrained scientific
workflow that runs in a multi-cloud environment.

1.3 Context

The context of this thesis is the scheduling of scientific workflow applications,
mathematical optimization, and cloud computing. Indeed, our solution is an
interdisciplinary approach in line with the field of two research groups at the
UiT- The Arctic University of Norway, the Center for Artificial Intelligence (CAI)
group, and the Arctic Green Computing (AGC) group. The Center for Artifi-
cial Intelligence, CAI, investigates new ways of building intelligent computer
systems and autonomous intelligent systems, using, among many techniques,
data analytics, optimization, decision-support and decision-making with rea-
soning. While the AGC group focuses on energy efficiency, system complexity,
and dependability across mobile, embedded, and data-center systems. This
thesis is considered an interdisciplinary approach in that it uses mathematical
optimization to optimize the budget consumption for scheduling the scientific
workflow applications. Mathematical optimization gives the algorithm the abil-
ity to make optimal decisions, a powerful technique that can be applied in the
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artificial intelligence (AI) field. On the other hand, to optimize the scheduling
budget and reduce the operational time and cost, we used a multi-cloud envi-
ronment in the subject of data-center, which is one of the topics studied in the
AGC research group.

1.4 Organization

Chapter 2 - Technical background : Summarizes the technical and theoreti-
cal knowledge required to make decisions regarding design and imple-
mentation.

Chapter3 - Related work and contribution : This chapter contains a sum-
mary of researchedwork related to this topic of the study and a discussion
on the key contribution of the thesis.

Chapter4 - System Design and Model : Presents the proposed scheduling
workflow applications’ architecture, design, and mathematical model in
a multi-cloud environment.

Chapter5 - Experiments : Describes the experimental setup and metrics used
to evaluate the implemented system.

Chapter6 - Evaluation : Present the results of the experiments conducted.

Chapter7 - Future work : Describes some features that could be added to
further improve the current model.

Chapter8 - Conclusions : Summarizes the thesis and its findings and presents
concluding remarks.





2
Technical Backgrounds
This chapter describes theoretical concepts relevant to the proposed scheduling
algorithm to enhance the further reading experiment. The information pre-
sented should not be interpreted as a complete description or documentation;
it merely serves the purpose of explaining concepts and some of the researched
elements used in the algorithm. Section 2.1 gives a brief overview of cloud
computing concepts and essential other topics related to cloud computing.
Section 2.2 states the structure and behavior of the scientific workflow. Finally,
section 2.4 explains the concepts of mathematical programming and the model
used in this thesis.

2.1 Cloud Computing

Since its inception, the Internet has undergone many changes, some of which
have had a positive impact on human lifestyle, including cloud computing. This
new computing paradigm has quickly gained public attention due to its features
because all kinds of facilities are provided to users as a service. This technology
is designed for easy use of information resources, hardware, applications, and
networks, and its approach is that you no longer need to have your computing
infrastructure with high processing power [5, 6]. Instead, in cloud computing,
the IT resources are delivered to the user in a flexible and scalable way via
the Internet based on the user’s demand and based on a "PAY-AS-YOU-GO"
premise [7]. Numerous different definitions of cloud computing have been

7
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proposed in recent years in both academia and industry. They all define cloud
computing in some way, but perhaps the most accurate definition is related to
the National Institute of Standards and Technology (NIST). According to the
NIST: "Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics, three
service models, and four deploymentmodels" [8]. This definition includes cloud
architectures, servicemodels, and deployment strategies. In the following, these
characteristics and models will be described.

2.1.1 Essential Characteristics

In Figure 2.1, five essential characteristics of cloud computing can be seen. In
the following, these characteristics will be described

Resource 

Pooling
Measured 

Service

Rapid 

Elasticity
Broad Network 

Access
On-demand Self-

Service

ESSENTIAL 
CHARACTERISTICS OF 
CLOUD COMPUTING

Figure 2.1: Cloud Computing Essential Characteristics

On-demand self-service: This means that a consumer with an urgent need,
at a given time, can use computing resources (such as CPU, Memory, Storage,
Network, software use, etc.) without resorting to human interactions, and it
will be done automatically (i.e., convenient, self-service).

Broad network access: This means that cloud computing services and re-
sources are provided and delivered to the different client platforms (e.g.,mobile
phones, tablets, laptops, PDA, and workstations) over the network, specifically
the Internet, and through specific mechanisms and protocols.
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Resource pooling: A cloud provider’s computing resources are pooled to
provide services to multiple consumers using a multi-tenancy model, "with
different physical and virtual resources that are dynamically assigned and
allocated to the consumer according to its demand." [8]. The main motivation
of the resource pooling model is to create a location independence mode in
which the consumer will not have any control and knowledge of the location
of the provided resources. Of course, the consumer will be able to determine
the location of resources at a high level (e.g., country, state, or data center).

Rapid elasticity: This means that the provided resources are flexible, and
resources are allocated or released according to the consumer’s demand. This
feature allows the consumers to scale up their demanded resources whenever
they want and release them once they finish scaling down. Also, from the
consumer’s perspective, resources can be provided unlimited, in any quantity,
and at any time.

Measured Service: Computing resources can be pooled and shared bymultiple
consumers. In the meantime, the cloud providers can utilize appreciative
mechanisms to calculate, monitor, and report the usage of computing resources
for each consumer.

2.1.2 Service Models

In addition to the five essential characteristics mentioned regarding cloud
computing, there are three service models that will be described below.

Software as a Services (SaaS): In this service model, cloud providers give
consumers the ability to use the provider’s software applications which are
hosted and running on the cloud infrastructure. The consumer pays for it
through the PAYG model if there is a cost. These applications are generally
available to consumers through web browsers or through application interfaces,
in which case consumers will have no control over the infrastructure used by
those software applications.

Platform as a Services (PaaS): This service model allows consumers to deploy
their own created applications on cloud infrastructure and the cloud provider
has tools that support the entire "Software Lifecycle" and deployment process.
However, in this model, the consumers have no control over the cloud infras-
tructures and can only manage and configure the necessary configurations for
their applications.

Infrastructure as a Services (IaaS): IaaS is a solution of providing cloud
computing infrastructures such as servers, storage, networks, and operating



10 chapter 2 technical backgrounds

systems (usually in terms of virtual machines). This infrastructure provides
virtualized computing resources on the network as a requested service to the
user or consumer. Instead of buying servers, software, data center space, or net-
work equipment, consumers buy those cloud resources and infrastructure as a
completely outsourced service. Thus, IaaS refers to online services that abstract
the consumer from the details of infrastructure such as physical computing
resources, location, data partitioning, scaling, security, backup, etc.

Although other service models have been introduced in the last decade and
recent years (such as Database as a Service (DaaS), Containers as a Service
(CaaS), Function as a Service (FaaS), etc.), these models, as mentioned earlier
are the leading service models in cloud computing.

2.1.3 Deployment Models

According to the NIST definition, there are four types of deployment models.
Figure 2.2 illustrates these four models, and in the following, each of them will
be briefly described.

Public Cloud Private Cloud Hybrid CloudCommunity Cloud

Cloud deployment models

Figure 2.2: Cloud Computing Deployment Models

Private Cloud: In this deployment model, the cloud infrastructure is provided
exclusively by a single organization with multiple consumers. The monopoly
of these infrastructures may be in the hands of an organization, a third party,
or a combination, whether it is located on-premise or off-premise.

Community Cloud: In this type of deployment model, several organizations
that form a community jointly share the cloud infrastructure among themselves.
These organizations generally have common concerns (e.g., security require-
ments, mission, policy, and compliance considerations). Cloud infrastructure
can be hosted by a third party or one of the existing organizations in the
community.
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Public Cloud: This deploymentmodel is the predominant and pervasive form of
the current cloud computing. The public cloud is open to use by general public
consumers. The cloud service provider has complete control and ownership
of the public cloud with its concerns, security requirements, mission, policy,
compliance considerations, profit, and charging model. There are numerous
public cloud providers, including Amazon EC2, Google CE, Azure, etc.

Hybrid Cloud: The cloud infrastructure is a composition of two or more dis-
tinct cloud infrastructures (private, community, or public) that remain unique
entities, but are bound together by standardized or proprietary technology that
enables data and application portability (e.g., cloud bursting for load balancing
between clouds) [8].

2.1.4 Virtual Machines

A virtualmachine (VM) is defined as "a copy of a real, physicalmachine, efficient
and isolated." A VM software can run various operating systems and applica-
tions, connect to the network, store data, and perform other computational
functions. It also needs maintenance, such as system updates and monitoring.
Multiple virtual machines can be hosted on a single physical machine, often a
server, and then managed using virtual machine software (Hypervisor) [9]. Fig-
ure 2.3 illustrate the simplified diagram of VM on a server. It provides flexibility
for computing resources to be distributed among VMs as needed.

