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Abstract 

Climate change is expected to alter the hydrological cycle in the Arctic, which would result in the 

increase in intensity and frequency of hydrological extreme events such as flooding. Noticeably, the 

changes in flooding due to climate change would severely affect human life, infrastructures, the 

environment, ecosystem, and socio-economic development in the impacted areas. Hydrological models 

are state-of-the-art tools for assessing the impact of climate change on hydrological processes. However, 

performing hydrological simulation/projection in the Arctic is challenging because of the complex 

hydrological processes and data-sparse features in the region. In consideration of those issues, this PhD 

research aims: (1) to assess the performances of hydrological models in the Arctic, (2) to investigate the 

alternative weather inputs for running the hydrological models in the Arctic region with scattered 

monitoring data, (3) to evaluate the effects of the models’ structure and parameterization and the spatial 

resolution of weather inputs on the results of hydrological simulations, and (4) to project future 

hydrological events under climate change impacts using the current hydrological model, and analyse the 

reliability/uncertainty of the projection. To fulfil the research’s objectives, several methodologies were 

applied. Firstly, a comprehensive review was conducted to address the current capacities and challenges 

of twelve well-known hydrological models, including surface hydrological models and subsurface 

hydrological models/groundwater models/cryo-hydrogeological models. These models have previously 

been applied or have the potential for application in the Arctic. Next, the physically based, semi-

distributed model, SWAT (soil and water assessment tool), was selected as a suitable model, among 

other potential models, to assess its performance for hydrological simulations and to verify the potential 

application of reanalysis weather data. Moreover, the SWAT model was coupled with multiple ensemble 

global and regional climate models’ (GCM_RCM) simulations to project the future hydrological 

impacts under climate change (in 2041-2070). The study areas were mainly focused in the Norwegian 

Arctic catchments.  

This study found that both surface hydrological models and subsurface hydrological 

models/groundwater models/cryo-hydrogeological models have their capacities and limitations 

regarding dealing with complex hydrological processes in the Arctic. Besides, the selection of suitable 

models also depends on the targets and current conditions (e.g., available inputs, timing, funding, etc.) 

of each study. The SWAT model demonstrated considerable capacity for surface hydrological 

simulation under different temporal resolutions (e.g., monthly and daily simulation) in Norwegian 

Arctic catchments with variations in geographical distributions, latitudes, catchment’s scales, and 

dominant hydrological regimes. However, the SWAT’s performance varied among catchments as well 

as among sub-catchments within a large catchment. This explained the heterogeneous effects of 

catchments’ characteristics, variation in local climate condition and dominant hydrological regimes in 

the Arctic environment. This study also found that the Climate Forecast System Reanalysis (CFSR) data 

had great capacity to drive the SWAT for hydrological simulations in the Norwegian Arctic catchments. 

Thus, the reanalysis products, like the CFSR, could be an alternative weather input to run the 

hydrological model in case of the existing monitoring networks being scattered. By altering model 

structures (e.g., number and size of sub-catchments, land use compositions and catchment 

characteristics, through the catchment delineation process), model parameters (through the calibration 

process), and quality of weather input (e.g., spatial resolution) for the SWAT, this would somewhat 

affect the results of hydrological simulations (e.g., annual mean values and spatial variation of snowmelt 

runoff, water balance components and streamflow (including peak flow)). 
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Under climate conditions in the near future period (2041-2070), the key projections for the Norwegian 

Arctic would be: (1) flood magnitudes would increase in the snowmelt-dominated catchments and 

decrease in the rainfall-dominated catchments, while the catchment with a mixed rainfall/snowmelt 

regime would experience both increase and decrease (only small flood) patterns; (2) extreme flood 

events would occur more frequently in the northern and southern catchments, while such behaviours 

would be the opposite in the inland catchments (with dominant snowmelt) in the centre of the Norwegian 

Arctic; (3) the changes in future extreme flood events would be more complicated in the rainfall-

dominated catchment and near the coast due to high variation of future rainfall in this area; (4) small 

flood events would experience the opposite behaviours compared to the extreme floods. Finally, in the 

climate-hydrology modelling chain for flood projections, uncertainties from the ensemble climate 

models’ simulations were found to be larger than those from the hydrological SWAT model. In addition, 

levels of uncertainties were varied greatly regarding catchments’ scales and the dominant flood regimes.                   

                  
Keyword: climate change, Norwegian Arctic catchments, global and regional climate models, 

hydrological SWAT model, reanalysis weather data, future floods, reliability and uncertainty. 
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1 Introduction 
 

1.1 Background of the study 

1.1.1 Climate change in the Arctic 

Climate change (CC) is more intensified in the Arctic region than in the rest of the world (AMAP 2011, 

2017). The annual average temperature has increased at twice the rate of that in the rest of the world 

since 1980 (AMAP 2011). During the last five decades (1971-2017), the annual mean air temperature 

in the Arctic increased around 2.7 °C (AMAP 2017). The climate models predicted that the greatest 

warming will happen in the northern region with high latitudes, especially in wintertime (Dankers 2008). 

Coinciding with the changes in air temperature, the annual precipitation for the pan-Arctic, in the recent 

period, has exceeded approx. 5% of the average of the 1950s (AMAP 2011). Many climate models have 

projected that precipitation will increase across the Arctic over the 21st century, for all emission 

scenarios. By the end of the 21st century, annual precipitation is projected to have risen by 5-40% (low 

emission scenario) or by 5-70% (high emission scenario).  

1.1.2 Climate change impacts on Arctic’s hydrological processes and 
the associated extreme events  

The Arctic environment is dominated by cryospheric features, i.e., snow cover, seasonally frozen soils 

and permafrost, which are highly sensitive to the changes in air temperature and precipitation (Dankers 

2008). The joint changes in air temperature and precipitation are expected to significantly affect the 

water cycle, as well as hydrological processes, in the Arctic, through changes in snow cover and 

permafrost. Thus, the integrated changes in snow cover extent and the dynamics of frozen soils, as well 

as permafrost thaw due to global warming, are expected to alter the hydrological processes in the Arctic.  

1.1.2.1 Climate change impacts on Arctic snow cover 

Snow is an important and dominant feature of Arctic terrestrial landscapes and present for 8-10 months 

of the year (Box et al. 2019). Snow cover in the Arctic has changed significantly by seasons and regions 

because of warming and the increase in precipitation (AMAP 2011). Different regional snow cover 

responses to the extensive warming and increasing winter precipitation have characterized the Arctic 

climate for the past 40-50 years (Callaghan et al. 2011). Projected increases in temperature will decrease 

the length of time available for the accumulation of a winter snowpack. It is projected that the duration 

of snow cover will decrease by approx. 10-20% across most of the Arctic area (AMAP 2017). As a 

result, the magnitude of spring snowmelt, the major hydrological event of the year in most northern 

systems, will be influenced.  

1.1.2.2 Climate change impacts on Arctic permafrost 

Permafrost (perennially frozen) is the layer beneath the active layer (seasonally frozen and thawed) and 

accounts for approx. 24% of the exposed land area in the Northern Hemisphere (Romanovsky et al. 

2002). Permafrost is highly sensitive to the warming climate (Kong & Wang 2017). Global warming 

has been observed to cause the degradation of permafrost in many regions across the Arctic (Åkerman 

& Johansson 2008; Johansson et al. 2011; Callaghan et al. 2013). The degradation is mainly represented 

through three variables, i.e., the increase in permafrost temperature, the decrease in the extent of 
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permafrost and the deepening of the active layer’s thickness (Kong & Wang 2017). It is projected that 

the area of the near-surface permafrost will decrease by approx. 35% under high CC emission by the 

middle of 21st century (AMAP 2017). 

1.1.2.3 The effects of snow cover and soil behaviour on water transfer in the Arctic  

Water transfer in the permafrost-dominated Arctic region is controlled by snow cover and soil behaviour 

through four different stages (seasons) of a year (Fabre et al. 2017):  

In the first stage of the hydrological process, during the wintertime, the flow is low, and soil is frozen. 

Snow accumulation in this stage is considered a ground insulation, since snow is a poor heat conductor 

(Woo 2012b). Snow cover is a source for the recharging of soil moisture, groundwater and the 

generation of surface runoff at a later stage (Woo 2012b). In addition, because of the uneven distribution 

of the snow, the ground heat is insulated to different degrees (Woo 2012b), with the ground temperature 

beneath the thick snow layer being milder and less fluctuant, compared to the ground temperature where 

the snow layer is thinner (Woo 2012a). Moreover, a deep layer of snow cover can thicken the active 

layer (Woo 2012a).    

The second stage comes in spring. In this stage, snowmelt dominates the hydrological process. This 

period is considered a transition from the wintertime, with frigid, snow and ice covering, to the 

summertime of the thawed regime (Woo 2012a). In particular, this stage highlights the transitions: (1) 

from an enlargement to a reduction of the snow cover; (2) from freezing to thawing of the ground; (3) 

from an upward trend of soil moisture flux to a downward movement of meltwater in frozen soils; (4) 

from inactivity to a rise in lateral flows; and (5) from dormancy to germination and bud-burst of 

vegetation and the increase of evaporation.  

The third stage, in summer, witnesses the thawing period of the active layer. Because of the appearance 

of snow-free areas after the melting period, the active layer starts to thaw when soil heat flux is positive 

(Woo 2012a). Herein, the thawing rate depends on several factors: (1) the energy balance on the ground 

surface that strongly impacts the availability of the amount of heat to the ground; (2) the transmission 

process of heat into the ground; and (3) heat consumption by ground ice melting (Woo 2012a). 

Noticeably, in summertime, permafrost basins experience greater heat flux into the soil than non-

permafrost areas (Woo 2012a). The active layer reaches its maximum depth at this stage (Fabre et al. 

2017). Moreover, it is stated that the magnitude of surface and subsurface flows is in the same ratio 

(Fabre et al. 2017).           

Finally, the last stage is called the freeze-back period. The active layer starts to freeze at the bottom and 

on the top. However, in cold ground, the freezing only starts when the temperature reaches the freezing 

point depression or sub-zero temperature. There are several factors influencing the rate of freezing: (1) 

variation of climate; (2) dissipation of latent heat when ground ice is formed; (3) soil moisture content 

at the onset of winter; (4) variation of soil types along the vertical profile, including soil material and 

soil moisture content that contribute to the disruption of the frost rate; (5) the presence of a so-called 

porous organic surface layer that acts as an insulation layer to delay the penetration of frost; (6) depth 

of snow cover; and (7) the presence of lateral flow, which limits the freezing of the ground, since heat 

loss in the vertical direction is compensated for by heat source in the horizontal direction (Woo 2012a). 

In this stage, snow starts to accumulate and redistribute again, as the primary winter activities, above 

the ground surface (Woo 2012a). Therefore, only subsurface lateral flow is possible inside the active 

layer, with a piston effect, leading to the generation of a force or pressure, either upward (tension) or 
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downward (compression) to the two-sided freezing layers, in this period. However, in this stage, the 

subsurface lateral flow gradually goes when the two-sided freezing layers meet to totally freeze the 

active layer. The process ends with the return of permafrost, and the wintertime repeats as in the first 

stage. Winter is considered the longest season of the year in the permafrost region (Woo 2012a). The 

time between the freeze-back period and the ground-thawing period varies from 6 months to 9-10 

months in the sub-Arctic regions and the Arctic Islands, respectively. 

In short, according to the above description, the role of snow cover is very important for the hydrological 

cycle in the Arctic. Under global warming, rising air temperature would lead to changes in snow cover 

extent. As a result, subsequent changes in hydrological processes could be projected.   

1.1.2.4 The effects of permafrost thaw on the Arctic’s hydrological processes  

The thawing of perennially frozen permafrost due to warming climate will potentially impact the surface 

and subsurface hydrology in the Arctic. Figure 1 provides an overview of the impacts of permafrost 

thaw on hydrological processes under global warming and anthropogenic stressors.  

 

Figure 1 - The impacts and responses of permafrost thaw on water fluxes and distribution (Walvoord & Kurylyk 2016; Bui et 

al. 2020). 

The symbols △, ↗, ↘, ↕, and ? denote the change, the increase, the decrease, the variation, and the 

unknown changes of the associated objects, respectively.  

1.1.2.5 The effects of climate change on hydrological extreme events in the Arctic  

Changes in the hydrological cycle due to CC normally result in changes in extreme events such as floods. 

Flooding is one of the most destructive natural hazards (Xu et al. 2019b; Engeland et al. 2020), which 

has a significant impact on human life, infrastructures, the environment, ecosystem, and the socio-

economic development of the affected areas (McGrath et al. 2015; Vinet 2017; Quintero et al. 2018; 

Talbot et al. 2018). Changes in flooding behaviour have been observed/predicted for many Arctic 

regions. For example, the increase in winter flow or earlier spring floods across large regions of Eurasia 

have been witnessed (Tan et al. 2011). In contrast, in the northern region of western Siberia, global 
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warming has increased evaporation and deepened the active layer thickness, reducing the contribution 

of meltwater to the runoff, e.g., from 70-80% in the early 1990s to only 40-50% in the middle 2000s 

(Zakharova et al. 2011). In Norway, flood regimes are highly heterogeneous and regionally dependent. 

For example, the flood regimes in Norway are currently dominated by three different types: rainfall-

dominated, snowmelt-dominated and mixed rainfall/snowmelt-dominated (Lawrence & Hisdal 2011). 

By the end of the 21st century, rainfall-dominated flooding is projected to increase its magnitude and 

frequency of occurrence, while snowmelt-dominated flooding will decrease and occur less often, 

compared to present climate conditions (Hanssen-Bauer et al. 2017). Because of the highly 

heterogeneous feature of flood regimes in Norway, the impact of CC on flood regimes in this region is 

expected to be highly complicated (Hanssen-Bauer et al. 2017).       

1.1.3 The need for a modelling tool 

As previously mentioned, CC is more intensified in the Arctic and has a great impact on the hydrological 

processes and subsequent hydrological extreme events. Thus, an assessment of the CC impacts in this 

specific region is indeed necessary. There are several ways to investigate the impacts of CC on 

hydrological processes. The popular method is based on the historical hydro-meteorological records. 

This is probably the simplest way to track the historical trends in hydrological and meteorological 

variables (Dye 2002; Huntington et al. 2004; Kunkel et al. 2016). Based on the relationship between 

climate factors and hydrological variables in the historical records, valuable visions of how the future 

hydrological system could response to CC can be provided. However, this approach has its drawbacks, 

since long-term and reliable records are limited for many reasons, for example, technical errors of the 

instruments for recording data or gaps in time series data. The Arctic is a sparse-data region, where 

monitoring networks are usually scattered, especially in the mountainous and remote areas. Therefore, 

the evaluation of CC impacts at the local level is not possible with the limited/missing 

records/monitoring networks. Moreover, the historical climate conditions used for the projection of 

future climate change may be different/change in future conditions. Therefore, applying a modelling 

tool, e.g., a hydrological model, has been preferred to assess the impacts of CC on hydrology. According 

to this technique, historical climate data are used as inputs to drive the hydrological model to generate 

time series data of the hydrological variables of interest, such as surface runoff, water yield, streamflow, 

etc. The developed hydrological model can be used later to assess the CC impacts at the catchments of 

interest. However, climate data inputs in the future are not available at present. Such data are normally 

achieved from the climate models. Thus, coupling the outputs of the climate models and hydrological 

model is a desirable approach to investigate the CC impacts at the catchment scale. 

1.2 Statement of the problems 

As discussed in the previous section, there is a demand for a hydrological model to quantify the CC 

impacts on hydrology, water resources, and the associated consequences. However, challenges exist 

regarding the applied models’ capacities for accurate/reliable simulation of the hydrological processes 

in the Arctic environment, e.g., the presence of snow cover, seasonally frozen soils and permafrost, as 

well as the sparse-data feature. Also, uncertainties in the modelling results are usually found in the 

simulation/projection processes. Thus, this section aims to discuss the challenges of applying the 

modelling tools in the Arctic conditions.        
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1.2.1 Challenges for hydrological modelling in the Arctic environment 

Hydrological models are state-of-the-art tools for studying the impacts of CC on hydrological processes. 

Recently, various surface and subsurface hydrological models have been developed and have 

demonstrated their capacity to simulate hydrology in a permafrost environment. For example, many 

surface hydrological models are able to simulate the seasonal freezing-thawing process by employing 

analytical solutions (e.g., using a simple heat transfer equation - Stefan’s equation) and numerical 

solutions (e.g., finite difference, finite element and finite volume methods), while many subsurface 

hydrological models have the capacity to simulate the three phase changes (i.e., ice, liquid and gas) of 

water in near-surface soils. In addition, the subsurface hydrological models have coupled a three-

dimensional (3D) equation for water flow (e.g., the 3D Richards equation) and a 3D equation for heat 

transfer. However, with the current structures of the developed modelling tools (both surface and 

subsurface hydrological models), accurate simulation of the hydrological processes in the permafrost 

environment remains limited. For example, using only a one-dimensional (1D) (i.e., in a vertical 

direction) equation for heat transfer, the surface hydrological models are unable to simulate the 

multidecadal and multidimensional changes associated with the freeze–thaw process of permafrost. In 

addition, some important processes in the permafrost environment, e.g., heat capacity, thermodynamic 

equilibrium and the three phase changes of water in near-surface soils, are currently missing in the 

structures of the surface hydrological models. Furthermore, the subsurface hydrological models do not 

integrate a land surface scheme in their structure. Such model types require very complex boundary 

conditions, and it is difficult for non-expert users to apply them. Finally, the Arctic is a data-sparse 

region and, thus, collecting enough input data to drive the hydrological models in this specific region is 

also a challenge for the modellers.  

1.2.2 Uncertainties in the climate-hydrology modelling chain 

As discussed above, coupling climate models and hydrological models is a great approach for 

investigating CC impacts at the catchment scale. However, the projected results of hydrological CC 

impacts usually contain uncertainties (Jones 2000; Heal & Kristrom 2002; Collins et al. 2006; Ghosh & 

Mujumdar 2007; Dunn et al. 2012; Jung et al. 2012), which are an ensemble of various sources, 

including: (1) assumed future greenhouse gas (GHG) emission scenario and natural variability of the 

climate system; (2) general climate models (GCM) (e.g., initial condition, boundary conditions, 

parameterization, process descriptions); (3) downscaling and bias-correction techniques (e.g., using 

statistical or dynamic methods through the  use of regional climate models (RCM)); and (4) hydrological 

models (e.g., structure and parameterization). Currently, there is no scientific consensus on which 

uncertainty source is the most significant. For example, one earlier study stated that the major 

uncertainties could come from the selection of a future GHG emission scenario (Maurer 2007). This 

assumption was confirmed by the projection cases in Norway (Hanssen-Bauer et al. 2017). For example, 

according to the high emission scenario of the Representative Concentration Pathway (RCP), i.e., the 

RCP8.5, the median results of CC projection, at the end of the 21st century, indicated that the largest 

relative changes in rainfall would occur in winter and autumn, while the medium emission scenario 

RCP4.5 indicated that it would occur in spring and summer (Hanssen-Bauer et al. 2017). Other studies 

argued that the largest uncertainties’ source should be from (a) structures of the driven GCMs (Kay et 

al. 2009; Chen et al. 2011; Woldemeskel et al. 2012), (b) downscaling techniques (Khan et al. 2006), 

or (c) hydrological models (Najafi et al. 2011). However, the uncertainties’ sources could vary from 

catchment to catchment and be highly dependent on the catchment’s characteristics and the dominant 

climate conditions (Chen et al. 2017; Chen et al. 2021). 
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1.3 Motivation 

My background is in water resources engineering and management. Thus, my interest is focused on 

finding the optimal solutions or advanced technologies for sustainable water resources management, 

especially under the context of global CC. Previously, I have been involved in numerous research 

projects where mathematical modelling and GIS (Geographic Information System) technologies have 

been applied to solve issues associated with water resources and the environment. However, my study 

areas were mainly in tropical or temperate regions, while the Arctic is really a new area for me. Recently, 

the Arctic has received much attention from hydrologists and scientists from various disciplines, and I 

am no exception. Changes in the hydrological system through global warming in the Arctic affect not 

only the entire Arctic ecosystem but also the region, as well as the whole global climate. Thus, the global 

effect of Arctic CC is really of high concern. In addition, studying the impacts of CC on hydrology and 

water resources in the Arctic environment faces numerous challenges and uncertainties, as mentioned 

in previous sections. Such challenges deserve more studies/research by the scientific community. Thus, 

this motivated me to conduct research on CC impacts on hydrology and water resources in the Arctic 

environment. My expectation from this research is to find suitable hydrological models to produce 

highly reliable simulations of hydrological processes in the Arctic. Also, I would like to examine how 

hydrology and water resources in the Arctic could change under future climate conditions, by using the 

current hydrological modelling techniques.  

1.4 Research questions 

Based on the defined problems and purposes of this research, five research questions (RQ) have been 

proposed as follows: 

1. RQ1: What are the current capacities and challenges of hydrological modelling in the Arctic 

environment? 

2. RQ2: Which types of hydrological model(s) are suitable for the Arctic conditions, and how can their 

performance in the simulation of hydrological processes in the Arctic catchments be verified?  

3. RQ3: Considering the sparse data in the Arctic region, can the high-resolution global reanalysis 

weather data become reliable alternative sources and replace the existing scattered monitoring data, 

to run a hydrological model in the Arctic catchments? 

4. RQ4: To what extent do the hydrological models (e.g., structures and parameterizations) and the 

quality of weather inputs (e.g., spatial resolution) affect hydrological simulations in the Arctic 

catchments? 

5. RQ5: How is the projection of CC impacts on hydrology and the associated extreme events (e.g., 

floods) in the Arctic catchments based on the current hydrological modelling tool? And how is the 

reliability/uncertainty of the projections quantified? 
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1.5 Objectives of the study 

To fulfil the research questions stated above, the following objectives have been proposed and answered 

by four scientific papers in this study, as summarized in Table 1. 

Table 1 - Summary of research questions and objectives. 

Research 

questions 
Objectives 

Papers 

supported 

RQ1 Conducting a comprehensive review to figure out suitable hydrological 

models for Arctic conditions, by taking into account the key factors: (a) 

the capacities of the models to describe the effects of permafrost on the 

hydrological processes; and (b) the capacities for wide application of the 

models with moderate inputs. These impact factors are weighted 

according to the current status and purposes of each study. 

I 

RQ2 Using the reviewed results of suitable hydrological models, selecting a 

model candidate, and running the model to verify its capacities for 

hydrological simulation/projection in Arctic conditions.   

I,II,III,IV 

RQ3 Selecting an Arctic catchment and running the hydrological model, using 

weather inputs from both the existing monitoring network (coarse spatial 

resolution) and the global reanalysis product (fine spatial resolution). 

After that, comparing model performances between two options of 

weather inputs. 

In the case of the high-resolution global reanalysis weather data being 

evaluated as having high performance and potentially able to replace the 

existing scattered monitoring data, conducting further applications of the 

reanalysis data, as well as investigating performance of the reanalysis 

data in different Arctic catchments with variations in geographical 

distributions, characteristics, scales, dominant hydrological regimes, and 

with different temporal resolutions (e.g., running with monthly and daily 

time steps). 

II,III,IV 

RQ4 Running the hydrological model with different options for setting up the 

model parameters, model structures (e.g., number and size of sub-basins 

(or sub-catchments), number of Hydrologic Response Units (HRUs)) and 

different options for weather input (e.g., spatial density), then comparing 

the simulation results among difference scenarios. 

III 

RQ5 Defining the future CC scenario and then coupling the climate model 

simulations with the hydrological model to project future changes in 

streamflow and, subsequently, floods in various catchments, taking into 

account the differences in catchments’ characteristics, scales, 

geographical distributions and dominant flood regimes. 

Performing uncertainties analysis to detect which uncertainties’ sources, 

e.g., from hydrological models or from climate models, are larger or 

smaller.       

