
Faculty of Science and Technology Department of Computer Science

Investigating and developing efficient federated learning for air pollution
monitoring

Jørgen Reinnes
INF-3981 Master’s Thesis in Computer Science - June 2022

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2022 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Simplicity is prerequisite for reliability.”
–Edsger Dijkstra

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

–Donald Knuth

Abstract
Location-based data may be considered highly private; as such, handling
location-based data requires that it cannot be used to track a user. In a network
of multiple edge devices that each collect data, training a machine learning
model would typically involve transmitting the data securely to a central server
which requires strict privacy rules.

Federated learning solves the privacy problem by not requiring data to be
shared; instead, training of a machine learning model is performed on the de-
vice that gathered the data itself. Using federated learning with the Federated
Stochastic Gradient Descent (fedsgd) algorithm, a similar training perfor-
mance is expected as training a machine learning model on a single server with
data transmitted to it. Overall less bandwidth may be used for communication
between edge devices and the server. However, a higher computational cost
is seen due to having to perform model training on the edge device, which
lowers the potential data points that can be processed each day given the
lower computational performance of an edge device versus a high power server.
Whilst only a single edge device may train the model at a time, a different
federated learning algorithm may be used on the server to enable multiple to
train simultaneously.

Contents
Abstract iii

List of Figures vii

1 Introduction 1
1.1 Related Work . 2

2 Technical Background 3
2.1 HAPADS: Highly Accurate and Autonomous Programmable

Platform for Providing Air Pollution Data Services to Drivers
and the Public . 3

2.2 Machine Learning . 4
2.2.1 What is Machine Learning 4
2.2.2 Neural Network . 4

2.3 Federated Learning . 5
2.3.1 Federated Stochastic Gradient Descent Algorithm . . 6
2.3.2 Federated Averaging Algorithm 6
2.3.3 Split Learning . 7

2.4 TensorFlow . 7

3 Method 9

4 Design 11
4.1 Chapter Outline . 11
4.2 Introduction . 11
4.3 Federated Learning . 12

4.3.1 FedSGD . 12
4.4 Split Learning . 13

5 Implementation 15
5.1 Languages and libraries . 15
5.2 Dataset . 16
5.3 Model . 16
5.4 Server . 17

5.4.1 Client . 17

v

vi contents

5.4.2 Split Training variation 19

6 Evaluation 21
6.1 Experimental Setup . 21
6.2 Benchmarks . 22

7 Discussion 25
7.1 Client Time Usage . 25
7.2 Data Transfer Size . 26
7.3 Test Data . 26
7.4 Results . 26

8 Conclusion 29
8.1 Concluding Remarks . 29
8.2 Future Work . 30

Bibliography 31

List of Figures
2.1 Error is high to begin with, but will converge to a lower error

as more training sessions are performed [6] 5

5.1 PM10 data from January plotted over time, Y-axis has been
limited to 100 to fit the ARMAG results, but HAPADS has
spikes to 30 thousand which are clipped 16

5.2 PM10 data from January plotted over time, and Y-axis has
been limited to 100 to fit the ARMAG results, data points with
spikes over 70 have been omitted 17

6.1 Raw execution time to perform each methods training on the
client for 50 epochs . 23

6.2 Data transferred between server and client for each method.
Because federated learning allows for multiple batches to be
processed each session, it does not affect data transfer size . 23

vii

1
Introduction
Data directly linked to a person’s whereabouts is considered private information
and is thus under strict data handling guidelines to avoidmisuse. Using a device
mounted on something like a bike. The device will be gathering positional data
in addition to the sensory data. Since the positional data can be used to track
the user, it is considered private and must thus be handled accordingly such
that it does not get stolen or misused.

Handling private information can be solved by storing it securely, but if it never
leaves the device as it is, then the chance for accidental misuse is drastically
lowered. If private data must be handled, then security requirements are placed
on how the data is transmitted, stored, and processed. All of which increase
the cost and complexity. Instead of only sending anonymous data from the
device, more focus can be put on what to use the data on rather than how to
safely keep it.

Algorithms running on remote monitoring devices will be limited by battery
and processing power. Given a constraint where raw, private data cannot leave
the device. Data must be fully or partially processed on the device to become
anonymous. This imposes restrictions based on the device, such as battery
and processing power. Which, in turn, puts restrictions on the algorithm. An
algorithm that can only run on one device in a network of devices at a time
will have scaling limits.

