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Abstract
We prove weighted boundedness of Calderón–Zygmund and maximal singular oper-
ators in generalized Morrey spaces on quasi-metric measure spaces, in general
non-homogeneous, only under the growth condition on the measure, for a certain
class of weights. Weights and characteristic of the spaces are independent of each
other. Weighted boundedness of the maximal operator is also proved in the case when
lower and upper Ahlfors exponents coincide with each other. Our approach is based
on two important steps. The first is a certain transference theorem, where without use
homogeneity of the space, we provide a condition which insures that every sublinear
operator with the size condition, bounded in Lebesgue space, is also bounded in gen-
eralized Morrey space. The second is a reduction theorem which reduces weighted
boundedness of the considered sublinear operators to that of weightedHardy operators
and non-weighted boundedness of some special operators.
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1 Introduction

We study weighted boundedness of certain sublinear operators in generalized Morrey
spacesLp,ϕ

� (X) defined on quasi-metric measure spaces (X , d, μ).We do not suppose
that (X , d, μ) is homogeneous, i.e. we assume that it satisfies the growth condition

μB(x, r) ≤ crν, 0 < r < diam X ≤ ∞, ν > 0. (1.1)

The study includes Calderón–Zygmund singular operators with standard kernel,
the corresponding maximal singular operator and the standard maximal operator. In
the case of the singular and maximal singular operators we obtain results on weighted
boundedness in the generalized Morrey spaces, under the only assumption that the
measure satisfies the growth condition (1.1).

Sublinear operators under consideration are supposed to satisfy the following two
conditions:

(1) they are bounded in Lp(X),
(2) they satisfy a certain size condition, related to the exponent of the growth

condition.
For the study of sublinear operators of singular type in the space L p(X) under the

growth condition (2.2) we refer to [25]. There are known results on the boundedness
of such operators in L p(X) under the growth condition more general than (2.2), where
rν is replaced by a given dominant λ(x, r), see [14] and [15].

We consider the generalized Morrey spaces defined by the norm

‖ f ‖Lp,ϕ
� (X) = sup

x∈�,r>0

⎛
⎜⎝ 1

ϕ(x, r)

∫

B(x,r)

| f (y)|p dμ(y)

⎞
⎟⎠

1
p

, (1.2)

where � is any subset in X . Introduction of � helps to unite local and global Morrey
spaces.

For a sublinear operator T satisfying the conditions (1) and (2), we study the
boundedness of the weighted operators

wT
1

w

in the spaces Lp,ϕ
� (X) under the growth condition (2.2). In other words, we study the

operators T themselves in the weighted space Lp,ϕ
� (X , w) defined by the norm

‖ f ‖Lp,ϕ
� (X ,w) = sup

x∈�,r>0

⎛
⎜⎝ 1

ϕ(x, r)

∫

B(x,r)

| f (y)|p w(y)pdμ(y)

⎞
⎟⎠

1
p

,

where the weightw and the function ϕ(x, r) are completely independent of each other.
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For classical and generalized Morrey spaces and their applications we refer, for
instance, to the books [8, 19, 27, 36, 38, 39] and the overview paper [28].

The boundedness of operators of harmonic analysis in Morrey spaces was studied
in a variety of papers, see for instance, [4–6, 9, 11, 12, 20, 24, 33, 35] for the Euclidean
case, and [10, 17, 18, 21–23, 34, 37, 40] for the general setting of quasi-metric mea-
sure spaces, see also references therein. In particular, in [34] there was studied the
boundedness of singular-type operators in classical Morrey spaces under the growth
condition (2.2).

Singular-type operators under more general growth condition (in the sense of [14]
and [15]) were studied in [21] and [40]. In [21] the operators T were studied in the non-
weighted case, while in [40] they were considered in the weighted space L p,k(X , w)

of specific form, which goes back to [20], namely in the case

‖ f ‖L p,k (X ,w) = sup
x,r

⎛
⎜⎝ 1

w[B(x, r)]k
∫

B(x,r)

| f (y)|p w(y)dμ(y)

⎞
⎟⎠

1
p

.

Note that in this case, theMorrey space L p,k(X , w) is in fact the non-weighted classical
Morrey space L p,k(X) with respect to the measure μw(E) = ∫

E
w(y)dμ(y), E ⊂ X .

In this paper we study sublinear operators satisfying the properties (1) and (2)
in weighted generalized Morrey spaces on quasi-metric measure space (X , d, μ),

under the ”classical” growth condition (2.2). We consider ”radial” weights w(x) =
v[d(x, x0)], x0 ∈ X and the function v belongs to some class V+

⋃
V−, see its

definition in Sect. 2.3.
Our main results are as follows.
First we show that the known way of transference of L p-boundedness to Morrey-

boundedness under the size condition, may be proved without using homogeneity of
the space, see Transference Theorem in Sect. 3.1. More precisely, we show that the
condition

sup
x∈�,r>0

r
ν
p

ϕ(x, r)
1
p

∫ �

r

ϕ(x, t)
1
p

t1+
ν
p

dt < ∞, � = diam X ,

with ν from (1.1), imposed on the function ϕ(x, r) defining the Morrey space, guar-
antees that any sublinear operator with the size condition, bounded in L p(X), is also
bounded in the Morrey space Lp,ϕ

� (X).

Moreover, under the only growth condition, we are able to efficiently estimate the
Morreymodular of T f via that of f , see Theorem 3.8, which leads to the boundedness
result in Morrey spaces in Theorem 3.9.

Further,we provide a certain pointwise estimate forweighted singular,maximal sin-
gular and maximal operators, with above mentioned radial weights, via non-weighted
such operators plus the following operators: weighted Hardy operators, certain non-
weighted operators which may be considered as a kind of hybrids of Hardy operators
and potential operators, see Reduction Theorem 3.11.
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Since the estimate in this theorem is pointwise, it reduces theweighted boundedness
of the weighted singular, maximal singular and maximal operators in any Banach
functions spaces with lattice properties to the boundedness of non-weighted operators,
weighted Hardy operators with the same weight and some specific ”hybrids”. In this
paper we use this estimate for the case of the generalized Morrey space Lp,ϕ

� (X).

As a separate result of interest we show that some of those hybrids are dominated
by the modified maximal operator (modification concerns the use of the growth con-
dition), see Theorem 3.5.

This reduction and the above mentioned Transference Theorem together with the
L p results [25], allowus to obtain a result on theweighted boundedness of theweighted
singular, maximal singular and maximal operators in the spaces Lp,ϕ

� (X) as given in
Theorem 3.20. To this end, we obtain conditions for the weighted boundedness of
Hardy operators in the spacesLp,ϕ

� (X) under the only growth condition for (X , d, μ).