Hardware
Processor | Memory | IO Devices | …

Host Operating System (OS)
Windows | MacOS | Linux | …

Hypervisor
vSphere | Hyper-V | Cirix Xen | RHEV | KVM | …

…

Virtual Machine  1

Guest OS
Windows | MacOS | Linux | …

Applications

Secure Apps

Virtual Machine  2

Guest OS
Windows | MacOS | Linux | …

Applications

Secure Apps

Virtual Machine  N

Guest OS
Windows | MacOS | Linux | …

Applications

Secure Apps

Figure 2.3: Virtual Machine in Cloud computing Diagram
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There are many benefits to using a virtual machine in cloud providers, such as
Lower hardware costs, Quicker Desktop Provisioning and Deployment, Smaller
Footprint, Enhanced Data Security, Portability, and Improved IT Efficiency.
Cloud providers define different types of these virtual machines according
to the needs of consumers and clients, which are used for different applications.
In other words, cloud providers have different kinds of predefined virtual ma-
chines with different specifications (e.g., CPU, Memory, Storage, Bandwidth,
etc.),which are known as Instances. Cloud providers generally classified their in-
stances into different groups, including General Purpose, Compute Optimized,
Memory Optimized, Storage Optimized, Accelerated Computing, etc. Accord-
ing to its specifications, each classified instance usually has a different price.
These prices are generally calculated on an hourly basis. This information,
including the specifications of each instance and its price, is available on the
site of each cloud provider. In addition, each instance in the cloud environment
needs a specific time to prepare for the execution, which is called Provisioning
Time. In other words, provision time is the time required to configure and be
fully ready o use an instance. This time will vary depending on the instance’s
specification and may take 30 seconds to 10 minutes.

2.1.5 Virtual CPU (vCPU)

Virtual CPU (vCPU) is a new concept used in cloud providers to denote a virtual
machine’s processing power and performance. Indeed, a vCPU represents a
portion or share of the underlying physical CPU assigned to a particular virtual
machine. Today’s CPUs support multi-core, and each CPU core can have two
threads. Threads are essential to the computer’s functionality because they
determine how many tasks the computer can perform at any given time. Cloud
providers consider each vCPU equal to one thread in the CPU core. So when it
is said that a VM has two vCPU, we are dealing with a maximum of one CPU
core and not the entire CPU. For example, the Intel® Xeon® E-2374G Processor
has four cores and eight threads, which can have a total of 8 vCPU. This concept
is shown in Figure 2.4.

As can be seen in Figure 2.4, a physical CPUwith four cores can have amaximum
of 8 vCPU. In other words, if we have a virtual machine with 8-vCPU, it means
that in practice, we deal with a 4-core CPU. If we want to formulate these
explanations, we come to the following relation:
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Physical CPU

Core 3 Core 4Core 1 Core 2

Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2

Virtual Machine (VM)

vCPU 1 vCPU 2 vCPU 3 vCPU 4 vCPU 5 vCPU 6 vCPU 7 vCPU 8

Hypervisor CPU Scheduler

Figure 2.4: A VM with 8 vCPUs on a CPU that has 4 cores with hyper-threading
enabled

2.2 Scientific Workflow Model

Scientific workflows are collections of several structured activities and fine-
grained computational tasks that enable data analysis in a structured and
distributed manner. Indeed, scientific workflows containing a set of compu-
tational tasks linked via control and data dependencies between them. For
example, figure 2.5 represents a sample workflow with nine tasks where the
output data generated by one task becomes the input data for the next one.
This means that the child’s task cannot be performed until the parent’s task(s)
are completed.

file.in
Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8 Task 9
file.outfile1_1.out file3_0.out

file4_0.out

file2_0.out

file6_0.out file8_0.out

file1_2.out

file1_0.out

file7_0.out

file5_0.out

Figure 2.5: Sample workflow with nine tasks. The nodes represent computational
tasks and the edges the data dependencies between these tasks

A scientific workflow application is modeled as a DAG (Directed Acyclic Graph);
that is, graphs with directed edges and no cycles or conditional dependencies.
Therefore, a workflow, can be defined as pair� = (), �), where) is a set of
tasks )={)1, )2, . . . , )=}, and E is a set of directed edges. An edge 48 9=(C8 ,C 9 )
corresponds to a dependence constraint between task C8 and C 9 , in which C8 is
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an immediate parent task of C 9 , and C 9 the immediate child task of C8 .

There are several examples of scientific workflows applications in different
domains, such as Montage in Astronomy, Cybershake in Earthquake science,
Epigenomics, and SIPHT in Bioinformatics LIGO in Astrophysics). In this thesis,
these workflows have been used to evaluate the proposed scheduling algorithm.
Figure 2.6 shows the structure of these five scientific workflows, extracted from
[10]; each with a specific dependency pattern between tasks and their full
characterization.

a) MONTAGE

b) CYBERSHAKE

c) LIGO

d) EPIGENOMICS d) SIPHT

Figure 2.6: Structure of five well-known scientific workflows: Montage, Cybershake,
LIGO, Epigenomics, and SIPHT
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2.2.1 Bag of Tasks (BoT)

Ideally, scheduling in cloud computing aims to determine an optimal assign-
ment of different application tasks to VMs in different clouds. However, in real-
world problems, achieving such an assignment is considerably time-consuming
or impossible. This challenge can be addressed by partitioning tasks and the
subsequent scheduling of the partitions. Motivated by this idea, we first set
tasks of the same level in the DAG graph in the same partition. Because all the
tasks in a partition are the same type, we regarded them as constituting a Bag
of Tasks (BoT).

Given that no data dependency exists between the tasks in a bag, they can
be executed parallelly. Such partitioning enabled us to consider a few bags
instead of many tasks individually. Figure 2.7 illustrates such partitioning for
the Cybershake workflow. The structure of the workflow is described as a
pipeline consisting of several levels, each having a bag.

The Bag with 2 Tasks

The Bag with 8 Tasks

The Bag with 1 Task

Figure 2.7: Level partitioning for Cybershake workflow

As shown in Figure 2.7, with the partitioning, a DAG workflow is converted to
a pipeline workflow. This reduces the computational complexity and increases
the comprehensibility of the problem.
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2.3 Scheduling

Scheduling is an action that assigns the available resources to different tasks
to execute. Here, "Task" can be computing elements (e.g., thread, process,
or dataflow), which are scheduled to hardware resources such as the CPU,
network connection, etc. Scheduling in cloud environments is similar to this
definition. However, the difference is that we are dealing with virtual machines
in cloud environments instead of hardware. In other words, Scheduling in the
cloud alsomeans allocating virtualmachines to perform various tasks. Workflow
scheduling approaches are generally implemented through twomethods: Static
and Dynamic Scheduling. These two will be explained in the following.

2.3.1 Static Scheduling

In static scheduling, we have complete control over the resource allocation, and
the assignment of tasks is performed before starting the scheduling process.
It means that all information (e.g., workflow structure, number of tasks, the
execution time of each task, IO data size), as well as resources information
(e.g., VM instances types, VM’s vCPU, VM’s price, bandwidth, etc.), is accurately
and wholly obtained before the scheduling [11]. Studies showed that static
scheduling outperforms dynamic scheduling. Furthermore, because of the vital
information obtained before scheduling, static scheduling mechanisms perform
better in terms of speed and performance. [12].

2.3.2 Dynamic Scheduling

Unlike static scheduling, dynamic schedulingmechanisms do not have complete
information about resources, and this information will be collected and updated
during scheduling [11]. In this kind of algorithm, twomain challenges somehow
increase the complexity of these algorithms, and their performance might be
reduced accordingly. The first challenge is that the new tasks may arrive at any
time, unpredictably. It means that the previous schedule needs to be updated.
It is a vital challenge in dynamic scheduling approaches. The second challenge
is that a resource needs some setup or re-configuration time to handle and
execute different tasks.

2.4 Mathematical Programming (MP)

This section will overview the steps of a mathematical procedure and illustrate
the general structure of mathematical models. Mathematical optimization or
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mathematical programming1 have application inmany fields (e.g.,mathematics,
economics, management, science, and engineering) which refers to choosing
the best member from a set of achievable members. In the simplest form, an
attempt is made to obtain the maximum, and minimum values of an objective
function by systematically selecting data from an achievable set and calculating
the value of an objective function [13]. Mathematical Programming includes
different classes, and each of them has its utilization and application. These
classifications include Linear programming,Nonlinear Programming,Quadratic
Programming, and Network Flow Programming.

In general, a mathematical procedure can proceed as follows if we want to
express it orally. First, a simple form of a real problem is constructed by disre-
garding unnecessary details. Second, based on this simple form, amathematical
model is derived. Third, the obtained model is solved. Since this thesis utilizes
the linear programming, therefore, in the following, we will describe it.

A linear programming model can generally be expressed as follow [14]:

<0G/<8= f
(
21G1 + . . . + 2=G=

)
BD1 942C C> :

68 (G){≥ >A ≤ >A =}18, 8 = 1, . . . ,<
G := (G1, . . . , G=) ∈ X ⊆ {R}

(2.1)

In Model (2.1), G1, . . . , G= are called decision variables, and f and 68 (8=1,...,<)
are real valued mathematical functions of G . Constants 18 (8=1,...,<) are right
hand side values which may have different interpretations (such as, the level
of demands, resources,. . . ) in different problems.

In model (2.1), the objective function f represents the value of cost or profit
of the problem concerning the decision variables. The set of < inequalities
or equalities are constraints of the model which represent the practical or
physical requirements of the problem. The set - denotes some restrictions on
decision variables such as a sign, divisibility, and discreteness of variables. Here,
we consider a special type of Model (2.1), where f and 68 (8=1,...,<) are linear
functions and G8 (8=1,...,<) are integer or binary variables (0 − 1 variables). One
type of the linear programming is Mixed-Integer Linear Programming (MILP),
which has been used to model our scheduling algorithm. Therefore, this model
will be described below.

1. Mathematical programming is very different from computer programming. Mathematical
programming is ‘programming’ in the sense of ‘planning’
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2.4.1 Mixed-Integer Linear Programming

Mixed Integer Linear Programming (MILP) is a subset of mathematical pro-
gramming whose problems are similar to linear programming, except that
some decision variables are integers and some of them are continuous. Like
linear programming, Mixed-Integer Linear Programming aims to find the mini-
mum or maximum value of a linear function on a space with linear constraints.
The general structure of a Mixed-Integer Linear Programming model is as
follows:

<0G/<8= 21G1 + . . . + 2=G=
BD1 942C C> :

011G1 + . . . + 01=G={≥ >A ≤ >A =}11
...