Federated learning is a relatively new computer science field which means new

1

2 chapter 1 introduction

changes may come, or issues to be solved may appear. The basic setup of a
machine learning-based system is changedwith federated learning. Rather than
train the model on a server, it is trained on edge devices themselves. Additional
computing resources are required, but the privacy of edge device users is
preserved as no raw data leaves the device. Given the current implementation,
only a single edge device can train the model at a time, but there are federated
learning algorithms that allow for multiple to train simultaneously. However,
training performance may suffer.

1.1 Related Work

The federated learning fedavg algorithm is created by the authors of paper
[8] as a method for communication efficient training on decentralized data.
The paper investigates how federated learning can be used to train a deep
neural network on decentralized data with multiple clients simultaneously. By
copying the model to each client, who then trains using local data, an averaging
algorithm is used to combine all clients’ results into a single model.

2
Technical Background
Introduced here are some technical terms and technologies to understand this
project.

2.1 HAPADS: Highly Accurate and Autonomous
Programmable Platform for Providing Air
Pollution Data Services to Drivers and the
Public

The HAPADS project aims to create a low-cost air monitoring platform for mon-
itoring air quality such that end-users can decrease exposure to air pollution.
Air pollution is a common problem in densely populated areas, but it is heavily
dependent on environmental factors such as weather and motor traffic. As
such, HAPADS has been developed with small cost and size requirements such
that it can be widely deployed, offering data such that end-users may avoid
certain times of the day or locations when air pollution is high. [4]

The platform is low-cost and small in size, using custom sensors. By being
custom-designed with custom sensors and software, costs are lower, and it can
perform better for the target task by being specialized. However, the sensors
have a lower accuracy compared to more expensive options. In addition, they

3

4 chapter 2 technical background

have a geographical dependency where they must be calibrated to a local area.
[4]

2.2 Machine Learning

2.2.1 What is Machine Learning

Rather than manually code how an algorithm behaves with different inputs,
machine learning is a way to train a model to create that algorithm. An
algorithm that a person has coded will behave in the way it was programmed,
and if the algorithm is exposed to something unexpected, it is likely not to
get the expected results. Machine learning would be likewise, except for not
requiring a person to update the algorithm. The algorithm can train on this
new occurrence to thus produce the expected result[5].

2.2.2 Neural Network

Neural network is a subset of machine learning that simulates the behavior
of the brain’s neurons to compute a set of results based on a set of inputs. A
neural network is composed of three main parts. The input layer with one or
more input nodes, one or more hidden layers, and an output layer with one or
more output nodes. Each node connects to nodes in the next layer through a
connection which is a weight factor that is applied to the value of the node. The
node’s value is an input value for the input nodes or the sum of the connections
for other nodes. A node is activated if its value is greater than a threshold set
for it [6].

Training a neural network involves using input with expected output to adjust
connection weights and thresholds to fit the expected value better using sta-
tistical methods. A neural network can be run using input data with known
outputs such as labeled images and then adjust its weights and thresholds to
fit the training data better. To calculate the error mean squared error (MSE)
may be calculated from the Cost Function(2.1). The error is lowered using a
function like a gradient descent which modifies weights and thresholds as seen
on 2.1 [6].

The output of a neural network labeling images is not a specific answer but
rather a percentage of how confident the input is of a specific label. A neural
network that detects what digit an image is displaying may have ten output
nodes—each with a value between 0 and 1 interpreted as between 0% and
100%. Given an image of 2, a network may output 0.2 or 20% from the output

2.3 federated learning 5

Figure 2.1: Error is high to begin with, but will converge to a lower error as more
training sessions are performed [6]

representing the digit 1, 0.95 or 95% from the output representing the digit
2, and values from the other outputs. Given this, the neural network is 20%
confident that it is an image of the digit 1 and 95% confident it is the digit 2
[6].

𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑆𝐸 =
1
2𝑚

𝑚∑︁
𝑖=

(𝑦 − 𝑦)2 (2.1)

2.3 Federated Learning

In a typical setting, machine learning is performed on a single computer only;
however, Federated Learning (fl) expands upon it to allow for a single machine
learning model to be trained using multiple computers. The data stays on each

6 chapter 2 technical background

device in a federated learning setting, preserving privacy. Instead, the machine
learning model is transferred to each device such that the model is only trained
with locally acquired data. Multiple federated learning algorithms exist, which
mainly offer the main benefit of data privacy, but differ in their performance
metrics, such as being able to train on multiple devices simultaneously or not
[7].