The paper is organized as follows. In Sect. 2 we provide necessary information on
quasi-metric measure spaces (X , d, μ) together with definition of the space Lp,ϕ

� (X)

and define the class of weights. Sect. 3 contains our main results. In Sect. 3.1 we prove
the above mentioned Transference Theorem for an arbitrary sublinear operator with
the size condition. In Sect. 3.2 we pass to weighted operators and prove the above
mentioned Reduction Theorem containing the pointwise estimate of weighted opera-
tors. Section 3.3 starts with a result of weighted boundedness of Hardy operators in
generalizedMorrey spacesLp,ϕ

� (X). This allows us to apply Transference and Reduc-
tion Theorems to obtain conditions on the weight and the function ϕ(x, r), insuring
the weighted boundedness of singular, maximal singular and maximal operators in
the spaces Lp,ϕ

� (X). In Corollary 3.21, where we take ϕ(x, r) = rλ for simplicity, we
give sufficient conditions for the validity of those conditions in terms ofMatuszewska-
Orlicz indices of the weight. Finally, in Sect. 1 (Appendix), for reader’s convenience,
we provide necessary information for Matuszewska-Orlicz indices.

The author thanks the anonymous referees for their careful reading of the paper,
and useful comments.

2 Preliminaries

2.1 Preliminaries on Quasi-Metric Measure Spaces

Basics on quasi-metric measure spaces may be found e.g. in [7] and [13]. Below we
provide necessary definitions which we use in the paper.

Let (X , d, μ) be a quasi-metric measure space with measure μ and quasi-distance
d:

d(x, y) ≤ k[d(x, z) + d(y, z)], k ≥ 1 (2.1)

d(x, y) = 0 ⇐⇒ x = y, d(x, y) = d(y, x) and � = diam X , 0 < � ≤ ∞,
B(x, r) = {y ∈ X : d(x, y) < r}. Everywhere in the sequel we suppose that the
following properties of (X , d, μ) hold:

(1) all balls are open sets;
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(2) the spheres S(x, r) := {y ∈ X : d(y, x) = r} have zero measure for all x and
r;

(3) μB(x, r) is continuous in r ∈ [0, �) for every x ∈ X .

The set (X , d, μ) is said to satisfy the growth condition if there exist a constant
A > 0 and exponent ν > 0, which is fractional in general, such that

μB(x, r) ≤ Arν, (2.2)

where x ∈ X and r ∈ (0, �). For more general notion of the growth condition, i.e.
with a given dominant of measure of balls we refer to [14] and [15]. In this paper we
use the growth condition of the form (2.2).

We say that (X , d, μ) is regular, if themeasure satisfies the lower and upper Ahlfors
conditions with coinciding exponents, i.e.

C1r
ν ≤ μB(x, r) ≤ C2r

ν, x ∈ X , r > 0, ν > 0. (2.3)

Estimates of the type provided by the lemma below are known but we give its short
proof for completeness of presentation.

Lemma 2.1 Let (X , d, μ) satisfy the growth condition (2.2) and γ > 0. Then

∫

B(x,r)

dμ(y)

d(x, y)ν−γ
≤ C rγ , (2.4)

where C = Amax{1, 2γ−ν} 2ν

2γ −1 does not depend on x ∈ X and r ∈ (0, �).

Proof We have

∫

B(x,r)

dμ(y)

d(x, y)ν−γ
=

∞∑
k=0

∫

2−k−1r<d(x,y)<2−kr

dμ(y)

d(x, y)ν−γ

≤ max{1, 2γ−ν}
∞∑
k=0

1

(2−k−1r)ν−γ

∫

d(x,y)<2−kr

dμ(y)

= Amax{1, 2γ−ν}
∞∑
k=0

(2−kr)ν

(2−k−1r)ν−γ

= Amax{1, 2γ−ν} 2ν

2γ − 1
rγ .


�
Lemma 2.2 below provides a certain replacement of the formula of passage to

polar coordinates used in the case X = R
n . This lemma is a simplified version of

more general estimates proved in [32].
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Let � be an arbitrary set of points in X . We use the uniform doubling condition

L(ξ, 2t) ≤ CL(ξ, t), (2.5)

on a function L(ξ, t), where C > 0 does not depend on (ξ, t) ∈ � × R+.

In the sequel we use the abbreviations: a.i. = almost increasing and a.d. = almost
decreasing

Lemma 2.2 [32,Lemmas 2.5 and 2.8] Let (X , d, μ) satisfy the growth condition (2.2),
L(ξ, t) be a non-negative function on � × (0, �), 0 < � ≤ ∞, a.i. in t uniformly in
x ∈ � and the doubling condition (2.5) be satisfied. Then

∫

B(x,r)

L[ξ, d(x, y)]
d(x, y)a

dμ(y) ≤ C

r∫

0

tν−1L(ξ, t)

ta
dt (2.6)

and

∫

X\B(x,r)

L[ξ, d(x, y)]
d(x, y)a

dμ(y) ≤ C

�∫

r

tν−1L(ξ, t)

ta
dt, (2.7)

where ξ ∈ �, x ∈ (0, �), a ∈ R and 0 < r < � ≤ ∞, whenever the right hand side
of these estimates exists or not.

2.2 GeneralizedMorrey SpacesLp,'(X)

Let 1 ≤ p < ∞.

The generalized Morrey spaces are defined by the norm:

‖ f ‖Lp,ϕ (X) = sup
x∈X ,r>0

⎛
⎜⎝ 1

ϕ(x, r)

∫

B(x,r)

| f (y)|p dμ(y)

⎞
⎟⎠

1
p

, (2.8)

where it is assumed that ϕ(x, r) is a positive measurable function on X × (0, �), � =
diam X , positive for all (x, t) ∈ X × (0, �].

The spaces defined by the norm

sup
r>0

⎛
⎜⎝ 1

ϕ(x0, r)

∫

B(x0,r)

| f (y)|p dμ(y)

⎞
⎟⎠

1
p

, x0 ∈ X , (2.9)

are often called generalized local Morrey spaces. The spaces defined by the norm (2.8)
are correspondingly called generalized global Morrey spaces. Both may be united in a
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single approach by the localization applied with respect to an arbitrary set� ⊆ X , not
just with respect to the case� = {x0} of an isolated point. That is, one can estimate the
Morrey-regularity of functions f at an arbitrary given subset of X , with admission of
the extremal cases � = X and � = {x0}, x0 ∈ X . The corresponding space defined
by the norm

‖ f ‖Lp,ϕ
� (X) := sup

x∈�,r>0

⎛
⎜⎝ 1

ϕ(x, r)

∫

B(x,r)

| f (y)|p dμ(y)

⎞
⎟⎠

1
p

(2.10)

will be denoted by Lp,ϕ
� (X). The principal estimates on which the proofs in this paper

are based, are pointwise, see Sect. 3.2.
Everywhere in the sequel we suppose that ϕ(x, r) is a positive measurable function

on � × (0, �), � = diam X , 0 < � ≤ ∞, and the following à priori assumptions
hold:

(1) ϕ(x, r) is a.i. in r uniformly in x ∈ � :

ϕ(x, 	) ≤ cϕ(x, r), 0 < 	 < r < �. (2.11)

(2) ϕ(x,r)
rν is a.d. in r uniformly in x ∈ � :

ϕ(x, r)

ϕ(x, 	)
≤ c

(
r

	

)ν

, 0 < 	 < r < �. (2.12)

Note that Lp,ϕ
� (X) = L p(X), if inf

(x,r)∈�×(0,�)
ϕ(x, r) > 0.