...

0<1G1 + . . . + 0<=G={≥ >A ≤ >A =}1<
G1, . . . , G= ∈ {R,Z, {0, 1}}

(2.2)

Where R denotes the set of Real numbers, and Z denotes the set of Integer
numbers.
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Related Work
In this section, we will have an overview of research and work done in the
field of scheduling scientific workflow in the cloud environment. Over the past
two decades, many researchers have addressed the problem of scheduling
scientific workflow applications [1, 12] in distributed environments such as
Grid and Utlity computing. Since scheduling workflow applications is always
considered an NP-hard problem, and on the other hand, the emergence of cloud
computing, workflow application scheduling problems in cloud environments
have received significant attention. Different algorithms and approaches to
scheduling workflow applications in the cloud environment each have different
goals. These goals include minimizing the total cost, minimizing the total
makespan (execution time), optimizing energy consumption, etc.

As mentioned earlier, optimization-based scheduling approaches are classi-
fied into optimal and near-optimal solutions [4]. Approaches to finding near-
optimal solutions for workflow scheduling problems mostly use heuristic and
meta-heuristic methods, while, valuable approaches are provided based on
mathematical programming that can find optimal solutions. Also, different
scheduling approaches, whether optimal or near-optimal, can have a single
objective or multi-objective [12]. Figure 3.1 depicts an overview of this cate-
gory.

Scheduling of workflow applications with cost minimization objective in cloud
has been addressed in [15, 16, 17, 18, 19, 20, 21],whereas in [22, 23, 24, 25, 26, 27],
themakespanminimization is considered as objective of scheduling. Scheduling

19
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Optimization-based scheduling workflow approaches

Near-Optimal solutions

Single Objective Multi-Objective

Optimal solutions

Single-Objective Multi-Objective

Figure 3.1: The chart of the optimization-based scheduling workflow categories

approaches in [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] aremulti-objective which
most of them consider both makespan and cost as scheduling objectives. Many
workflow scheduling approaches consider a single public provider for provision-
ing required resources in cloud environment. Because of increasing the demand
of computational resources for executing large-scale workflow applications and
raising inter-cloud, which provide scalable services, the problem of workflow
applications scheduling in inter-cloudmodels (federated cloud andmulti-cloud)
has been considered in recent years [17, 28, 29, 39, 40, 41, 42, 43, 44]. This
research addresses the problem of workflow applications scheduling in multi-
cloud environments. Some workflow applications are known as bag-of-tasks
(BoT) applications which consist of a set of concurrent bags; each includes a
large number of independent homogeneous tasks [45]. The problem of schedul-
ing for BoT workflow applications in cloud environment has been addressed
in [39, 45, 46, 47, 48, 49]. In the following, we will review and compare some
of them with our proposed approach. Our proposed approach addresses multi-
cloud environments and uses a single objective and the objective is to minimize
makespan under budget constraints.

Zhu et al. [35] used multi-objective solution and applied Genetic Algorithm
to minimize both cost and makespan for running a workflow in a single
cloud provider. Their approach, in addition to using the near-optimal solution,
is also only offered to run in a single cloud provider. While our proposed
approach uses the deterministic optimal solution method and is also designed
and modeled for multi-cloud environment. The solution presented in [50]
adopted Particle Swarm Optimization (PSO) algorithm to scheduling scientific
workflows with objective to minimize the cost under the deadline constrained.
This solution is also a near-optimal solution and is modeled and designed
for a single cloud environment. Talukder et al. [37] have been proposed an
approach that uses differential evolution to make a trade-offs between cost
and makespan. Their work is provided for running in the grid environment
while the our proposed method is designed for working in cloud environments
which have more benefits than Grid. The algorithm presented in [51] is a
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heuristic based approach that try to minimize makespan while meet the budget
constraint. The algorithm distributes the budget to all tasks in proportion to
their average execution time on the available resources. Then, the resources
chosen in one that allows the tasks to be accomplished early at a cost not greater
than its allocated sub-budget. In our approach we use pipeline level and try
to minimize makespan while meet budget. But in [51], the distribution budget
for each task is a restrictive constraint that leads to increase in makespan.
Moschakis et al. [49] proposed a multi-objective heuristic-based approach for
multi-clouds. They adapted simulated annealing algorithm for scheduling of
BoT with the performance and cost optimization objectives. Their proposed
method is completely different from our model. In addition, they did not
consider data transfer time and cost for consecutive bags. While, our model
consider the data transfer cost and time of data transfer.

The works presented in [17, 29, 52, 39, 53, 40, 54] are optimal-based algo-
rithms that adapt mathematical programming for their approaches. Malawski
et al.[17] proposed an approach that is single-objective scheduling approach
and it is modeling based on mathematical programming and also designed
for multi-cloud environments. The main objective of that approach is to mini-
mizes makespan under a deadline constraint. While our proposed model aims
to reduce makespan and meet the budget constraint. Coutinho et al. [29]
introduced a workflow scheduling algorithm that is multi-objective approach
and try to minimize both cost and makespan. Our proposed model minimizes
makespan and meanwhile fulfills the user-budget. Similar to us, they adapt
multi-cloud (federated cloud) environment, but they also do not consider the
data transfer time and cost. In addition they do not consider the diversity
in instance types VMs. The VMs they used for modeling are single-core CPU
virtual machines. However, our proposed model in addition to considering data
transferring time and cost, supports the concept of segmenting and running on
VMs with multi-vCPU. Abdi et al. [39] have proposed an optimization-based
scheduling algorithm for hybrid-clouds environments. Their main objective is
to minimize the execution cost while meeting deadline constraints. In contrast,
our model tries to reduce the makespan under budget constraint.

Rodriguez et al. [54] proposed a scheduling algorithm whose objective is
to optimize a workflow’s execution time under a budget constraint. Their
approach focuses on finer-grained pricing schemes that provide users with
more flexibility and the ability to reduce the inherent wastage that results
from coarser-grained ones. Their approach distributes the budget over the
tasks. In some respects, this is similar to our approach (except for the finer
pricing schemes and the budget distribution between tasks). In some respects,
this is similar to our approach (except for the finer pricing schemes and the
budget distribution between tasks). However, there are other differences. Their
approach is designed to work in a single cloud environment with homogeneous
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VMs instance types, while our approach is designed for working in multi-cloud
environments and considering heterogeneous VM instance types.

In addition to the methods mentioned that are optimization-based approaches,
we can also mention solutions that not optimization based methods. Jaikar et
al [55] presented scheduling workflow approach for multi-cloud environments.
It uses Matrix-based algorithm to select resources based on their distance, Cost,
and Performance. Their approach, similar to our solution, adapt multi-cloud
(federated cloud) environment, but they do not consider the data transfer
time and cost. In addition they do not consider the diversity in instance types.
While our proposed approach considers both instance type diversity and data
transfer costs and time between cloud providers. Wylie et al. [56] provided
a greedy approach for scheduling workflow applications on Hadoop clusters.
The objective of this work is to reduce the makespan under budget constraint.
This approach, in principle, only considers the execution time of the task on
the VM while ignoring the data transfer time between tasks.



4
System Design and Models
This section introduces the different elements and concepts of the workflow
scheduling approach adopted in this thesis. These elements are the architecture,
the infrastructure model, the workflow partitioning, modeling of running tasks
on VM, communication model, and scheduling approach.

4.1 Infrastructure model

In a multi-cloud environment, clients or their brokers are responsible formanag-
ing resources across multiple clouds[57]. The broker, which acts as middleware
or intermediate software system, receives the request from the user or client
and distributes it among different cloud IaaS resources for execution. Given
that there are numerous computing resources with different specifications and
prices in multi-cloud environments, managing and choosing between these
resources is very difficult for the user or customer and, in some cases, very
time-consuming and tedious. Therefore, it seems necessary to use an interme-
diate software responsible for dividing tasks within the scientific workflow and
providing resources. Figure 4.1 illustrates a general concept of our scheduling
approach, which is composed of a scientific workflow application, several IaaS
cloud providers constituting a multi-cloud environment, and a broker who
serves as the scheduler.

In Figure 4.1, first, the user submits a request to the broker to schedule the

23



24 chapter 4 system design and models

Multi-Cloud Environment

…

Broker
(Workflow scheduler)

Scientific workflow 
application

Instance N
vCPU, Memory, …

Instance 1
vCPU, Memory, …

Instance N
vCPU, Memory, …

Instance 1
vCPU, Memory, …

Instance N
vCPU, Memory, …

Instance 1
vCPU, Memory, …

Instance N
vCPU, Memory, …

Instance 1
vCPU, Memory, …

User/Scientist

Figure 4.1: General overview of scheduling approach

scientific workflow application. This request contains information about the
scientific workflow (e.g., budget, tasks execution time). After receiving the
user request, the broker should complete this information with its data related
to the instance types and IaaS cloud providers (e.g., price and performance,
bandwidth between clouds, cost of data transfer to a specific cloud provider).
After combining the information, the broker attempts to select appropriate
resources for workflow scheduling so that the request is fulfilled and the
objective is optimized.