By distributing the machine learning model, as opposed to training data, the
total amount of data transmissions may be lower. Given a federated learning
algorithm that transfers a machine learning model to a device for training on
local data. The amount of data transmitted depends on how often the model
is transferred between devices—as such, increasing the size of the training
session may lower the total amount of data transmission by requiring fewer
training sessions.

2.3.1 Federated Stochastic Gradient Descent Algorithm

Federated Stochastic Gradient Descent (fedsgd) is a federated learning al-
gorithm that offers the training efficiency of a centralized machine learning
model with decentralized data. fedsgd is, in practical terms, a federated
learning algorithm, where the machine learning model is transferred between
devices to train on local data. Given that it may only train on a single device at
a time, it has a peak for how much data it can be trained on in a given period.
However, it offers training efficiency equal to training a centralized machine
learning model, which means less training data is required for the model to
converge.

2.3.2 Federated Averaging Algorithm

An improvement to fedsgdwas proposed in [8] known as FederatedAveraging
(fedavg) which allows for simultaneous training onmultiple devices but lowers
training efficiency. fedavg allows for amodel to be copied ontomultiple devices
during a training session. The devices may be chosen at random, and a device
can be aborted. The resulting models are fetched and then averaged from
the devices that finish getting the updated model. Additional training rounds
are required as the final average may cause the model to diverge, given that
different devices may train on different kinds of data.

2.4 tensorflow 7

2.3.3 Split Learning

Rather than running the whole machine learning model on a single device, split
learning splits the model such that one part may run on the edge device, and
the other part may run on a server. The machine learning model is split into
multiple pieces at layers in a split learning setting. Such that the input layer and
a few hidden layers are the first part. While the rest of the hidden layers and
the output layer are on the other part. Training such a model involves running
the first part with the input data, then the second part with the output of the
first part. Data from the first part may be considered obfuscated [3].

2.4 TensorFlow

TensorFlow is a programming interface used to express and implementmachine
learning algorithms to be run on heterogeneous computers. By abstracting away
much of the complexity involvedwithmachine learning, a more straightforward
setup for training and production can be achieved. TensorFlow exists for
multiple programming languages, notably Python and JavaScript, and can thus
be run on most modern computers with none or minimal modifications to the
program code [1] [2].

3
Method
To explore the field of federated learning, this paper will be conducting inves-
tigative research into if federated learning can be beneficial to a distributed
network of low-cost sensory devices. Given the test devices, a focus will be on
end device power usage and bandwidth usage.

Given the usage of both new algorithms and hardware, results found in this
paper may change as better iterations of the algorithms come, or more efficient
hardware is created. Given that federated learning is a relatively new field
with open research topics[7], algorithms used may be improved through future
iterations, which may improve the training efficiency.

The research in this paper is mainly done through practical experiments and
thus follows the action research strategy. Machine learning models will be
implemented using Python with TensorFlow and are performed on a single
computer.

9

4
Design
This chapter will describe the design of a federated machine learning system
for data coming from mobile devices.

4.1 Chapter Outline

• Section 4.2 explains the reason for using federated learning.

• Section 4.3 illustrates the initial solution using only federated learning.

• Section 4.4 adds onto Section 4.3 on how split learning can be utilized
for an alternative algorithm.

4.2 Introduction

Collecting air quality data from large areas using mobile edge devices poses
several difficulties regarding system requirements and privacy. With a device
intended to be deployed on anything from a bike to vehicles, certain system
constraints need to be worked around. There will be a battery constraint such
that the devicemust run efficiently when performingwork orwhen transmitting
the data. Secondly, data that is collected must be handled in such a way that

11

12 chapter 4 design

privacy is preserved.

This chapter describes a proposed system using federated learning for collecting
and processing sensory data to build a machine learning model to calibrate
the edge device sensors. The system will consist of edge devices deployed
on a vehicle such as a bike, where it will collect sensor data. The data may
be collected at specific locations using the low power communication method
Bluetooth.

Data is typically processed in the cloud for centralized learning, not on the edge
device. To ensure users’ privacy using the edge devices, raw data cannot leave
the device. Two different methods for training the machine learning model will
be compared. Split learning as described in [3], but without backpropagation,
and fedsgd. With federated learning, the training runs entirely on the edge
device, while with split learning, only the first couple of layers are run for the
rest to be processed on a server.