In the sequel we use the notation

M( f ; x, r) := 1

ϕ(x, r)

∫

B(x,r)

| f (y)|p dμ(y). (2.13)

For classical Morrey spaces Lp,λ(Rn), as is known, |x | λ−n
p ∈ Lp,λ(Rn), if 0 <

λ ≤ n or λ > 0, when Lp,λ(Rn) is global or local centered at the origin, respectively.
We shall deal with the corresponding ”model” function


x0(x) =
(

ϕ(x, d(x, x0))

d(x, x0)ν

) 1
p

in the general setting of quasi-metric measure spaces with growth condition.
To this end we introduce the assumption that:
Uniform Zygmund conditions hold:

r∫

0

ϕ(x, t)

t
dt ≤ cϕ(x, r) (2.14)
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where 0 < r < �, x ∈ � and c does not depend on x and r .

Theorem 2.3 Let (X , d, μ) satisfy the growth condition and ϕ(x, r) satisfy the Zyg-
mund condition (2.14). Then


x0 ∈ Lp,ϕ
� (X).

Proof Let x ∈ �. For the modular M(
x0; x, r) we have

M(
x0; x, r) = 1

ϕ(x, r)

∫

B(x,r)

ϕ(x, d(y, x0))

d(y, x0)ν
dμ(y).

We distinguish the cases d(x, x0) ≤ 2kr and d(x, x0) ≥ 2kr .Let first d(x, x0) ≤ 2kr .
Then d(y, x0) ≤ kd(y, x) + kd(x, x0) ≤ kr + 2k2r = k(1 + 2k)r , i.e. B(x, r) ⊂
B(x0, k(1 + 2k)r). Then

M(
x0; x, r) ≤ 1

ϕ(x, r)

∫

B(x0,k(1+2k)r)

ϕ(y, d(y, x0))

d(y, x0)ν
dμ(y).

On the right hand side we can apply the inequality (2.6) with L(x, r) = ϕ(x, r). Note
that the condition (2.5) of Lemma 2.2 is satisfied, being easily derived from (2.12).
By (2.6) we obtain

M(
x0; x, r) ≤ C

ϕ(x, r)

k(1+2k)r∫

0

ϕ(x, t)

t
dt ≤ c < ∞,

due to (2.14).
Let d(x, x0) > 2kr .
By the triangle inequality we have d(y, x0) ≥ 1

k d(x, x0) − d(y, x) ≥ 2r − r ≥
d(y, x). Since ϕ(x,s)

sν is a.d. in s, we obtain

M(
x0; x, r) ≤ C
∫

B(x,r)

ϕ(x, d(y, x))

d(y, x)ν
dμ(y),

where the inequality (2.6) is applicable and we can proceed as in the previous case. 
�
Let w(y) be an arbitrary weight on (X , d, μ), i.e. μ-a.e. positive function in

L1
loc(X). We define the weighted generalized Morrey space Lp,ϕ

�,w(X) as the space
of functions with the finite norm

‖ f ‖Lp,ϕ
�,w(X) := ‖w f ‖Lp,ϕ

� (X) = sup
x∈X ,r>0

⎛
⎜⎝ 1

ϕ(x, r)

∫

B(x,r)

|w f (y)|p dμ(y)

⎞
⎟⎠

1
p

< ∞.

(2.15)
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2.3 Classes V+ and V− of RadialWeights

The following classes of weight functions were introduced in [30], see also [26].

Definition 2.4 By V±, we denote the classes of functions v positive on (0, �), 0 <

� ≤ ∞, defined by the conditions:

V+ : |v(t) − v(τ)|
|t − τ | ≤ C

v(t+)

t+
, (2.16)

V− : |v(t) − v(τ)|
|t − τ | ≤ C

v(t−)

t+
, (2.17)

where t, τ ∈ (0, �), t 
= τ, and t+ = max(t, τ ), t− = min(t, τ ).

Lemma 2.5 [30] Functions v ∈ V+ are a.i. and functions v ∈ V− are a.d..

Note that for power weights we have

tγ ∈ V+ ⇐⇒ γ ≥ 0, tγ ∈ V− ⇐⇒ γ ≤ 0.

The following lemma provides sufficient conditions for functions to belong to the
classes V+ and V−.

Lemma 2.6 [30,Lemma 2.11 and Example 2.12] Let v be a function positive and
differentiable on (0, �). If

0 ≤ v′(t) ≤ c
v(t)

t
, 0 < t < �,

for some c > 0, then v ∈ V+. If

−c
v(t)

t
≤ v′(t) ≤ 0, 0 < t < �,

for some c > 0, then v ∈ V−.
In particular,

tα
(
ln

A

t

)β

∈
{
V+, if α > 0, β ∈ R or α = 0 and β ≤ 0
V−, if α < 0, β ∈ R or α = 0 and β ≥ 0,

if A > �, where it is assumed that � < ∞. In the case � = ∞, the statement holds
with log A

t replaced by log emax{t, 1
t }.
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3 Main Results

3.1 Lebesgue to Morrey Transference Theorems for p-Admissible Sublinear
Operators of Singular-Type

Let T be a sublinear operator on (X , d, μ), i.e. |T ( f + g)| ≤ |T f | + |Tg|, f , g :
X → R.

Definition 3.1 Let 1 < p < ∞. A sublinear operator T will be called p-admissible
singular-type operator, if:
(1) T satisfies the size condition of the form

χB(x,r)(z)|T ( f χX\B(x,2kr))(z)| ≤ CχB(x,r)(z)
∫

X\B(x,2kr)

| f (y)|
d(y, z)ν

dμ(y), x ∈ X , r > 0,

(3.1)

where ν comes from the growth condition (2.2) ;
(2) T is bounded in L p(X , d, μ).

Remark 3.2 Usually the size condition is defined in the form

|T f (x)| ≤ C
∫

X

| f (y)|
d(x, y)ν

dμ(y), x /∈ supp f , (3.2)

which insures (3.1). In the main theorem of this section, i.e. in the transference of L p-
boundedness to Morrey-boundedness, the form (3.1) of the size condition is sufficient
for our goals.

First of all we keep in mind singular-type operators as p-admissible operators in
view of Theorem 3.3. To be precise we define the singular operator T as

T f (x) = lim
ε>0

∫

d(x,y)>ε

K (x, y) f (y)dμ(y), (3.3)

where the kernel K (x, y) satisfies the conditions

|K (x, y) − K (x, z)| ≤ C
d(y, z)σ

d(x, y)ν+σ
, if d(x, y) > 2d(y, z), (3.4)

|K (x, y) − K (ξ, y)| ≤ C
d(x, ξ)σ

d(x, y)ν+σ
, if d(x, y) > 2d(x, ξ), (3.5)

for some σ > 0, and

∣∣∣∣∣∣

∫

X

K (x, y) f (y)dμ(y)

∣∣∣∣∣∣
≤ C

∫

X

| f (y)|
d(x, y)ν

dμ(y), x /∈ supp f , (3.6)
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where ν comes from the growth condition (2.2). Kernels satisfying the conditions (3.4),
(3.5) and (3.6) or some similar versions of these conditions, are known as standard
singular kernels. For this notion we refer e.g. to [1], [3,p.99] and [25,p.4]. Note that
the conditions (3.4) and (3.5) go back to such Lipschitz-type condition on the kernel
introduced in integral form in [2,p.75].