In this thesis, three IaaS cloud providers are regarded as available providers
in a multi-cloud environment. Nevertheless, it is not limited to these three
cloud providers and can be multiple providers. These three cloud providers are
Amazon EC21, Microsoft Azure, and Google CE2 that are used for infrastructure
modeling. Table 4.1 shows information (e.g., Price per hour, vCPU number, and
related Memory) about these cloud providers. As can be seen in the table 4.1,
four instance types per cloud provider have been selected. In order to provide a
homogeneousmulti-cloud environment, instance’s specifications are considered
common in terms of price and performance. Instances are all General-purpose
types. In addition, the operating system of all instances is Linux Ubuntu. On
the other hand, to reduce the volume of data transfer between cloud providers,
we chose the location of all instances the same. The location of all instances is
London, UK.

To assess the performance of each instance type VM, we used the vCPU metric.
For this purpose, the clock speed of all instance processors is 2.5 GHz. On the

1. Elastic compute cloud
2. Google Computing Engine
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Cloud Instance Type vCPU Memory (GiB) Price ($)/h

Amazon EC2 m5a.large 2 8 0.100

m5a.xlarge 4 16 0.200

m5a.2xlarge 8 32 0.400

m5d.4xlarge 16 64 1.048

Microsoft Azure D2as-v5 2 8 0.104

D4as-v5 4 16 0.208

D8as-v5 8 32 0.416

D16-v5 16 64 0.929

Google CE e2-standard-2 2 8 0.086

e2-standard-4 4 16 0.173

n2-standard-8 8 32 0.500

n2-standard-16 16 64 1.000

Table 4.1: Instance types characterization provided by different clouds

other hand, the performance of an instance type VM is related to both processor
and memory. Hence we keep the ratio between CPU and memory constant.
This means that if the vCPU is doubled, the memory capacity is also doubled.
This is clearly visible in table 4.1. With this definition, it is easy to conclude
that the efficiency of an instance will double as the vCPU doubles.

According to the description, as mentioned above, cloud providers and their
instances types can be modeled as follow. In a multi-cloud environment the
cloud providers (CP) modeled as a set �%={�%1, �%2, . . . , �%:}, which the
�%: (: = 1, 2, . . .) in �% corresponds to the set of the Cloud Providers and
denotes the :th provider in CP set. Each cloud provider offers a range of
instance types with different prices and configurations. Therefore, the instance
types of cloud providers can be modeled as follows: �={�11, �12, . . . , �: 9} which
the � 9 signify 9 th instance type of the :th cloud provider. On the other hand,
the cost (price) of using each instance type per hour is also indicated by %A824: 9
where : denotes the :th cloud provider, and 9 signifies the 9 th instance type
in the �%: .

Given that the transfer of processed tasks’ data from one cloud provider to
another is inevitable in the multi-cloud environment, the bandwidth between
cloud providers is an essential factor in decision making. Because more band-
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width will increase the data transfer rate, which reduces data transfer time. On
the other hand, reducing data transfer time will reduce the usage time of an
instance type, and using less of an instance type will reduce the cost of using
it and ultimately leads to the reduction of the consumption budget. We show
the average bandwidth between two cloud providers with �,:,:′ where : and
: ′ indicates two different cloud provider. To measure the average bandwidth
between different IaaS cloud providers, the iPerf33 tool was used. iPerf3 is
a tool for active measuring the maximum achievable bandwidth on two IP
networks. It supports tuning various parameters related to buffers, timing, and
protocols (e.g., SCTP, UDP, TCP) by supporting IPv4 and IPv6. iPerf reports
the bandwidth, loss, and other parameters for each test it performs [58]. We
installed and deployed the iperf3 tool on each of our cloud providers (Amazon
EC2, Microsoft Azure, Google CE) and then, by sending test packages, from
one provider to another, obtained the average bandwidth between each cloud
provider. Table 4.2 shows the obtained average bandwidth between our selected
cloud providers.

Cloud Amazon EC2 Microsoft Azure Google CE

Amazon EC2 0 3.230 3.290

Microsoft Azure 3.120 0 3.094

Google CE 3.650 3.300 0

Table 4.2: Bandwidth between different cloud providers (in Gigabyte)

In general, this table is more similar to the Hollow matrix. As a rule, as the
number of cloud providers increases, so will the matrix size increases. However,
data transfer to a cloud provider may also be costly. Cloud providers charge a
fee for transferring data from another provider to themselves. This fee, usually,
is per 1 GB for data transfer. We have indicated this fee, the cost of transferring
data (CD) to a cloud provider, by the ��: , which : denotes the :th cloud
provider.

4.2 Workflows partitioning model

As stated in section 2.2.1, partitioning a scientific workflow into a few bags
of tasks (BoT), can help to understand the problem better as well as reduce
the complexity of the scheduling algorithm. The main reason for workflow
partitioning is to reduce the time and cost of data transfer between different
tasks in a workflow. According to the Figure 2.7, converting a workflow from

3. https://iperf.fr/

https://iperf.fr/
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a DAG structure to the pipelines of BoT can be helpful in some ways. On
the other hand, partitioning into pipelines of bags, if properly managed, can
enhance the performance of the scheduling algorithm. Because processing a
pipelined workflow is much easier and less expensive, from the data transfer
time and cost perspective, than processing a DAG workflow. In addition, it
should be noted that partitioning can not be applied to all types of scientific
workflows. This means that some scientific workflows with homogeneous tasks,
with no data interdependence between them, can be easily partitioned into the
BoT workflow. In contrast, many scientific workflows can not be partitioned.
Therefore, the main target workflows of this thesis are those workflows that
can be partitioned into BoT.

A scientific workflow can include several bag of tasks that can be modeled as
�={�1, �2, . . . , �8} which the �8 indicates the 8th bag in a workflow. Each bag
can also contain one or more tasks. Therefore, the number of tasks in each bag
can be represented by the _8 symbol, Where the 8 represents the bag index. Our
scheduling model assumes that all the tasks in a bag are assigned to the same
cloud for scheduling. In this way, all tasks in a bag allocated to an IaaS cloud
can be run simultaneously and in parallel mode. However, since the number of
tasks in a bag can be large, running all tasks simultaneously in parallel mode
is not reasonable and will increase the processing time of a bag. Thus, in this
thesis, we have defined a criterion that divides a bag into smaller units. We
called these smaller units the segments.

These segments should be run sequentially on a VM and not parallel. Nev-
ertheless, the tasks within each segment are executed in parallel. A bag can
consist of one or more segments, which are modeled as (={(18 , (28 , . . . , (;8}
where ; denotes the ;th segment in a bag and 8 signify the bag index. We
also show the number of segments (segment’s count) in a bag with the [8 . In
other words, and mathematical terms, the number of segments in a bag can
be represented as |�8 | = [8 . On the other hand, each segment can also include
one or more tasks that are modeled as)={)1;8 ,)2;8 , . . . ,)=;8} where 8 denotes
the bag index, ; indicates the segment index and = signify the task index in
the workflow. Each task has an execution time, which in this thesis, we will
show with �C0B:

=;8
. In addition, each segment will have its own execution time,

which is equal to the execution time of the most data-intensive task within that
segment. We represent this criterion as �B46<4=C

;8
where ; signify the index of

segment of 8th bag.

Figure 4.2 shows a simple schematic of a segment with 8 tasks. Each task
also has its own execution time, which is displayed in �C0B:

=;8
. According to the

explanation, the execution time of this segment is equal to the execution time
of the most data-intensive task within that segment, which is task 3.
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A segment with eight tasks (𝝁 = 𝟖)
Each task has its own execution time

𝑇1
𝐸1𝑙𝑖
𝑡𝑎𝑠𝑘=0.017

𝑇2
𝐸2𝑙𝑖
𝑡𝑎𝑠𝑘=0.010

𝑇3
𝐸3𝑙𝑖
𝑡𝑎𝑠𝑘=0.024

𝑇4
𝐸4𝑙𝑖
𝑡𝑎𝑠𝑘=0.019

𝑇5
𝐸5𝑙𝑖
𝑡𝑎𝑠𝑘=0.008

𝑇6
𝐸6𝑙𝑖
𝑡𝑎𝑠𝑘=0.017

𝑇7
𝐸7𝑙𝑖
𝑡𝑎𝑠𝑘=0.011

𝑇8
𝐸8𝑙𝑖
𝑡𝑎𝑠𝑘=0.015

Figure 4.2: Simple schematic of a segment within a bag

Once the processing of all the segments within a bag is completed, the data
generated by the tasks within the segments of that bag must be transferred to
the next bag. From this point of view, each bag has a specific data size. We
have shown this Bag Data (BD) size with ��8 , which 8 indicates the 8th bag in
the workflow. However, the crucial point is how many tasks should be placed
within a segment? Therefore, we defined a parameter called segment size, `,
which determines exactly how many tasks should place into a segment. This
parameter must be specified before scheduling. In a way, this parameter can
directly affect reducing or increasing the makespan and consequently impact
the execution cost. This parameter will be further discussed in the section 6
(Evaluation).

4.3 Model of running tasks on a VM

In this section, the details of modeling of running tasks on a VM will be
discussed. As mentioned earlier, we use the concept of a segment, in which each
segment contains one or more tasks. So instead of considering the execution
time of each task,we consider the execution time of a segment. The computation
time of tasks within a segment may differ as the size of their input and output
data may vary. For this reason, we assume all tasks in the segment take as
long to process as the most data-intensive task. That is the task that uses and
produces the most amount of data out of all the ones in the segment. Equation
4.4 is the mathematical expression of the above explanations.