IV 

1.6 Scope of the study 

The scope of this research is hydrological models and their applications for hydrological CC impacts’ 

assessment in the Arctic environment, with the research areas being limited to the Norwegian Arctic 

catchments. The contents of the research focus mainly on the comprehensive review and verification of 

suitable hydrological models for accurate/reliable simulation of the hydrological processes in the Arctic 

conditions. In particular, this study will consider the challenges for the hydrological models in dealing 

with the specific Arctic features, i.e., the presence of snow cover, seasonally frozen soil and permafrost. 
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In addition, the models’ capability for wide application in the Arctic conditions (e.g., consideration of 

the sparse-data feature) will also be a criterion for selection of suitable models. Moreover, a suitable 

model candidate, among other potential models, will be selected and its performance verified to simulate 

and project the changes in hydrology and water resources and the associated hydrological extreme 

events (e.g., flooding) in the Arctic catchments under CC impacts. Although both surface and subsurface 

hydrology are studied in the review, this study is limited to assessing the changes in surface hydrology 

due to CC. However, the review of the hydrological models from this study aims to benefit a wider 

range of readers who would prefer either surface or subsurface hydrological models, depending on the 

purposes of each study. Moreover, uncertainties analysis of the simulation/projection results is another 

important part of this research. Regarding CC scenarios, this research will focus on the high emission 

scenario, i.e., the RCP8.5. In addition, considering the highly natural variability, as well as the high 

uncertainty of the assumed emission scenario in the far future period (e.g., at the end of the 21st century, 

as many have previously studied), the time frame for the assessment of CC impacts in this research is 

focused on the near future period, i.e., the 2050s (2041-2070). 

1.7 Thesis roadmap 

The thesis roadmap and overview are presented in Figure 2. 
 

 

Figure 2 - Thesis roadmap. 

 



CHAPTER 2  LITERATURE REVIEW 

9 

2 Literature review on hydrological modelling 
 

Hydrological models are state-of-the-art tools for CC impact assessment at the catchment scales. 

Recently, numerous models have been developed. Hydrological models are normally classified based 

on the criteria of interest (Gupta et al. 2015). Hydrological models are broadly classified into two main 

categories: the physical model and the mathematical model (Gupta et al. 2015; Jain & Singh 2019). The 

physical model represents a real system, including scaling and an analogue model. For example, models 

in the laboratory (Jain & Singh 2019), such as the hydraulic structures including reservoirs, dams or 

stream networks, are built to a proper scale (Rodda & John 2009) to examine the flow dynamics by such 

structures in the river system within a catchment. The mathematical model uses a set of mathematical 

formulas/equations to express the behaviour of a river basin. Generally, the models aim to simulate the 

interactions of inputs, e.g., climate data, with the system, e.g., a catchment, to generate outputs, e.g., a 

hydrograph of runoff or river flow. Mathematical models are further classified into three sub-types: 

theoretical, empirical and conceptual models. These three sub-types are further classified into linear, 

non-linear, steady, non-steady, lumped, distributed, deterministic and stochastic models. Dwarakish and 

Ganasri (2015) classified hydrological models based on two main hypotheses: (1) if it is based on the 

presence of random variables and the temporal-spatial variation of these random variables (Chow et al. 

1988), it has a deterministic model and a stochastic model; and (2) if the description of hydrological 

processes is considered, it has a conceptual model, an empirical model and a fully physically based 

model (Figure 3).  

 

Figure 3 - Classification of hydrological models (Chow et al. 1988; Dwarakish & Ganasri 2015; Gupta et al. 2015). 
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2.1 Deterministic models 

Deterministic models produce the same output for every run of the model from given input data 

(Thompson 1999; Dwarakish & Ganasri 2015; Gupta et al. 2015). For example, if we use the same input 

data to estimate evaporation from an open water surface by the Penman equation, we always receive the 

same output (Thompson 1999). Hence, randomness is not considered in this kind of model. Based on 

spatial discretization, deterministic models can be further classified into three sub-types, i.e., 

deterministic lumped model, deterministic semi-distributed model and deterministic distributed model 

(Dwarakish & Ganasri 2015).    

 

Figure 4 - Classification of deterministic models and use of them to predict discharge (Q) and soil moisture (θ): (a)-(c) 

lumped model; (d)-(f) semi-distributed model; (g)-(i) fully-distributed model (Koch 2016).   

2.1.1 Deterministic lumped model  

The hypothesis of a lumped model is that the whole river basin is considered a single system, where 

spatial variability is disregarded (Devi et al. 2015), especially when the river basin has a homogeneous 

set of parameters, including hydraulic conductivity of soil, roughness of land surface, etc. that govern 

the hydrological process within the river basin (COMET 2010b). These parameters and variables are 

averaged over the whole basin (Niel et al. 2003; Cheng 2011; Magar & Jothiprakash 2011; Dwarakish 

& Ganasri 2015). Figure 4a-c provides an example of a lumped model. Figure 4a is a scheme of the 

whole watershed as a single system. Figure 4b is the hydrograph of discharge (Q) at the basin outlet 

point, while Figure 4c is the averaged soil moisture, with unique blue colour, for the whole watershed.           

2.1.2 Deterministic semi-distributed model 

A semi-distributed model divides the river basin into several sub-basins or HRUs (Daofeng et al. 2004; 

Dwarakish & Ganasri 2015), according to land use, land cover, soil property and topographic property. 

The hydrological process is simulated in each sub-basin or HRU. Figure 4d-f illustrates the semi-
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distributed model. Figure 4d shows the discretization scheme with three sub-basins, Figure 4e is the 

hydrograph of discharge at the outlets of three sub-basins, while Figure 4f provides the averaged soil 

moisture for each sub-basin.         

2.1.3 Deterministic distributed model 

A distributed model discretizes the entire catchment into cells of a particular shape and size, such as 

square or triangulated irregular type (COMET 2010a; Devi et al. 2015). The model requires input data 

and model parameters for each cell, and the hydrological process can be simulated for every cell of the 

catchment. Therefore, the distributed model can provide a high resolution of model outputs (COMET 

2010a). The cell type and cell size will influence the modelling outputs. The advantage of this model is 

that it can provide results at specific points in the whole river basin. Runoff inside each cell can be 

estimated, based on the parameters in that cell. Runoff for the whole basin/sub-basin can be estimated 

based on runoff estimation for the cells inside the basin/sub-basin. Furthermore, runoff for the 

streamflow can be estimated. One of the main drawbacks of this model is that it requires input data for 

each cell. In cases where input data are not available, the parameter needs to be estimated, which will 

lead to model uncertainty (COMET 2010a). Figure 4g-i is an example of a fully distributed model. 

Figure 4g is the discretization scheme of the watershed. Herein, the whole watershed is divided into 

several square cells of the same size. Figure 4h is the hydrograph of river discharge at random points 

from upstream to downstream, while Figure 4i is the soil moisture distribution. The distribution of soil 

moisture is of much higher spatial resolution, compared to the lumped and semi-distributed models.      

2.2 Stochastic models 

Unlike deterministic models, stochastic models can produce different outputs for each run of the model 

from a single set of inputs (Thompson 1999; Gupta et al. 2015). It takes into account the spatial-temporal 

occurrences of the events (Jajarmizadeh et al. 2012). Therefore, stochastic models are used to predict 

values of some variables at non-observed times or at non-observed locations (Bierkens & Geer 2012). 

The uncertainty of such predictions is also analysed in the stochastic models, unlike deterministic 

models, since the errors of the model outputs are ignored. Quantification of the errors of the model 

outputs in stochastic models is usually based on the probability distribution of the errors, which tells us 

the errors’ values in a certain range, based on measured data.  

 

Figure 5 - Example of soil moisture content (z) simulated by stochastic hydrological model: (a) deterministic model outputs 

(ž); (b) probability distribution of the modelling errors (e); (c) probability distribution of modelling outputs and the best 

estimation (ẑ) (Bierkens & Geer 2012).      

Figure 5 demonstrates simulated soil moisture content and the probability distribution of random errors 

at some locations and at some times by the stochastic models. From the figure, we can see that the 

deterministic hydrological models only provide the simulated value, whilst the stochastic hydrological 
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models yield both simulated value (Figure 5a) and the probability distribution of the random error 

(Figure 5b). Since errors in modelling outputs are not considered explicitly by most of the approaches 

used in stochastic hydrological models, an alternative approach is to consider the hydrological variable 

as a random one. It means that the value of the hydrological variable, e.g., soil moisture content, cannot 

be known exactly but the probability distribution of such a variable can be calculated (Figure 5c). Figure 

5c explains that the value of soil moisture content is not exactly known, but its range is from around 

0.2-0.5. It is also possible to achieve the best estimation value with minimum errors. The stochastic 

model is a combination of deterministic model outputs with a probability distribution of the modelling 

errors. If there could be a combination of deterministic and stochastic processes, it would generate a 

perfect hydrological model, since water flow runs on the land phase following the deterministic 

pathways, while its magnitude, as well as the reaction time of several other processes in the watershed, 

are controlled by the stochastic processes (Azadi & Zakeri 2010). In practical applications of hydrology, 

e.g. in flood forecasting, stochastic models are considered a potential tool, since such models consider 

the chronological results of the hydrological events by examining the occurrences of irregular events 

(Azadi & Zakeri 2010). Stochastic models can further classified into two sub-categories, i.e., those with 

spatial independence and those with spatial correlation of random variables (Dwarakish & Ganasri 

2015). 

2.3 Hydrological process description models 

Hydrological models have been developed over several periods from empirical models (black-box), 

conceptual models (grey-box) to physically based models (white-box) (Xu et al. 2019a). Black-box 

models are the simplest models, while white-box models are the most complicated (Sitterson et al. 

2017). Grey-box models incorporate both black-box and while-box models (Jajarmizadeh et al. 2012; 

Jain & Singh 2019).  

2.3.1 Empirical model (black-box model)  

Generally, empirical models, also called black-box models or data-driven models, do not consider any 

features and hydrological processes in the catchment (Beven 2012; Granata et al. 2016; Sitterson et al. 

2017). Such models are only based on monitoring hydro-meteorological data to build the relationship 

between inputs and outputs (Sudheer et al. 2002; Sarkar & Kumar 2012; Devi et al. 2015; Dwarakish 

& Ganasri 2015). They are particularly suitable for the prediction of rainfall-runoff in a catchment, based 

on the relationship between rainfall and runoff (Halff et al. 1993; Shirke et al. 2012; Chen et al. 2013; 

Dwarakish & Ganasri 2015). In this model, statistically based methods, such as regression models and 

correlation models, are normally used to predict the relationship between rainfall and runoff (Devi et al. 

2015). Currently, machine learning techniques, such as Artificial Neural Network (ANN), Fuzzy Logic, 

Genetic Algorithms (GA) etc., are used in the field of hydroinformatics (Devi et al. 2015; Dwarakish & 

Ganasri 2015) to simulate and predict runoff in different river basins (Halff et al. 1993; Shirke et al. 

2012; Chen et al. 2013). However, empirical models are not capable of dealing with the practical 

problems, e.g., simulating the impacts of land use changes on the hydrological regime in the catchment 

(Dwarakish & Ganasri 2015; Jain & Singh 2019). Figure 6 is an example of the application of an 

empirical model to predict runoff, while Figure 7 presents runoff modelling by using machine learning 

techniques.  
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Figure 6 - Application of empirical curve number method to estimate runoff from rainfall (Sitterson et al. 2017).     

In Figure 6, the empirical curve number method was used to estimate direct runoff from rainfall. The 

figure explains the non-linear statistical relationships between rainfall inputs and runoff outputs. Such 

relationships are described by a mathematical formula as in the top left of the figure. Regarding the 

machine learning techniques, runoff is simulated by using the most popular methods, such as ANFIS 

(Adaptive Neuro-Fuzzy Inference System), ANN and SVM (Support Vector Machine), and inputs of 

rainfall and streamflow (Figure 7). 

 

Figure 7 - Application of machine learning technique for runoff modelling (Mohammadi 2021).  

2.3.2 Conceptual model (grey-box model) 

Conceptual models, also called grey-box models, can simulate all the components of the hydrological 

process (Devi et al. 2015). A semi-empirical equation is used to describe the hydrological process, based 

on the observation or assumption of empirical relationships among different hydrological variables 
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(Devi et al. 2015; Dwarakish & Ganasri 2015; Liu et al. 2019). In particular, the runoff process in 

conceptual models is simulated based on the theory of reservoir storage and simplified equations of 

physical processes in hydrology that provide a conceptual idea of the behaviours occurring within a 

watershed (Vaze et al. 2011; Devi et al. 2015; Sitterson et al. 2017).  

The evaluation of model parameters is based on both field data and the calibration process (Devi et al. 

2015). Conducting the calibration requires a large amount of hydrometeorological time series data (Devi 

et al. 2015). Moreover, the calibration process involves curve fitting (Devi et al. 2015; Jain & Singh 

2019), which makes the physical interpretation of modelling results difficult (Devi et al. 2015). This 

will also influence the certainty of the prediction results, especially in the case of it being used in 

practical problems such as evaluating the impacts of human activities (e.g. land use change) (Devi et al. 

2015). Additionally, using the curve-fitting method for calibration also indicates that the models may 

not work well outside the range of calibration data (Jain & Singh 2019). This is a drawback of the 

conceptual model. 

Conceptual models have advantages compared to more complex physically based models, i.e., moderate 

requirements for input data, as well as shorter running time for models (Seibert & Vis 2012). Noticeably, 

conceptual models are considered best when the computation time is limited, and there is no need to 

analyse in detail the catchment features (Sitterson et al. 2017). Figure 8 illustrates an example of a 

schematic structure of a conceptual model HBV (Hydrologiska Byråns Vattenbalansavdelning), 

including different routines for simulating the rainfall-runoff process and discharge in a watershed, using 

inputs of daily precipitation, air temperature and estimated monthly long-term potential evaporation.  

 

Figure 8 - Conceptual structure of the HBV model (Killingtveit & Sælthun 1995; Bruland & Killingtveit 2002). 

2.3.3 Physically based model (white-box model) 

Physically based models, also called process-based models or mechanistic models (Sitterson et al. 

2017), are kinds of white-box models (Xu et al. 2019a). Such models represent the real phenomenon of 

the water cycle in the river basin, by finite difference equations that follow physics laws and principles, 

including equations of water balance, conservation of mass, energy, momentum and kinematics (Devi 

et al. 2015; Sitterson et al. 2017; Jain & Singh 2019). Specifically, surface flow is explained by the Saint 
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Venant equations, ground water flow is described by the Boussinesq equation, and the Richards equation 

is used for simulating unsaturated zones, etc. (Jain & Singh 2019).  

The main advantage of the physically based model is that it does not require intensive 

hydrometeorological data for the calibration process (Jain & Singh 2019). However, it requires a large 

number of parameters to describe the physical features of the river basin (Abbott et al. 1986; Devi et al. 

2015). To set up and run this model, a large amount of input data, such as topography, soil properties, 

land use and dimensions of the river network, need to be collected. Physically based models overcome 

the drawbacks of conceptual models and empirical models, since they use parameters with physical 

meaning (Jain & Singh 2019). In addition, such models can provide a huge amount of information 

outside the boundary, whereas empirical models are only valid within the boundary (Jain & Singh 2019).  

Physically based models have a wide range of applications (Devi et al. 2015). For example, the model 

can simulate the movement and interaction between surface water and ground water, the transportation 

of sediments, nutrients and pesticides, and the variation of water quality within the watersheds (Devi et 

al. 2015; Jain & Singh 2019). Physically based models can also be applied in a wider range of 

catchments, since the physics laws used to describe the hydrological processes are the same everywhere, 

whereas black-box models cannot be applied to all catchments, as many hydrological processes are not 

taken into account. Figure 9 illustrates the hydrological processes simulated by the physically based 

SWAT (soil and water assessment tool) model. 

 

Figure 9 - Overview of the hydrological processes described in the SWAT model (Neitsch et al. 2011; Zhang et al. 2016).  



 

16 

 



CHAPTER 3  STUDY AREAS, MATERIALS, METHODS 

17 

3 Study areas, materials and methods 
 

3.1 Study areas 

The Arctic is distinguished as the area located north of the Arctic Circle (at 66°32'N) (Wilson et al. 

1998; AMAP 2011). This region is characterized by an extreme climate, with high variations in light 

and temperature, extensive snow cover and ice in winter, short summers, and the presence of permafrost 

(Wilson et al. 1998). Permafrost, which has significant effects on Arctic hydrological processes, 

accounts for approximately 24% of the exposed land area in the Northern Hemisphere (Romanovsky et 

al. 2002) (Figure 10, top right subfigure).  

 

Figure 10 - Map of Arctic region (top right, source: https://www.nasa.gov/topics/earth/features/earth20130610.html) and the 

studied Norwegian Arctic catchments. 

Regarding meteorological factors, the Arctic mainland exhibits significant differences in air temperature 

between winter (e.g., average of -20 to -40oC in January) and summer (e.g., average of 5 to 10oC in July) 

(Wilson et al. 1998). Across the terrestrial Arctic, precipitation is highly heterogeneous in temporal 

(seasonal) and spatial patterns. The annual precipitation in the Arctic mainland varies from <150 mm to 

over 1000 mm, of which the higher precipitation is distributed along the Arctic coastal zones (Yang & 

Kane 2021). Other important factors forming the typical features of the severe Arctic climate and 

weather are the presence of persistent and extensive stratus cloud cover, extreme fog (e.g., 100 days per 

year of fog in some parts of the Arctic) and wind (an important factor for snow distribution and the 

https://www.nasa.gov/topics/earth/features/earth20130610.html
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chilling effect of low temperatures) (Wilson et al. 1998). Regarding hydrological characteristics, 

streamflow regimes differ considerably among Arctic catchments, due to the great variations in climate, 

permafrost and human activities across the Arctic. Generally, flow regimes in the Arctic catchments are 

dominated by rainfall, snowmelt and ice melt, of which snowmelt regimes dominate most Arctic rivers. 

Moreover, some Arctic rivers in the northern regions have proglacial regimes, which occur in summer 

due to glacial melt. Furthermore, the rivers flowing through the wetlands have a wetland or muskeg 

regime, with spring snowmelt contributing to the main source of flow (Wilson et al. 1998). The 

Norwegian Arctic is an example of a region presenting highly heterogeneous hydrological regimes. For 

example, the hydrological regimes in the Norwegian Arctic catchments are categorized into three main 

types: rainfall-dominated, snowmelt-dominated and mixed rainfall/snowmelt regimes, according to the 

Norwegian Water Resources and Energy Directorate (NVE) (Lawrence & Hisdal 2011). The 

subheadings that follow introduce the different Norwegian Arctic catchments where different 

hydrological regimes are dominant. The selection of  those Norwegian Arctic catchments for 

investigation is based on several criteria: (1) geographical distribution (i.e., from coastal zones to inland 

areas) and latitude distribution (i.e., from the southern region to the northern region and above the Arctic 

Circle); (2) catchments’ scales (i.e., from small-scale to large-scale); and (3) hydrological regimes (i.e., 

rainfall, snowmelt and mixed rainfall/snowmelt) (Table 2).                             

3.1.1 Lakselva catchment 

The Lakselva catchment is located in Bodø municipality, in Nordland county, Norway. This catchment 

is very close to the Arctic Circle (Figure 10, numbered 1). The catchment has a drainage area of approx. 

297 km2, which consists of forest (44.1%), mountain (35.3%), lake (6.2%), bog (6%), agricultural land 

(1%) and other types (approx. 7.3%) (Sildre 2020). The elevation of the ground surface is in the range 

of 0-1112 m (above mean sea level-AMSL). According to long-term observed data (1991-2020), the 

average annual air temperature and precipitation in this catchment varied from +2 to +8oC and from 750 

to 1500mm, respectively. The hydrological regime in the Lakselva catchment is a mixture of rainfall 

and snowmelt (Table 2).      

3.1.2 Strandvassbotn catchment 

The small-scale catchment of Strandvassbotn is located in the coastal zone of Bodø municipality, 

Nordland county, Norway (Figure 10, numbered 2). The catchment has a drainage area of approx. 26 

km2, which is dominated by forest (30.8%) and mountain (22.1%), followed by bog (10.4%), lake 

(3.6%), agricultural land (0.2%) and other types (approx. 33%) (Sildre 2020). The elevation of the 

ground surface is distributed in the range of 0-944 m (AMSL). Long-term monitoring data (1991-2020) 

revealed that the average annual air temperature and precipitation in this catchment varied from +2 to 

+10oC and from 1000 to 1500mm, respectively. The hydrological regime in the Strandvassbotn 

catchment is dominated by rainfall (Table 2).      

3.1.3 Marsvikelva catchment 

The small-scale catchment Marsvikelva is located in the Sørfold municipality, Nordland county, 

Norway (Figure 10, numbered 3). The catchment has a drainage area of approx. 32 km2. The main land 

use components consist of forest (52.4%), mountain (28.5%), lake (9.4%), bog (4%) and other types 

(approx. 5.7%). There is no agricultural activity in this catchment (Sildre 2020). Marsvikelva has its 

ground surface’s elevation in the range of 0-1098 m (AMSL). Long-term monitoring data (1991-2020) 

revealed that the average annual air temperature and precipitation in this catchment varied from +2 to 
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+8oC and from 1000 to 1500mm, respectively. Similar to the Strandvassbotn catchment, the 

hydrological regime in the Strandvassbotn catchment is dominated by rainfall (Table 2).          

3.1.4 Målselv catchment 

Målselv is a large-scale catchment with a drainage area of approx. 5815 km2. The catchment is located 

in the centre of the Norwegian Arctic, belonging to Målselv municipality in Troms and Finnmark county 

(Figure 10, numbered 4). Mountain (64.2%) and forest (24.3%) are the dominant land use types in the 

catchment, but there are other small areas of lake (3.8%), bog (2.1%), glacier (5%), agricultural land 

(0.7%) and others (approx. 4.3%) (Sildre 2020). The ground surface’s elevation varies greatly in this 

catchment (0-1718m AMSL). The average annual air temperature and precipitation in this catchment 

varied from -5 to +6oC and from <500 to 1500mm, respectively, based on the long-term monitoring data 

(1991-2020). Snowmelt is the dominant hydrological regime in this catchment (Table 2).      

3.1.5 Altavassdraget catchment 

Altavassdraget is another large-scale catchment (approx. 6902 km2), which is located in Alta 

municipality, Troms and Finnmark county (Figure 10, numbered 7). The land use components in this 

catchment consist of mountain (43.7%), forest (28.8%), bog (11.1%), lake (7.2%), agricultural land 

(0.1%) and others (approx. 9.2%) (Sildre 2020). The ground surface’s elevation is distributed in the 

range of 2-973m AMSL. The average annual air temperature and precipitation in this catchment varied 

from -3 to +6oC and from <500 to 750mm, respectively, based on the long-term monitoring data (1991-

2020). Similar to the Målselv catchment, snowmelt is the dominant hydrological regime in this 

catchment (Table 2).      

3.1.6 Halselva catchment 

The Halselva catchment (approx. 143 km2) is located in Alta municipality, Troms and Finnmark county 

(Figure 10, numbered 5). This catchment is very close to the Altavassdraget catchment (in the northwest 

direction). Both Halselva and Altavassdraget catchments drain into the Alta fjord. Mountains are the 

dominant land use component in this catchment, at approx. 73.5%, followed by forest (13.9%), bog 

(1.3%), lake (3.5%), agricultural land (0.2%) and others (approx. 7.7%) (Sildre 2020). Due to its location 

close to the Altavassdraget catchment, the meteorological characteristics in the Halselva catchment are 

quite similar to those of the Altavassdraget catchment. For example, the average annual air temperature 

and precipitation in this catchment varied from -2 to +6oC and from 500 to 750mm, respectively, based 

on the long-term monitoring data (1991-2020). Snowmelt is the dominant hydrological regime in this 

catchment (Table 2).            

3.1.7 Karpelva catchment 

The Karpelva catchment (approx. 129 km2) is located in the uppermost area of the Norwegian Arctic 

(Figure 10, numbered 6). The catchment is in the Sør-Varanger municipality, Troms and Finnmark 

county. Forest accounts for approx. 51.3% of total land use, while the remaining components are 

mountain (12%), lake (5%), agricultural land (0.3%) and other types (approx. 18.9%) (Sildre 2020). 

According to long-term monitoring data (1991-2020), the average annual air temperature and 

precipitation in this catchment varied from -1 to +4oC and from 500 to 750mm, respectively. Snowmelt 

is the dominant hydrological regime in this catchment (Table 2).         
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3.1.8 Definition of study areas for each scientific paper    

In the first paper, the study area was the whole Arctic in general (Figure 10, top right subfigure), while, 

in the second to the fourth papers, the study area was limited to the Norwegian Arctic. In particular, in 

the second and third papers, one large-scale catchment in the Norwegian Arctic was selected, i.e., the 

Målselv catchment (5815 km2) (Figure 10, numbered 4). In the fourth paper, seven Norwegian Arctic 

catchments (26 - 6902 km2) were employed, to evaluate hydrological modelling performance, as well 

as to investigate hydrological CC impacts (excluding the Altavassdraget catchment) in the Arctic 

(Figure 10, numbered 1-7).      
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3.2 Data acquisition 

3.2.1 Data acquisition – Paper I 

In Paper I, to conduct a comprehensive review of the hydrological models, data from various sources 

were gathered, as summarized in Table 3 and Figure 11.  