Besides the operator (3.3), we consider the maximal singular operator

T � f (x) = sup
ε>0

Tε f (x), Tε f (x) =
∫

X\B(x,ε)

K (x, y) f (y)dμ(y), (3.7)

assuming, as usual (see, for instance, [25]) that the operator T � is bounded in L2(X).

The following is known.

Theorem 3.3 ([25,Theorem 1.1], see also [14] and [15] in a more general setting) Let
(X , d, μ) satisfy the growth condition (2.2), 1 < p < ∞. The singular operator T
and the maximal singular operator T � with a standard kernel, if bounded in L2(X),

are bounded in L p(X).

As other examples we mention the Hardy-type operators

H f (x) = 1

d(x, x0)ν

∫

B(x0,d(x,x0))

f (y)dμ(y) and H f (x)

=
∫

X\B(x0,d(x,x0))

f (y)

d(y, x0)ν
dμ(y) (3.8)

and the following ”hybrids”

Kγ,ν f (x) = 1

d(x, x0)γ

∫

B(x0,d(x,x0))

f (y)dμ(y)

d(x, y)ν−γ
and Kγ,ν f (x)

=
∫

X\B(x0,d(x,x0))

f (y)dμ(y)

d(y, x0)γ d(x, y)ν−γ
(3.9)

of Hardy and potential operators, where 0 < γ ≤ ν.

Note that Kγ,ν

∣∣
γ=ν

= H and Kγ,ν

∣∣
γ=ν

= H.

Operators (3.9) arise in the sequel in the reduction of weighted boundedness of
weighted singular operators in Morrey spaces to the boundedness of non-weighted
singular operators, see Sect. 3.2. The operators Kγ,ν and Kγ,ν are p-admissible oper-
ators as follows from Lemmas 3.4 and Theorem 3.5, taking Remark 3.6 into account.

Lemma 3.4 Let x ∈ X\supp f and 0 < γ ≤ ν. Then the operators Kγ,ν and Kγ,ν

satisfy the size condition:
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|Kγ,ν f (x)| ≤ (2k)γ
∫

X

| f (y)|
d(x, y)ν

dμ(y) and |Kγ,ν f (x)| ≤ (2k)γ
∫

X

| f (y)|
d(x, y)ν

dμ(y)

(3.10)

Proof To prove (3.10) it suffices to note that d(x, x0) ≥ 1
2k d(x, y) in Kγ,ν f and

d(y, x0) ≥ 1
2k d(x, y) in Kγ,ν f .


�
In the theorem below we use the modified maximal operator

MN f (x) = sup
r∈(0, �

N )

1

μB(x, Nr)

∫

B(x,r)

| f (y)|dμ(y), x ∈ X , with every N ≥ 1.

(3.11)

We write M := MN
∣∣
N=1.

The operator Kγ,ν is dominated by the operator MN as shown in the next theorem.

Theorem 3.5 Let (X , d, μ) satisfy the growth condition (2.2) and 0 < γ ≤ ν. Then

|Kγ,ν f (x)| ≤ CMN f (x), x ∈ X , C = Akγ 2ν+γ

2γ − 1
N ν, (3.12)

where A is the constant from the growth condition (2.2).

Proof By the triangle inequality we have B(x0, d(x, x0)) ⊂ B(x, 2kd(x, x0)). There-
fore

Kγ,ν f (x) ≤ 1

d(x, x0)γ

∞∑
j=0

∫

2− j kd(x,x0)<d(y,x)<21− j kd(x,x0)

| f (y)|dμ(y)

d(y, x)ν−γ

≤ 1

d(x, x0)γ

∞∑
j=0

[2− j kd(x, x0)]γ−ν

∫

B(x,21− j kd(x,x0))

| f (y)|dμ(y)

≤ 1

d(x, x0)γ

∞∑
j=0

[2− j kd(x, x0)]γ−ν[μB(x, 21− j Nkd(x, x0))]MN f (x)

≤ A(2N )νkγ
∞∑
j=0

2− jγ MN f (x) = CMN f (x).


�
Remark 3.6 The operators Kγ,ν and Kγ,ν, 0 < γ ≤ ν are p-admissible in view of
Lemma 3.4 and Theorem 3.5, since
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(1) the maximal operator MN is bounded in L p(X), 1 < p ≤ ∞, if N ≥ 3k, see
[7,Proposition 6.1.1], and then the Hardy operator H and the operator Kγ,ν, γ > 0,
are bounded in L p(X) by Theorem 3.5;

(2) then the operators H and Kγ,ν, γ > 0, are bounded in L p(X), 1 ≤ p < ∞,
by duality arguments.

Proof of Theorem 3.8 is based on the following crucial lemma.

Lemma 3.7 Let (X , d, μ) satisfy the growth condition (2.2), 1 ≤ p ≤ ∞, and ∈ R.

Then

∫

X\B(x,r)

| f (y)|
d(x, y)ν

dμ(y) ≤ C

�∫

r

‖ f ‖L p(B(x,s)) ds

s
ν
p +1

, (3.13)

where C does not depend on f , x ∈ X and r ∈ (
0, �

2

)
.

Proof The inequality (3.13), is proved by the known trick. We have

∫
X\B(x,r)

| f (y)| dμ(y)

d(x, y)ν
=

∫
X\B(x,r)

| f (y)|
d(x, y)ν−β

dμ(y)

d(x, y)β
,

where we choose β > max
{
0, ν

p

}
. It is easy to check that

1

rβ
≤ cβ

�∫

r

dt

t1+β
, with c = 2β

2β − 1

when 0 < r < �
2 and � < ∞; in the case � = ∞ this holds with c = 1 and ′′ ≤′′

replaced by ′′ =′′ . Then

∫
X\B(x,r)

| f (y)| dμ(y)

d(x, y)ν
≤ cβ

∫
X\B(x,r)

| f (y)|
d(x, y)ν−β

(∫ �

d(x,y)

ds

sβ+1

)
dμ(y)

= cβ
∫ �

r

1

sβ+1

(∫
B(x,s)\B(x,r)}

| f (y)| dμ(y)

d(x, y)ν−β

)
ds

≤ C
∫ �

r
s−β−1‖ f ‖L p(B(x,s))

(∫
B(x,s)

dμ(y)

d(x, y)(ν−β)p′

) 1
p′
ds.

Since (ν − β)p′ < ν, by Lemma 2.1 we then obtain

∫
X\B(x,r)

| f (y)| dμ(y)

d(x, y)ν
≤ C

∫ ∞

r

‖ f ‖L p(B(x,s))ds

s1+
ν
p

.


�
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Theorem 3.8 Let (X , d, μ) satisfy the growth condition (2.2) and � = diamX ≤ ∞,

let 1 < p < ∞ and T be a p-admissible sublinear operator of singular-type. Then

M(T f ; x, r) ≤ Crν

ϕ(x, r)

(∫ �

r

ϕ
1
p (x, t)

t1+
ν
p

(M( f ; x, t)) 1
p dt

)p

, 0 < r <
�

2
,(3.14)

for every f ∈ L p
loc(X), where C does not depend on x ∈ X , r ∈ (0, �) and f .