�
B46<4=C

;8
=<0G{�C0B:1;8 , �

C0B:
2;8 , . . . , �

C0B:
=;8
} (4.1)

It should be noted that the execution times of each task, �C0B:
=;8

, are based on a
VM with 2-vCPU. Therefore, the execution time of each segment is also based
on VM with 2-vCPU. As mentioned in subsection 2.1.5, most current virtual
machines support the vCPU concept on cloud providers. A VM may have one or
more vCPU, so in this section, we model the execution of a bag’s segments on
a VM. Wu [59] shows that if several tasks are executed on VMs, with different
vCPU, then the execution time of the tasks is approximately equal. The only
difference is that the execution time of tasks on a VMwith 1-vCPU is twice times
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as long as that on a VM with 2-vCPU, and likewise four times on a VM with
4-vCPU. Therefore, it can be concluded that each running task on a VM will
get the same CPU time, and it is possible to run multiple tasks simultaneously
on a VM. Hence, running a segment instead of running tasks individually can
increase the VM’s CPU utilization and reduce the overall execution time of a
bag.

We present the number of vCPU of a VM as v�%*: 9 where : 9 indicates the 9 th
VM of the :th cloud provider. In order to select the appropriate VM to run a
bag with one or more segments, we need to calculate the processing power
of different VM. In other words, there must be a criterion that can compare
different VM in terms of processing power and speed. For this reason, we are
inspired by the idea presented in [59] for the use of calculating the power
of a VM. We show the processing power of a VM to execute a segment as
?>F4A

B46<4=C

;8: 9
, which is calculated based on Equation 4.2:

?>F4A
B46<4=C

;8: 9
=


E�%*: 9

X;8
8 5 (X;8 > E�%*: 9 )

1 >Cℎ4AF8B4.

(4.2)

Where X;8 is the count of tasks within segment ; of 8the bag. This criterion,
?>F4A

B46<4=C

;8: 9
, indicates that if the number of tasks within a segment is equal

to or less than the number of vCPUs within a VM, all tasks within a segment
will be completed at the same time. Therefore, in such a case, the processing
power of the VM will be considered equal to 1. However, if the number of tasks
within a segment is greater than the number of VM’s vCPU, then the processing
power of that VM will be equal to the number of vCPU on the number of tasks
within the segment. After calculating and obtaining the processing power of
a VM for running segments of a particular bag, now it is time to calculate the
execution time of a segment on an instance type VM. We illustrate this by g;8: 9
which is calculated as follows:

g;8: 9 =
�
B46<4=C

;8

?>F4A
B46<4=C

;8: 9

(4.3)

Therefore, after obtaining and calculating the execution time of a segment on
a VM, it is now possible to calculate the execution time of a bag on a VM. The
execution time of a bag is equal to the most data-intensive segment within that
bag and calculated as follow:

�
106

8: 9
=<0G{g18: 9 , g28: 9 , . . . , g;8: 9 } (4.4)

where g;8: 9 indicates the execution time of the ;th segment in the �8 on instance
type �: 9 .
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4.4 Communication model

This section will model the cost and time of communication between different
bags in different cloud providers. As mentioned earlier, a workflow consists of
one or more bags, and each bag is assigned to a cloud provider. On the other
hand, we know that the output data of one bag will be the input data of the next
bag. So if two consecutive bags run on two different cloud providers, we will
have the data transfer cost. We show this data transfer cost as �><<2>BC

8,8−1,:,:′
which obtain as follow:

�><<2>BC
8,8−1,:,:′ =

��8

��:
(4.5)

Where 8, 8 −1 represent two consecutive bags, and :, : ′ represent two different
cloud providers. In equation 4.5, ��8 indicates the size of an 8th bag, and��:
denotes the cost of transferring data to the :th cloud provider.

In communication modeling and the cost of data transfer, transfer time is also
an important factor. Transfer time is influential in optimizing or reducing the
overall execution time of the workflow. Therefore, we will model the data
transfer time between consecutive bags in the following. We represent the data
transfer time between two consecutive bags, on two different cloud providers,
as �><<C8<4

8,8−1,:,:′ which calculated from equation 4.6.

�><<C8<4
8,8−1,:,:′ =


0 : = : ′

��8

�,:,:′
: ≠ : ′

(4.6)

Where ��8 indicates the size of an 8th bag, and �,:,:′ signify the bandwidth
between cloud provider :th and : ′th.

4.5 Scheduling model

In this section, workflow scheduling will be modeled and explained. Neverthe-
less, before modeling and detailing the scheduling approach, we first list all
the notations that have been introduced so far and other notations that will be
used later. These notations can be seen in Table 4.3.
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Notation Definition
= The number of bags in the workflow application
�8 8th bag of the workflow application
_8 The number of tasks contained in �8
(8={(18 , (28 ,. . . , (;8} The set of segments contained in �8
(;8 ;th segment of �8
[8 The number of segments contained in �8
X;8 The number of tasks contained in ;th segment in

8th bag
` The segment size
�C0B:
=;8

The execution time in hours of each task of (;8 on
VM with 2-vCPU

�
B46<4=C

;8
The execution time in hours of ;th segment on VM
with 2-vCPU

�
106

8: 9
The execution time of �8 on Instance type �: 9

�D364C User defined budget for executing the workflow
< The number of public cloud providers
�%={EC2, Azure,. . . } The participated public cloud providers in a multi-

cloud environment
�%: :th cloud provider
�:={m5a.large,. . . } The set of instance types of �%:
�: 9 9 th instance type of �%:
v�%*: 9 The number of vCPUs in the instance type �: 9
%A824: 9 The price in $ for running one instance type �: 9 for

an hour
��8 Required data size for �8
��8 Cost of transferring data to �% for 1 GB
?>F4A

B46<4=C

;8: 9
The current processing power of Instance type �: 9
for ;th segment in 8 bag

g;8: 9 Execution time of ;th segment in 8th bag on an
instance type �: 9

�,:,:′ Bandwidth between cloud providers :, : ′

�><<2>BC
8,8−1,:,:′ Data transferring cost of �8 to �8−1 where they

executed in �%: and �%:′ ,respectively
�><<C8<4

8,8−1,:,:′ Data transferring time of �8 to �8−1 where they
executed in �%: and �%:′ ,respectively

~8: 1 if �8 is assigned to �%: , otherwise 0
l8 1 if �8 and �8−1 are assigned to a common cloud

provider, otherwise 0
)8: 9 The required time to execute �8 on instance type

�: 9

#8: 9 The number of �8 segments that are assigned to
instance type �: 9

G8: 9 1 if the �8 is assigned to instance type �: 9 , otherwise
0

�>BC8 The cost (price) in $ of execution of 8th bag

Table 4.3: Notations and their description of the proposed scheduling approach
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In the following,we formula the makespan minimization problem for deploying
a budget-constrained scientific workflow application on the multi-clouds with
different instance types VMs. Nevertheless, before giving the details, it is neces-
sary to mention that since the proposed model is static scheduling, it is natural
that some information is already available. This information includes workflow
characteristics (e.g., number of bags, number of tasks per bag, and task execu-
tion time in a VMwith the performance of 2-vCPU, etc.) and cloud specifications
(e.g., number of cloud providers, provided instance types of each cloud, price,
and performance of each instance type, etc.). The makespan mainly contains
computation time and communication time (transferring time). According to
the infrastructure model, partitioning model, running tasks on a VMmodel, and
communication model defined above, the problem of minimizing the makespan
of a workflow application is defined below. As mentioned before, we applied
the MILP model to formulate the scheduling approach in a multi-cloud environ-
ment. A mathematical model related to a decision-making problem includes
decision variables that represent the number of certain resources for use or the
level of certain activities. The value of decision variables is specified during the
problem-solving process. The decision variables in proposed MILP model are
defined in equations 4.17, 4.18, 4.19, 4.20, 4.21, 4.22, which can be expressed as
follows:

• Decision variable ~8: is a binary variable. It attains a value of 1 when �8
is assigned to �%: and a value of 0 otherwise.

• Decision variable #8: 9 is a positive integer variable. Its value indicates
the number of �8 segments that are assigned to Instance type �: 9 .

• The decision variable l8 is a binary decision variable. It attains a value
of 1 when �8 and �8−1 are assigned to a common cloud and a value of 0
otherwise.

• Decision variable G8: 9 is a binary variable. It attains a value of 1 when �8
is assigned to Instance type �: 9 and a value of 0 otherwise.

• Decision variable )8: 9 is a positive real variable that indicates the execu-
tion time of �8 on Instance type �: 9 .

• Variable �>BC8 is a positive real variable whose value represents the cost
(price) of �8 .