Table 3 - Summary of the selected model types used in the review in Paper I. 

Model types Model names Data sources 

Surface hydrological models 

Topoflow 

Published papers 

from Google 

Scholar, Scopus, 

ResearchGate, 

electronic books, 

web pages, etc. 

DMHS 

HBV 

SWAT 

WaSiM 

ECOMAG 

CRHM 

Subsurface/cryo-

hydrogeological model 

ATS 

CryoGrid 3 

GEOtop 

SUTRA-ICE 

PFLOTRAN-ICE 

 

Figure 11 - Number of recent publications related to hydrological models and cryo-hydrogeological models, found via 

https://www.scopus.com/, supporting the review in Paper I. 

From Papers II to IV, the hydrological SWAT model was applied. To run the SWAT requires several 

input data: (a) spatial data (grid) such as Digital Elevation Model (DEM), soil and land use, (b) time 

series data for precipitation, maximum and minimum air temperature, relative humidity, solar radiation 

and wind speed. To calibrate and validate the model, time series of observed river discharges are 

required. Details of data gathering from Papers II to IV are described in the following sections.    

3.2.2 Data acquisition – Papers II & III 

In Papers II and III, hydrological SWAT models were applied in the same large-scale catchment, the 

Målselv (approx. 5815 km2). Details of data collection for running the SWAT models are presented in 

Table 4 and Figure 12.  

https://www.scopus.com/
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Table 4 - Data collection for the SWAT models applied in Papers II & III. 

Data type Spatial resolution Temporal resolution Source of data 

DEM 10 x 10 m  (Geonorge 2013) 

Land use ̴ 600 m  (Waterbase 2007a) 

Soil ̴ 5000 m  (Waterbase 2007b) 

Climate Ground-based data: 4 stations Daily (ECAD 2002) 

 CFSR data: 21 grids, ̴ 38 km grid Daily (TAMU 2012) 

River discharge 5 stations Monthly (Sildre 2020) 

 

 

Figure 12 - Spatial resolution of weather inputs (CFSR and RCMs) and hydro-gauging stations in seven Norwegian Arctic 

catchments. 

3.2.3 Data acquisition – Paper IV 

In Paper IV, the SWAT models were applied in seven catchments (26-6902 km2). Details of data 

collection for running the SWAT models are presented in Table 5 and Figure 12. 

Table 5 - Data collection for the SWAT models applied in Paper IV. 

Data type  
Spatial 

resolution 

Temporal 

resolution 
Sources 

Spatial data 

(grid) 

DEM 10 x 10 m  (Geonorge 2013) 

Land use ̴ 600 m  (Waterbase 2007a) 

Soil ̴ 5000 m  (Waterbase 2007b) 

Temporal data 

(time series) 

Climate data: CFSR ̴ 38 km grid Daily (TAMU 2012) 

CC data: RCMs ̴ 12.5 km grid Daily (Jacob et al. 2014) 

River discharge  Daily (Sildre 2020) 
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3.3 Methods 

This section aims to summarize all the main methods applied in four scientific papers to solve the five 

research questions proposed in the introduction section (Figure 13). A detailed description of each 

method is presented in the following subheadings.  

 

Figure 13 - Summary of all the main methods applied in four scientific papers to solve the five research questions (RQ) of the 

thesis.  
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3.3.1 Comprehensive review 

In order to select suitable modelling tool(s) for the assessment of hydrological CC impacts in the Arctic, 

a comprehensive review was conducted, as seen in Paper I. In particular, the idea of the review was 

formed on the basis of the CC context in the Arctic with complex hydrological processes. Accordingly, 

a demand for a reliable modelling tool to address hydrological CC impacts in this specific region was 

defined. Next, twelve well-known hydrological models, including surface hydrological models and 

cryo-hydrogeological models, were searched for in the literature and gathered based on their applications 

in previous studies in the Arctic. After that, the capacities and limitations of such models to deal with 

complex hydrological processes in the Arctic were examined, based on the outcomes of the previous 

studies. Finally, all the models were compared regarding their capacities, and weighted according to 

their suitability for different targets of applications. Specifically, the evaluation and selection processes 

of suitable modelling tools were based on the following criteria:  

1. Considering the important processes in permafrost environments, the models should include:  

 Surface energy balance; 

 Snow processes, snow insulation, and snowmelt; 

 Infiltration processes; 

 The dynamics of soil thermal and soil moisture fluxes; 

 Soil heterogeneities; 

 The dynamics (seasonal thawing) of the active layer; 

 Subsidence; 

 A three-phase change of water (ice, liquid, and gas) during the freezing and thawing of near-surface 

soil. 

in their models’ structures. 

2. Consideration of the opportunity for wide application in the Arctic conditions, including:  

 Requirement for input data, i.e., large or small requirement; 

 Requirement for computation processes, i.e., strong or low requirement; 

 Ability to be applied in different sizes of catchments, i.e., small-scale and/or large-scale. 

 

3. Also, suitable model candidates depend on targets and current conditions (e.g., data availability, 

required timing, and funding) of each study/project.  

Although the comprehensive review covered both surface hydrological models and subsurface or cryo-

hydrogeological models, the verification of model performances, as well as the assessment of CC 

impacts (from Paper II to Paper IV), were limited to surface hydrology. Nevertheless, the outcome of 

the review paper (Paper I) aimed to support a wide range of readers who have different goals for studying 

the CC impacts.   

3.3.2 The selected model candidate SWAT 

Based on the review results in Paper I, the surface hydrological SWAT (soil and water assessment tool) 

model (Figure 14) was selected, among others, for this study. The SWAT model was applied from Paper 

II to Paper IV, to simulate hydrological processes, as well as to project their changes due to CC in the 

Norwegian Arctic catchments. The model description, methods for model calibration, validation, 

sensitivity and uncertainties’ analysis are described in the following subsections. 
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3.3.2.1 Model description 

The SWAT is a physically based (or process-based) (Neitsch et al. 2009) semi-distributed hydrological 

model, which was developed by United States Department of Agriculture (USDA)-Agricultural 

Research Service, USDA-Natural Resources Conservation Service, and Texas A&M University. The 

model has been widely used around the world (approx. 100 countries). The SWAT is used to simulate 

the impacts of human activities (Gassman et al. 2007) and CC (Dile et al. 2013) on water resources and 

environment in large and complex catchments over a long period. The strengths of the SWAT model 

are highlighted by its fulfilment of the requirements of the current modelling philosophy, i.e., the 

transparency of the model (Abbaspour et al. 2015). This means the sensitivity and uncertainty analysis 

of the modelling results are examined in the calibration and validation processes. 

(a) Land phase (b) Routing phase 

 

 

Figure 14 - Description of hydrological simulation in two different phases of the SWAT model (source: 

http://www.brc.tamus.edu/swat/).   

Because the SWAT is a type of semi-distributed model, the whole river basin is discretized to smaller 

sub-basins, to present the spatial heterogeneity over the basin. The number and size of the generated 

sub-basins are decided by the designed values of the threshold drainage area (TDA). Each sub-basin is 

then subdivided into hydrologic response units (HRUs), which have homogeneity of topography, land 

use, soil characteristics and management. Details of the techniques for HRU creation are described in 

the following section.  

3.3.2.2 Methods for HRUs’ definition  

In the watershed subdivision process, multiple HRUs are generated for each sub-basin, based on a HRU 

threshold. The inputs to generate HRUs are land use, soil and slope classification. The HRU threshold 

will decide the percentage of the representative land use/soil/slope for each sub-basin (Figure 15). This 

threshold is usually from 5-15%, which has been widely used in many previous studies (Sexton et al. 

2010; Srinivasan et al. 2010; Han et al. 2012; EPA 2013). In this study, the HRU thresholds for land 

use/soil/slope were designed as 5/5/5%. Based on this HRU threshold, only types of land use/soil/slope 

with their areas higher than 5% of the sub-basin area were selected. Furthermore, the terrain slope was 

classified into five classes: 0-5%, 5-10%, 10-25%, 25-30%, and > 30%.    

http://www.brc.tamus.edu/swat/


CHAPTER 3  STUDY AREAS, MATERIALS, METHODS 

27 

 

Figure 15 - The algorithm for HRU definition in the SWAT (Her et al. 2015). 

3.3.2.3 Hydrological simulation in SWAT model  

The hydrological simulation in the SWAT occurs in two main phases, i.e., the land phase and the routing 

phase (Arnold et al. 2012) (Figure 14). The land phase (Figure 14a) works based on the following water 

balance equation:   

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑖 − 𝑄𝑖
𝑡
𝑖=1 − 𝐸𝑖 − 𝑃𝑖 − 𝑄𝑅𝑖),  (1) 

where 

 𝑆𝑊𝑡 is soil water content at time t (mm), 

 𝑆𝑊0 is the initial soil water content (mm), 

 𝑅𝑖 is amount of precipitation on day i (mm), 

 𝑄𝑖 is amount of surface runoff on day i (mm), 

 𝐸𝑖 is amount of evapotranspiration on day i (mm),  
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 𝑃𝑖 is amount of percolation on day i (mm), and 

 𝑄𝑅𝑖 is amount of return flow on day i (mm). 

The loads of water, sediment, nutrients and pesticides from the land phase are then transferred to the 

streams/rivers, where the routing phase occurs (Figure 14) (Arnold et al. 2012). The loads are routed 

along the streams/rivers and reservoirs (if available). The routing phase simulates several processes in 

the streams/rivers, such as water movement, mass of flow, chemical processes, flood routing, sediment 

routing, nutrient routing and pesticide routing. The discharge in the mainstream/river at the outlet of 

each sub-basin is the contribution of water yield (WYLD) from this sub-basin plus WYLD from 

upstream sub-basins. The WYLD is the summarization of surface runoff, lateral flow and groundwater, 

subtracting the transmission loss (Tolera et al. 2018). 

3.3.2.4 Coupled SWAT and GIS 

Several tools have been developed to enhance the application and development of the SWAT model. Of 

them, the GIS-Geographic Information System has been successfully integrated with the SWAT model 

to collect, manipulate, visualize and analyse the inputs and outputs (Srinivasan & Arnold 1994). Several 

versions of GIS, starting from GRASS-GIS to the most recent ArcGIS, have been used to produce input 

data for the SWAT model (Krysanova & Srinivasan 2015). However, ArcGIS is a commercial version, 

and obtaining a key licence is very costly. Therefore, an open source GIS, namely QGIS, was developed 

recently (Chen et al. 2010). The QGIS has most functions of the commercial version and has high 

performance compared to other open sources of GIS. Thus, QGIS has enough necessary functions for 

water resources management. The following Table 6 presents the different GIS-coupled SWAT 

interfaces which have been developed. 

Table 6 - Summary of GIS-coupled SWAT interfaces. 

Coupling 

model 
Description GIS interface Source of GIS interface 

MW-SWAT 

This is an open source; 

however, it limits 

capability in large 

catchments 

MW 
(MapWindow) 

GIS 

https://www.mapwindow.org/ 

GRASS-

SWAT 

This is the first GIS-

coupled SWAT 

interfaces that generated 

and integrated 

topographic, soil and 

land use inputs 

GRASS 
(Geographic 

Resources 

Analysis 

Support 

System) GIS 

https://grass.osgeo.org/ 

ARC-SWAT 

This is a commercial 

source and the most 

popular version 
ArcGIS http://www.esri.com/software/arcgis 

Q-SWAT 

This is a new & open 

source, has capability to 

merge small sub-basins 

and has static and 

dynamic visualizations 

of outputs which cannot 

be performed in 

ArcSWAT 

QGIS 
(Quantum 

Geographical 

Information 

System) 

https://qgis.org/en/site/ 

In this study, the coupling Q-SWAT model was used, due to its upgraded availability and functionality 

compared to other SWAT interfaces.   

https://grass.osgeo.org/
http://www.esri.com/software/arcgis
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3.3.2.5 Model calibration, validation, uncertainty, and sensitivity analysis 

This study used the Sequential Uncertainty Fitting Version 2 (SUFI-2) algorithm (Figure 16) in the 

SWAT Calibration Uncertainties Program (SWAT_CUP) (Abbaspour et al. 2007) for model calibration, 

validation, sensitivity and uncertainties’ analysis. Inputs for the SWAT_CUP are outputs from the 

SWAT model (e.g., discharge). The SWAT_CUP runs several iterations to figure out the optimal model 

parameters. In each iteration, all the possible simulation outputs are produced and distributed in the so-

called 95PPU (95 Percent Prediction Uncertainty) band/envelope (Abbaspour et al. 2015). The 95PPU 

generates all possible estimated values from the lower limit (at 2.5%) to the upper limit (at 97.5%) of 

the cumulative distribution. This process works based on the Latin hypercube (LH) sampling approach, 

which is a statistical method to reduce the number of samples from the multiple dimensional 

distributions (Mckay et al. 1979; Özdemir 2016). The 95PPU works to bracket as much of the observed 

data within the 95PPU envelope as possible.       

3.3.2.6 Evaluation of model performance  

To quantify the model performance (e.g., the goodness of fit between simulated and observed data) after 

calibration and validation, this study was based on three main statistical coefficients: (1) the coefficient 

of determination R2 (Equation (2)), measuring the fitness of the linear relationship between the simulated 

and observed values; (2) the Nash-Sutcliffe coefficient of efficiency (NSE) (Equation (3)); and (3) root 

mean square error, divided by the standard deviation (RSR) (Equation (4)).  

𝑅2 = 1 −

∑ (𝑌 𝑜𝑏𝑠
𝑖

− 𝑌 𝑜𝑏𝑠
𝑚𝑒𝑎𝑛

)
𝑛

𝑖=1
(𝑌 𝑠𝑖𝑚

𝑖
− 𝑌 𝑠𝑖𝑚

𝑚𝑒𝑎𝑛
)

[∑ (𝑌 𝑜𝑏𝑠
𝑖

− 𝑌 𝑜𝑏𝑠
𝑚𝑒𝑎𝑛

)
2𝑛

𝑖=1
]

1/2

[∑ (𝑌 𝑠𝑖𝑚
𝑖

− 𝑌 𝑠𝑖𝑚
𝑚𝑒𝑎𝑛

)
2𝑛

𝑖=1
]

1/2
 

 

(2) 

𝑁𝑆𝐸 = 1 −

∑ (𝑌 𝑜𝑏𝑠
𝑖

 −  𝑌 𝑠𝑖𝑚
𝑖

)
2𝑛

𝑖=1

∑ (𝑌 𝑜𝑏𝑠
𝑖

 −  𝑌 𝑜𝑏𝑠
𝑚𝑒𝑎𝑛

)
2𝑛

𝑖=1

 

 

(3) 

𝑅𝑆𝑅 =

[∑ (𝑌 𝑜𝑏𝑠
𝑖

 −  𝑌 𝑠𝑖𝑚
𝑖

)
2𝑛

𝑖=1
]

1/2

[∑ (𝑌 𝑜𝑏𝑠
𝑖

 −  𝑌 𝑜𝑏𝑠
𝑚𝑒𝑎𝑛

)
2𝑛

𝑖=1
]

1/2
 

 

(4) 

where 

 𝑌 𝑜𝑏𝑠
𝑖

 and 𝑌 𝑠𝑖𝑚
𝑖

 describe the observed and simulated values at time 𝑖, 

 𝑌 𝑜𝑏𝑠
𝑚𝑒𝑎𝑛

 and 𝑌 𝑠𝑖𝑚
𝑚𝑒𝑎𝑛

 describe the mean observed and simulated data for the entire evaluation period, 

and 

 n describes the total number of observations/simulations. 

The thresholds of three statistical coefficients, R2, NSE and RSR, for monthly (in Papers II and III) and 

daily (in Paper IV) simulations are summarized in Table 7 and Table 8, respectively (Santhi et al. 2001; 

Van Liew et al. 2003; Fernandez et al. 2005; Moriasi et al. 2007; Premanand et al. 2018; Koycegiz & 

Buyukyildiz 2019). 

Table 7 - Thresholds of R2, NSE and RSR for evaluation of hydrological model’s performance (daily simulation). 

Model performance R2 NSE RSR 

Very good 0.75 < R2 ≤ 1.00 0.75 < NSE ≤ 1.00 0.00 ≤ RSR ≤ 0.50 

Good 0.60 < R2 ≤ 0.75 0.60 < NSE ≤ 0.75 0.50 < RSR ≤ 0.60 

Satisfactory 0.50 < R2 ≤ 0.60 0.36 < NSE ≤ 0.60 0.60 < RSR ≤ 0.70 

Unsatisfactory 0.25 < R2 ≤ 0.50 0.00 < NSE ≤ 0.36      RSR > 0.70 
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Table 8 - Thresholds of R2, NSE and RSR for evaluation of hydrological model’s performance (monthly simulation). 

Model performance R2 NSE RSR 

Very good 0.70 ≤ R2 ≤ 1.00 0.75 < NSE ≤ 1.00 0.00 ≤ RSR ≤ 0.50 

Good 0.60 ≤ R2 < 0.70 0.65 < NSE ≤ 0.75 0.50 < RSR ≤ 0.60 

Satisfactory 0.50 ≤ R2 < 0.60 0.50 < NSE ≤ 0.65 0.60 < RSR ≤ 0.70 

Unsatisfactory R2 < 0.50 NSE ≤ 0.50 RSR > 0.70 

3.3.2.7 Uncertainty analysis 

The uncertainties between the simulated and observed data were quantified based on two main 

indicators, i.e., p-factor and r-factor in the SUFI-2 algorithm (Figure 16).       

 

Figure 16 - The SUFI-2 algorithm in SWAT_CUP (Abbaspour 2015). 

The first indicator, the p-factor (from 0 to 1), measures the percentage of the observed data which could 

be bracketed within the 95PPU band. The value of 1 indicates that 100% of the observed data are 

bracketed in the 95PPU band, or it means that the simulation results are highly accurate. For streamflow 

simulation, the optimal value of the p-factor is suggested to be higher than 0.70 or 0.75. This threshold 

depends upon the project scale, quality of input data to run the model, as well as data for calibration. 
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The second indicator, the r-factor, explains the thickness of the 95PPU band. The narrowness of the 

95PPU band indicates the low uncertainty of the simulation results. Thus, the optimal value of the r-

factor should be close to zero. For streamflow simulation, the value of the r-factor is recommended to 

be smaller than 1.5, and this also depends on the study conditions and quality of input data. In short, the 

simulation results should fulfil the criteria of the two measures of the p-factor and r-factor: the stochastic 

simulation results should bracket as much of the observed data in the uncertainty envelope as possible, 

but, at the same time, the uncertainty envelope should be as narrow as possible. When the accepted 

values of the p-factor and the r-factor are found in the last iteration of the calibration/validation process, 

the sensitivity of the model parameters are calculated and ranked for the calibrated variables (e.g., 

discharge). Details of the sensitivity analysis are described in the following section. 

3.3.2.8 Sensitivity analysis 

In this study, global sensitivity analysis in the SUFI-2 algorithm was applied to figure out the most 

sensitive model parameters in the calibration process. This technique estimates the average changes of 

the objective function resulting from the changes of each model parameter, while all other model 

parameters are changing (Abbaspour 2015). The sensitivities of the model parameters are determined 

according to the following multiple regression equation (5): 

g = α + ∑ 𝛽𝑖𝑏𝑖
𝑚
𝑖=1 ,  (5) 

where  

 g is the objective function for calibration,  

 α is the regression constant,  

 𝛽𝑖 is the regression coefficient of the calibrated parameter, and 

 𝑏𝑖 is the calibrated parameter. 

The t-test was employed to identify whether a parameter 𝑏𝑖 is significant or not in sensitivity analysis. 

According to the t-test method, each model parameter is ranked for its sensitivity level, based on the 

magnitudes of two indicators: t-stat and p-value. The t-stat is the coefficient of a parameter divided by 

its standard error, while the p-value measures the significance of the sensitivity. The larger the absolute 

values of the t-stat, and the smaller the p-values, the more sensitive the parameters are. A model 

parameter is determined to be significant in the sensitivity analysis if the p-value is smaller than 0.05. 

The t-test ends when the sensitivity levels of all calibrated model parameters are ranked based on the 

magnitudes of the t-stat and p-value.       

3.3.3 Modelling chain for climate change impact assessment 

In CC impact assessment, data on the projected climatological variables, e.g., precipitation and air 

temperature, are required. Such future climate data are usually obtained from climate models, which are 

described in the following sections. 

3.3.3.1 Global climate models (GCMs) 

Climate models were developed to investigate the responses of the climate system to numerous forcings. 

Several types of climate models have been developed for climate research, such as Atmosphere–Ocean 

General Circulation Models (AOGCMs), Earth System Models (ESMs) and Earth System Models of 

Intermediate Complexity (EMICs). The horizontal resolutions (grid spacing) of the current GCMs are 

from approx. 1 to 2 degrees (approx. 111 to 222 km) for the atmospheric component and approx. 1 
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degree (approx. 111 km) for the ocean component (Flato et al. 2013). Because the GCMs have coarse 

resolutions, they cannot provide detailed information of the changing climate at the regional scale or 

catchment scale for CC impacts’ assessment. Thus, downscaling GCMs is usually carried out prior to 

transferring the climate simulation into the impact models (e.g., the hydrological models). The 

downscaling techniques are either statistical or dynamic downscaling. Of them, dynamic downscaling 

is normally performed through a regional climate model, which is discussed in the next section.             

3.3.3.2 Regional climate models (RCMs) 

RCMs are usually used for dynamic downscaling of the GCMs to provide more detailed information of 

the climate pattern in a particular region (Laprise 2008; Rummukainen 2010). While the GCMs provide 

the climate system for the whole world, the RCMs only present the climate processes for a limited region 

but with higher temporal-spatial resolution of climate information (Mearns et al. 2013). Currently, 

RCMs have grid spacing of approx. 0.22-0.44 degree (approx. 25-50 km) and six hours of time step (the 

highest temporal resolution). RCMs have boundary conditions based on GCMs’ simulation. Therefore, 

the dynamic downscaling of the GCMs via the use of RCMs is also known as the nested RCMs approach. 

It is noted that, in the scope of this study, downscaling of climate models was not performed, but the 

downscaling results from the EURO-CORDEX (Coordinated Downscaling Experiment for Europe) 

initiative project were inherited (Jacob et al. 2014). Thus, the above text aims to explain how future 

climate data are obtained.             

3.3.3.3 Coupling climate models and hydrological SWAT model 

Although most RCMs produce simulation results of the hydrological components, e.g., surface and 

subsurface runoff, the simulation results are usually not in agreement with the observed data 

(Teutschbein & Seibert 2010). As a result, the hydrological simulations yielded from the RCMs might 

not be used directly for hydrological impacts’ assessment at the catchment scales (Bergstrom et al. 2001; 

Graham et al. 2007a; Graham et al. 2007b). Alternatively, the approach of coupling the RCM and the 

hydrological model is commonly preferred by scientists for CC impacts’ assessment on hydrology and 

water resources at the catchment scale (Lawrence & Hisdal 2011; Meresa et al. 2016). According to this 

coupling method, the hydrological model is forced by climate inputs obtained from the ensemble 

RCMs_GCMs simulations. Thus, future change in the climate variables can be transferred to the 

hydrological model, to produce changes in future hydrological components at the catchment scale.  

Figure 17 presents the modelling chain used in this study for hydrological CC impacts’ assessment (e.g., 

projection of changes in future floods under CC). As can be seen in Figure 17, the sub-figures were 

taken from different sources: the graph of global emissions (van Vuuren et al. 2011); GCM (global scale, 

source: Irene Brox Nilsen, NVE); RCM (regional scale, source: https://www.euro-cordex.net); SWAT 

(source: http://www.brc.tamus.edu/swat/). The remaining sub-figures were created by the author.  

     



CHAPTER 3  STUDY AREAS, MATERIALS, METHODS 

33 

 

Figure 17 - Modelling chain for flood projections under global CC in the Norwegian Arctic catchments. 