Proof We split the function f into the parts supported in a neighbourhood of the point
x and outside it, in the usual way:

f = f1 + f2, f1(y) = f (y)χB(x,2kr)(y), f2(y) = f (y)χX\B(x,2kr)(y),(3.15)

where r > 0, and by the sublinearity of the operator T we have

‖T f ‖L p(B(x,r)) ≤ ‖T f1‖L p(B(x,r)) + ‖T f2‖L p(B(x,r)).

By the assumption 2) in Definition 3.1, we obtain

‖T f1‖L p(B(x,r)) ≤ ‖T f1‖L p(X) ≤ C‖ f1‖L p(X) = C‖ f ‖L p(B(x,2kr)). (3.16)

To estimate T f2, we make use of the assumption 1) from Definition 3.1:

|T f2(z)| ≤ C
∫

X\B(x,2kr)

| f (y)| dμ(y)

d(y, z)ν
, z ∈ B(x, r).

By the triangle inequality (2.1) it is easy to check that the conditions z ∈ B(x, r) and
y ∈ X \ B(x, 2kr) imply that

(
k + 1

2

)−1

d(y, z) ≤ d(x, y) ≤ 2kd(y, z).

Therefore,

|T f2(z)| ≤ C
∫

X\B(x,2kr)

| f (y)| dμ(y)

d(x, y)ν
,

where the right-hand side does not depend on z, so that

‖T f2‖L p(B(x,r)) ≤ Cr
ν
p

∫

X\B(x,r)

| f (y)| dμ(y)

d(x, y)ν
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and then applying Lemma 3.7, we get

‖T f2‖L p(B(x,r)) ≤ Cr
ν
p

�∫

r

‖ f ‖L p(B(x,s)) ds

s1+
ν
p

. (3.17)

The simpler direct estimate (3.16) for ‖T f1‖L p(B(x,r)), as can be easily seen, is
dominated by the estimate of similar form:

‖T f1‖L p(B(x,r)) ≤ Cr
ν
p

∫ �

r
t−

ν
p −1‖ f ‖L p(B(x,t))dt (3.18)

which yields (3.14). 
�
Theorem 3.9 (Transference Theorem). Let (X , d, μ) satisfy the growth condition (2.2)
and 1 < p < ∞. Let also

Cp,ν(ϕ) := sup
x∈�,r>0

r
ν
p

ϕ(x, r)
1
p

∫ �

r

ϕ(x, t)
1
p

t1+
ν
p

dt < ∞. (3.19)

Then any sublinear operator T satisfying the size condition (3.1), bounded in L p(X),

is also bounded in Lp,ϕ
� (X), and ‖T f ‖Lp,ϕ

� (X) ≤ c Cp,ν(ϕ)‖ f ‖Lp,ϕ
� (X), where c does

not depend on ϕ.

Proof The proof of this theorem is prepared by the pointwise estimate of Theorem
3.8: since

‖ f ‖Lp,ϕ
� (X) = sup

x∈�,r>0
M( f ; x, t) 1

p ,

it remains to pass to supremum in (3.14). 
�
Note that in [22] therewas studied the boundedness of theHardy operator H in local

Morrey spaces Lp,ϕ
x0 (X) and local vanishing Morrey spaces under other assumptions

on the function ϕ and the triplet (X , d, μ).

Remark 3.10 The condition (3.19) is not needed in the case where ϕ(x, r) does not
depend on x or if � contains a finite number of points.

3.2 Reduction of Boundedness ofWeighted Singular Integral Operators with Size
Condition and theWeightedMaximal Operator to theWeighted Boundeness
of Hardy Operators

In this section we consider integral operators, in general of singular type:

T f (x) =
∫

X

K (x, y) f (y)dμ(y) = lim
ε→0

∫

X\B(x,ε)

K (x, y) f (y)dμ(y) (3.20)
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under the only assumption that its kernel K (x, y) satisfies the size condition

|K (x, y)| ≤ cd(x, y)−ν, (3.21)

where ν comes from the growth condition. Note that in this section in fact we even
do not need to know that ν comes from the growth condition, since in the proof of
the pointwise estimate in the theorem below we use only properties of weights of the
classes V±, the fact that the operator T has the size condition with some ν > 0 and
do not use at all any information about (X , d, μ).

Our goal is to study the boundedness of such operators in weighted Morrey spaces
Lp,ϕ

�,w(X). It is clear that the boundedness of the operator T in the weighted space
Lp,ϕ

�,w(X) is identical to the boundedness of the weighted operator

wT
1

w

in the non-weighted space Lp,ϕ
� (X). We shall study the operator wT 1

w
with ”radial”

weights

w(y) = v[d(y, x0)], where v ∈ V+ or v ∈ V−, x0 ∈ X . (3.22)

The pointwise estimate of Theorem 3.11 shows that for any Banach function
space with lattice property over an arbitrary quasi-metric measure space (X , d, μ),

the boundedness of the weighted operator wT 1
w

with w(y) = v[d(y, x0)], v ∈
V+

⋃
V−, x0 ∈ X , is reduced to the non-weighted boundedness of the operator

T , boundedness of the weighted Hardy operators wH 1
w

, wH 1
w

and non-weighted
boundedness of simple operators Kγ,ν and Kγ,ν .

We provide also a similar reduction for the weighted maximal operator.

Theorem 3.11 (Reduction Theorem) Let (X , d, μ) be an arbitrary quasi-metric mea-
sure space, T , T � be the operators (3.20) and (3.7), MN be the operator (3.11) and
w(y) = v[d(y, x0)], where v ∈ V+

⋃
V−, x0 ∈ X . Then

∣∣∣∣wT
1

w
f (x)

∣∣∣∣ ≤ |T f (x)| + C

(
wH

1

w
(| f |)(x) + K1,ν(| f |)(x)

+
ν̄−1∑
m=1

Km,ν(| f |)(x)
)

, v ∈ V+ (3.23)

and
∣∣∣∣wT

1

w
f (x)

∣∣∣∣ ≤ |T f (x)| + C

(
wH 1

w
(| f |)(x) + K1,ν(| f |)(x)

+
ν̄−1∑
m=1

Km,ν(| f |)(x)
)

, v ∈ V−; (3.24)
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∣∣∣∣wT � 1

w
f (x)

∣∣∣∣ ≤ |T � f (x)| + C

(
wH

1

w
(| f |)(x) + K1,ν(| f |)(x)

+
ν̄−1∑
m=1

Km,ν(| f |)(x)
)

, v ∈ V+ (3.25)

and
∣∣∣∣wT � 1

w
f (x)

∣∣∣∣ ≤ |T � f (x)| + C

(
wH 1

w
(| f |)(x) + K1,ν(| f |)(x)

+
ν̄−1∑
m=1

Km,ν(| f |)(x)
)

, v ∈ V−, (3.26)

where ν̄ is the least integer greater or equal to ν and the sum
ν̄−1∑
m=1

should be omitted

in the case ν̄ = 1.
If (X , d, μ) satisfies the condition

μB(x, r) ≥ Crα (3.27)

for some C > 0 and α > 0, then

∣∣∣∣wMN
1

w
f (x)

∣∣∣∣ ≤ |MN f (x)| + C

(
wH

1

w
(| f |)(x) + K1,ν(| f |)(x)

+
ᾱ−1∑
m=1

Km,α(| f |)(x)
)

, (3.28)

when v ∈ V+ and

∣∣∣∣wMN
1

w
f (x)

∣∣∣∣ ≤ |MN f (x)| + C

(
wH 1

w
(| f |)(x) + K1,ν(| f |)(x)

+
ᾱ−1∑
m=1

Km,α(| f |)(x)
)

, (3.29)

when v ∈ V−, where ᾱ is the least integer greater or equal to α and the sum
ᾱ−1∑
m=1

should be omitted in the case ᾱ = 1.