The objective function and constraints, which are explained in detail after the
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model, are as follows:

$1 942C8E4 5 D=2C8>= =<8=

(
<∑
:=1

∑
9 ∈�:

=∑
8=1

)8: 9

)
(4.7)

Subject to
<∑
:=1

~8: = 1 ∀8 ∈ {1, 2, . . . , =},∀: ∈ {1, 2, . . . ,<}, (4.8)

l8 ≥ ~8−1 − ~8 ∀8 ∈ {2, . . . , =}, (4.9)
l8 ≥ ~8 − ~8−1 ∀8 ∈ {2, . . . , =}, (4.10)∑
9 ∈�:

#8: 9 = ~8: · [8 ∀8 ∈ {1, 2, . . . , =}, ∀: ∈ {1, 2, . . . ,<}, (4.11)

#8: 9 ≥ G8: 9 ∀8 ∈ {1, 2, . . . , =},∀: ∈ {1, 2, . . . ,<},∀9 ∈ �: , (4.12)
#8: 9 ≤ G8: 9 · [8, ∀8 ∈ {1, 2, . . . , =},∀: ∈ {1, 2, . . . ,<},∀9 ∈ �: , (4.13)((
#8: 9 · �1068: 9

)
+

(
l8 ·�><<C8<4

8,8−1,:,:′
))
≤ )8: 9 , (4.14)

∀8 ∈ {1, 2, . . . , =},∀: ∈ {1, 2, . . . ,<},∀9 ∈ �:
�>BC8 = �>BC

�G4
8 +�>BC�><<8 (4.15)

�>BC�G48 =

((
#8: 9 · �1068: 9

)
+

(
l8 ·�><<C8<4

8,8−1,:,:′
))
· %A824: 9 ,

�>BC�><<8 = l8 ·�><<2>BC
8,8−1,:,:′,

∀8 ∈ {1, 2, . . . , =},∀: ∈ {1, 2, . . . ,<},∀9 ∈ �: ,

�D364C ≥
=∑
8=1

�>BC8 (4.16)

~8: ∈ {0, 1} ∀8 ∈ {1, 2, . . . , =},∀: ∈ {1, 2, . . . ,<}, (4.17)
#8: 9 ∈ Z+ ∀8 ∈ {1, 2, . . . , =},∀: ∈ {1, 2, . . . ,<},∀9 ∈ �: , (4.18)
F8 ∈ {0, 1} ∀8 ∈ {1, 2, . . . , =}, (4.19)
G8: 9 ∈ {0, 1} ∀8 ∈ {1, 2, . . . , =},∀: ∈ {1, 2, . . . ,<},∀9 ∈ �: , (4.20)
)8: 9 ∈ R+ ∀8 ∈ {1, 2, . . . , =},∀: ∈ {1, 2, . . . ,<},∀9 ∈ �: , (4.21)
�>BC8 ∈ R+ ∀8 ∈ {1, 2, . . . , =}, (4.22)

Below, the roles of the constraints and objective function of the MILP model
are explained in detail:

• The objective function, presented in Equation (4.7), indicates the total
execution time (makespan) of a scientific workflow, including execution
time and data transfer time. The MILP model minimizes this objective
function.
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• Constraint (4.8) denotes that each bag must be assigned to only one
cloud provider.

• Constraints (4.9) and (4.10) show that if �8 and �8−1 are assigned to a
common cloud, then l8 = 0. Thus, communication cost and data transfer
time must be disregarded from analysis.

• Constraint (4.11) guarantees that all the segments in �8 are assigned and
that no segment can be assigned more than once.

• Constraints (4.12) and (4.13) show that G8: 9 = 1 is equivalent to positivity
of #8: 9 or that G8: 9 = 0 is equivalent to a vanishing #8: 9 .

• Constraint (4.14) determines the required time to run instance type �: 9
in hours for executing the segments in �8 .

• Constraint (4.15) determines the cost of �8 , whose value is sum of ex-
ecution cost and communication cost. The execution cost is calculated
based on

( (
#8: 9 · g8: 9

)
+

(
l8 ·�><<C8<4

8,8−1,:,:′
))
· %A824: 9 . This value is a

rounded-up integer value because the price for running an instance type
is charged in dollars per hour. Then, this value will multiply price of the
instance type �: 9 that�8 assigned to. On the other hand,l8 ·�><<2>BC

8,8−1,:,:′
signify the communication cost of �8 .

• Constraint (4.16) guarantees that the sum of the cost of all bags is less
than the given budget.
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Experiments
This chapter outlines the experimental setup and implementation details of
the prototype of the proposed scheduling model. The prototype is used to
explore how well the proposed scheduling model works and how to meet the
specified needs and requirements. First, section 5.1 gives a brief overview of
the programming language and tools used to implement the prototype. Next,
section 5.2 outlines the pyomo tool data portal. Section 5.3 describes the data
segregation way for use in the prototype. A brief description of the optimization
solver tool will also be given in section 5.4. Finally, section 5.5 explains the
experimental setup used to evaluate the prototype.

5.1 Programming languages and tools

To implement the prototype of the proposed scheduling model, python pro-
gramming language1 version 3.8 10 has been used. Python is an open-source
programming language supported by Python Software Foundation2. In addi-
tion, the C# programming language3 version 9.0, which is part of the .NET SDK
(Software Development Toolkit), is also used to prepare data and workflows
structures. The .NET is now available as an open-source SDK and can be run

1. https://www.python.org/
2. https://www.python.org/psf-landing/
3. https://docs.microsoft.com/en-us/dotnet/csharp/
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cross-platform. Furthermore, the Ubuntu 20.04 LTS ⁴ OS (Operating System)
used as the environment to implement this prototype. The kernel version used
is 5.4.0-56-generic.

The Pyomo (Python Optimization Modeling Objects) tool was used to model
the proposed mathematical optimization problem. Pyomo⁵ allows users to
formulate optimization problems in Python in a manner that is similar to
the notation commonly used in mathematical optimization. In addition, the
Pegasus Workflow Generator⁶ tool has been used to generate the workflow
used in the evaluation section. Indeed, Pegasus is a coding-based tool that
allows the user to generate workflows by explaining high-level descriptions.
The output generated by Pegasus will be an XML file that contains information
about jobs (e.g., execution time, data size, etc.) and the relationships between
them. For instance, Listing 5.1 shows the data generated by Pegasus for the
Montage workflow with 50 tasks/jobs.

Listing 5.1: Sample Pegasus DAX file
<?xml ver s ion ="1.0" encoding="UTF−8"?>
<adag xmlns=" ht tp :// pegasus . i s i . edu/schema/DAX" ve r s ion=" 2.1 ">

<job id=" ID00000 " namespace="Montage " name=" mProjectPP " runtime=" 13.69 ">
<uses f i l e=" reg ion . hdr " l i n k=" input " r e g i s t e r=" t rue " t r a n s f e r=" t rue "

op t iona l=" f a l s e " type=" data " s i z e=" 304 "/>
<uses f i l e=" 2mass−jID00000 . f i t s " l i n k=" input " r e g i s t e r=" t rue "

t r a n s f e r=" t rue " op t i ona l=" f a l s e " type=" data " s i z e=" 4222080 "/>
<uses f i l e=" p2mass−jID00000 . f i t s " l i n k=" output " r e g i s t e r=" f a l s e "

t r a n s f e r=" f a l s e " op t i ona l=" f a l s e " type=" data " s i z e=" 4146344 "/>
</job>
<job id=" ID00001 " namespace="Montage " name=" mProjectPP " ve r s ion=" 1.0 "

runtime=" 13.73 ">
<uses f i l e=" reg ion . hdr " l i n k=" input " r e g i s t e r=" t rue " t r a n s f e r=" t rue "

op t iona l=" f a l s e " type=" data " s i z e=" 304 "/>
<uses f i l e=" 2mass−jID00001 . f i t s " l i n k=" input " r e g i s t e r=" t rue "

t r a n s f e r=" t rue " op t i ona l=" f a l s e " type=" data " s i z e=" 4222080 "/>
<uses f i l e=" p2mass−jID00001 . f i t s " l i n k=" output " r e g i s t e r=" f a l s e "

t r a n s f e r=" f a l s e " op t i ona l=" f a l s e " type=" data " s i z e=" 4169076 "/>
</job>
.
.
.
<chi ld r e f=" ID00008 ">

<parent r e f=" ID00000 "/>
</chi ld>
<chi ld r e f=" ID00009 ">

<parent r e f=" ID00001 "/>
<parent r e f=" ID00000 "/>

</chi ld>
.
.
.

</adag>

4. https://ubuntu.com/
5. https://www.pyomo.org/
6. https://pegasus.isi.edu/

https://ubuntu.com/
https://www.pyomo.org/
https://pegasus.isi.edu/
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5.2 Pyomo Data Portal

As mentioned recently, pyomo is used for modeling the proposed mathematical
optimization problem. Pyomo uses various data formats (e.g., TAB, CSV, JSON,
XML, YAML, DAT, etc.) to define the necessary parameters and sets. By default,
pyomo uses the DAT data format to define parameters and sets. However, due to
its hard readability and the aim of better data segregation, an attempt has been
made to use another data format. As a result, we have used JSON data format
due to its higher readability and more straightforward data format. However,
regardless of what data format is used, in pyomo the data required for use in
the modeling must be prepared in advance as parameters or sets. For instance,
if a workflow has three bags, it should explicitly define for pyomo that the
workflow with three bags and each bag has a certain number of tasks.

Listing 5.2: Sample JSON data portal in pyomo
{

"Bags" : [
[1], [2], [3]

],
" NumberofTaskInBags ": [

{ "index": [1], "value": 2},
{ "index": [2], "value": 2},
{ "index": [3], "value": 1}

],
" ExecutionTime " : [

{ "index": [1, "Task1"], "value": 0.30},
{ "index": [1, "Task2"], "value": 0.26},
{ "index": [2, "Task3"], "value": 0.31},
{ "index": [2, "Task4"], "value": 0.36},
{ "index": [2, "Task5"], "value": 0.27},
{ "index": [3, "Task6"], "value": 0.27}

]
}

Listing 5.2 depicts the definition of the parts of a workflow that include three
bags and five tasks in the JSON data format.

5.3 Data Segregation

As mentioned, the data generated by the Pegasus Workflow Generator tool
contains information such as the execution time of each task, the relationships
between them, and so on. However, this information can not be used directly in
pyomo. Hence, we must have a tool to convert and segregate this information
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andmake it usable for pyomo. For this purpose,wewrote the converter program,
which allows us to convert the data generated by Pegasus into the format
required by pyomo. Figure 5.1 illustrates the overview of the Converter program
to convert Pegasus DAX files to the data format required by Pyomo.