3.3.4 Evaluation of climate change impacts on future floods 

CC is expected to alter the hydrological processes, especially changing the frequency and intensity of 

extreme events such as floods. An increase in the magnitude and frequency of floods due to CC has been 

observed (IPCC 2013; Quintero et al. 2018). Floods will cause severe damage to human life, 

infrastructures, the environment, ecosystem as well as to the socio-economic development of the 

affected areas (McGrath et al. 2015; Vinet 2017; Quintero et al. 2018). In order to mitigate the damage 

of floods, various measures have been developed in many countries, including constructing reservoirs 

for flood water storage or modifying land use structures in flood-prone areas, etc. (Engeland et al. 2020). 

To design those mitigation structures, it is normally required that the structures have enough capacity to 

withstand the magnitude of the design floods (or flood sizes, typically in m3 s-1) for a specific return 

period. For example, in Norway, a 200-year flood is commonly aimed at for flood hazard mapping, and 

the 500-year flood or 1000-year flood is used for dam-safety purposes (Wilson et al. 2011). In addition, 

in water resource management or in risk management, flood frequency analysis is considered a 

fundamental approach (Zhou et al. 2019). Furthermore, in numerous studies, the magnitude and 

frequency of floods are defined as two important indicators of the flood hazard index in flood risk 

assessment (Richter et al. 1996; Logsdon & Chaubey 2013; Xu et al. 2019b). Recently, several 

international studies stated that the magnitude and frequency of design floods, particularly extremely 

high floods, are being influenced by CC and land use change, among other impact factors (Rojas et al. 

2013; Madsen et al. 2014; Alfieri et al. 2015; Mallakpour & Villarini 2015). Therefore, it is necessary 

to estimate changes in the future magnitude and frequency of floods under the CC context. In this study, 
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the impacts of CC on future flood magnitude and frequency are assessed. The results from the study can 

assist risk managers and water resource managers to design more resistant flood mitigation measures.  

3.3.4.1 Flood magnitude and flood frequency analysis 

Flood frequency analysis is the estimation of a flood’s magnitude according to a given probability of 

occurrence or return period (Cunnane 1989; Wilson et al. 2011). Numerous statistical distribution 

models have been developed for flood frequency calculation at the specific locations, e.g., Log-normal, 

Gumbel (Generalized Extreme Value Type I-EV1), Generalized Extreme Value (GEV), Gamma, Log-

Pearson, Gaussian Normal, Pareto, Weibull, etc. (Cunnane 1989; Wilson et al. 2011). According to 

practical application in the Norwegian catchments, the proper distribution models are normally either 

the Gumbel distribution (with two model parameters, i.e., location parameter and scale parameter) or 

the GEV (with three model parameters, i.e., location parameter, scale parameter and shape parameter) 

(Midttømme et al. 2011; Wilson et al. 2011). Nevertheless, for the short river discharge time series data 

from 30-50 years, the Gumbel distribution is preferred to the GEV distribution (Wilson et al. 2011). 

This is because the GEV distribution model has a high number of model parameters, which results in 

the high flexibility of the frequency curve (Cunnane 1985; Saelthun & Andersen 1986; Wilson et al. 

2011). Moreover, it is difficult to estimate the shape parameter of the GEV distribution model because 

of short time series data. Thus, this could lead to high uncertainty in the estimation of extreme floods 

with a large return period (Odry & Arnaud 2017). Therefore, this study selected the Gumbel distribution 

to estimate flood frequency, based on each 30-year time series of the streamflow in the reference period 

(1976-2005) and the near future period (2041-2070). The procedure for flood frequency analysis in this 

study consists of the following steps: 

1. Assemble and rank the maximum annual peak flows for the 30-year daily time series data, estimated 

from the SWAT model (using climate inputs of the ensemble GCM_RCMs simulations), 

2. Calculate the annual exceedance probability (AEP) for each maximum annual peak flow (event) and 

its return period T (T=1/AEP). The formula for calculating AEP and T depends on the selected 

plotting position method. In this study, the Weibull method was applied (see Table 9, Equations (6) 

and (7)), 

3. Plot the values of the annual peak flows corresponding to their AEP or T, yielded in step 2, on the 

graph as points, 

4. Apply the statistical distribution model to develop the flood frequency curve to have the best fit with 

the plotting points of the annual peak flows in step 3. This study used the Gumbel distribution model. 

Estimation of the two parameters of the Gumbel model was based on the method of moments (MOM) 

(see Table 9, Equations (8) and (9)), 

5. Based on the frequency curve, the values of the interested peak flows for the given return periods 

were interpolated/extrapolated from the frequency curve. This study examined the estimated peak 

flows for 2-, 5-, 10-, 20-, 50-, 100-, 200-, 500- and 1000-year return periods, 

6. Apply the same procedure for each daily flow dataset in the reference period (1976-2005) and in the 

near future period (2041-2070), which were driven by five different ensemble GCM_RCMs, and for 

every six investigated Norwegian Arctic catchments.           
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Table 9 - Summary of all formulas used for flood frequency analysis. 

Tasks Formulas  

Weibull plotting position 

(Cunnane 1989; Wilson et al. 2011) 

𝐴𝐸𝑃 =
𝑚

𝑛 + 1
 (6) 

𝑇 =
1

𝐴𝐸𝑃
=

𝑛 + 1

𝑚
 

where 

n: number of events 

m: rank of an event 

(7) 

Gumbel distribution model (Generalized Extreme Value Type 

I-EV1) (Gumbel 1941; Singh 1998) 

  

+ cumulative distribution function (CDF) (Singh 1998) 𝐹(𝑥) = 𝑒𝑥𝑝[−𝑒−𝑦] 

where 

 𝑦 = 𝑎(𝑥 − 𝑏): reduced variate 

x: peak flow data 

𝑎 >0: a concentration parameter 

−∞ < 𝑏 < 𝑥: a parameter for measure of 

central tendency 

Parameters a and b were estimated in this 

study based on the most popular method of 

moments (MOM) (Lowery & Nash 1970; 

Landwehr et al. 1979; Singh 1998)  

(8) 

+ estimate the reduced variate 𝑦𝑡 for a given return period T 𝑦𝑡 = − 𝑙𝑛 {𝑙𝑛 (
𝑇

𝑇 − 1
)} 

where  

𝑇 =
1

1 − 𝐹
 

(9) 

 

3.3.4.2 Uncertainties analysis of the flood projection    

Quantification of the uncertainties in flood projection is an indispensable procedure to minimize the 

over-estimated/under-estimated flood scenarios in strategies for flood mitigation measures (Wiltshire 

1987; Wilson et al. 2011). This study addressed multiple uncertainty sources, which originated from the 

hydrological SWAT model, as well as the ensemble GCM_RCMs simulations, in the climate-hydrology 

modelling chain for flood estimations (i.e., magnitudes and frequencies of floods). Therefore, the 

estimated flood frequencies and magnitudes were provided, together with their uncertainties’ envelopes. 

The SWAT_CUP program generated the estimated daily discharges, which were distributed in the 

95PPU band/envelope. The flood frequencies and magnitudes were estimated based on discharge values 

at the median, lower limited (at 2.5%) and upper limited (at 97.5%) levels within the 95PPU band. Thus, 

all possible estimated flood values were provided in the 95PPU envelope. The uncertainties of the 

estimated floods in six Norwegian Arctic catchments with different geographical distributions, latitudes, 

scales and dominant flood regimes were quantified and compared together. 
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4 Results 
 

4.1 RQ1 – The current capacities and challenges for 
hydrological modelling in the Arctic environment 

4.1.1 Models’ capacities 

In Paper I, in total, twelve well-known models, which have recently been applied in the Arctic, were 

critically reviewed and evaluated regarding their competence to simulate hydrological processes in the 

Arctic environment. Such models were classified into two main groups: (1) surface hydrological models, 

i.e., Topoflow, DMHS (deterministic modelling hydrological system), HBV (Hydrologiska Byråns 

Vattenbalansavdelning), SWAT (soil and water assessment tool), WaSiM (water balance simulation 

model), ECOMAG (ecological model for applied geophysics) and CRHM (cold regions hydrological 

model); (2) subsurface hydrological models/groundwater models/cryo-hydrogeological models, i.e., 

ATS (Arctic terrestrial simulator), CryoGrid 3, GEOtop, SUTRA-ICE (ice variant of the existing 

saturated/unsaturated transport model) and PFLOTRAN-ICE (ice variant of the existing massively 

parallel subsurface flow and reactive transport model). As analysed in Paper I, the challenge for 

hydrological modelling in the Arctic is the models’ capacity to deal with permafrost hydrology. In 

particular, in their structures, the models should be able to describe as many of the important processes 

in the permafrost environment as possible. According to these criteria, Paper I yielded the results 

presented in Table 10.        

Table 10 - Capacities of each modelling tool to simulate the important processes in permafrost environments (results from 

Paper I). 

Model 
Important processes in permafrost environments considered in the model 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Topoflow  n/a n/a   n/a    n/a n/a 

DMHS   n/a       n/a  

HBV      n/a  n/a  n/a n/a 

SWAT   n/a   n/a    n/a n/a 

WaSiM   n/a       n/a  

ECOMAG   n/a       n/a n/a 

CRHM   n/a       n/a n/a 

ATS            

CryoGrid 3            

GEOtop            

SUTRA-ICE n/a n/a n/a n/a      n/a  

PFLOTRAN-ICE n/a n/a n/a n/a      n/a  
Note: (1) Surface energy balance; (2) snow process; (3) snow insulation; (4) snowmelt; (5) infiltration; (6) soil thermal; (7) soil moisture; (8) 

soil heterogeneities; (9) active layer thickness (ALT) dynamics; (10) subsidence; and (11) three-phase change of water during the freezing–

thawing process in near-surface soils. The symbol  denotes available, and the abbreviation n/a defines not available, unclear, or no information 

4.1.2 Models’ challenges 

According to the results in Table 10, the lack of some important processes in the permafrost environment 

in the models’ structures is the current challenge for such models to accurately simulate the hydrological 

processes in the Arctic. For example, many surface hydrological models do not include or do not present 

well the important processes which control the freezing–thawing process in soil, such as heat capacity, 



CHAPTER 4  RESULTS 

38 

thermo-dynamic equilibrium, ground surface temperature, and the three phase changes (ice, liquid, and 

gas) of water in near-surface soils. In addition, most surface hydrological models do not consider the 

effects of snow insulation on air-soil temperature relationships. The simplification of processes in the 

models’ structures is a further limit. For example, many surface hydrological models use a simple 

equation (1D vertical direction) for heat transfer, which is not able to simulate the multidecadal and 

multidimensional changes of the freeze–thaw process. Although most surface hydrological models are 

able to simulate the ALT dynamics, their performances are still poor, e.g., Topoflow, HBV, SWAT, 

WaSiM models. The reason is that such models employ relatively simple or empirical methods, while 

the dynamics of the ALT constitute a complicated process. In brief, the capacity for highly accurate 

simulation of ground thermal processes, groundwater flow and the freezing–thawing process in soil is 

the current challenge for many surface hydrological models in the permafrost-dominated Arctic 

catchments. On the other hand, the cryo-hydrogeological models have a greater capacity to describe 

subsurface hydrology or the freezing–thawing process (excluding the SUTRA-ICE model) because they 

consider the three phase changes of water in near-surface soils. However, some cryo-hydrogeological 

models (e.g., the SUTRA-ICE and PFLOTRAN-ICE models) do not integrate land surface schemes in 

their model structures. In addition, most cryo-hydrogeological models are only applied in ideal 

conditions, and their applications are still limited in field conditions. Furthermore, cryo-hydrogeological 

models have complex boundary conditions, which means it is hard to gather enough inputs in data-spare 

regions like the Arctic. Lastly, cryo-hydrogeological models are difficult for non-expert users, and 

intensive computational processes are required. 

4.2 RQ2 – Suitable hydrological models and verification of their 
performance for hydrological simulation/projection in the 
Arctic catchments 

In Paper I, the suitability of each model for different application situations is evaluated, as presented in 

Table 11. Considering the complex hydrological processes and the data-sparse feature of the Arctic, the 

selection of suitable models should satisfy two main criteria: (1) the capability of the model to capture 

the unique permafrost hydrology and (2) the possibility of the models to be applied with moderate input 

data.    

Table 11 - Recommended model candidates for use in the Arctic region (results from Paper I). 

Model 
Surface 

hydrology 

Subsurface 

hydrology 

ALT 

dynamics 

Catchment sizes Moderate input 

requirement Small Large 

Topoflow       

DMHS       

HBV       

SWAT       

WaSiM       

ECOMAG       

CRHM       

ATS       

CryoGrid 3       

GEOtop       

SUTRA-ICE       

PFLOTRAN-ICE       

Firstly, if the goal of a study is to only focus on surface hydrology, Topoflow, HBV, SWAT, ECOMAG, 

and CRHM could be the options. Of these, the conceptual model, HBV, and the semi-distributed models, 
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SWAT and CRHM, are more suitable for catchments with a moderate input requirement. On the other 

hand, the distributed models, Topoflow and ECOMAG, require intensive input data. Secondly, if the 

high accuracy of subsurface hydrology is weighted, DMHS, WaSiM and the cryo-hydrogeology models 

are the optimal selections, since they consider the three phase changes of water (i.e., ice, liquid and gas) 

during the freezing–thawing process of near-surface soils. However, GEOtop, SUTRA-ICE and 

PFLOTRAN-ICE can only be applied in the small-scale study areas, while ATS and CryoGrid 3 are able 

to run in large catchments. Thirdly, if accurate simulation of ALT dynamics is required, DMHS, ATS, 

GEOtop and PFLOTRAN-ICE are highly recommended, compared to other models. Finally, the 

selection of suitable hydrological models for the Arctic environment still depends on several other 

factors such as models’ ease-of-use, available inputs, the required research period and funding 

conditions, besides the models’ capacity to accurately simulate the hydrological processes in the 

permafrost environment. 

Although, in Paper I, the model candidates for different situations of applications were suggested, from 

Paper II to Paper IV, the scope of the study was narrowed to surface hydrological models, as the 

simulation and projection of surface hydrology (including streamflow and floods) are the main targets 

of those papers. Herein, the SWAT was chosen, among other suitable models, in consideration of its 

considerable capacity to simulate the hydrological processes in large and complex catchments under 

anthropogenic and CC impacts. In addition, the SWAT has been demonstrated to be a well-known model 

with numerous applications around the world. However, applications of the SWAT model are still 

limited in the Arctic. Thus, further application of the SWAT in this specific region should be conducted, 

to verify the model’s competence. Verification of the SWAT performance (results from Papers II to IV) 

is discussed in the following sections. 

4.2.1 Verification of the model candidate’s performances 

The SWAT model was selected as a suitable candidate, among others, for hydrological modelling in the 

Norwegian Arctic catchments in this study. Performance of the SWAT was verified from Papers II to 

IV, for different Norwegian Arctic catchments with variations in geographical distributions, latitudes, 

catchments’ scales and hydrological regimes. Different temporal resolutions for running the model, such 

as monthly (in Papers II and III) and daily (in Paper IV), were performed. The model’s performance was 

measured based on the statistical coefficients, which were integrated from Paper II to Paper IV and 

summarized in Table 12 and Table 13.             

Table 12 - Performances of the SWAT for hydrological simulation in the small-scale Norwegian Arctic catchments (results 

from Paper IV). 

 Catchments 
Gauging 

stations 

Area 

(km2) 

Hydrological 

regimes 
R2 NSE RSR Performance 

    Calibration (1998-2007) 

Lakselva Skarsvatn 297 
Mixed 

rainfall/snowmelt 
0.65 0.57 0.66 Satisfactory 

Strandvassbotn Strandå 26 Rainfall 0.60 0.51 0.70 Satisfactory 

Marsvikelva Mørsvik bru 32 Rainfall 0.69 0.65 0.59 Good 

Halselva Halsnes 143 Snowmelt 0.63 0.62 0.61 Good 

Karpelva Karpelva 129 Snowmelt 0.72 0.71 0.54 Good 

    Validation (1980s-2005) 

Lakselva Skarsvatn 297 
Mixed 

rainfall/snowmelt 
0.67 0.60 0.63 Good (1984-2005) 

Strandvassbotn Strandå 26 Rainfall 0.54 0.42 0.76 Satisfactory (1981-2005) 

Marsvikelva Mørsvik bru 32 Rainfall 0.71 0.66 0.58 Good (1986-2005) 

Halselva Halsnes 143 Snowmelt 0.65 0.63 0.61 Good (1981-2005) 

Karpelva Karpelva 129 Snowmelt 0.73 0.71 0.53 Good (1985-2005) 
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Table 13 - Performances of the SWAT for hydrological simulation in the large-scale, snowmelt-dominated Norwegian Arctic 

catchment Målselv (results from Papers II to IV). 

Gauging 

stations 

R2 NSE RSR Performance rating 

Monthly Daily Monthly Daily Monthly Daily Monthly Daily 

Calibration (1998-2007) 

Lundberg 0.73 0.58 0.69 0.55 0.56 0.67 Good Satisfactory 

Lille Rostavatn 0.79 0.76 0.67 0.64 0.58 0.60 Good Good 

Høgskarhus 0.74 0.64 0.65 0.62 0.59 0.62 Good Good 

Skogly 0.77 0.65 0.77 0.50 0.48 0.71 Very good Satisfactory 

Målselvfossen 0.85 0.61 0.82 0.60 0.42 0.63 Very good Good 

 Validation (2008-2012) 

Lundberg 0.81 0.45 0.77 0.34 0.48 0.81 Very good Unsatisfactory 

Lille Rostavatn 0.91 0.74 0.66 0.55 0.58 0.67 Good Satisfactory 

Høgskarhus 0.73 0.56 0.59 0.56 0.64 0.67 Satisfactory Satisfactory 

Skogly 0.87 0.67 0.82 0.63 0.42 0.61 Very good Good 

Målselvfossen 0.88 0.70 0.83 0.69 0.41 0.55 Very good Good 

 Validation (1981-2005) 

Lundberg  0.58  0.54  0.68  Satisfactory 

Lille Rostavatn  0.82  0.74  0.51  Good 

Høgskarhus  0.64  0.57  0.66  Satisfactory 

Skogly  0.66  0.37  0.79  Satisfactory 

Målselvfossen  0.69  0.64  0.60  Good 

In general, the SWAT model demonstrated its capacity to simulate surface hydrology in the Arctic 

environment, but its performance varied from catchment to catchment. Although the statistical 

coefficients revealed little difference between the model’s performance in large-scale and small-scale 

catchments, the variation in streamflow hydrographs was more clearly captured between simulated and 

observed data for large-scale catchments than for small-scale catchments (results from Paper IV, 

supplementary material). This could be because weather inputs from both ground-based weather stations 

and global reanalysis weather grids were outside the small-scale catchments’ boundaries, to some extent. 

In addition, spatial resolutions of soil and land use were not high for the small-scale catchments and, 

thus, the catchments’ characteristics may not be described well. Considering the different hydrological 

regimes of the catchments, the SWAT performed better for snowmelt-dominated catchments than for 

rainfall-dominated catchments. When the effect of the geographical distribution of the catchments is 

analysed, the performance of the SWAT in catchments near the coastal zone was lower than in the inland 

catchments. This was explained by the high variation of rainfall and river discharge in the coastal areas, 

and that the model needed greater efforts to capture such high fluctuations in the natural phenomenon. 

Furthermore, the model’s performance varied among hydro-gauging stations of the large-scale 

catchment, e.g., Målselv. This demonstrated high fluctuations in local climate features, as well as in 

characteristics of the Norwegian Arctic catchments. Thus, it is suggested from this study that the 

requirement for high resolution of weather inputs, as well as other spatial data such as topography, land 

use and soil, is important for hydrological simulation in the Arctic catchments. 

Besides testing the model’s performance for individual catchments, the transferability of model 

parameters between catchments was also examined, particularly in Paper IV. The outcomes from Paper 

IV revealed the high capacity to exchange model parameters between the donor and the recipient 

catchments (Table 14). This could open the door to transferring model parameters between gauged and 

ungauged catchments in the data-sparse Arctic regions. Exceptionally, model performance in the 

rainfall-dominated catchment (i.e., Strandvassbotn) near the coast was somewhat lower than the 

satisfactory threshold when it received model parameters from the donor catchment, Marsvikelva. Thus, 

greater effort is required to calibrate the catchment with the high variation in the rainfall regime.      
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Table 14 - Transferability of the calibrated model parameters (validation for the period of 2008-2012) in the Norwegian 

Arctic catchments (results from Paper IV). 

Recipient 

catchments 

Gauging 

stations 

Donor 

catchments 

Sub-

basin 
R2 NSE RSR 

p-

factor 

r-

factor 

Performance 

rating 

Altavassdraget  Målselv        

 Hammeren  1308 0.71 0.69 0.56 0.58 0.72 Good 

 Suohpatjohka  1318 0.67 0.65 0.59 0.75 1.05 Good 

 Masi  1350 0.69 0.66 0.58 0.77 0.78 Good 

 Kista  1370 0.68 0.67 0.58 0.70 0.85 Good 

Karpelva Karpelva Halselva 26 0.48 0.46 0.73 0.91 0.86 Satisfactory 

Halselva Halsnes Karpelva 34 0.71 0.69 0.56 0.97 1.45 Good 

Marsvikelva Mørsvik bru Strandvassbotn 26 0.68 0.65 0.59 0.63 1.22 Good 

Strandvassbotn Strandå Marsvikelva 21 0.45 0.35 0.81 0.56 0.37 Unsatisfactory 

 

4.2.2 Uncertainties of the modelling results 

Uncertainty analysis is an indispensable procedure in the modelling task. SWAT has demonstrated its 

strength to fulfil the requirement of the current modelling philosophy, i.e., the transparency of the model. 

This means that uncertainties in the modelling results were analysed during calibration and validation 

processes. According to this concept, not only are good modelling results based on the measured 

statistical coefficients, but the reliability of the simulated results is also measured. The results of 

uncertainties analyses, which were performed from Papers II to IV, are summarized in Table 15 and 

Table 16. According to Table 15 and Table 16, the capacity of the SWAT model to bracket the observed 

river flow data inside the 95PPU band was somewhat greater for monthly than daily simulation. In 

addition, the accuracy of the simulation results in the rainfall-dominated catchments and catchments 

close to the coast was lower than that of the snowmelt-dominated and inland catchments. Moreover, the 

thicknesses of the 95PPU bands were quite narrow for most of the investigated catchments. This 

indicated that the uncertainties of the SWAT models were low or that the modelling results were highly 

reliable.       

Table 15 - Uncertainties analysis of SWAT modelling in the large-scale, snowmelt-dominated Norwegian Arctic catchment 

Målselv (results from Papers II to IV). 

Gauging stations 

p-factor r-factor 

Monthly Optimal Daily Monthly Optimal Daily 

Calibration (1998-2007) 

Lundberg 0.88 

> 0.70 

0.56 1.08 

< 1.50 

0.70 

Lille Rostavatn 0.75 0.69 0.95 0.60 

Høgskarhus 0.80 0.56 1.10 0.82 

Skogly 0.98 0.73 1.59 1.15 

Målselvfossen 0.94 0.69 1.57 0.95 

 Validation (2008-2012) 

Lundberg 0.90 

> 0.70 

0.65 1.00 

< 1.50 

0.71 

Lille Rostavatn 0.72 0.75 0.89 0.58 

Høgskarhus 0.80 0.64 1.24 0.83 

Skogly 0.95 0.81 1.47 1.09 

Målselvfossen 0.91 0.80 1.58 1.00 

 Validation (1981-2005) 

Lundberg  

> 0.70 

0.52  

< 1.50 

0.72 

Lille Rostavatn  0.74  0.60 

Høgskarhus  0.43  0.86 

Skogly  0.67  1.15 

Målselvfossen  0.66  0.96 
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Table 16 - Uncertainties analysis of SWAT modelling in the small-scale Norwegian Arctic catchments (results from Paper 

IV). 