4.3 Federated Learning

Using federated learning, machine learning model training is performed on the
edge devices rather than collecting the data. A centralized server, accessible by
all edge devices, holds the machine learning model. When an edge device has
data to process and is within a location for data collection, the machine learning
model is transmitted to it. The edge device trains the model using locally
acquired data, then transmits back the updated model to the server.

4.3.1 FedSGD

Federated Stochastic Gradient Descent (fedsgd) is a method of federated
learning which works as a distributed centralized training with one device
being able to train the model at a time. In fedsgd, a server may hold the
machine learning model. Clients may request the model to perform local
training on it. One client at a time may receive the model to perform training
on it using local data. When complete the updated model is returned to the
server.

4.4 split learning 13

4.4 Split Learning

As outlined in [3] split learning has a lower computation usage that directly
correlates to the size of the part of the machine learning model the edge device
must compute. Instead of running the entire model on a single device, split
learning is a method in which the model is split between devices. Contrary
to the method in the paper, this implementation will not perform backprop-
agation. Instead, an edge device receives a part of the current model at the
start of each batch, then executes it with the sensory data. The output data
is then transmitted to the server where the rest of the model is run, and back-
propagation is performed. This is repeated for all batches—one device at a
time.

5
Implementation
Using TensorFlow, a simplified implementation of the system was created.
The simulation simulates the computational work the client would do each
training session using real-world test data and gathers information on the
computational time of the client.

5.1 Languages and libraries

Python 3 version 3.8.8 is chosen for having proven machine learning libraries
and the lower implementation complexity.

Major libraries used:

• Keras1 - Provides method to create a machine learning model. Version
2.9.0

• TensorFlow2 - Provides a high level interface for performing machine
learning operations. Version 2.9.1

1. https://keras.io/api/
2. https://www.tensorflow.org/api_docs/python/tf

15

https://keras.io/api/
https://www.tensorflow.org/api_docs/python/tf

16 chapter 5 implementation

5.2 Dataset

The dataset used is raw data gathered from a weather station (ARMAG) and a
prototype of the HAPADS edge device HAPADS located at the weather station
during two time periods. The HAPADS research group provides the data.
Temperature, humidity, pressure, PM1, PM10, and NO2 were gathered every
hour from 11.01.2022 to 18.01.2022 and up to every minute between 01.02.2022
to 15.02.2022.

Figure 5.1: PM10 data from January plotted over time, Y-axis has been limited to 100
to fit the ARMAG results, but HAPADS has spikes to 30 thousand which
are clipped

Because of anomalies with the HAPADS platform, the PM10 sensor data includes
data spikes significantly higher than the surrounding data points, as such values
above 70 were omitted. The ARMAG data has a stable data output from near 0
to one peak at 60. The HAPADS data closely follow the trend of the ARMAG data
but has some spikes up to 30 thousand. Since these spikes would significantly
degrade the model, data above 70 were omitted, or 200 out of 1300 data points,
as seen in figure 5.2.

5.3 Model

A machine learning model for calibrating the edge device sensors has been
created using Keras. It consists of an input layer with three inputs, one or more
hidden dense layers with three nodes each, and one output. The model takes
the temperature and humidity from ARMAG and PM10 from the edge device
and outputs a value for PM10, which is compared with the PM10 from the

5.4 server 17

Figure 5.2: PM10 data from January plotted over time, and Y-axis has been limited to
100 to fit the ARMAG results, data points with spikes over 70 have been
omitted

weather station.

5.4 Server

The server manages the machine learning model and distributes the model
to contact clients. As described in algorithm 1 below, a server runs in a loop
waiting for clients to request the machine learning model. One client at a time
may be sent the machine learning model to train on it as outlined in algorithm
2 below. When the client finishes, the server receives the updated model.

5.4.1 Client

The same devices that collect the data also perform the training of the machine
learning model. There may be one or more devices in a network that collects
data from sensors. Data is stored locally on the device until it can connect with
the server to receive the current machine learning model. It trains the model
with a batch size of 128 upon receiving it before transmitting the updated
model.