Pegasus DAX file

<?xml version="1.0" encoding="UTF-8"?>

<adag xmlns="http://pegasus.isi.edu/schema/DAX" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX 
http://pegasus.isi.edu/schema/dax-2.1.xsd" version="2.1" count="1" 
index="0" name="test" jobCount="50" fileCount="0" childCount="42">
<job id="ID00000" namespace="Montage" name="mProjectPP" 
version="1.0" runtime="13.69">

<uses file="region.hdr" link="input" register="true" transfer="true" 
optional="false" type="data" size="304"/>

<uses file="2mass-atlas-ID00000s-jID00000.fits" link="input" 
register="true" transfer="true" optional="false" type="data" 
size="4222080"/>

<uses file="p2mass-atlas-ID00000s-jID00000.fits" link="output" 
register="false" transfer="false" optional="false" type="data" 
size="4146344"/>

<uses file="p2mass-atlas-ID00000s-jID00000_area.fits" 
link="output" register="false" transfer="false" optional="false" 
type="data" size="4146344"/>

</job>
</adag>

Result of segregation

► Separate to calculate the number of bags
► Grouping bags and Tasks
► Calculate the number of tasks In each bag
► Calculate the Required Data Size for each bag
► Determine the execution time of each task in 

each bag
► etc.

Converter App

Give DAX file and convert to the 
desired output

Figure 5.1: General overview of Converter program for Pegasus DAX files

The converter program is written in C# programming language with the help
of LINQ⁷ library.

5.4 Optimization Solver

The proposed mathematical models are solved by GLPK ⁸ (GNU Linear Pro-
gramming Kit) version 4.32. Indeed, the GLPK package is intended for solving
large-scale linear programming (LP), mixed integer programming (MIP), and
other related problems. It is a set of routines written in ANSI C and organized
in the form of a callable library. It is part of the GNU project.

5.5 Experimental setup

All experiments are carried out on Dell Precision 5550 with Core i7 (2.70 to 5.1
GHz) processors with 6-cores (12 Hyper Threads) and 32 GB DDR4 SD RAM.
On the other hand, all workflow data and information and Iaas cloud providers
are actual. In principle, this computer has been used to run the proposed model
and evaluate it with actual data.

The workflows used for evaluation of the proposed model are four well-known
workflows from different scientific areas, which were taken from the Pegasus

7. Language Integrated Query
8. https://www.gnu.org/software/glpk/

https://www.gnu.org/software/glpk/
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Workflow Generator, and the tasks in each of these workflows are considered
between 50 and 1000 tasks as mentioned before these four well-known work-
flows are Montage, LIGO, SIPHT, and CyberShake. The Montage application
from the astronomy field is used to generate custom mosaics of the sky based
on input images. Most of its tasks are I/O intensive while not requiring much
CPU processing capacity. The LIGO workflow from the astrophysics domain
is used to detect gravitational waves. It is composed mainly of CPU-intensive
tasks with high memory requirements. SIPHT is used in bioinformatics to au-
tomate the search for sRNA encoding genes. Most of the tasks in this workflow
have high CPU and low I/O utilization, also in the bioinformatics domain.
Finally, CyberShake is used to characterize earthquake hazards by generating
synthetic seismograms and can be classified as a data-intensive workflow with
large memory and CPU requirements. The workflows are depicted in Figure
2.6, and their full description and characterization are presented by Bharathi
et al. [10]. Table 5.1 illustrates the Characteristics of these four well-known
scientific workflows, including the count of tasks, average size, and average
task execution time.

Type Workflows Bags Avg. Size (MB) Avg. exe time (sec)

I/O
Montage 9 20,6 11.34

CyberShake 5 1156.1 51.70

CPU
LIGO 8 55.6 222.0

SIPHT 7 22.02 210.27

Table 5.1: Characteristics of the real-world large-scale scientific workflows

For evaluation, three cloud providers are available (Amazon EC2, Microsoft
Azure, and Google CE) as Iaas providers in a multi-cloud environment. It is
assumed that each cloud provider also has 4 instance types. The Instance types
configurations are based on those shown in Table 4.1. Bandwidth between
different cloud providers is also considered according to Table 4.2. The costs
of data transfer (��:) to Amazon EC2, Microsoft Azure, and Google CE were
assumed to be $0.18, $0.2, and $0.2 per gigabyte, respectively. The cost and
time of data transfer between two sequential bags in a workflow are regarded
as 0 if the bags are assigned to a common cloud. Otherwise, the values must
be calculated.
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Evaluation
This chapter presents the evaluation of the proposed scheduling approach.
The results discussed in this section aim to document the performance of the
implementation through the experiments brought forth in chapter 5. Section
6.1 highlights some of the criteria used in the evaluation. Section 6.2 will then
present the evaluation results. The different effects on budget and number of
tasks on optimal cost and makespan will be examined.

6.1 Evaluation Criteria

In the experiments, different budget intervals were employed. The experiments
were conducted using five different budgets, with V1 being the strictest and
V5 being the most relaxed one. For each workflow, V1 is equal to the cost of
running all the tasks in a single VM (with 2-vCPU) of the cheapest instance
type of each cloud provider. V5 is the cost of running each workflow task on a
different VM of the most expensive type available to each cloud provider. An
interval size of V8=C =

V5−V1
4 is then defined and used to estimate the remaining

budgets: V2 = V1 + V8=C , V3 = V2 + V8=C , and V4 = V3 + V8=C .

Also, in the evaluation to show the optimal cost ratio in different budgets, the
optimal cost ratio to a more relaxed budget (V5) has been used. By dividing the
optimal cost by a more relaxed budget, we arrive at a percentage of spending

41
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that helps us better understand the diagrams.

6.2 Evaluation Results

In this section, the results obtained from the evaluation of the proposed model
will be reviewed and analyzed. Four types of evaluations will be discussed. The
treatment of makespan concerning variation in the budget, makespan with
respect to variation in task number, optimal cost per budget ratio in different
budgets, and optimal cost per different task number.

6.2.1 Makespan with respect to variations in budget

This subsection discusses the examination of the effects of changes in the
budget on makespan. For this purpose, we have done this evaluation for four
workflows with two different workflow sizes (500 and 1000 tasks). In addition,
each workflow is evaluated with different segments size. We looked into three
segment sizes (4, 8, and 16, respectively). Figure 6.1, Figure 6.2, Figure 6.3,
and Figure 6.4 depicts the obtained results. In these results, the number of
tasks in a workflow is 1000. Also, the budgets used are from V1 to V5, which
are explained in section 6.1.
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(b) Montage with 1000 tasks

Figure 6.1: Makespan for Montage workflow grouped by budget

As you can see in Figure 6.1, Figure 6.2, Figure 6.3, and Figure 6.4, for all
workflows, along with the increase in the budgets, makespan decreased as
expected. This is because as the budget increases, our proposedmodel has more
maneuverability. Therefore, it selects faster VMs (expensive VMs), thus reducing
execution time and workflow’s makespan. On the other hand, with lower
budgets, our proposed model selects cheaper VMs (which are usually slower)



6.2 evaluation results 43

 1  2  3  4  5
Budget

2

4

5

7

9

M
ak

es
pa

n 
(s

ec
) x

 1
00

0

CYBERSHAKE
Segment=4
Segment=8
Segment=16

(a) CyberShake with 500 tasks

 1  2  3  4  5
Budget

4

7

11

14

18

M
ak

es
pa

n 
(s

ec
) x

 1
00

0

CYBERSHAKE
Segment=4
Segment=8
Segment=16

(b) CyberShake with 1000 tasks

Figure 6.2: Makespan for CyberShake workflow grouped by budget
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Figure 6.3: Makespan for LIGO workflow grouped by budget

to meet budget constraints. That is why in V1, the makespan is higher. Looking
at all figures (6.1, 6.2, 6.3, 6.4), it can be deduced that workflow’s makespan
do not decrease beyond a specific budget interval and it remains constant. One
of the reasons that can be stated is that from a specific budget interval, our
proposed model always selects the VMs that have the best performance (faster
MVs with more vCPU) and are cost-effective.

On the other hand, by looking at the Figures (6.1, 6.2, 6.3, 6.4) [a and b],
it can be concluded that as the size of the segment increases, the makespan
also decreases. This is because as the size of the segment increases, so the
number of tasks that can be run simultaneously and in parallel also increases.
Therefore, at the same time, more tasks are completed, which ultimately leads
to a reduction in the overall scheduling makespan of the workflow. Also, by
comparing images a and b of each figure, it can be seen that the makespan
of 1000 tasks is longer than the workflow of 500 tasks, which is normal and
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Figure 6.4: Makespan for SIPHT workflow grouped by budget

expected. It is also worth noting that the makespan of LIGO (Figure 6.3) and
SIPHT (Figure 6.4) are greater than the Montage (Figure 6.1) and Cybershake
(Figure 6.2). The reason for this goes back to the workflow characteristics.
As mentioned earlier, according to the Table 5.1, LIGO and SIPHT workflows
are CPU-intensive.This means that they usually need more time to be exe-
cuted. Therefore, their execution time is longer than Montage and CyberShake
workflows (I/O intensive).

6.2.2 Makespan with respect to variations in Tasks
number

This subsection evaluates the effects of increasing the number of workflow
tasks on makespan. This evaluation was performed for four workflows with
two different budget sizes (V1 and V5). In addition, the number of tasks per
workflow varies from 50 to 1000. In addition, each workflow is evaluated
with different section sizes. We looked at three section sizes (4, 8, and 16,
respectively). Figure 6.5, Figure 6.6, Figure 6.7, and Figure 6.8 depicts the
results of this evaluation.