Catchments Gauging stations 

p-factor r-factor 
Time slice 

Optimal Daily Optimal Daily 

Calibration 1998-2007 

Lakselva Skarsvatn 

> 0.70 

0.77 

< 1.50 

1.71  

Strandvassbotn Strandå 0.55 0.45  

Marsvikelva Mørsvik bru 0.79 1.12  

Halselva Halsnes 0.82 1.26  

Karpelva Karpelva 0.94 1.08  

  Validation  

Lakselva Skarsvatn 

> 0.70 

0.77 

< 1.50 

1.64 1984-2005 

Strandvassbotn Strandå 0.48 0.43 1981-2005 

Marsvikelva Mørsvik bru 0.83 1.22 1986-2005 

Halselva Halsnes 0.89 1.21 1981-2005 

Karpelva Karpelva 0.92 1.08 1985-2005 

In brief, outcomes from Papers II to IV demonstrate that the model candidate SWAT has the capacity to 

simulate well the surface hydrology in the investigated Norwegian Arctic catchments. Moreover, the 

calibrated model parameters could be exchanged between catchments which have geographical 

proximity and hydrological similarity. Thus, it could be concluded that the SWAT is a potential 

candidate for the simulation and projection of surface hydrology in the Arctic environment. However, 

to achieve reliable simulation results in the Arctic environment, it is suggested that good quality input 

data should be gathered.      
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4.3 RQ3 – Potential for using reanalysis climate products to run 
the hydrological models in the data-sparse Arctic region 

In Paper II, the performance of a high-resolution reanalysis climate product, namely, Climate Forecast 

System Reanalysis (CFSR), was evaluated and compared with the existing scattered ground-based 

weather data. In particular, the performance of the CFSR data was verified in various ways regarding its 

capacity to drive the hydrological model SWAT for the simulation of water balance components and 

streamflow, as well as the reliability/uncertainty of the modelling results. The results showed that CFSR 

data was a potential source for running the hydrological model in the investigated Målselv catchment in 

the Norwegian Arctic. The following sections will present in detail the performance of CFSR data for 

the simulation of water balance components and streamflow, as well as uncertainties in the modelling 

results.  

4.3.1 The simulated water balance components 

Rainfall is the major input of water balance components. According to results from Paper II, the CFSR 

dataset generated higher spatial variation in areal rainfall across the investigated Norwegian Arctic 

catchment Målselv than the scattered ground-based dataset. The more uniform areal rainfall, presented 

by the scattered ground-based dataset, may not describe well the high variation in local climate 

conditions in the Arctic environment. Also, the total rainfall amount from the CFSR dataset was higher 

(approx. 24%) than that from the ground-based dataset for the investigated catchment. In addition, 

approx. 88% of the watershed area has a rainfall ratio between ground-based data and CFSR data of less 

than 1.0 (Figure 18). Thus, the simulation results of some water balance components (i.e., rainfall, actual 

evapotranspiration (ET), surface runoff (SUR_Q), lateral flow (LAT_Q), percolation (PERC), 

groundwater flow (GW_Q) and WYLD) obtained from the CFSR data were higher than those obtained 

from the ground-based data (Table 17).    

Table 17 - Comparison of the simulated water balance components. 

Weather dataset Rainfall ET SUR_Q LAT_Q PERC GW_Q WYLD 

Ground-based 
(mm) 915.2 144.8 286.7 92.5 282.2 255.3 740.8 

(%) 100 15.8 31.3 10.1 30.8 27.9 80.9 

CFSR 
(mm) 1192 170.8 286.5 391.1 310.5 127.5 834.9 

(%) 100 14.3 24.0 32.8 26.0 10.7 70.0 

Ground-based/CFSR 

difference 

(mm) -276.7 -26.0 0.2 -298.6 -28.3 127.9 -94.1 

(%) -23.2 -15.2 0.1 -76.4 -9.1 100.3 -11.3 
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Figure 18 - Deviation between rainfall sources from CFSR and ground-based data for running hydrological model in the 

Norwegian Arctic catchment Målselv (results from Paper II).    
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4.3.2 The simulated streamflow 

The performance of CFSR data for the simulation of monthly streamflow at the Norwegian Arctic 

catchment Målselv was examined in Paper II. It was found that the CFSR demonstrated its considerable 

capacity to replicate the monthly streamflow hydrograph, in terms of the timing and magnitude of peak 

and low flow (Figure 19), as well as the long-term average monthly streamflow (Figure 20). 

 

Figure 19 - Monthly streamflow simulation with CFSR data after calibration (1998-2007): (a) at Lundberg; (b) at Lille 

Rostavatn; (c) at Høgskarhus; (d) at Skogly; and (e) at Målselvfossen hydro-gauging station of Målselv catchment (results 

from Paper II). 
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Figure 20 - Long-term average monthly streamflow (in m3/s) during 1998-2007, generated from observed data and 

simulation with ground-based weather data and CFSR weather data (results from Paper II). 

Moreover, Paper II revealed that the lack of representative ground-based weather stations for the sub-

basins around the upstream hydro-gauging stations (e.g., Lundberg, Skogly, and Høgskarhus) resulted 

in somewhat inconsistent modelling results between the driven ground-based dataset and the CFSR 

dataset. In contrast, the simulated monthly streamflow in the downstream stations (e.g., Lille Rostavatn 

and Målselvfossen) was consistent between two driven datasets. This is because ground-based weather 

stations exist in the downstream sections but are lacking in the upstream sections. Therefore, this 

explained the limitation of the existing scattered ground-based weather data for running a hydrological 

model in the Arctic catchments, while the high-resolution CFSR dataset could fill the existing gap in the 

ground-based dataset. Results from Paper II opened the door to further applications of the CFSR dataset 

in Papers III and IV.  

In Paper III, the CFSR was used to run the SWAT model in the same study area, as well as for the same 

temporal resolution (i.e., monthly simulation) as in Paper II. According to results from Paper III, the 



CHAPTER 4  RESULTS 

47 

CFSR demonstrated its performance in driving the SWAT models for monthly hydrological simulations 

under different scenarios of catchment subdivision scales, while, in Paper IV, the CFSR dataset was 

used to drive the hydrological SWAT model in different catchments with variations in geographical 

distributions, latitudes, scales and hydrological regimes. The temporal resolution for running the models 

was finer, i.e., simulation with daily time steps. The results from Paper IV revealed that the SWAT 

model performed well in the daily streamflow simulation with the CFSR data inputs (Table 12 and Table 

13). However, compared to monthly simulation, the performance of daily simulation (i.e., based on 

statistical coefficients) was somewhat lower, e.g., the simulation results of the Målselv catchment (Table 

13).               

4.3.3 Uncertainties of the modelling results 

In Paper II, uncertainties of monthly streamflow simulation when using the CFSR data and the existing 

scattered ground-based data were quantified, based on two statistical measures, i.e., p-factor and r-factor. 

According to the outcomes of uncertainties’ analysis, the accuracy of modelling results (after calibration 

and validation) when using the high-resolution CFSR data was higher than that when using the existing 

scattered ground-based data (Figure 21).     

 

Figure 21 - Uncertainty analysis for monthly streamflow simulation: (a) p-factors for calibration period; (b) r-factors for 

calibration period; (c) p-factors for validation period; and (d) r-factors for validation period (results from Paper II). 

In Paper III, the reliability of using the CFSR to drive the SWAT model was additionally proved. It was 

found that uncertainties of the monthly simulated streamflow fluctuated among TDA schemes as well 

as among hydro-gauging stations within the Målselv catchment. However, the CFSR still demonstrated 

its reliability according to the results of two indicators, i.e., p-factor and r-factor. Furthermore, 

uncertainties of the daily streamflow simulation when using the CFSR data were further verified in Paper 
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IV. Noticeably, the accuracy of simulated streamflow at daily time steps was somewhat lower than that 

at monthly time steps, and the level of uncertainties varied from catchment to catchment (Table 15 and 

Table 16).  

In general, outcomes from Papers II to IV answered RQ3 of this thesis. The reanalysis product, CFSR, 

was a reliable source to drive the hydrological SWAT model in the investigated Norwegian Arctic 

catchments. The CFSR data could be an alternative source for running the hydrological model in the 

case of the monitoring network being scattered and unable to present well the high level of variation in 

climate conditions in the Arctic catchments.      

4.4 RQ4 – The effect of hydrological models (e.g., structures and 
parameterizations) and quality of weather inputs (e.g., 
spatial resolution) on the simulation results  

Normally, prior to using the hydrological model for impacts’ assessment scenarios, e.g., the impacts of 

CC, the model is firstly set up and well calibrated. The ways to set up the model and the quality of input 

data could affect the modelling results. Paper III studied such problems by investigating the influences 

of different solutions for catchment delineation and spatial density of weather input on hydrological 

simulations such as water balance components, snowmelt runoff volume and streamflow. The SWAT 

model was applied in the same study area as in Paper II, i.e., the Målselv catchment. The reanalysis 

weather data, i.e., the CFSR, was further applied in Paper III after its performance was verified in Paper 

II. The TDA technique for catchment subdivisions was applied in Paper III. In particular, four different 

TDA schemes, from the finest to the coarsest scheme, i.e., 200 ha, 2000 ha, 5000 ha and 10000 ha, were 

developed (Figure 22). Discretization of the catchment by using different TDAs resulted in changes in 

model structure (e.g., number and size of sub-basins, land use components, terrain and topographic 

attributes) and model parameters (in the calibration process), as well as in the integrated weather grids. 

As a result, changes in the hydrological simulation results could be expected to be due to such changes.  

 

Figure 22 - The changes in number of sub-basins and integrated weather grids by changes in TDA schemes 

(results from Paper III). 

The results from Paper III revealed that complexity of terrain and topographic attributes were 

significantly altered when TDA schemes changed from the fine level to the coarse level, including: (1) 
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total stream length ((-47.2%) – (-74.6%)); (2) average stream slope ((-68%) – (-83%)); and (3) drainage 

density ((-24.2%) – (-51.5%)). Furthermore, using different TDA schemes resulted in different numbers 

of integrated weather grids. This is because the SWAT model picks up the weather grid point (of the 

input weather grids), which is representative of each sub-basin, based on the nearest neighbour search 

(NNS) method. Figure 22 demonstrates that the number of weather grids declined from 21 grids in TDA 

200 ha to 20 grids (-5%), 18 grids (-14.3%) and 14 grids (-33.33%) in TDA 2000 ha, 5000 ha and 10000 

ha, respectively. The changes in the complex level of terrain and topographic attributes, as well as 

density of weather input, were expected to influence the results of the hydrological simulations.  

4.4.1 The changes in the simulation results of water balance components          

According to Paper III, when TDA schemes increased from 200 ha to 10000 ha, the simulation results 

of water balance components changed. For example, the annual mean rainfall, surface runoff and water 

yield increased, while PET (potential evapotranspiration), ET and lateral flow decreased. However, the 

magnitude of the increase/decrease patterns was not significant (Figure 23).  

 

Figure 23 - The changes in annual mean values of some water balance components in Målselv catchment by 

changes in TDA schemes (results from Paper III).  

In addition, the finer TDA schemes generated higher spatial variation of water components across the 

catchment. Thus, hotspots (e.g., locations with extremely high/low values in comparison to the 

surrounding areas) of water balance components were identified more clearly in the finer schemes than 

in the coarser schemes. 
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Figure 24 - The changes in spatial variation of annual mean values of some water balance components across the 

Målselv catchment by changes in TDA schemes: precipitation-PRECIP (a-d); actual evapotranspiration-ET (e-

h); surface runoff-SURQ (i-l); and water yield-WYLD (m-p) (results from Paper III). 

4.4.2  The changes in the simulation results of snowmelt runoff volume         

The four different TDA schemes had a consensus in their identification of locations with high or low 

simulated snowmelt runoff volume across the catchment (Figure 25). However, the maximum/minimum 

values of the simulated snowmelt runoff volume, as well as the impacted areas due to the simulated 

snowmelt, differed somewhat among TDA schemes. In general, the fine TDA schemes generated finer 

and higher ranges of simulated snowmelt runoff volume throughout the catchment.     



CHAPTER 4  RESULTS 

51 

 

Figure 25 - The changes in spatial variation of simulated annual mean snowmelt runoff volume (1998-2007) across the 

Målselv catchment by changes in TDA schemes (results from Paper III).  

4.4.3 The changes in the simulation results of streamflow          

In general, changing the TDA schemes did not significantly impact the capacity of the SWAT model to 

replicate the observed tendency of the monthly mean streamflow hydrograph at all five hydro-gauging 

stations within the Målselv catchment. The only differences among the designed TDAs were found in 

the simulated monthly mean peak flow (Figure 26). Herein, the accuracy of the simulated monthly mean 

peak flow was heterogeneous among the TDA schemes, as well as among five hydro-gauging stations 

across the catchment. This explained that factors other than the designed TDAs also affected the 

simulation streamflow results. Such factors could be the influence of the complexity of hydrological 

processes and topographic characteristics in the Arctic catchment.   
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Figure 26 - The changes in monthly mean streamflow (1998-2007) at five hydro-gauging stations within the 

Målselv catchment by changes in TDA schemes (results from Paper III). 

Moreover, applying different resolutions of TDAs resulted in discrepancies in the spatial variation in 

annual mean streamflows across the catchment (Figure 27).  

 

Figure 27 - The changes in stream order levels and spatial variation of annual mean streamflow (1998-2007) in 

the Målselv catchment by changes in TDA schemes. Q1-Q5 denote streamflows in stream order levels from 1 to 5, 

respectively (results from Paper III).  
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The fine TDAs generated higher levels of stream order. Thus, streamflow information could be exposed 

at minor stream levels under fine TDAs, while the coarse TDAs only presented streamflow data at the 

major stream levels. Simplification of stream networks may lose some important in-stream processes. 

Moreover, ignoring minor streams and their flow data may influence flood risk analysis at the sub-basin 

level. However, the minor stream networks may not be realistic and may not exist on the ground. In 

short, using different subdivision scales of the catchment might affect water resources management by 

zones’ subdivisions. Depending on the goals of different projects, the designed levels of catchment 

subdivision might change. Findings from Paper III formed the basis for the selection of TDA schemes 

in Paper IV. In particular, the fine TDA schemes were used in Paper IV, since accuracy of the simulated 

peak flow was required in the flood frequency analysis.  

4.5 RQ5 – The impacts of climate change on future flood  

Paper IV studied the impacts of CC on future floods. To conduct the study, the SWAT model was 

coupled with five different ensemble GCM_RCMs to project future changes in daily streamflows and 

subsequent flood frequency and magnitude. The projected climate data of the ensemble GCM_RCMs 

were generated within the framework of the EURO-CORDEX initiative project. The high emission 

scenario of the Representative Concentration Pathway (RCP8.5) was applied to investigate changes in 

floods from the reference period (1976-2005) to the near future (2041-2070). The magnitudes and 

frequencies of nine flood quantiles, from small to high, i.e., the 2-, 5-, 10-, 20-, 50-, 100-, 200-, 500- 

and 1000-year floods, were estimated, of which the 200-, 500- and 1000-year floods were defined as 

extreme floods, while the 2- and 5-year floods were classed as small floods. The projections of future 

floods were conducted at six Norwegian Arctic catchments, which vary in geographical distributions 

(e.g., from the coast to inland), latitudes (e.g., from the south to the north and above the Arctic Circle), 

catchment scales (e.g., from small-scale to large-scale) and dominant flood regimes (e.g., rainfall-

dominated, snowmelt-dominated and mixed rainfall/snowmelt). Moreover, uncertainties analysis was 

performed to detect the sources of uncertainties in the climate-hydrology modelling chain for flood 

projections. The subsections that follow will present the results from Paper IV.  

4.5.1 Projected changes in future climate 

Under climate conditions in the near future period (2041-2070), annual rainfall is expected to experience 

both increase and decrease patterns compared to that in the reference period (1976-2005), while the 

average annual air temperature would be in an upward trend and more intensified towards the north. In 

addition, the projected future CC was somewhat dissimilar among the ensemble GCM_RCMs, as well 

as among catchments. The projected changes in annual rainfall would be in the range of -32.9 to +33.7%, 

-35.1 to +35.3%, -46.0 to +35.9%, -24.7 to +32.4%, -31.0 to +33.5%, and -33.8 to +35.4% for Lakselva, 

Strandvassbotn, Marsvikelva, Målselv, Halselva and Karpelva catchments, respectively (Figure 28, 

middle). The average annual air temperature is expected to increase by 1.2-4.3oC, 1.2-4.4oC, 1.3-4.2oC, 

1.4-4.7oC, 1.5-5.0oC and 1.9-5.0oC, at Lakselva, Strandvassbotn, Marsvikelva, Målselv, Halselva and 

Karpelva catchments, respectively (Figure 28, right). The disagreements in the projections of CC among 

the ensemble GCM_RCMs were expected to yield uncertainties in the estimated flood frequencies and 

flood magnitudes.    
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Figure 28 - Deviations in the near future (2041-2070) of annual precipitation-pcp (in %) and annual average air 

temperature-tmp (in oC) from the reference period (1976-2005), projected from five ensemble GCM_RCMs (results from 

Paper IV). 
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4.5.2 Projected changes in flood magnitudes 

Figure 29 presents the average (avg) changes in nine flood quantiles from the historical (1976-2005) to 

the future (2041-2070) in six Norwegian Arctic catchments (numbered 1-6) under a high emission 

scenario (RCP8.5) of CC. According to Figure 29, the median magnitudes of future floods are expected 

to increase (e.g., from >1 to <22%) in most snowmelt-dominated catchments (excluding Karpelva 

(numbered 6)), while they would decrease (e.g., from -25 to <-5%) in the rainfall-dominated catchments. 

The mixed catchment would experience both decrease (e.g., >-2%, applicable for the small 2-year flood) 

and increase (e.g., from <4 to <14%) patterns.  

 

Figure 29 - The average (avg) changes in nine flood quantiles from the historical (1976-2005) to the future (2041-2070) in 

six Norwegian Arctic catchments under high scenario (RCP8.5) of CC (results from Paper IV). Q_U95PPU, Q_M95PPU, 

and Q_L95PPU denote the upper limited (at 97.5%), median and lower limited (at 2.5%) curves of the estimated discharges. 

4.5.2.1 Projected changes in magnitudes of small floods 

According to Paper IV, under climate conditions in the near future (2041-2070), the median magnitude 

of small floods (i.e., 2-year and 5-year floods) would decrease in the northern catchment (i.e., Karpelva 

with dominant snowmelt) and the southern catchments (i.e., Marsvikelva and Strandvassbotn (rainfall-

dominated)), as well as in the mixed catchment Lakselva (only 2-year flood), whereas an increase in the 

magnitude of small floods is estimated in the remaining catchments (Table 18).  
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Table 18 - Median changes in future magnitudes of small and extreme floods (results from Paper IV). 

   Small floods Extreme floods 

Catchments 
Area 

(km2) 

Flood 

regimes 

2-year 

flood 

5-year 

flood 
200-year flood 500-year flood 1000-year flood 

Karpelva 129 Snowmelt -1.7 -8.8 -27.8 -29.3 -30.3 

Halselva 143 Snowmelt +3.4 +7.6 +15.7 +16.9 +17.8 

Målselv 5815 Snowmelt      

    at Lundberg  Snowmelt +3 +11.4 +19.9 +20.7 +21.3 

    at Lille Rostavatn  Snowmelt +10.5 +11.6 +12.5 +12.6 +12.7 

    at Høgskarhus  Snowmelt +9.1 +7.6 +6.4 +6.3 +6.2 

    at Skogly  Snowmelt +4.4 +4.0 +3.6 +3.6 +3.6 

    at Målselvfossen  Snowmelt +1.2 +2.9 +5.5 +5.8 +6.0 

Marsvikelva 32 Rainfall -11.4 -18.6 -24.3 -24.8 -25.2 

Strandvassbotn 26 Rainfall -6.4 -6.1 -5.7 -5.7 -5.6 

Lakselva 297 Mixed -1.4 +3.9 +12.0 +13.1 +13.7 

4.5.2.2 Projected changes in magnitude of extreme floods 

In Norway, 200-year, 500-year and 1000-year floods have been employed for flood risk management 

(Wilson et al. 2011). It was projected from Paper IV that the trends of changes in the future magnitude 

of extreme floods would be similar to those of small floods. However, the absolute values of changes in 

the magnitude of extreme floods would be more significant than those of small floods, except at the 

Høgskarhus and Skogly hydro-gauging stations of the Målselv and Strandvassbotn catchments (Table 

18). 

4.5.3 Projected changes in likelihood exceedance 

The projections of changes in probable future flood events exceeding small floods and extreme floods 

were conducted for two different scenarios: (1) probable future flood events could exceed small/extreme 

flood quantiles, which were estimated from discharges of the reference period (1976-2005), and (2) 

probable future flood events could exceed small/extreme flood quantiles, which were estimated from 

discharges of the future period (2041-2070).  

In general, an overview picture of future floods, drawn from Paper IV, shows that, under future climate 

conditions (2041-2070), extreme flood events are expected to occur more frequently compared to 

climate conditions of the reference period (1976-2005). Such changes are projected in the southernmost 

areas and near the coast, with a rainfall-dominated regime, and in the northernmost areas, with a 

snowmelt-dominated regime, of the Norwegian Arctic. Meanwhile, in the inland catchments in the 

central area, with a snowmelt-dominated regime, the frequency of extreme floods is expected to 

decrease. Moreover, the changes in future extreme flood events are projected to be more complicated in 

the rainfall-dominated catchment and near the coast, i.e., the Strandvassbotn. For example, extreme 

flood events would experience both increase (e.g., the 500-year flood) or decrease (e.g., the 200- and 

1000-year floods) patterns. This is due to high variation of future rainfall, which is dominating the flood 

regime in such catchment. The projections of future changes in the frequency of small flood events are 

found to be totally opposite to those of extreme floods. 
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Figure 30 - Projected changes in likelihood exceedance of small and extreme floods, averaged from five ensemble 

GCM_RCMs inputs. 
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4.5.4 Uncertainties analysis in the projection of future floods 

Uncertainties analysis is an indispensable procedure in flood projections, in order to reduce the 

overestimation/underestimation of flood scenarios. In Paper IV, uncertainties were detected in the 

climate-hydrology modelling chain for flood projections. In particular, uncertainties from the 

hydrological SWAT model were quantified according to two statistical measures, i.e., the p-factor and 

the r-factor (Table 19). It was revealed that the SWAT model has the capacity to generate relative 

accuracy in the simulated daily streamflow (based on the p-factor) in the Arctic environment. In addition, 

the quite narrowness of the uncertainty envelopes (based on the r-factor) explained that the simulated 

results were highly reliable.     

Table 19 - Quantification of uncertainties from the hydrological SWAT model (results from Paper IV). 

Catchments 
p-factor r-factor 

Calibration Optimal Validation Calibration Optimal Validation 

Karpelva 0.94 

> 0.70 

0.92 1.08 

< 1.5 

1.08 

Halselva 0.82 0.89 1.26 1.21 

Målselv at Lundberg 0.56 0.52 0.70 0.72 

Målselv at Lille Rostavatn 0.69 0.74 0.60 0.60 

Målselv at Høgskarhus 0.56 0.43 0.82 0.86 

Målselv at Skogly 0.73 0.67 1.15 1.15 

Målselv at Målselvfossen 0.69 0.66 0.95 0.96 

Marsvikelva 0.79 0.83 1.12 1.22 

Strandvassbotn 0.55 0.48 0.45 0.43 

Lakselva 0.77 0.77 1.71 1.64 

It has been claimed by the scientific community that climate models have added further uncertainties in 

the climate-hydrology modelling chain for the projected hydrology (Kay et al. 2009; Chen et al. 2011; 

Woldemeskel et al. 2012). Findings from Paper IV verified such statements. In particular, Figure 31 and 

Figure 32 revealed uncertainties in the flood projections in different catchments through the use of 

different ensemble GCM_RCM simulations. It was found from Figure 31 and Figure 32 that, by using 

different ensemble GCM_RCMs inputs, the thicknesses of the uncertainty envelopes of estimated flood 

frequency in snowmelt-dominated catchments (i.e., Karpelva, Halselva and Målselv) were quite similar, 

while there was high variation in rainfall-dominated catchments (i.e., Marsvikelva and Strandvassbotn). 

Moreover, uncertainties from the inputs of climate models were found to be larger than those from the 

hydrological models in the climate-hydrology modelling chain of flood projection. For example, the 

calibration and validation results of the hydrological SWAT model in the Karpelva and Halselva 

catchments were better than those in the remaining catchments, but the uncertainty envelopes of the 

projected floods in such catchments were broader than those in the remaining catchments. This 

demonstrated that uncertainties from the ensemble GCM_RCMs inputs were higher in the Karpelva and 

Halselva catchments, compared to those from the hydrological SWAT model. Furthermore, the 

magnitudes of estimated floods were not similar when using different ensemble GCM_RCM 

simulations. This could influence the average/median values of the final results of the projected floods. 