18 chapter 5 implementation

Algorithm 1 Federated Learning Server
1: for 𝑟𝑜𝑢𝑛𝑑 = 1, 2, . . . do
2: Receive client request
3: if Model is locked then
4: Put client on wait
5: else
6: Lock model
7: Send model
8: end if
9: Wait for client to train model as per algorithm 2
10: Receive updated model from client
11: Set received model as current model
12: end for

Algorithm 2 Client Training
1: while true do
2: while No data OR not near a server do
3: Gather local data T
4: end while
5: Request model from server
6: Wait until server sends current model
7: Set local model as received model
8: for 𝐵𝑎𝑡𝑐ℎ 𝐷 𝑖𝑛 𝑇 do
9: Train local model on D
10: Update model
11: end for
12: Send updated model back to server
13: end while

5.4 server 19

5.4.2 Split Training variation

In the split learning alternative, the logic for training and data transmissions
is altered on both the client and server-side. The client receives only the first
hidden layer of the model and transmits the output from running the data
through the layers to the server. The server then completes the training using
the client output and updates the weights.

6
Evaluation
This paper aims to evaluate methods to efficiently create machine learning
models from training on data generated from multiple edge devices, locally on
the devices themselves. A high-level implementation is created using Python,
demonstrating federated learning as amethod for training locally on the devices
that created the data. The method is compared with split learning based on
the client computation time and the total amount of data transferred between
client and server.

6.1 Experimental Setup

Experiments were performed on the same computer using the GPU for train-
ing:

Desktop Computer
CPU AMD Ryzen 5900x, 12-Core, 24-Thread, 3.7/4.8GHz
GPU NVIDIA RTX 3090
RAM 32GB DDR4@3600MHz
OS Windows 10 Professional Build 19043

21

22 chapter 6 evaluation

6.2 Benchmarks

Running in a virtual environment, time is measured for TensorFlow to perform
all the computations on the edge device. With the data from February sorted
by time. Training is done on each data-point multiple times to simulate the
computation the edge device would perform. The benchmark will run for 50
epochs with a batch size of 128, at which point total time spent is recorded,
and the total amount of bandwidth is calculated. Execution time is measured
for the training duration. Split learning and federated learning are tested
independently, with split learning only performing model prediction with the
partial model. Each method is tested with 1, 2, 4, 8, and 16 hidden three-node
layers in the model to artificially increase the computing complexity and size
of the model.

Assuming 4-byte float types, the input to the model consists of three 4-byte
values, and a single 4-byte value is output. Likewise, each weight is 4 bytes.
This gives a total size for the model of (24 + 36 * hidden layers) bytes that is
transferred both before and after each training session consisting of 2 batches
during federated learning. On the other hand, the first layer is received as 36 *
split hidden layers bytes of data during split learning. While the output, which
totals to 12 bytes, is transferred to the server. Multiple batches may be run per
training session.

Results

Increasing the number of hidden layers increases the computational time on the
client-side for federated learning throughout the benchmark. Split learning is
constant at 2.8s no matter the number of hidden layers. Likewise, split learning
is constant in data transfer amount, but for federated learning, the model data
transferred is larger the more hidden layers there are, and thus more data is
transferred.

6.2 benchmarks 23

Figure 6.1: Raw execution time to perform each methods training on the client for 50
epochs

Figure 6.2: Data transferred between server and client for each method. Because
federated learning allows formultiple batches to be processed each session,
it does not affect data transfer size

7
Discussion
Using Federated learning data from edge devices can be used to train a single
model without private data leaving each device. During each training session,
only the model itself needs to be transmitted between server and client at the
start and end. Depending on the model’s size and data trained on, less data
transfer occurs than sending the raw data itself.

7.1 Client Time Usage

Federated learning and split learning differ heavily in the client execution
time, with federated learning requiring much more execution time. Federated
learning has an initial execution time of 41 seconds with one hidden layer but
goes up to 152 seconds with 16 hidden layers. Given that split learning always
perform the same amount of computation client-side, it computes all epochs
in 2.8 seconds.

There would be some computational time spent to perform communication
between client and server in the real world. However, given the small amount
of data transmitted, this would be insignificant compared to performing the
client-side training. Given that only the training computation is measured
but not the expected computation for communication, there is some but not
significant computational time that is not measured.

25

26 chapter 7 discussion

7.2 Data Transfer Size

Data transferred differs drastically based on eachmethod,with a low of 96 bytes
and a peak of 1272 bytes transferred between client and server each training
session. For federated learning, where the model is transferred between each
training session, the data transfer size increases with model size from 96 bytes
with one hidden layer to 1176 bytes with 16. On the other hand, with split
learning, the data transfer size is static at 1272 bytes, as the split learning
method only transfers up to the first hidden layer of the model.