As seen in the figures above, as the number of tasks increases in all workflows,
makespan also increases. This is quite obvious, and as the number of workflow
tasks increases, more time will be required for processing, IO, and data transfer.
to other cloud providers. Also, by looking closely at the figures, it can be
seen that with the increasing budget, makespan decreases. This result caan
be achieved by comparing diagrams a and b in all figures (Figure 6.5, Figure
6.6, Figure 6.7, and Figure 6.8). As the budget increases, our proposed model
chooses higher-performance virtual machines. Performing tasks on efficient
virtual machines will reduce the makespan.
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Figure 6.5: Makespan for MONTAGE workflows based on the different tasks number
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Figure 6.6: Makespan for CYBERSHAKE workflows based on the different tasks num-
ber

Another point that can be deduced is that as the size of the segments increases,
the makespan decreases. This can be seen carefully in diagrams b of all
workflows in Figures (6.5, 6.6, 6.7, and 6.8). As the size of the segment increases,
our proposedmodel selects more powerful (more vCPU) andmore cost-effective
virtualmachines. According to the user’s budget, ourmodel tries to select virtual
machines that can schedule the workflow in the minimum makespan and at
the lowest possible cost. Only for V1, makespan is close together and almost
equal in some workflows for all segment sizes. The reason is that with a low
budget, our proposed model chooses the cheapest VMs that can meet the user’s
budget, which in the case of the lowest budget (V1), always determines the
same VMs.
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Figure 6.7: Makespan for LIGO workflows based on the different tasks number
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Figure 6.8: Makespan for SIPHT workflows based on the different tasks number

6.2.3 Optimal Cost per budget

In this subsection, the ratio of the optimal cost to the allocated budget will
be examined, and its behavior with increasing the budget for the size of the
different segments will be discussed. This evaluation has been done for four
workflows, five budgets interval, and three different segment sizes. In addition,
the evaluation is performed for all workflows with 1000 tasks. The results
of this evaluation are shown in Figure 6.9 [a-d]. The results show that as
the budget increases, the optimal cost decreases, and as a result, the optimal
cost per budget rate naturally decreases. Looking at the Figure 6.9 [a-d], as
budget intervals increase, it is easy to see a relatively downward trend for all
workflows. As the budget increases, our proposed model can select the most
cost-effective VMs with the proper performance. So that in addition to reducing
the makespan, the budget constraint will also be met.

Looking carefully at Figure 6.9 [a-d], it can be seen that in each budget interval,
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Figure 6.9: Optimal cost to budget ratios obtained for each of the workflows with
1000 tasks

by increasing segment size, the optimal cost per budget rate also increases.
The reason for this is that by increasing the size of the segment, our proposed
model tries to select VMs with more vCPUs. Because the best performance of a
VM will be when the size of the segment is equal to or less than the number of
vCPU. Therefore, our proposed model selects VMs with more vCPU to minimize
the makespan. For instance, for segment size 16, the proposed model looks for
VMs with 16 or 8 vCPU, which, in addition to higher performance, usually cost
more than VMs with 2 or 4 vCPU.

6.2.4 Optimal cost per most relaxed budget with respect to
variations in Tasks number

This subsection explains the evaluation of the impact of increasing the number
of workflow tasks on optimal cost. This evaluation is performed for four work-
flows, and each workflow has several tasks between 50 and 1000. In addition,
each workflow is evaluated with different budget sizes (V1, V3, and V5, respec-
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tively). All results for this subsection are obtained and evaluated for segment
size 8 (` = 8). The results of this evaluation are illustrated in Figure 6.10 [a-d].
In this figure, the x-axis represents the number of workflow tasks, and the
y-axis represents the optimal cost to the most relaxed budget ratio (V5).
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Figure 6.10: Optimal cost to most relaxed budget ratios obtained for each of the
workflows with segment size 8

In Figure 6.10 [a-d], It is observed that with the increase in the number of
workflow tasks, the optimal cost also increases. This is quite clear: as the
number of tasks to be processed increases, so does the duration of use of VMs.
Similarly, long-term use of VMs increases the cost of using VMs and ultimately
increases the optimal cost. The only point is that in CPU-intensive workflows
(6.10c and 6.10d), this slope increases relativelymore. The reason, as mentioned
earlier, is related to the nature of this type of workflow.

On the other hand, by looking closely at Figure 6.10, it can be concluded
that the optimal cost increases with the increasing budget. The growing gap
between the optimal cost for higher budgets is narrowing, and they are almost
equal. Nevertheless, for smaller budgets, this gap is quite apparent. One of the
reasons that can be said is that when the budget exceeds a certain threshold,
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our proposed model will have more maneuverability and choice. Therefore,
powerful and expensive virtual machines are always selected so that they can
complete the relevant workflow in the shortest possible time. For this reason,
for higher budgets, above the threshold, the optimal costs are almost close to
each other.





7
Future work
This section will describe future work that could prove interesting in the context
of this thesis. The future work will be described in as much detail as convenient
and should not be considered the detailed specification for solutions. Instead,
the work presented here is intended to build the foundations laid by this thesis’s
contributions.

7.1 Scheduling model improvement

Given that our proposed model utilizes a multi-cloud environment, data trans-
fer from one cloud provider to another cloud provider will be inevitable. On the
other hand, data transfer will be time-consuming with the analysis conducted,
especially for I/O-Intensive workflows. This time-consuming will increase the
usage time of virtual machines, and eventually, the scheduling cost will also
increase. For this purpose, in future work, we will do data transfer simultane-
ously as task processing. This means that each task in a bag, after completing
its processing and generating output data, that data is immediately transferred
to the next cloud provider. This will reduce the usage time of VMs. Also, instead
of transferring data directly from one cloud provider to another, a shared data
source (e.g., a key-value store) can be used. In that case, adding parameters
such as the read and write speed of that shared source somewhat improved
the proposed model in terms of scheduling makespan and cost of using VMs.
Using a shared datastore also increases the overall fault-tolerant system. So
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that in case of problems in the data transferring, the data is not lost and can
be reaccessed from the shared source.

7.2 Security considerations

Security has always been considered an important issue and an open chal-
lenge. In our proposed model, since a multi-cloud environment is used and the
exchange and transfer of data between different bags placed on the Internet,
there are usually several security issues and challenges. Challenges include
secure data transfer between different cloud providers, user authentication and
authorization, access control, etc. Therefore, security issues are considered a
potential improvement in future work.

7.3 Energy consumption minimization

Another interesting topic that can be considered in future work is the discussion
of optimizing and reducing energy consumption; since the challenge of global
warming and greenhouse gas emissions, the importance of reducing energy
consumption doubles. For this purpose, by reviewing the proposed model
and calculating the energy consumption of each of the available resources and
criteria (such as VMs, communications and data transfer, etc.) and adding these
constraints, a mathematical model can be developed to select the most optimal
resources (in terms of energy) for scheduling and resource provisioning.

7.4 Real-world Implementation

Currently, the system has not been tested in a "Real-World" environment. We
intend to implement the real-world system and then commercialize it as a soft-
ware system and deploy it as a service to serve different users. The microservice
model can be used for implementation, so the system has different services for
different tasks. For instance, a service to receive workflow from the user and
perform preliminary processing (e.g., pipelining and segmenting workflow’s
tasks), another service to schedule and optimize segments, another service to
produce results and prepare relevant reports, and another service to check the
security and etc. Figure 7.1 is a general overview of the microservice architec-
ture that will be used as the primary plan to implement the proposed model
in the future as a real-world software system. Furthermore, access to this ser-
vice through various platforms and devices (mobile, web, desktop) is another
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feature considered in implementing the real-world software system.
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Figure 7.1: General overview of Microservice architecture for future work





8
Conclusion
This thesis proposed a fundamental mathematical model for scheduling scien-
tific workflow in multi-cloud environments. The model aims to minimize the
overall workflow makespan while meeting a user-defined budget constraint.
The scheduling problem was formulated as a Mixed-Integer Linear Program-
ming (MILP) model and solved with the GPLK solver in reasonable time and
cost. The proposed model was developed for using multi-vCPU instance-type
VMs. In addition, the proposed model divides a workflow into different Bag
of Tasks (Bags) and segments and calculates the power of processing of each
VM based on its vCPU and the segments of the workflow. For the proposed
scheduling approach, the communication cost ad time (in transferring data)
were considered in the analysis, and the cost of leasing VMs was calculated on
an hourly basis.

We analyzed the effects of changes in budget, segment size, and workflow
size on optimal makespan and cost per budget rate. For this purpose, four
well-known and real-world workflows (e.g., Montage, CyberShake, LIGO, and
SIPHT) were used to evaluate the proposed model. The following insights were
derived from the experiments:

1. The effects of changes in the budget on optimal makespan are consid-
erably more remarkable in the CPU-intensive workflows than in the
I/O-intensive workflows.

2. As the size of the segments increases, the workflow’s makespan decreases,
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but on the other hand, the optimal cost also increases relatively. Therefore,
a trade-off between makespan and optimal cost must be selected to select
the right segment size.

3. As the number of workflow tasks increases, so the makespan also in-
creases. This increase is more significant for lower budgets. That is, as
the budget increases, the makespan decreases. On the other hand, in
any given budget, the makespan decreases as the size of the segment
increases.

4. As the number of workflow tasks increases, so does the optimal cost.
Nevertheless, for higher budgets, they are almost equal. The slope of
optimal cost changes is also higher for CPU-intensive workflows.
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