Proof We assume that f (x) > 0, x ∈ X , without loss of generality. By the size
condition we have

∣∣∣∣wT
1

w
f (x) − T f (x)

∣∣∣∣ ≤ C
∫

X

|w(x) − w(y)|
w(y)

f (y)

d(x, y)ν
dμ(y). (3.30)
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We shall prove the estimate (3.23), the proof of (3.24) being similar.
For brevity we denote

dx = d(x, x0) and dy = d(y, x0).

Let X+ = {y ∈ X : dy ≤ dx } and X− = {y ∈ X : dy ≥ dx }. By the definition of
the class V+ and the triangle inequality we have

∣∣∣∣wT
1

w
f (x) − T f (x)

∣∣∣∣ ≤ C

⎛
⎜⎝v(dx )

dx

∫

X+

f (y)

v(dy)

dμ(y)

d(x, y)ν−1 +
∫

X−

f (y)

dy

dμ(y)

d(x, y)ν−1 .

⎞
⎟⎠

(3.31)

Let first ν ≤ 1. Then

d(x, y)1−ν ≤ (2kdx )
1−ν in the first integral and d(x, y)1−ν ≤ (2kdy)

1−ν

in the second integral. (3.32)

Consequently,

∣∣∣∣wT
1

w
f (x) − T f (x)

∣∣∣∣ ≤ C

(
wH

1

w
f (x) + K1,ν f (x)

)
,

which provides (3.23).
Let ν > 1. From (3.31) we have

∣∣∣∣wT
1

w
f (x) − T f (x)

∣∣∣∣ ≤ C

⎛
⎜⎝ 1

dx

∫

X+

v(dx ) − v(dy)

v(dy)

f (y)dμ(y)

d(x, y)ν−1

+K1,ν f (x) + K1,ν f (x)
)
.

∣∣∣∣wT
1

w
f (x) − T f (x)

∣∣∣∣ ≤ C

⎛
⎜⎝v(dx )

d2x

∫

X+

1

v(dy)

f (y)dμ(y)

d(x, y)ν−2

+K1,ν f (x) + K1,ν f (x)
)
.

If ν ≤ 2, we estimate d(x, y)2−ν similarly to (3.32) and get

∣∣∣∣wT
1

w
f (x) − T f (x)

∣∣∣∣ ≤ C

(
wH

1

w
f (x) + K2,ν f (x) + K1,ν f (x) + K1,ν f (x)

)
.
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Iterating this procedure, we arrive at (3.23) with
ν̄∑

m=1
Km,ν f , but the last term

Km,ν f
∣∣
m=ν̄

can be eliminated, since K ν̄ f = H and

H f (x) ≤ C wH
1

w
f (x) when v ∈ V+,

because v ∈ V+ is a.i. by Lemma 2.5.
For the maximal singular operator T �, using the size condition (3.21), we have

∣∣∣∣wT � 1

w
f (x) − T � f (x)

∣∣∣∣ = sup
ε>0

∣∣∣∣∣∣∣

∫

X\B(x,ε)

w(x) − w(y)

w(y)
K (x, y) f (y)dμ(y)

∣∣∣∣∣∣∣

≤
∫

X

|w(x) − w(y)|
w(y)

| f (y)|
d(x, y)ν

dμ(y),

after which the estimation is the same as after (3.30). Note that this estimation uses
only properties of the distance but not of the measure.

For the maximal operator MN we have

|wMN
1

w
f (x) − MN f (x)|

=

∣∣∣∣∣∣∣
sup
r>0

1

μ(B(x, Nr))

∫

B(x,r)

w(x)

w(y)
| f (y)|dμ(y) − sup

r>0

1

μ(B(x, Nr))

∫

B(x,r)

| f (y)|dμ(y)

∣∣∣∣∣∣∣

≤ sup
r>0

1

μ(B(x, Nr))

∫

B(x,r)

|w(x) − w(y)|
w(y)

| f (y)|dμ(y).

By (3.27) we then have

|wMN
1

w
f (x) − MN f (x)| ≤ C

∫

X

|w(x) − w(y)|
w(y)d(x, y)α

| f (y)|dμ(y),

after which the estimation is also the same as after (3.30).

�

3.3 Weighted Boundedness of Hardy, Singular andMaximal Operators in
GeneralizedMorrey SpacesLp,'

5 (X)

According to the reductionprocedure of theSect. 3.2,wehave to study the boundedness
of the operators wH 1

w
and wH 1

w
which we do in the following section.



27 Page 20 of 27 Journal of Fourier Analysis and Applications (2022) 28 :27

3.3.1 Hardy Operators with Quasi-monotoneWeights in the SpacesLp,'
5 (X)

In the following theorem we use the notation

�x0(x) = v(d(x, x0))

d(x, x0)ν

d(x,x0)∫

0

t
ν
p′ −1

ϕ(x, t)
1
p

v(t)
dt .

Theorem 3.12 Let (X , d, μ) satisfy the growth condition (2.2), 1 ≤ p < ∞ and

w(x) = v[d(x, x0)], x0 ∈ X , where v ∈ V+. If the function t
ν
p′ ϕ(x,t)

1
p

v(t) is a.i. in
t ∈ (0, �) uniformly in x ∈ �, then there holds the pointwise estimate

∣∣∣∣wH
f

w
(x)

∣∣∣∣ ≤ cw �x0(x)‖ f ‖Lp,ϕ
� (X), x ∈ X , (3.33)

where cw does not depend on x and f .

Proof We have

wH
f

w
(x) = v(dx )

dν
x

∫

B(x0,dx )

f (y)dμ(y)

v(dy)
= v(dx )

dν
x

∞∑
k=0

∫

2−k−1dx<dy<2−kdx

f (y)dμ(y)

v(dy)
,

where the notation dx = d(x, x0), dy = d(y, x0) is used. The function v is a.i. by
Lemma 2.5. Consequently,

∣∣∣∣wH
f

w
(x)

∣∣∣∣ ≤ c
v(dx )

dν
x

∞∑
k=0

1

v(2−k−1dx )
‖ f ‖L p(B(x0,2−kdx ))μB(x0, 2

−kdx ))
1
p′ .

In view of the growth condition we then get

∣∣∣∣wH
f

w
(x)

∣∣∣∣ ≤ c
v(dx )

dν
x

∞∑
k=0

(2−kdx )
ν
p′ ϕ(x, 2−kdx )

1
p

v(2−k−1dx )
· 1

ϕ(x, 2−kdx )
1
p

‖ f ‖L p(B(x0,2−kdx ))

≤ c
v(dx )

dν
x

‖ f ‖Lp,ϕ
� (X)

∞∑
k=0

ϕ(x, 2−kdx )
1
p

v(2−k−1dx )
(2−kdx )

ν
p′ .