7.3 Test Data

Given that the test data is from a single location, it is not necessarily a perfect
example of a real-world example thatwould gather data frommultiple locations.
In a real-world example where multiple devices gather data, it is expected that
the devices could gather radically different data based on the locations they
visit—for instance, traveling on a motor vehicle road versus using the bike trail
through a forest.

Secondly, while there were still anomalies in the cleaned-up test data, it would
not affect the results, given that model accuracy was not the focus. Some of the
test data had to be omitted due to anomalies where the experimental PM10
sensor recorded some significantly larger values at random. Some unexplained
spikes in the HAPADS test data were omitted as the focus was not on model
accuracy. As seen in figure 5.1 above, the HAPADS platform follows ARMAG
closely and generally has a value a little higher than ARMAG except for the
few spikes.

7.4 Results

Federated learning drastically increases the client computation time withmodel
size compared to split learning. Even with just one hidden layer in the model,
which means split learning lacks the output layer versus federated learning,
there is a significant difference of 41s with federated learning versus 2.8s with
split learning in client computation time. This difference is thus mainly at-
tributed to the time it takes to perform the backpropagation for updating the
weights after training an epoch, as split learning does not perform backpropa-
gation on the client.

Since an edge device is power-constrained and thus has lower computational

7.4 results 27

performance than a server, lower throughput is expected. In a network of
edge devices, each edge device has a lower computational performance as it is
limited by the battery instead of a server that can use powerful hardware. Thus
training on the edge device takes longer than done on the server. However,
federated learning can use a lower-cost server since the server does not need
to perform much computation. As such federated learning with the chosen
algorithm fedsgd has an expected lower throughput versus split learning as
both are limited to one client training at a time.

8
Conclusion
8.1 Concluding Remarks

This paper presents a federated learning experiment to create a machine
learning model based on data from multiple edge devices without private data
leaving the devices. Training occurs on the edge devices themselves rather
than on a centralized server with the federated learning model. Thus instead of
transmitting raw data from edge device to server, the model itself is transmitted.
Performing 50 epochs of training took 152s with the biggest model, but only 2.8s
with split learning. However, whilst federated learning is static in the amount
of data transmitted between client and server, no matter the number of data
points trained on, split learning would see an increase.

Based on the experimental results, federated learning can be used to train
a model based on private data from edge devices. It cannot, however, in the
implementation using Federated Stochastic Gradient Descent used in this paper
scale to accommodate an arbitrary amount of edge devices and is thus limited
by the performance of each edge device. A different algorithm may be optimal
to be able to handle a larger number of edge devices.

29

30 chapter 8 conclusion

8.2 Future Work

Given the current implementation, there are multiple possible future iterations
to federated learning that can be explored, which could solve the main issue
of scaling.

Since fedsgd does not scale due to the limit of only being able to run a single
training session at a time, a better algorithm such as fedavg, which allows for
multiple clients to train simultaneously, should be explored. However, given the
limited battery of edge devices, it may be beneficial to attempt a combination
method that uses both fedsgd when required throughput is low and another
like fedavg when required throughput is high.

Bibliography
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard,Yangqing Jia,Rafal Jozefowicz, Lukasz Kaiser,ManjunathKudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden,Martin Wattenberg,Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems. https://www.tensorflow.org/, 2015. Software
available from tensorflow.org.

[2] Google. Neural networks. https://www.tensorflow.org/about. Last ac-
cessed 10-05-2022.

[3] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural
network over multiple agents. https://arxiv.org/abs/1810.06060, 2018.

[4] HAPADS. Hapads. https://hapads.eu/. Last accessed 03-05-2022.

[5] IBM. Machine learning. https://www.ibm.com/cloud/learn/machine-
learning. Last accessed 1-06-2022.

[6] IBM. Neural networks. https://www.ibm.com/cloud/learn/neural-
networks. Last accessed 30-05-2022.

[7] Peter Kairouz,H BrendanMcMahan,Brendan Avent, Aurélien Bellet,Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham
Cormode, Rachel Cummings, et al. Advances and open problems in feder-
ated learning. arXiv preprint arXiv:1912.04977, 2019.

[8] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and statistics, pages 1273–

31

https://www.tensorflow.org/
https://www.tensorflow.org/about
https://arxiv.org/abs/1810.06060
https://hapads.eu/
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks

32 bibl iography

1282. PMLR, 2017.