Therefore, it was suggested that the selection of a suitable ensemble GCM_RCM simulation to drive the 

hydrological model in flood projection is very important. In addition, using the different time frames of 

the ensemble GCM_RCM simulation could result in different outcomes of flood projections. Although 

there is a scientific debate regarding the unreliability of using raw ensemble GCM_RCM simulation for 

studying CC impacts, findings from Paper IV revealed that using the raw outputs of climate models was 
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still reliable in some cases. For example, the magnitudes of the projected floods, when using the raw 

ensemble GCM_RCM simulation, were similar to those when using the bias-corrected ones (e.g., see, 

in Figure 31, the similar results from the first and third ensemble GCM_RCM inputs in Karpelva 

catchment or the similar results from all ensemble GCM_RCMs inputs in Lakselva catchment). 

 

Figure 31 - Uncertainties in the estimation of the probable peak discharges in the reference period (1971-2005) and the 

future period (2041-2070), in the small-scale Norwegian Arctic catchments (results from Paper IV). 
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Figure 32 - Uncertainties in the estimation of the probable peak discharges in the reference period (1971-2005) and the 

future period (2041-2070), in the large-scale Norwegian Arctic catchment Målselv (results from Paper IV). 

 

 

  



CHAPTER 5  DISCUSSION 

61 

5 Discussion 
 

5.1 Connection between the papers 

As previously mentioned in Table 1, all four papers are built together to form the foundation of this 

thesis and to answer the five research questions proposed in the introduction. The first paper, supporting 

RQ1, addressed CC issues, their potential impacts on hydrological processes and the associated 

hydrological extreme events in the Arctic. Also, this paper suggested the need for suitable modelling 

tools, as well as providing a comprehensive review of different well-known models for studying surface 

and subsurface hydrology. In Paper II, a model candidate (i.e., SWAT) was selected, among other 

suitable candidates that were recommended from Paper I, to verify its performance for hydrological 

simulation in a Norwegian Arctic catchment. After that, the outcome from Paper II was the basis for 

further applications of the SWAT model in Papers III and IV. Thus, the integrated results from Papers I 

to IV were used to answer RQ2 regarding the current performance of hydrological modelling tools 

applied in the Arctic environment. Moreover, the performance of the reanalysis weather data, i.e., CFSR, 

to drive the SWAT model was firstly tested in Paper II and then further applied in Papers III and IV. 

Therefore, the results from Papers II to IV were used to answer RQ3 regarding the possibility of applying 

reanalysis weather data in the data-sparse Arctic regions. Paper III, supporting RQ4, studied the effects 

of the structure and parameterization of the SWAT model and the density of weather input, whose 

performances were tested in Paper II, on hydrological simulations in the Arctic conditions. Finally, Paper 

IV, supporting RQ5, conducted projections of future floods under future CC, using the SWAT model 

and reanalysis weather data, CFSR, whose performances were verified in Papers II and III.                      

5.2  Strengths of the work 

This study focused on the issue that has received considerable attention among scientists from various 

disciplines, i.e., CC and its impacts in the Arctic. This is because CC is more intensified in the Arctic 

than in the rest of the world. Also, changes, caused by global warming, in the hydrological system in the 

Arctic affect not only the entire Arctic ecosystem but also the whole global climate. This study addressed 

the capacity, as well as the challenges, of hydrological modelling in the Arctic, by conducting a 

comprehensive review. In addition, most of the current challenges for hydrological modelling in general 

and for each model type in particular were critically discussed in the review paper (Paper I). This study 

performed hydrological modelling in the Arctic region which has complex hydrological processes and 

sparse data. The state-of-the-art physically based (or processes-based), semi-distributed model (i.e., the 

SWAT) was successfully run in the Arctic. The SWAT model has demonstrated its capability to fulfil 

the requirement of modelling philosophy, i.e., transparency of the modelling. This means that 

calibration, validation, sensitivity and uncertainty analyses are all performed in the modelling processes. 

Furthermore, the cohesive connection between the papers also constitutes a strength of the work.  

5.3 Limitations of the work 

One of the limitations of this work is that the performance of only one single surface hydrological model 

(i.e., the SWAT) is verified, after conducting a comprehensive review of hydrological models applied 

in the Arctic; however, the testing of multiple models, in order to compare performances among them, 

was not conducted. Next, the performance of only one reanalysis weather product to drive the SWAT 
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model in the data-sparse Arctic region is tested. It would be good if multiple reanalysis products were 

applied and their performances were compared. Also, this study did not perform bias correction of the 

climate model outputs, but it inherited the bias-corrected products from the EURO-CORDEX project, 

which applied only one single method, namely, Cumulative Distribution Function transformation 

(CDFt). Thus, more bias correction methods should be employed to assess the uncertainties of climate 

model outputs. This is because different bias correction approaches may yield different projection 

results. Moreover, in the projections of future floods, it is just limited at the projections of future changes 

in magnitudes and frequencies of floods, but the projections of the changes in flood depths and 

inundation areas across the catchments are not yet conducted.        
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6 Concluding remarks 
 

6.1 Conclusion 

Considering the severe impacts of CC on hydrological processes, and their consequences in the Arctic 

environment, there is a real demand for a suitable hydrological modelling tool supporting impacts’ 

assessment, as well as for the sustainable management of water resources, the environment, and 

ecosystem conservation. Thus, the ideas for this study were developed based on this foundation. Five 

research questions were proposed, as shown in the introduction section, to form the whole content of 

this thesis. Four main scientific papers were conducted to answer those research questions. The main 

conclusions that can be drawn from those papers are as follows:    

RQ1 - What are the current capacities and challenges of hydrological modelling in the Arctic 

environment? 

According to the work presented in Paper I, it is concluded that both surface and subsurface hydrological 

models have capacities as well as limitations regarding simulating the complex hydrological processes 

in the Arctic. For example, besides the capacity to simulate surface hydrological processes, many surface 

hydrological models are also able to describe the seasonal freezing–thawing processes in the permafrost 

environment, by employing analytical (e.g., Stefan’s equation for heat transfer) and numerical (e.g., 

finite difference, finite element and finite volume methods) solutions, while many subsurface 

hydrological models have considerable capability to simulate water flow and heat transfer in soil through 

the use of 3D equations. In addition, subsurface hydrological models, particularly cryo-hydrogeological 

models, are able to simulate quite well the three phase changes (e.g., ice, liquid and gas) of water in 

near-surface soil.  

Challenges for hydrological simulation in the Arctic environment are also drawn from Paper I. Firstly, 

it is not possible for surface hydrological models to simulate multidecadal and multidimensional changes 

in the freezing–thawing processes in the permafrost environment by employing the 1D heat transfer 

equation. In addition, some important processes in permafrost environments, such as heat capacity, 

thermodynamic equilibrium and the three phase changes (ice, liquid, and gas) of water in near-surface 

soils, have yet to be developed in surface hydrological models. Subsurface hydrological models do not 

include land surface schemes in their model structures; they also have complex boundary conditions, 

and it is hard for non-experts to use them. Moreover, data acquisition is an additional challenge for 

hydrological modelling in the data-sparse Arctic region.                       

RQ2 - Which types of hydrological model(s) are suitable for the Arctic conditions, and how can 

their performance in the simulation of hydrological processes in the Arctic catchments be verified?  

Suitable model candidates 

It was concluded from Paper I that the selection of suitable hydrological models depends on various 

factors and targets of each study. Besides the criteria for accurate simulation of hydrological processes 

in the Arctic environment, other factors, such as available input data, the required research period and 

funding conditions, could also influence the selection.  
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For studies that only focus on evaluating surface hydrology, Topoflow, HBV, SWAT, ECOMAG and 

CRHM could be good candidates. Of these, the semi-distributed models, namely, HBV, SWAT and 

CRHM, are suitable for catchments with moderate data requirements, while the fully distributed models, 

namely, Topoflow and ECOMAG, need intensive inputs, as well as model parameters. Application of 

the CRHM and Topoflow models requires expert knowledge of the catchments, since there are no 

calibration procedures for such models. In case the need is for highly accurate simulation of subsurface 

hydrology in permafrost environments, DMHS, WaSiM and the cryo-hydrogeological models are 

suitable candidates. Furthermore, if the studies aim to simulate active layer dynamics, DMHS, ATS, 

GEOtop and PFLOTRAN-ICE are good model choices. However, GEOtop, SUTRA-ICE and 

PFLOTRAN-ICE are only suitable for small-scale case studies, while ATS and CryoGrid 3 could be 

applied in large-scale catchments.      

Verification of model performances  

Papers II and IV concluded that the selected model candidate, SWAT, has the capacity to simulate well 

the surface hydrology in the Norwegian Arctic catchments. However, the results of monthly simulations 

seem to be somewhat better than those of daily simulations. In addition, model performances based on 

three statistical coefficients, R2, NSE and RSR, and the hydrograph of streamflow vary greatly between 

catchments and between hydro-gauging stations within a large-scale catchment. The performance of 

surface hydrological simulation in the snowmelt-dominated catchments is better than that in the rainfall-

dominated catchments. 

RQ3 - Considering the sparse data in the Arctic region, can the high-resolution global reanalysis 

weather data become reliable alternative sources and replace the existing scattered monitoring 

data, to run a hydrological model in the Arctic catchments? 

The conclusion was drawn from Papers II and IV that reanalysis weather data (CFSR) is a reliable source 

for running a hydrological model in the Arctic catchments. The reanalysis weather data could be an 

alternative in the case of the existing monitoring data being coarse/scattered, and many gaps existing in 

the time series of observed data.     

RQ4 - To what extent do the hydrological models (e.g., structures and parameterizations) and 

quality of weather inputs (e.g., spatial resolution) affect hydrological simulations in the Arctic 

catchments? 

Paper III concluded that changes in model structures (e.g., number and size of sub-catchments (sub-

basins), land use compositions, catchment’s characteristics through the catchment delineation process) 

and model parameterization (e.g., through the calibration process) could affect the results of 

hydrological simulations. The changes in model structures and model parameterization, as well as in the 

integrated weather grids, were caused by the designed TDA values. By increasing the value of TDAs 

(reducing the number of sub-basins), the annual mean values of PET, ET and lateral flow decreased 

slightly, whereas rainfall, surface runoff and water yield increased slightly. In addition, the estimated 

peak flow could be overestimated/underestimated by changes in TDA schemes. Moreover, changes in 

TDAs resulted in changes in model structures that could lead to fluctuation in model parameters’ 

sensitivity rank order in the calibration process. Furthermore, the density of integrated weather grids 

decreased, together with the increase in TDAs. As a result, this caused discrepancies in the spatial 

variation of water balance components (e.g., precipitation, ET, PET, surface runoff and water yield), 
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snowmelt runoff volume and streamflow across the catchment. The fine TDA schemes could produce a 

higher variation in water balance components, snowmelt runoff volume and streamflow. This would 

benefit the management of water resources or natural disasters (e.g., flood risk analysis) at sub-basin 

levels. However, choosing the very fine TDA schemes could influence the time to run or calibrate the 

model, especially in the large-scale catchments. Thus, it was recommended that, depending on the 

targets of each study, fine or coarse TDA schemes would be an appropriate choice.        

RQ5 - How is the projection of climate change impacts on hydrology and the associated extreme 

events (e.g., floods) in the Arctic catchments based on the current hydrological modelling tool? 

And how is the reliability/uncertainty of the projections quantified? 

The conclusion was drawn from the work in Paper IV that the physically based, semi-distributed SWAT 

model demonstrated its considerable capacity to simulate daily streamflow in the Norwegian Arctic 

catchments. Model performances, which were measured by statistical coefficients, varied from 

satisfactory to good between catchments, as well as between hydro-gauging stations within a large 

catchment. In addition, the possibility to transfer calibrated model parameters between catchments was 

high, and that verified the physical relationship of model parameters. Accordingly, the calibrated SWAT 

models were evaluated as highly reliable for studying CC impacts. Thus, the SWAT model was coupled 

with multiple ensemble Global and Regional Model outputs to project future changes in the magnitude 

and frequency of different flood quantiles, from small floods to extreme floods. It was projected that the 

median magnitudes of floods in the near future (2041-2070) would increase in most snowmelt-

dominated catchments but would decrease in rainfall-dominated catchments, compared to the reference 

period (1971-2005). The catchment with a mixed rainfall/snowmelt regime would experience both 

decrease (applicable for the small flood) and increase patterns. In southern catchments (rainfall-

dominated), and in northern catchments (snowmelt-dominated), extreme flood events (i.e., 200-, 500- 

and 1000-year floods) would occur more frequently, but with lower magnitudes. This pattern would be 

opposite to that of the catchments in the central Norwegian Arctic with a snowmelt-dominated regime. 

Moreover, the changes in future extreme flood events would be more complicated in the rainfall-

dominated catchment and near the coast, e.g., the Strandvassbotn, due to high variation of future rainfall 

in this area. The future change in likelihood exceedance of small flood events (i.e., 2-year and 5-year 

floods) would be in the opposite pattern to those of extreme floods.  

Moreover, it was concluded that uncertainties regarding the projected floods were heterogeneous 

between catchments, regarding the dominant flood regimes, catchment’s scale and the driven 

GCM_RCM simulations. For example, a higher variation in the projected floods was found in the 

rainfall-dominated catchments, when using different ensemble GCM_RCM simulations, compared to 

those in the snowmelt-dominated catchments. Uncertainty envelopes of the projected floods were larger 

in the small-scale catchments compared to those in the large-scale catchments. Noticeably, uncertainties 

from the ensemble GCM_RCMs simulations were larger than those from the hydrological SWAT model 

in the climate-hydrology modelling chain for flood projections. Furthermore, it was found from Paper 

IV that using raw climate model output to drive the hydrological SWAT model for flood projection was 

reliable in certain cases. Therefore, it is suggested that both raw and bias-corrected climate models’ 

outputs are considered in CC impacts’ assessment.    
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6.2 Research contributions 

The main contributions of this study are as follows: 

 Supporting the scientific community, particularly the modellers, with a comprehensive review 

of the current capacities and limitations of different hydrological models applied in the Arctic 

environment, 

 Building up and demonstrating the potential applications of a state-of-the-art SWAT model for 

hydrological simulations and CC impacts’ assessment in the Arctic, 

 Verifying the possibility of using global reanalysis weather data to drive the hydrological model 

in the data-sparse Arctic region, and of the reanalysis dataset being an alternative source to 

replace the existing scattered observed dataset, 

 Detecting the factors (e.g., model structure, model parameterization and outputs from climate 

models) that could affect the simulated/projected results of hydrology, 

 Providing projections of future CC impacts on different flood sizes, i.e., from small floods to 

large floods, in different catchments with variations in geographical distribution (e.g., from 

coast to inland), latitude (e.g., from southern to northern regions of the Norwegian Arctic), 

scales (e.g., from small-scale to large-scale) and dominant hydrological regimes (e.g., rainfall-

dominated, snowmelt-dominated or mixed rainfall/snowmelt), 

 Supporting the scientists, risk managers, planners and decision makers with further knowledge 

of future flood changes under a CC context, in order to propose proper strategies for flood 

mitigation and management, as well as contributing to a sustainable environment and ecosystem 

conservation.    

6.3 Suggestions for future works 

Based on the outcomes and limitations of the current works in this study, the following suggestions are 

made for supplementary future works:  

 Develop a hydrodynamic model using outputs from the hydrological model to project the 

changes in water level and inundated areas. This aims to support flood risk assessment under 

CC,  

 Assess/estimate quantitatively the impacts of future flood changes on the environment, and 

ecosystem.
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Abstract: The Arctic region is the most sensitive region to climate change. Hydrological models are

fundamental tools for climate change impact assessment. However, due to the extreme weather

conditions, specific hydrological process, and data acquisition challenges in the Arctic, it is crucial

to select suitable hydrological model(s) for this region. In this paper, a comprehensive review and

comparison of different models is conducted based on recently available studies. The functionality,

limitations, and suitability of the potential hydrological models for the Arctic hydrological process are

analyzed, including: (1) The surface hydrological models Topoflow, DMHS (deterministic modeling

hydrological system), HBV (Hydrologiska Byråns Vattenbalansavdelning), SWAT (soil and water

assessment tool), WaSiM (water balance simulation model), ECOMAG (ecological model for applied

geophysics), and CRHM (cold regions hydrological model); and (2) the cryo-hydrogeological models

ATS (arctic terrestrial simulator), CryoGrid 3, GEOtop, SUTRA-ICE (ice variant of the existing

saturated/unsaturated transport model), and PFLOTRAN-ICE (ice variant of the existing massively

parallel subsurface flow and reactive transport model). The review finds that Topoflow, HBV, SWAT,

ECOMAG, and CRHM are suitable for studying surface hydrology rather than other processes in

permafrost environments, whereas DMHS, WaSiM, and the cryo-hydrogeological models have higher

capacities for subsurface hydrology, since they take into account the three phase changes of water

in the near-surface soil. Of the cryo-hydrogeological models reviewed here, GEOtop, SUTRA-ICE,

and PFLOTRAN-ICE are found to be suitable for small-scale catchments, whereas ATS and CryoGrid

3 are potentially suitable for large-scale catchments. Especially, ATS and GEOtop are the first tools

that couple surface/subsurface permafrost thermal hydrology. If the accuracy of simulating the active

layer dynamics is targeted, DMHS, ATS, GEOtop, and PFLOTRAN-ICE are potential tools compared

to the other models. Further, data acquisition is a challenging task for cryo-hydrogeological models

due to the complex boundary conditions when compared to the surface hydrological models HBV,

SWAT, and CRHM, and the cryo-hydrogeological models are more difficult for non-expert users and

more expensive to run compared to other models.

Keywords: Arctic region; permafrost; climate change; hydrological model

1. Introduction

1.1. Extreme Global Climate Change in the Arctic Region

Global climate change (GCC) is more intensive in the Arctic region than in other parts of the

world [1,2]. The annual average temperature in the Arctic has increased at twice the rate of that in the

rest of the world since 1980 [1]. Since 2005, the surface air temperature in the Arctic has been higher

Geosciences 2020, 10, 401; doi:10.3390/geosciences10100401 www.mdpi.com/journal/geosciences
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than any recorded five-year period from 1880 [1]. During the 1971–2017 period, the annual mean

air temperature in the Arctic increased by around 2.7 ◦C [2]. It is predicted that the air temperature

in autumn and winter in the Arctic region will continue to increase by around 4 ◦C over the next

two decades [2]. Intensive climate change in the Arctic has a significant impact on the hydrological

processes in the region.

1.2. The Presence of Permafrost and Its Relation to Hydrological Processes in the Arctic Region

Permafrost accounts for approximately 24% of the exposed land area in the Northern Hemisphere [3].

Permafrost regions have different hydrology and hydrology-related conditions compared to non-permafrost

regions [4,5]. Permafrost can affect many hydrological processes in Arctic and sub-Arctic environments [6],

for example, surface and subsurface water fluxes [4,7–9]. Especially, permafrost accelerates the initiation

of runoff [10] and shortens the time of response to rainfall [4]. Additionally, the evapotranspiration

process from vegetation is limited in permafrost environments since permafrost prevents the downward

growth of roots and therefore limits the uptake of water for evapotranspiration [4,7]. Other processes,

including microclimatology and thermal regimes (related to the evapotranspiration process) [11,12],

water storage processes [4,13,14], and energy and water balances [13,14] are also affected by permafrost.

The thin soil layer overlying permafrost is the active layer that seasonally freezes and thaws [4,5]. This active

layer in the Arctic varies from several centimeters to one or two meters in depth [6] and most of the

hydrological and biogeochemical processes occur in this layer [7,15]. The active layer determines the

conditions for plant growth, gas fluxes, groundwater flow regimes, and soil formation [13]. While the active

layer supports many hydrological and biogeochemical processes, permafrost beneath the active layer limits

the amount of soil water percolation and subsurface storage of water [16]. Unlike non-permafrost soils,

where a groundwater system is available and deep, the subsurface movement of water in permafrost-affected

soil is mostly confined to the shallow active layer [6]. Because of this limitation of the vertical movement of

subsurface flow in permafrost soil, subsurface flow in the horizontal direction is therefore important [6,17].

Moreover, the presence of permafrost has influenced the magnitude of the specific base flow in some Arctic

basins. According to the study by McNamara et al., the specific base flow in a permafrost basin is lower

than that in a non-permafrost basin [10].

1.3. The Impacts of Permafrost Thawing on the Arctic Hydrological Processes

Climate change is expected to alter the hydrological processes in the Arctic [6,18],

e.g., through thawing of the permafrost layer, which has been observed from the field measurement data

obtained during the last decades [19–24]. Global warming is expected to lead to permafrost degradation

through changes in the three-dimensional distribution of permafrost (Figure 1), e.g., via changes in

the active layer thickness (ALT) [8,25–28], spatial extent [26], open vertical taliks [29], and lateral

taliks [30]. The thawing of permafrost is expected to change both surface and subsurface

hydrology in the Arctic [31]. Permafrost thawing leads to alterations in: (1) Water fluxes and

flow paths, including increasing soil drainage, increasing suprapermafrost flow (SUPRA-PF) [32],

runoff variation [33], increasing evapotranspiration (ET), increasing the exchange of water flow between

lakes and groundwater [34], increasing subpermafrost flow (SUB-PF), and increasing baseflow [35–38];

(2) secondly, water storage and ecosystem responses including water distribution, e.g., variation in soil

moisture [39], lakes and wetlands [40,41], groundwater (GW) storage [42,43]), aufeis (icing) volume [44],

decreasing winter river ice thickness [45], and ecosystem variables, e.g., increasing vegetation [46,47],

variation in surface water connectivity [48], increasing subsurface connectivity, decreasing streamflow,

and temperature seasonality [49]; and (3) also alterations in greenhouse gasses (GHGs) and the

surface energy flux [50]. It is projected that, because of permafrost degradation under global climate

change, surface water systems will be transferred to more groundwater-based systems in large-scale

assessments of the Arctic region [31].
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Figure 1. A sketch of impacts and responses of permafrost thawing on water fluxes and distribution.

The symbols of ∆,ր,ց, l, and ? denote change, increase, decrease, variation, and unknown changes,

respectively. Modified from [25].

1.4. Importance of Choosing the Suitable Modeling Tools for the Arctic Region

It has been demonstrated that the presence of permafrost has a high impact on hydrological

processes in the Arctic. The changes of Arctic hydrology (including surface and subsurface hydrology)

are expected to be more complicated under the context of global climate change, which causes permafrost

degradation and changes in other related processes. Hydrological models are state-of-the-art tools for

the investigation of global climate change impacts, and numerous models have been developed in

recent decades. Both surface and subsurface hydrological models have demonstrated their capacities

to simulate permafrost hydrology. For example, many surface hydrological models have approached

analytical solutions (by using a simple heat transfer equation, e.g., Stefan’s equation) and numerical

solutions (e.g., finite difference, finite element, and finite volume methods) to simulate the seasonal

freezing–thawing process. Many subsurface hydrological models have coupled a three-dimensional

(3D) equation for water flow (e.g., the 3D Richards equation) and a three-dimensional equation for

heat transfer, especially considering the three phase changes of water in near-surface soil. However,

both surface and subsurface hydrological models still have their limitations when dealing with

permafrost hydrology. For example, one-dimensional (vertical direction) heat transfer, used in

surface hydrological models, cannot be used to simulate multidecadal and multidimensional changes.

Additionally, surface hydrological models still lack important processes in permafrost environments,

such as consideration of heat capacity, thermodynamic equilibrium, and the three phase changes

(ice, liquid, and gas) of water in near-surface soils. Subsurface hydrological models do not feature

land surface schemes in their structures and have complex boundary conditions, and they are also

difficult for non-expert users to use, etc. Moreover, sparse data of the Arctic make it more difficult to

collect the necessary input data for the models. Therefore, finding suitable models for the Arctic is a

challenge for hydrological modelers. The current paper presents a review and analysis of the functions,

advantages, and disadvantages of different hydrological models and evaluates their suitability for

simulating hydrological processes in the Arctic region. The selection of suitable models is carried out

via answering the following pertinent questions:
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1. Do the models consider the important processes in permafrost environments, including the

following factors:

• Surface energy balance;

• Snow processes, snow insulation, and snow melt;

• Infiltration processes;

• The dynamics of soil thermal and soil moisture fluxes;

• Soil heterogeneities;

• The dynamics (seasonal thawing) of the active layer;

• Subsidence;

• A three-phase change of water (ice, liquid, and gas) during the freezing and thawing of

near-surface soil.