From (2.12) it follows that ϕ(x, r) has doubling property in r uniformly in x, so
that

∞∑
k=0

ϕ(x, 2−kdx )
1
p

v(2−k−1dx )
(2−kdx )

ν
p′ ≤ C

∞∑
k=0

ϕ(x, 2−k−1dx )
1
p

v(2−k−1dx )
(2−kdx )

ν
p′

≤ c

dx∫

0

t
ν
p′ −1

ϕ(x, t
2 )

1
p

v( t2 )
dt ≤ c

dx∫

0

t
ν
p′ −1

ϕ(x, t)
1
p

v(t)
dt .
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Then

∣∣∣∣wH
f

w
(x)

∣∣∣∣ ≤ c
v(dx )

dν
x

dx∫

0

t
ν
p′ −1

ϕ(x, t)
1
p

v(t)
dt · ‖ f ‖Lp,ϕ

� (X),

which proves (3.33). 
�
We introduce the following Zygmund-type condition

r∫

0

t
ν
p′ ϕ(x, t)

1
p

v(t)

dt

t
≤ C

r
ν
p′ ϕ(x, r)

1
p

v(r)
, 0 < r < �, (3.34)

where C does not depend on x ∈ X and r ∈ (0, �).
Theorem 3.12 leads to the following result.

Theorem 3.13 Let (X , d, μ) satisfy the growth condition (2.2), 1 ≤ p < ∞ and

w(x) = v[d(x, x0)], x0 ∈ X , where v ∈ V+, and let the function t
ν
p′ ϕ(x,t)

1
p

v(t) be a.i.

in t ∈ (0, �) uniformly in x ∈ �. If the Zygmund conditions (2.14) and (3.34) hold,
then the weighted Hardy operator wH 1

w
is bounded in the space Lp,ϕ

� (X) and

∥∥∥∥wH
f

w

∥∥∥∥Lp,ϕ
� (X)

≤ c‖
x0‖Lp,ϕ
� (X)‖ f ‖Lp,ϕ

� (X). (3.35)

Proof The condition (3.34) says that �x0(x) ≤ C 
x0(x), so that
∣∣∣wH f

w

∣∣∣ ≤
c 
x0‖ f ‖Lp,ϕ

� (X). The condition (2.14) and Theorem 2.3 imply that 
 ∈ Lp,ϕ
� (X),

which proves the theorem. 
�
In the sequel we use the notion ofMatuszewska-Orlicz indices (see [31,Appendix]).

For reader’s convenience we provide necessary definitions in Appendix.

Remark 3.14 InTheorem3.13 twoZygmund conditions (2.14) and (3.34) are supposed
to hold. It is natural to compare them. First, we note that (2.14) is equivalent to

r∫

0

ϕ(x, t)
1
p

t
dt ≤ Cϕ(x, r)

1
p ,

since (2.14) for a.i. functions ϕ holds if and only if its lower Matuszewska-Orlicz
index m(ϕ) in the variable t is positive (uniformly in x in our case), see [16], and

m(ϕ
1
p ) = 1

pm(ϕ). Then it is easy to see that (2.14) implies (3.34) when the function

r
ν
p′

v(r) is a.i. and (3.34) implies (2.14) if this function is a.d.. In terms of Matuszewska-
Orlicz indices of the weight v(r), when v is quasi-monotone near the origin and at



27 Page 22 of 27 Journal of Fourier Analysis and Applications (2022) 28 :27

infinity (the latter if � = ∞), in view of Lemma 4.1, the following is true:

(2.14) �⇒ (3.34) when max{M0(v), M∞(v)} <
ν

p′

(3.34) �⇒ (2.14) when min{m0(v), m∞(v)} >
ν

p′

From Theorems 3.12 and 3.13, by means of Lemma 4.2 we arrive at the following
corollary in terms of Matuszewska-Orlicz indices. We take � = ∞ in this corollary;
if � < ∞ the information about m∞ should be omitted.

Corollary 3.15 Let the assumptions of Theorem 3.12 be satisfied and let v be quasi-
monotone near the origin and at infinity (the latter if � = ∞). If

inf
x∈�

min

{
m0

(
ϕ(x, ·) 1

p

v(·)

)
,m∞

(
ϕ(x, ·) 1

p

v(·)

)}
> − ν

p′ , (3.36)

then
∣∣∣wH f

w
(x)

∣∣∣ ≤ c 
x0(x)‖ f ‖Lp,ϕ
� (X), x ∈ X , holds. If also inf

x∈�

min{m0(ϕ(·)),m∞(ϕ(·))} > 0, then the operator wH 1
w

is bounded in the space
Lp,ϕ

� (X).

In particular, in the case ϕ(x, r) = rλ and v(r) = rγ , the condition (3.36) takes
the form γ < λ

p + ν
p′ .

Corollary 3.16 The operator H is bounded in the Morrey space Lp,ϕ
� (X) if (2.14)

holds.

Proof It suffices to observe that (2.14) implies (3.34), when w(x) ≡ 1. 
�
For the operator wH 1

w
the following result holds.

Theorem 3.17 Let (X , d, μ) satisfy the growth condition (2.2), 1 ≤ p < ∞ and

w(x) = v[d(x, x0)], x0 ∈ X , where v ∈ V−, the function ϕ(x,t)
1
p

t
ν
p v(t)

be a.d. in t ∈ (0, �)

uniformly in x ∈ �, and (2.14) hold. If

�∫

r

ϕ(x, t)
1
p

t
ν
p +1

v(t)
dt ≤ C

ϕ(x, r)
1
p

r
ν
p v(r)

, (3.37)

then
∣∣∣∣wH f

w
(x)

∣∣∣∣ ≤ c 
x0(x)‖ f ‖Lp,ϕ
� (X), x ∈ X , (3.38)

where c does not depend on x and f , and the operator wH 1
w
is bounded in the space

Lp,ϕ
� (X).
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The proof of Theorem 3.17 follows the same lines as in the proof of Theorems 3.12
and 3.13 and is omitted.

From Theorem 3.17, by means of Lemma 4.2 we arrive at the following corollary
in terms of Matuszewska-Orlicz indices. We take � = ∞ in this corollary; if � < ∞
the information about m∞ should be omitted.

Corollary 3.18 Let the assumptions of Theorem 3.17 be satisfied and let v be quasi-
monotone near the origin and at infinity (the latter if � = ∞). If

sup
x∈�

max

{
M0

(
ϕ(x, ·) 1

p

v(·)

)
, M∞

(
ϕ(x, ·) 1

p

v(·)

)}
<

ν

p
, (3.39)

then
∣∣∣wH f

w
(x)

∣∣∣ ≤ c 
x0(x)‖ f ‖Lp,ϕ
� (X), x ∈ X , holds. If also inf

x∈�
min{m0(ϕ(·)),

m∞(ϕ(·))} > 0, then the operator wH 1
w
is bounded in the space Lp,ϕ

� (X).

In particular, in the case ϕ(x, r) = rλ and v(r) = rγ , the condition (3.39) takes
the form γ > λ−ν

p .