2. Can the models be widely applied for Arctic permafrost, particularly considering the following

requirements:

• Requirement for input data, i.e., large or small requirement;

• Requirement for computation processes, i.e., strong or low requirement;

• Ability to be applied with different sizes of watersheds, i.e., small-scale and/or large-scale.

2. Some Well-Known Hydrological Models Applied in the Arctic

2.1. Topoflow Model

Topoflow is a spatially distributed and process-based hydrological model that was firstly designed

for Arctic and sub-Arctic basins [6]. Topoflow has the capacity to simulate hydrological processes in

permafrost environments, including the surface energy balance, snowmelt (using simple degree day

or full energy balance methods), infiltration (using Green–Ampt, Smith–Parlange, or 1D Richards’

equation with three layers), and volumetric soil moisture content (using Darcian theory with multiple

uniform layers). Moreover, Topoflow is able to reasonably simulate the ALT with a relatively simple

method. However, such a method should be further improved in order to analyze the dynamics of the

active layer more accurately, since the active layer has a high impact on the hydrological processes

in permafrost environments [51]. The simulation of subsidence and a three-phase change of water

(ice, liquid, and gas) during the freezing–thawing process of the near-surface soil is not mentioned in

the Topoflow model.

The Topoflow model was applied in a small-scale watershed in the Arctic, Imnavait Creek,

(around 2 km2) in Alaska, United States, which was underlain by continuous permafrost [6].

The results showed that the model has good performance for simulation of the hydrological cycle,

including evapotranspiration, snowmelt, infiltration, runoff, and energy balances in the Arctic [6].

The hydrology change of the Imnavait Creek watershed under different climate change scenarios

was also simulated [6], including evaluation of the performance of the model. The model has some

limitations, such as the spatial variability of the active layer’s depth (not presented in the model) and

the simplification of the complex soil moisture heterogeneity, etc.

2.2. DMHS Model

The DMHS (deterministic modeling hydrological system) model was developed for both

mountainous and flat topographies, including basins with different climate zones, regardless of

their scales [52]. This model can be applied to any geographical area in the world [53]. The DMHS

model is a kind of physically-based, semi-distributed model for runoff estimation. The model can

simulate the important processes in permafrost-affected regions, such as the surface energy balance,

snow accumulation, snowmelt, sublimation, infiltration, soil heterogeneity, heat and water dynamics,



Geosciences 2020, 10, 401 5 of 26

and phase changes in soil layers [52–56]. Additionally, DMHS can also simulate the dynamics of the

ALT with reliable results [57].

Vinogradov et al. [52] applied the DMHS model to six mountainous watersheds of different sizes,

with areas varying from 40 to 2.4 million km2 across eastern Siberia and inside the Lena River basin in

the Arctic region, showing promising results. However, the DMHS model has limitations regarding the

routing scheme, which is especially not applicable to rivers which have a backwater phenomenon [58].

Another limitation of the DMHS model is the difficulty in the acquisition of soil profile properties in a

required format for the model [52]. This could be a limiting factor for its wide application in the Arctic,

where the available data are usually limited.

2.3. HBV Model

The HBV (Hydrologiska Byråns Vattenbalansavdelning) model is a rainfall–runoffmodel that

was first successfully applied in 1972 [59–63]. The HBV model has developed significantly since then,

and nowadays it is considered to be a standard tool for an increasing number of applications, such as

flood forecasting, forecasts of inflow to reservoirs of hydropower dams, assessment of the impacts of

climate change on water resources, or for the simulation of hazards in designing high hydropower

dams, etc. [64–67]. The HBV model can be used as a semi-distributed, conceptual model. The HBV

model considers the important processes of permafrost hydrology, such as the surface energy balance,

snow routine, snow melt, soil moisture, and infiltration. Especially, the model uses an accumulated

degree day coefficient, which is set up based on field measurement, to simulate the ALT [68]. In some

case, the HBV model is coupled with other thermal hydrological models, e.g., the CryoGrid model,

for simulation of the active layer dynamics [67].

The HBV model has been applied in more than 40 countries with different climate conditions [69].

In Nordic countries, the HBV model is currently used for flood forecasting and several other purposes,

such as the simulation of design flood for supporting the design for spillway structures [70],

water resource evaluation [71,72], and nutrient load estimates [73]. In Norway, the HBV model

has been applied since 1983 [74] and has recently been considered as an important tool for water

management by NVE (the Norwegian Water Resources and Energy Directorate). The model has been

used for flood forecasting under the impacts of climate change [75].

The advantage of the HBV model is that it requires less input data and computer facilities,

which is suitable for the sparse data in the Arctic region. Especially, the model could be a potential

tool for hydrological simulation in ungauged river basins. However, obtaining the optimum model

parameters for the HBV is not an easy task [64]. In addition, HBV model simplifies the equation

for water storage in the catchment. Moreover, the HBV model requires the most basic input data,

i.e., only daily precipitation and average daily air temperature, and these data are spatially averaged

over the watersheds by Thiessen polygons. However, the Thiessen polygon method does not consider

the elevation and temperature gradients in the basin. Hence, the interpolation method used in the

HBV model could result in unsatisfactory modeling results.

2.4. SWAT Model

The SWAT (soil and water assessment tool) model [76] is a robust watershed modeling tool

which was designed by the USDA (United States Department of Agriculture) Agricultural Research

Service, the USDA Natural Resources Conservation Service, and the Texas A&M University. The model

is currently used in more than 100 countries around the world. The SWAT is a physically-based,

semi-distributed, watershed-scale model which operates on a daily time step [77,78]. The model was

developed to simulate the impacts of land use management activities on water resources, sediment,

and agricultural chemical yields [79] in large, complex, and ungauged watersheds with variation in

soils, land uses, and management conditions over long periods of time [80,81]. Moreover, the model

supports the understanding of complex ecosystems, climate change, and agricultural production

issues around the world [82–90]. The SWAT model is capable of modeling river basins for thousands
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of square miles. Especially, it is able to simulate watersheds without requiring monitoring data.

Regarding permafrost hydrology, the SWAT is able to simulate the surface energy balance, snow cover,

snow melt, infiltration, soil moisture, soil heterogeneity, and lateral subsurface flow from the soil profile.

Additionally, the SWAT takes into account the presence and development of the ALT in the model’s

structure but only via using the average values [91]. Therefore, further development in the model’s

structure to obtain a higher resolution for the spatiotemporal variation of the ALT is recommended,

or otherwise coupling SWAT with other models to return better modeling results for the active layer

dynamics. Moreover, simulation of soil heat transfer, snow insulation effects, and subsidence has not

been developed yet for the SWAT model.

The SWAT model has been applied in many river basins in Europe and some regions in the

Arctic. For instance, the SWAT model was applied to assess the variation of the hydrological regime

and water quality under the impacts of human activities and climate change for the whole European

territory [92]. In another study, the SWAT model was coupled with carbon modules to assess organic

carbon exportation in an Arctic watershed via examination of the Yenisei River [91]. The advantage of

the SWAT model is its capacity to model the temporal and spatial variations of hydrological process in

large-scale Arctic watersheds [91]. The NRCS (Natural Resources Conservation Service) runoff curve

number method in the SWAT provides a relatively easy way for the model to be adapted to a wide

range of hydrological conditions [79].

2.5. WaSiM

The WaSiM (water balance simulation model) is a deterministic, spatially distributed hydrological

model that was firstly developed during 1994-1996 by Jörg Schulla [93]. The model was designed

to simulate water cycles in both surface and subsurface areas in river basins with variations in the

spatial and temporal scales [93]. The WaSiM is able to simulate the hydrological processes for the

catchments with sizes varying from <1 up to >100,000 km2 [93]. The WaSiM is able to solve several

issues in river basins, including assessing the impacts of climate change and land use change on

water resources, runoff forecasting, groundwater recharge, soil water, substance transport, etc. [93].

The model runs with time steps from minutes to several days [93]. The WaSiM can be used for both

short-term (e.g., floods) and long-term (e.g., water balance) simulations [93]. The WaSiM is able to

simulate the important hydrological processes in Arctic permafrost, including snow accumulation,

snow melt, infiltration, soil moisture, and soil heterogeneities. Additionally, the model can simulate

the ALT dynamics in permafrost regions. However, such simulation is relatively simple and is only

based on empirical approaches. Particularly, the WaSiM calculates the thaw depth based on the simple

formula given as follows [94]:

dthaw = α
√

nsf, (1)

where:

• dthaw is the thaw depth (m);

• α is an empirical coefficient (~0.02, . . . , 0.05);

• nsf is the number of snow-free days.

Since the calculation approach in Equation (1) is relatively simple, in order to simulate the

freezing–thawing process of the active layer more accurately, a physically-based heat transfer model is

recommended [94].

The model is able to deal with soil heat flux. It provides the variations of soil temperatures in three

dimensions. In addition, the WaSiM considers phase changes, which allows the model to simulate the

freezing and thawing of an active layer in permafrost environments [95]. However, the drawbacks

of the WaSiM is its high sensitivity to temporal and spatial resolutions. Therefore, the model is not

suitable for transfer to other scales without recalibration. Moreover, the WaSiM requires intensive

input data and model parameters for each grid cell of the model domain since it is a fully distributed

model. This is considered as a big challenge in light of the scarce data in the Arctic region.
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The WaSiM was first applied in the Arctic watershed by Liljedahl [93]. The long-term water

balance during 1999–2009 was evaluated and its changes under global climate change in the

permafrost-dominated watersheds were projected, such as the two vegetated drained thaw lake

basins near Utqiaġvik, formerly known as Barrow, in the north of Alaska. In another study, WaSiM was

applied to assess the influence of permafrost degradation on the Arctic tundra hydrology [96].

2.6. ECOMAG Model

The ECOMAG (ecological model for applied geophysics) model is a physically-based,

distributed hydrological model for the simulation of hydrological cycles and water quality transformation in

catchments in cold climate regions [97,98]. The model includes two separate submodels, e.g., a hydrological

submodel and a water quality submodel, which operate at a daily time step. The hydrological submodel

describes several processes occurring in the catchments, including surface runoff, evapotranspiration,

infiltration into soil layers, soil moisture, and subsurface flow. It is able to simulate the hydrothermal

processes, which are important in permafrost regions, including the formation of snow cover, snowmelt rate

(using the degree day method), ALT dynamics, infiltration of snowmelt into the unfrozen and frozen

soils by integrating the governing equations of basic hydrodynamic and thermodynamic of water,

heat vertical transfer, horizontal water flow, etc. [99]. The water quality submodel simulates the pollution

transformation process from point sources and non-point sources in the catchment, including geochemical

processes and the biochemical degradation process of dissolved organic pollutants.

The ECOMAG model was tested for hydrological simulation in numerous river basins in cold climate

regions such as Canada, Russia, Norway, and Sweden. The model has been applied in the large Arctic

basins, including the Mackenzie River basin in Canada, with satisfactory performance [100], and the

Lena River basin in Russia, also with satisfactory performance [101]. Additionally, the ECOMAG was

approached to investigate climate change impacts on the water regimes of those river basins [102,103].

2.7. CRHM Model

The CRHM (cold regions hydrological model) is a physically-based, semi-distributed model

developed for hydrological cycle simulation over small to medium river basins in cold climate

regions [104]. The CRHM is a flexible, object-oriented modeling system with the capacity to simulate a

wide range of important permafrost-related processes in the cold regions, including snow processes

(e.g., snow redistribution by wind, snow interception, sublimation, snowmelt, and infiltration of

snowmelt into unfrozen and frozen soils), glacier melts, actual evaporation and evapotranspiration,

radiation exchange, and soil moisture balance, etc. The CRHM is able to simulate the ALT dynamics

by approaching Stefan’s heat flow equation [105] as follows:

ξ =

√

2kF

Lwρ
, (2)

where:

• ξ is the frost/thaw front depth (m);

• k is the thermal conductivity of the soil (W m−1 k−1);

• F is the surface freeze/thaw index (◦C degree days);

• L is the latent heat of fusion (J kg−1);

• w is volumetric water content (m3 m−3);

• ρ is the bulk density of the soil (kg m−3).

The CRHM is flexible in terms of its spatial solutions (from lumped to distributed) and model

structures (from conceptual to physically-based), depending on the objectives of the studies and

available input data for catchments. This is considered as a benefit for use in the Arctic region,

which features sparse data. However, there is no required calibration for the model, and the model
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parameters are normally obtained based on the expert knowledge of the modeled catchment. Therefore,

the modeling results have high uncertainty.

2.8. ATS Model

The ATS (arctic terrestrial simulator) model, which was developed from Amanzi code [106], is an

integrated tool of the permafrost-related process model and the physically-based model [107]. The model

couples the surface energy balance model [108] and the three-dimensional (3D) subsurface thermal

hydrology model [109,110] for multidimensional simulations in permafrost-affected regions. The model

employs the diffusion wave equation to simulate the surface hydrology, energy transport, and phase

change. However, simulation of the dynamic topography due to the influence of thaw-induced subsidence

has not been developed yet.

The ATS model is an open source model and one of the first tools for addressing fully-coupled

surface/subsurface permafrost thermal hydrology in multidimensional simulations, which is considered

as the existing challenge for hydrological models in permafrost environments. By approaching a novel

multiphysics management system [111] to increase the complexity of the model, the ATS model can meet

the challenge of operating many numerical models in permafrost regions, i.e., performing nonlinear

constitutive modeling, phase change modeling, the coupling of several processes in different spatial

domains, the ability for simulating transitions among different states on the land surface, and the

possibility for using an unstructured grid according to the given topographical features. Moreover,

the ATS model has a fine-scale structure and is suitable for the specific topography of the polygonal

Arctic tundra, which requires a high spatial resolution, large spatial model domain, and large grid

size because of long-range surface flow. Therefore, the incorporation of the extension ATS code with

good parallel scaling of the Amanzi code becomes a potential tool for investigating the responses of

small-scale topographic features in permafrost environments in the context of global climate change.

Moreover, the ATS is able to simulate comprehensive snow processes, such as an increasing snow

density with snow age, snow insulation, and snow thermal conduction [107].

However, the ATS model has limitations regarding (1) solving the convergence of nonlinear

systems around the transition between freezing and thawing [112] and (2) simulating topography

change by subsurface ice melting requiring the movement of grid/mesh cells but having to maintain

the water and energy balance inside the moving grid cells.

2.9. CryoGrid 3 Model

The CryoGrid 3 model is a new, simple, and one-dimensional land surface model developed to

simulate ground surface temperatures in permafrost-affected regions. The model was built based

on the thermal permafrost model CryoGrid 2 [113] by developing further calculation of the surface

energy balance and modifying the snow scheme, which are important factors in permafrost hydrology

processes. The CryoGrid 3 model is considered as the upper boundary condition of the CryoGrid 2

model. The surface energy balance describes the processes of energy transfer between the atmosphere

and the ground. Such processes include the radiation balance, the exchange of sensible heat, evaporation,

etc. [114], as described in the following equation:

∂E

∂t
= Sin + Sout + Lin + Lout + Qh + Qe + Qg, (3)

where:

• Sin, Sout are the short-wave radiation input and output, respectively (W m−2);

• Lin, Lout are the long-wave radiation input and output, respectively (W m−2);

• Qh, Qe, Qg are the sensible, latent, and ground heat fluxes, respectively (W m−2).

The CryoGrid 3 model is able to simulate other important processes in permafrost-affected regions,

including subsurface heat transfer (considering the phase change of soil water), energy transfer,
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and mass balance of the snowpack. The subsurface thermal scheme is described by the concept of

conductive heat transfer via Fourier’s law as the following equation:

ceff(z, T)
∂T

∂t
− ∂
∂z

(

k(z, T)
∂T

∂z

)

= 0, (4)

where:

• ceff(z, T) is the effective volume capacity (J m−3 K−1);

• k(z, T) is the thermal conductivity (W m−1 K−1).

The energy transfer within the snowpack is conductive heat transfer, which is similar to the soil,

as in the following equation:

csnow(z, T)
∂T∗

∂t
− ∂
∂z

(

ksnow(z, T)
∂T∗

∂t

)

= 0, (5)

where:

• csnow(z, T) is the snow heat capacity (J m−3 K−1);

• ksnow(z, T) is the thermal conductivity of the snow (W m−1 K−1);

• T∗ is the snow temperature (◦C).

The CryoGrid 3 model is run in the MATLAB programming environment. The model has simple

code and is open for modification. Therefore, the CryoGrid 3 model can be considered as a platform to

integrate further processes in permafrost environments.

The CryoGrid 3 model has been tested in Arctic conditions with the large Lena River basin

and showed satisfactory results to simulate the surface temperature, surface energy balance,

ground temperature, ALT, and ground subsidence [115]. However, it is not guaranteed that the

model could perform well in other permafrost basins. Instead, further considerations should be

made before applying the model to a wider range of permafrost-affected regions. The CryoGrid 3

model has three major challenges [115]: (1) The model considers relatively simple snow processes

(e.g., the assumption of a constant density of snowfall); (2) secondly, it is unclear that the model could

perform well with the simulation of energy transfer and ground thermal regimes in regions with high

vegetation cover; and, finally, (3) the simulation of the water balance needs further improvements,

particularly for the simulation of seasonal changes.

2.10. GEOtop Model

The GEOtop model is a physically-based, distributed hydrological model that couples the water

and energy balance [116,117]. The model was developed specifically for small catchments and complex

mountain terrains. The GEOtop model combines the strengths of both land surface models and flood

forecasting models [117]. In the GEOtop model, the interaction of topography with radiation is treated

in detail, which is normally not considered in many hydrological models. The model simulates not only

the energy balance (e.g., evapotranspiration and heat transfer) but also the water cycle (e.g., cycles of

water, snow, and glaciers). The energy and mass balance is calculated based on a 3D Richards

equation [118] and a 1D energy equation [112]. Vegetation, which contributes to the turbulent fluxes,

is calculated based on a double layer scheme [119]. The snow processes (e.g., snow accumulation and

snowmelt) are simulated by a multilayer discretization of the snowpack [120]. Additionally, a blowing

snow module [121,122] is also included in the model to calculate the accumulation and blowing of

snow because of wind.

The GEOtop model has been applied in a wide range of studies, including studies of soil

water content [123], evaporation from soil [124,125], transpiration from vegetation [119], snow in

basins [120,126,127], surface temperature [125], the temperature of soil and rock under freezing
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conditions [128], the mass balance of glaciers [129], interactions between the ground water table and

thaw depth [118], and discharge at basin outlets [116].

The GEOtop model is a fully distributed model and requires intensive inputs, model parameters,

field measurements, and experiments, as well as intensive computation. Additionally, modification of the

code in the GEOtop model is not allowed, unlike other cryo-hydrogeological models (e.g., CryoGrid 3 or

SUTRA-ICE).

2.11. SUTRA-ICE Model

The SUTRA-ICE [130] model was developed by modification of the existing SUTRA

(saturated/unsaturated transport) numerical model [131,132] in order to simulate the processes of

subsurface ice formation and melting, which is important for heat transport, groundwater, and biological

activities in permafrost environments [130]. Basically, the SUTRA model is a finite element numerical

model for the simulation of saturated/unsaturated groundwater flow and solute energy transport.

Regarding the working mechanisms, the SUTRA model approaches the problem via a two-dimensional

hybrid method (e.g., finite element and finite difference methods) to describe two interdependent

processes, including: (1) Fluid density-dependent saturated or unsaturated groundwater flow;

and (2) the transport of a solute or thermal energy in groundwater flow, as well as in the solid

matrix of the aquifer. Especially, the SUTRA model has the capacity to model the thermal regimes,

thermal energy storage, and thermal pollution in aquifers, and additionally subsurface heat conductivity,

geothermal reservoirs, and natural hydrogeological convection. In addition, the SUTRA model has

been applied to investigate the impacts of climate change on permafrost thawing, ALT dynamics,

and groundwater flow in cold climate regions [133–138]. Besides the functions existing in the SUTRA

version, the modified SUTRA-ICE (with 2-dimensional and 3-dimensional versions) model can deal

with the subsurface, saturated/unsaturated freezing processes (including phase changes), latent heat,

permeability, heat capacity, thermal conductivity, and liquid porosity [139]. The SUTRA-ICE model has

demonstrated its high capacity to simulate the formation and melting of near-surface ice and subsurface

temperature distribution in cold climate region in previous studies [140]. The SUTRA-ICE model is a

free model (applying for version 3.0) and it allows users to modify the code for further development.

This is considered as an advantage of the model. However, the model has some challenges [139]:

(1) The boundary conditions are complex; (2) it is still a problem to simulate freezing in unsaturated

zones; (3) the model is not accurate for the simulation of active layer dynamics when the pore space is

filled with both liquid and ice; (4) intensive computation is required; (5) the model is not able to utilize

massive parallel computing hardware [109]; and (6) field verification is needed.

2.12. PFLOTRAN-ICE Model

The PFLOTRAN-ICE is a non-isothermal, single component (water), three-phase (ice, liquid,

and gas) numerical model that has been recently developed to simulate subsurface hydrology in

permafrost-affected regions [141]. The model calculates the balance of mass and energy for water

components in three phases (ice, liquid, and gas) via the following equations [142]:

∂

∂t

[

∅

(

sgηgX
g
w + slηl + siηi

)]

+ ∇.[vlηl] −∇.
[

∅sgτgηgDg∇X
g
w

]

= QW, (6)

∂

∂t

[

∅

(

slηlUl + sgηgUg + siηiUi

)

+ (1−∅)ρrcrT
]

+ ∇.[vlηlHl] −∇.[k∇T] = Qe, (7)

vl =
krlk

µl
∇
[

pl + ρlgz
]

, (8)

where:

• Subscripts l, g, and i, are the liquid, gas, and ice phases, respectively;

• ∅ is the porosity (-);
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• sl, sg, si (constraint: sl + sg + si = 1) are saturation indices of the liquid, gas, and ice phases,

respectively (m3 m−3);

• ηl,ηg,ηi are the molar densities of the liquid, gas, and ice phases, respectively (kmol m−3);

• X
g
w is the mole fraction of H2O in the gas phase (-);

• τg is tortuosity of the gas phase (-);

• Dg is the diffusion coefficient in the gas phase (-);

• T is the temperature (it is assumed that all the phases and soil are in thermal equilibrium) (K);

• cr is the heat capacity of the soil (J K−1);

• ρr is the density of the soil (kg m−3);

• Ul, Ug, Ui are the molar internal energies of the liquid, gas, and ice phases, respectively (kJ mol−1);

• Hl is the molar enthalpy of the liquid phase (kJ mol−1);

• QW is the mass source of H2O (kmol m−3 s−1);

• Qe is the heat source (kmol m−3 s−1);

• ∇() is the gradient operator (-);

• ∇. () is the divergence operator (-);

• vl is Darcy velocity of the liquid phase (m s−1);

• krl is the relative permeability of the liquid phase (-);

• k is the absolute permeability (m2);

• ρl is mass density of the liquid phase (kg m−3);

• pl is the partial pressure of the liquid phase (Pa);

• g is acceleration because of gravity (m s−2);

• z is the vertical distance from a reference datum (m).

Together with the above balance equations, further requirements for the constitutive

relationships (e.g., the mole fraction of water vapor, saturations of the phases, thermal conductivity,

relative permeability, and water vapor diffusion coefficient) for the simulation of non-isothermal

elements and the multiple phases of water are also described in the PFLOTRAN-ICE model.

The PFLOTRAN-ICE model makes use of the capacity in the PFLOTRAN code [143] for finding

highly-scalable, parallel subsurface multiphysics solutions. Therefore, the model can simulate the

degradation of ice wedge polygon bogs, which requires elucidation of three-phase change and relatively

large model domains [144]. Although the PFLOTRAN-ICE model considers one component (water),

the model is able to produce similar results to the more complicated two-component model [142]

for the same application. This could be an advantage for the simulation of permafrost hydrology

by using fewer demanding components (e.g., a single component of water substance). Moreover,

the PFLOTRAN-ICE model is suitable for the large-scale range of model domains (i.e., kilometer scales).

However, the PFLOTRAN-ICE model does not consider surface flows, the surface energy balance,

and topography dynamics because of permafrost thawing and the melting of ground ice. Such processes

are expected to be coupled with subsurface hydrology for the comprehensive modeling of hydrology

in permafrost-dominated regions [144].