Corollary 3.19 The operatorH is bounded in theMorrey spaceLp,ϕ
� (X) if (2.14) holds

and

�∫

r

ϕ(x, t)
1
p

t
ν
p +1

dt ≤ C
ϕ(x, r)

1
p

r
ν
p

,

where C does not depend on (x, r) ∈ � × (0, �).

3.3.2 Boundedness of Weighted Singular and Maximal Operators

In the following theorem T is the singular operator (3.3) with a standard kernel,
bounded in L2(X), T � is the maximal singular operator (3.7) and MN is the modified
maximal operator (3.11). We use the notation

φv(x, r) := ϕ(x, r)
1
p

v(r)

Theorem 3.20 Let (X , d, μ) satisfy the growth condition (2.2), � = diam X ≤ ∞,

1 < p < ∞, and let ϕ(x, t) satisfy the assumptions (2.14) and (3.19). Then the
weighted singular operatorwT 1

w
and the weighted maximal singular operatorwT � 1

w
with the weight w(x) = v([d(x, x0)]), x0 ∈ X , where v ∈ V+

⋃
V−, are bounded in

the Morrey space Lp,ϕ
� (X), if the following conditions on the weight hold:

(1) r
ν
p′ φv(x, r) is a.i. in t uniformly in x ∈ � and

r∫

0

t
ν
p′ −1

φv(x, t)dt ≤ cr
ν
p′ φv(x, r), (x, r) ∈ � × (0, �), (3.40)
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when v ∈ V+, and
(2) φv(x,r)

r
ν
p

is a.d. in t uniformly in x ∈ � and

�∫

r

φv(x, t)

t
ν
p +1

dt ≤ c
φv(x, r)

r
ν
p

, (x, r) ∈ � × (0, �), (3.41)

when v ∈ V−; where c does not depend on (x, r) ∈ � × (0, �).
If (X , d, μ) is regular in the sense (2.3) then the maximal operator M is bounded

in the Morrey space Lp,ϕ
� (X) under the same conditions.

Proof We first consider the weighted operators wT 1
w

and wT � 1
w

. According to the
pointwise estimates (3.23)–(3.24) and (3.25)–(3.26), respectively, of Theorem 3.11
we have to insure the boundedness in the space Lp,ϕ

� (X) of the operators T and T �

themselves, the operator wH 1
w
when w ∈ V+ and the operator wH 1

w
when w ∈ V−

and also the operators Km,ν and Km,ν .

The non-weighted operators T and T � are bounded in L p(X) by Theorem 3.3. For
the boundedness of the operators Km,ν andKm,ν see Remark 3.6. Then these operators
are bounded in the Morrey space Lp,ϕ

� (X) by Theorem 3.9 under the condition(3.19).
Finally, taking into account conditions of Theorems 3.13 and 3.17 for the bounded-

ness of the weighted Hardy operators and gathering all the assumptions of Theorems
3.9, 3.13 and 3.17, we arrive at the statement of the theorem for the operators wT 1

w

and wT � 1
w

.

When (X , d, μ) is regular, the arguments for the maximal operator M are the same
in view of (3.28) and (3.29), since α = ν. We also take into account that M is p-
admissible, being bounded in L p(X) in the case of regular metric space. 
�

For the case of classical Morrey spaces, i.e. ϕ(r) ≡ rλ, λ > 0, and the weight
v ∈ V+

⋃
V− is quasi-monotone near the origin and at infinity (the latter if � = ∞),

we obtain the following corollary.

Corollary 3.21 Let (X , d, μ) satisfy the growth condition (2.2), � = diam X ≤ ∞,

1 < p < ∞, and let T and T � be the singular and maximal singular operators (3.20)
and (3.7). The weighted operators wT 1

w
and wT � 1

w
are bounded in the Morrey space

Lp,ϕ
�

∣∣
ϕ(r)≡rλ , 0 < λ < ν, under the condition

− ν

p
+ λ

p
< min{m0(v),m∞(v)} ≤ max{M0(v), M∞(v)} <

ν

p′ + λ

p
.

(3.42)

The same is true for the maximal operator M in the case when (X , d, μ) is regular.

Acknowledgements The research was supported by Ministry of Education and Science of Russian Feder-
ation, Agreement No. 075-02-2021-1386

Funding Open Access funding provided by UiT The Arctic University of Norway.



Journal of Fourier Analysis and Applications (2022) 28 :27 Page 25 of 27 27

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Matuszewska–Orlicz (MO)-Type Indices

We provide definitions of Matuszewska-Orlicz indices of positive quasi-monotone
functions functions on (0, �), 0 < � ≤ ∞, and some their properties. For more
details we refer for instance to [16, 29] and [31,Appendix].

A function v(t) positive on (0, �) is called quasi-monotone near the origin if there
exist numbers α, β ∈ R such that v(t)

tα is a.i. and v(t)
tβ

is a.d. in a neighborhood of the
origin. In the case � = ∞ it is called quasi-monotone at infinity if there exist a, b ∈ R

such that v(t)
ta is a.i. and v(t)

tb
is a.d. in a neighborhood of infinity.

Functions quasi-monotone at the origin and infinity have finiteMatuszewska-Orlicz
indices at the origin and infinity, respectively. These indices are defined as follows:

m0(v) = sup
x>1

ln

(
lim inf
h→0

v(hx)
v(h)

)

ln x
= sup

0<x<1

ln

(
lim sup
h→0

v(hx)
v(h)

)

ln x

= lim
x→0

ln

(
lim sup
h→0

v(hx)
v(h)

)

ln x
, (4.1)

M0(v) = inf
x>1

ln

(
lim sup
h→0

v(hx)
v(h)

)

ln x
= lim

x→∞

ln

(
lim sup
h→0

v(hx)
v(h)

)

ln x
(4.2)

and

m∞(v) = sup
x>1

ln

[
lim inf
h→∞

v(xh)
v(h)

]

ln x
, M∞(v) = inf

x>1

ln

[
lim sup
h→∞

v(xh)
v(h)

]

ln x
. (4.3)

Some properties of the indices are given in the following lemmas.

Lemma 4.1 If v is quasi-monotone near the origin, then

m0(v) = sup

{
α > 0 : v(x)

xα
is a.i.

}
and M0(v) = inf

{
β > 0 : v(x)

xβ
is a.d.

}
.

http://creativecommons.org/licenses/by/4.0/
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If v is quasi-monotone at infinity, then

m∞(v) = sup

{
a > 0 : v(x)

xa
is a.i.

}
and M∞(v) = inf

{
b > 0 : v(x)

xb
is a.d.

}
.

Lemma 4.2 Let a function v positive on (0, �) be quasi-monotone near the origin and
infinity (the latter in the case � = ∞). The inequalities

∫ x

0

v(t)

t1+γ
dt ≤ c

v(x)

xγ
and

∫ �

x

v(t)

t1+δ
dt ≤ c

v(x)

xδ
, γ, δ ∈ R

are equivalent to the conditions m0(v) > γ and M0(v) < δ, respectively, when � <

∞; and to the conditions min{m0(v),m∞(v)} > γ and max{M0(v), M∞(v)} < δ,

when � = ∞.
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