2.13. The Present Capacities and Challenges of Hydrological Models to Deal with Permafrost Hydrology in the Arctic

2.13.1. Surface Hydrological Models

Surface hydrological models have demonstrated their capacity to simulate the seasonal freeze–thaw

process in soil by approaching analytical and numerical solutions [25]. Regarding the analytical

solutions, many physically-based models have incorporated a simple heat transfer equation

(e.g., Stefan’s equation [145]) into their structure to deal with the soil freeze–thaw process. Because of the

simplification of soil freeze–thaw algorithms, simulation for large-scale basins is an advantage [146,147].

Additionally, Stefan’s equation may be easily modified to include other processes, such as the temporal
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variation of soil moisture [148], spatial variation of the moisture content, thermal properties [149],

the freezing–thawing process in two directions [150], heat advection [151], and the soil heat

capacity [152]. Beside the analytical solutions, some surface hydrological models, especially distributed

models [153–156], have approached numerical solutions (e.g., via finite difference, finite element,

and finite volume methods) to simulate the ground freezing–thawing process. Such numerical

approaches are able to deal with complex conditions (e.g., varying soil heterogeneities and complex

temperature boundaries) or complex processes (e.g., coupling heat and water transfer, discontinuous

freezing–thawing process, and the temporal variation of thermal factors). Compared to analytical

solutions, numerical solutions perform better in the context of the freezing–thawing process in the

ground [147]. For example, numerical solutions simulate the freezing and thawing process in soil

over a wide range of temperatures, unlike the assumption of sharp change by analytical solutions.

Therefore, such a freezing range permits some subsurface water flow at sub-zero temperatures.

However, there are still numerous challenges for surface hydrological models in permafrost

environments [25]. First of all, many surface hydrological models coupled with numerical soil freezing

models only consider a vertical direction of heat transfer but ignore the lateral direction, which is

crucial to the isolated and discontinuous permafrost bodies located in the lowland regions [157,158],

as well as in steep and alpine regions [159,160]. Therefore, one-dimensional heat transfer is only

suitable for simulating the seasonal freeze–thaw process of permafrost, but not for multidecadal

and multidimensional changes. Secondly, many surface hydrological models do not consider the

important factors influencing the rate of the freezing–thawing process in soil, such as the heat capacity

and soil layering. A lack of those factors could result in an inaccurate calculation of frost, depths of

thawing, subsurface water storage, and groundwater routing. Thirdly, many surface hydrological

models or numerical models of soil freezing–thawing processes do not represent the thermo-dynamic

equilibrium well, particularly the disequilibrium phase change processes occurring during freezing and

thawing, as well as disequilibrium pressure during the infiltration of snowmelt into partially frozen

soils. Fourthly, surface hydrological models, even complex physically-based models, cannot accurately

simulate the ground surface temperature, which controls the seasonal freezing–thawing process of soil

under snowpack and snow-free conditions. This is because ground thermal regimes can be highly

sensitive to model parameters [140,161,162]. Lastly, in permafrost environments, surface hydrological

models are still unable to clearly represent the relationship between the hydraulic conductivity (K) of

soil and the ice, liquid, and gas existing in partially frozen and unsaturated soils. For example, it is

unclear whether the K factor of partially frozen soils is decreased or not by resistance factors.

2.13.2. Subsurface Hydrological Models/Groundwater Models/Cryo-Hydrogeological Models

Several one-dimensional groundwater models, coupled with energy transport models, have been

developed to simulate the freezing and thawing process in soil since the 1970s. However, the simulation

is only limited to the vertical direction. In the last decade, many multi-dimensional models have

been developed to support groundwater simulation in permafrost environments [109,130,141,163,164].

Such models work by coupling a three-dimensional equation for water flow (the Richards equation)

into a three-dimensional equation for heat transfer (e.g., heat conduction, heat advection, and thermal

dispersion). Such models are also known as cryo-hydrogeological models, and they take into account

the pore water phase change [165] and the impacts of the latent heat of it on the effectiveness of

subsurface heat capacity, as well the decreasing hydraulic conductivity of soil because of the formed

pore ice. Moreover, cryo-hydrogeological models have been approached in numerous studies of

climate change impacts (e.g., the increase of the ALT) on groundwater (e.g., increase of baseflow and

the groundwater exchange between supra-permafrost and sub-permafrost aquifers) in permafrost

basins [134–138,157,166–170].

Beside the existing achievements, the cryo-hydrogeological models have several limitations.

First of all, most of the models have been applied in ideal environmental conditions, except for a

few studies conducting investigations under field conditions [108,157,171]. This is due to the lack of
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hydrogeological data at high altitude or latitude regions. Secondly, most of the cryo-hydrogeological

models do not include the land surface scheme and thermal processes in their structure. Therefore,

the boundary conditions for such models must be subsurface conditions, such as the groundwater table,

groundwater recharge rate, and soil temperature. However, such input data are limited and they are

normally simplified and assumed. Thirdly, the models are limited into two dimensions with simplified

structures, only considering small-scale areas. Additionally, the models require a fine grid structure

and a small time step for application. Therefore, intensive computational processes are normally

expected for the high spatial and temporal resolutions required. Finally, most of cryo-hydrogeological

models are difficult for non-expert users to use because of their complexities.

2.14. Model Comparison Regarding the Capacities of the Models to Deal with Permafrost Hydrology in the Arctic

This section aims to summarize and identify the capabilities of the twelve well-known hydrological

models for simulating Arctic permafrost hydrology. Permafrost is an important feature affecting

hydrological processes in the Arctic. The main factor dominating water storage and transmission in

permafrost basins is the ground thermal regime, which has been identified as the typical challenge

of hydrological models in permafrost environments [31]. In addition to the ground thermal regime,

other important processes related to permafrost hydrology and the Arctic conditions should be

considered, such as the surface energy balance, snow process, snow insulation (influencing the

air–soil temperature relationships), snowmelt, infiltration, soil heterogeneities, soil moisture regime,

the three-phase change of water (ice, liquid, and gas) during the freezing–thawing process of

near-surface soil, as well as the dynamics of the ALT. Therefore, the most suitable models for

application in permafrost conditions should include as many of the important processes as possible.

Table 1 summarizes the important processes for permafrost hydrology that are considered in each

model’s structure.

Table 1. Model comparison regarding the model’s capacities to simulate the important processes in

permafrost environments.

Model
Important Processes in Permafrost Environments Considered in the Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Topoflow
√

n/a n/a
√ √

n/a
√ √ √

n/a n/a

DMHS
√ √

n/a
√ √ √ √ √ √

n/a
√

HBV
√ √ √ √ √

n/a
√

n/a
√

n/a n/a

SWAT
√ √

n/a
√ √

n/a
√ √ √

n/a n/a

WaSiM
√ √

n/a
√ √ √ √ √ √

n/a
√

ECOMAG
√ √

n/a
√ √ √ √ √ √

n/a n/a

CRHM
√ √

n/a
√ √ √ √ √ √

n/a n/a

ATS
√ √ √ √ √ √ √ √ √ √ √

CryoGrid 3
√ √ √ √ √ √ √ √ √ √ √

GEOtop
√ √ √ √ √ √ √ √ √ √ √

SUTRA-ICE n/a n/a n/a n/a
√ √ √ √ √

n/a
√

PFLOTRAN-ICE n/a n/a n/a n/a
√ √ √ √ √

n/a
√

According to Table 1, the important processes in permafrost environments considered in the

model include: (1) Surface energy balance; (2) snow process; (3) snow insulation; (4) snowmelt;

(5) infiltration; (6) soil thermal; (7) soil moisture; (8) soil heterogeneities; (9) active layer thickness

(ALT) dynamics; (10) subsidence; and (11) three-phase change of water during the freezing–thawing

process in near-surface soils. Additionally, the symbol of
√

denotes available and the abbreviation of

n/a defines not available, unclear, or no information.

The twelve hydrological models may be classified into two major groups. The first group are

surface hydrological models, including Topoflow, DMHS, HBV, SWAT, WaSiM, ECOMAG, and CRHM.

The second group are cryo-hydrogeological models, including ATS, CryoGrid 3, GEOtop, SUTRA-ICE,

and PFLOTRAN-ICE. Generally, each model group has its own competences and limitations in dealing
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with permafrost hydrology, as addressed in prior sections. The first model group performs well for the

simulation of surface hydrology, but the capacities of these models to simulate sophisticated ground

thermal processes, groundwater flow, or other processes related to permafrost degradation are low.

For instance, most of models in group 1 are not able to take into account the influences of snow insulation

on air–soil temperature relationships, as well as a required three-phase change of water in permafrost

soil (except for DMHS and WaSiM). Some models exclude the important soil thermal process in their

structure, such as Topoflow, HBV, and SWAT. None of the surface hydrological models are able to

simulate the subsidence as a result of permafrost thawing. On the contrary, many cryo-hydrogeological

models are able to simulate subsurface hydrological processes well.

Most of the cryo-hydrogeological models consider a required three-phase change in permafrost

environments. Exceptionally, the SUTRA-ICE and PFLOTRAN-ICE models do not include land surface

schemes and only simulate the subsurface hydrology. These two models are also not able to simulate

the subsidence. Interestingly, almost all of the twelve models in the two groups have capacities

to simulate the dynamics of the ALT. However, the accuracy or reliability of the simulation results

are not the same for each model. Topoflow, HBV, SWAT, WaSiM, and SUTRA-ICE have low model

performance, since they approach a relatively simple method for the simulation of the active layer

dynamics, and they lack consideration of spatiotemporal variation.

2.15. Model(s) Selection for the Arctic

Concerning the specific hydrological processes and the sparse data of the Arctic region, the selection

of a suitable model should fulfil two main criteria: (1) The capability of the model to deal with unique

permafrost hydrological processes; and (2) the possibility to be applied with moderate amounts of

data. Tables 2–5 summarize the main criteria as a basis to choose suitable models for application in

the Arctic region. Since the freezing and thawing process of the ALT strongly impacts hydrological

processes in the Arctic, the ALT was prioritized among other factors listed in Table 1 for selection of

the suitable models for the Arctic.

First of all, if a study aims to only evaluate the surface hydrology process, Topoflow, HBV,

SWAT, ECOMAG, and CRHM could be solutions, since they have been verified in many different case

studies. Particularly, the conceptual model HBV and the physically-based, semi-distributed SWAT and

CRHM models fit best for catchments with moderate data requirements, while the physically-based,

distributed models Topoflow and ECOMAG require intensive inputs for every cell of the catchment.

Secondly, if the accuracy of subsurface hydrology simulation is prioritized, DMHS, WaSiM,

and the cryo-hydrogeology models are good options, since such models take into account the three

phase changes of water, which are important in permafrost environments for analyzing water during

the freezing and thawing process of near-surface soils. Other models also have capacities to simulate

the subsurface hydrology, but their performances are lower. Further, some cryo-hydrogeology models,

e.g., GEOtop, SUTRA-ICE, and PFLOTRAN-ICE, are only suitable for applications in small-scale

study areas, while ATS and CryoGrid 3 can be applied to larger basins. Since SUTRA-ICE and

PFLOTRAN-ICE do not include a land surface scheme in their structure, these models should be

coupled with other land surface models for applications in the Arctic region.

Further, among the five cryo-hydrogeology models, the ATS model has demonstrated its capacity

to comprehensively simulate snow processes. It takes into account the snow thermal conductivity,

increasing snow density by snow age, and snow insulation. While other models, e.g., CryoGrid 3,

have relatively simple snow simulation processes, the ATS and GEOtop models are the first tools that

have coupled surface/subsurface permafrost thermal hydrology. Although, such models still have very

few applications in the Arctic, so they should be widely tested.
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Although the cryo-hydrogeology models appear to be potential tools for researching permafrost
hydrology, they could be difficult for non-expert users because of their complicated model structures.
Workshops or training should be helpful for new users. Moreover, it is normally difficult to collect
enough input data for subsurface hydrological models in Arctic regions. Thus, coupling surface
hydrological models as upper boundary conditions for subsurface hydrological models is recommended
as one of the solutions, where the outputs from surface hydrological models would become inputs for
the subsurface hydrological models. For example, outputs from the SWAT model, e.g., groundwater
recharge, soil deep percolation, and stream stage, etc., could be used as inputs for groundwater models.

Thirdly, if the accuracy of ALT dynamics is targeted, DMHS, ATS, GEOtop, and PFLOTRAN-ICE
are desirable choices. The other remaining models are not recommended for the study of ALT dynamics
since their approaches are relatively simple, resulting in highly uncertainty for the simulation results.

Fourthly, choosing a proper model also depends on the available input data of the catchments and
the study conditions (e.g., funding, etc.). Although the cryo-hydrogeology models have high capacities
to simulate permafrost hydrology, they still present challenges in terms of gathering the required input
data, especially for information about the subsurface boundary conditions in the Arctic. Therefore, it is
very expensive to run such simulations.

Lastly, successful application of a model also depends on the knowledge and experience of
the hydrologist users to the given model. For example, although HBV is a kind of conceptual,
semi-distributed model, it has been widely used in Nordic regions, i.e., cold climate region. In addition,
the ECOMAG and CRHM models are well-known in Russia and Canada, respectively (Figure 2).
However, the application of CRHM requires accumulated knowledge and data of the study catchments,
since there is no calibration procedure or testing cases for the model. This could present a challenge for
non-expert or less experienced users.

Figure 2. Number of recent publications on applications of hydrological/cryo-hydrogeological models
in the Arctic (found via https://www.scopus.com/).

3. Conclusions

The hydrological processes in the Arctic are more complicated than in other regions. Finding a
suitable hydrological model to simulate and predict changes in the hydrological processes is
therefore a challenging task for modelers. This paper has reviewed the functions, structures,
operational mechanisms, and performances of twelve hydrological models that have previously
been applied or have potential for application in the Arctic. Of them, the DMHS, ATS, GEOtop,
and PFLOTRAN-ICE models are desirable options for the simulation of ALT dynamics, which has
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strong impacts on surface/subsurface hydrology. The three cryo-hydrogeology models GEOtop,
SUTRA-ICE, and PFLOTRAN-ICE are only suitable for small-scale case studies, while the ATS and
CryoGrid 3 models could be applied to large-scale catchments. The SUTRA-ICE and PFLOTRAN-ICE
models appear to be suitable subsurface hydrological models. However, since they lack land surface
schemes in their structures, they should be applied in tandem with other land surface models for
the comprehensive simulation of permafrost hydrology. A significant revolution of hydrological
modeling is the recently developed ATS and GEOtop models, which are the first tools that couple
surface/subsurface permafrost thermal hydrology. It would be valuable to test the new models and to
verify their performances in the Arctic condition. In the situation of only studying the surface hydrology,
Topoflow, HBV, SWAT, ECOMAG, and CRHM could be good choices. Particularly, the semi-distributed
models HBV, SWAT, and CRHM fit best for catchments with moderate data requirements, whereas the
fully distributed models Topoflow and ECOMAG require intensive input data and model parameters.
It is worth mentioning that since there is no required calibration procedure for the CRHM and Topoflow
models, application of these models requires expert knowledge of the catchments, otherwise the
modeling results could feature high uncertainty. Further, if the accuracy of simulating the subsurface
hydrology in permafrost environments is targeted, DMHS, WaSiM, and the cryo-hydrogeological
models are good options, since they consider the three phase changes of water during the freezing
and thawing of near-surface soils. Finally, the selection of the suitable models for Arctic permafrost
regions should be based on several factors, besides simulating the permafrost hydrology. Other factors,
such as data acquisition, the required research period, and funding could influence the model selection
and reliability of the results.
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Evaluation of the Climate Forecast System Reanalysis data

for hydrological model in the Arctic watershed Målselv

Minh Tuan Bui, Jinmei Lu and Linmei Nie

ABSTRACT

The high-resolution Climate Forecast SystemReanalysis (CFSR) data have recently become an alternative

input for hydrological models in data-sparse regions. However, the quality of CFSR data for running

hydrological models in the Arctic is not well studied yet. This paper aims to compare the quality of CFSR

data with ground-based data for hydrological modeling in an Arctic watershed, Målselv. The QSWAT

model, a coupling of the hydrological model SWAT (soil and water assessment tool) and the QGIS, was

applied in this study. The model ran from 1995 to 2012 with a 3-year warm-up period (1995–1997).

Calibration (1998–2007), validation (2008–2012), and uncertainty analyses were performed by the

Sequential Uncertainty Fitting Version 2 (SUFI-2) algorithm in the SWATCalibration Uncertainties Program

for each dataset at five hydro-gauging stations within the watershed. The objective function Nash–

Sutcliffe coefficient of efficiency for calibration is 0.65–0.82 with CFSR data and 0.55–0.74 with ground-

based data, which indicate higher performance of the high-resolution CFSR data than the existing

scattered ground-based data. TheCFSRweather grid points showedhigher variation in precipitation than

theground-basedweather stations across thewholewatershed. Thecalculatedaverage annual rainfall by

CFSR data for the whole watershed is approximately 24% higher than that by ground-based data, which

results in somehigherwater balance components. TheCFSRdata also demonstrates its high capacities to

replicate the streamflow hydrograph, in terms of timing and magnitude of peak and low flow. Through

examinationof theuncertainty coefficientsP-factors (�0.7) andR-factors (�1.5), this study concludes that

CFSR data is a reliable source for running hydrological models in the Arctic watershed Målselv.

Key words | Arctic region, Climate Forecast System Reanalysis (CFSR), ground-based weather data,

Målselv watershed, QSWAT model, uncertainty analysis

HIGHLIGHTS

• The high-resolution CFSR dataset has higher performance than the existing scattered ground-

based dataset in terms of statistical coefficients, R2, NSE, and RSR.

• The CFSR dataset has higher simulation results for some water balance components, e.g., actual

evapotranspiration, lateral flow, water yield, etc., than the scattered conventional dataset.

• The CFSR demonstrates its high capacities to replicate the streamflow hydrograph.

• Uncertainty analysis reveals that CFSR is a reliable weather input for running hydrological

models in the Arctic watershed Målselv.

• The emerging and open-source QSWAT is a valuable tool for the SWAT scientific community

because of its upgraded availability and functionality compared to other SWAT interfaces.
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INTRODUCTION

A watershed is a basic land unit for studying of hydrological

cycle and for water resource management and planning

(Edwards et al. ; Yu & Duffy ). It is defined as a

land area where most of the precipitation drains to the

same places, e.g., water bodies or low land areas (Edwards

et al. ). The development of hydrological models has

been a high target of the hydrologists (Ehret et al. ;

Clark et al. ) in order to improve the understanding of

the hydrological processes and supporting for the manage-

ment of the watershed (Yu & Duffy ). However, an

existing challenge and time consuming of modeling task is

collecting accurately representative weather input data for

hydrological models (Mehta et al. ; Kouwen et al. ;

Fuka et al. ; Lu et al. ). Generally, the ground-based

weather stations do not always sufficiently represent the

weather pattern across the whole watershed (Fuka et al.

) because (1) the sparse spatial distribution and the far dis-

tances of the meteorological stations from the watershed to be

modeled (Zhang et al. ; Tolera et al. ); (2) time-series

data usually contain gaps and errors; (3) up-to-date datasets

are not available. Due to these limitations of ground-based

data, finding alternative sources of weather inputs for hydrolo-

gical models is essential. This is especially crucial for the data-

sparse Arctic region (Lindsay et al. ; WMO ). An

alternative source, which has recently been preferred by scien-

tists, is to use the multiyear globally atmospheric reanalyzed

data (Fuka et al. ).

Basically, the atmospheric reanalyzed data are generated

through data assimilation, which is the process of integrating

all available information, to estimate as accurately as possible

the characteristics of a system (Talagrand ), from observed

data (e.g., from the ground-based gauges, ships, aircraft, and sat-

ellites) and forecasted data (e.g., from numerical modeling of

weather prediction) (Parker ). Reanalysis provides compre-

hensive features of climate at regular time steps over a long

period usually from years to decades. Therefore, reanalysis

data have been used in various fields, such as atmospheric

dynamics (Kidston et al. ), investigation of climate variabil-

ity (Kravtsov et al. ), evaluation of climatemodels (Gleckler

et al. ), studying greenhouse gas fingerprints (Santer et al.

), and in the study of hydrology and hydrological models

(Lavers et al. ; Najafi et al. ; Quadro et al. ; Smith

& Kummerow ; Fuka et al. ; Bressiani et al. ; Ale-

mayehu et al. ; Tolera et al. ). Many atmospheric

reanalysis products have been generated recently, and some

well-known ones are listed below (Lindsay et al. ):

1. The National Centers for Environmental Prediction

(NCEP)–National Center for Atmospheric Research Rea-

nalysis (NCAR) 1 (NCEP-R1) (Kalnay et al. ; Kistler

et al. );

2. The NCEP–U.S. Department of Energy (DOE) Reanaly-

sis 2 (NCEP-R2) (Kanamitsu et al. );

3. Climate Forecast System Reanalysis (CFSR) generated by

the NCEP (Saha et al. );

4. Twentieth-Century Reanalysis (20CR) generated by the

National Oceanic and Atmospheric Administration

(NOAA)EarthSystemResearchLaboratory (ESRL)–Coop-

erative Institute for Research in Environmental Sciences

(CIRES) (Whitaker et al. ; Compo et al. , );

5. Modern-Era Retrospective Analysis for Research and

Applications, Version 2 (MERRA-2) generated by

the National Aeronautics and Space Administration

(NASA) Global Modeling and Assimilation Office

(GMAO) (Gelaro et al. ; Tao et al. );

6. ERA5, the successor of ERA-Interim, generated by Euro-

pean Centre for Medium-Range Weather Forecasts

(ECMWF) (Hersbach et al. ); and

7. Japanese 25-year Reanalysis Project (JRA-25) generated

by the Japanese Meteorological Agency (JMA) (Onogi

et al. ).

A comparison on the characteristics of the above seven

well-known reanalysis products is shown in Table 1. Of

them, the CFSR and ERA5 have the highest spatial resol-

ution with a Gaussian grid (Washington & Parkinson

) of approximately 38 km (NCAR ) and approxi-

mately 31 km (Hersbach et al. ), respectively.

However, CFSR is the only one that covers all required

input data (e.g., precipitation, maximum and minimum air

temperature, relative humidity, solar radiation, and wind

speed) for the hydrological model, the SWAT (soil and

water assessment tool) model, used by this study. Therefore,
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the CFSR is selected for the evaluation of its performance

for running the hydrological model in the Arctic conditions.

The CFSR is the third generation of reanalysis product.

This dataset is the cooperation between the National Center

for Atmospheric Research (NCAR ) and the NCEP

(NCEP ). A coupling of atmosphere–ocean–land surface–

sea ice systems in order to offer the best estimation of the

weather pattern of those coupled areas is the great features

of the CFSR product. The CFSR data have been verified as

weather input for hydrological models in numerous studies

at different climate conditions around the world (e.g., temper-

ate, tropical, subtropical, Asian monsoon, and semi-arid) and

provided reliable results. First of all, in the temperate climate

zone, CFSR performed better than ground-based data for simu-

lation of daily variation of streamflow in four watersheds in the

USA, and CFSR could meet the challenge of hydrological

simulation in ungauged watersheds (Fuka et al. ). In

another study in the snow-dominated East River basin, Color-

ado, USA, CFSR was used as forcing data for the prediction of

volumetric streamflow and returned good results (Najafi et al.

). Additionally, in a study of surface and atmospheric water

budgets in the Upper Colorado River basin, CFSR showed its

high capacity to capture the seasonal cycle of each water

budget component (Smith & Kummerow ). CFSR was

also used as weather input to detect the influences of atmos-

pheric rivers on winter floods in nine river basins along the

western coast of Great Britain and showed consistent results

with other reanalysis products: the ERA-Interim, the 20CR,

the MERRA, and the NCEP–NCAR (Lavers et al. ).

Secondly, in a tropical climate zone in Ethiopia, CFSR per-

formed better than ground-based data for the prediction of

daily streamflow in the Gumera watershed (Fuka et al. )

and for the prediction of monthly streamflow in the Awash

watershed (Tolera et al. ). It is concluded that CFSR

could perform better in large-scale basins (Tolera et al. ).

CFSR also demonstrated its high capacity for predicting poten-

tial evapotranspiration in the data-scarce Upper Mara

Catchment in Kenya and Tanzania (Alemayehu et al. ).

Thirdly, in a study conducted over South America, with cli-

mate characteristics varying from tropical to subtropical

zones, CFSR provided the smallest bias in results, compared

with other reanalysis products (e.g., MERRA and NCEP-R2),

for simulation of the hydrological cycle (Quadro et al. ).

Another study in the semi-arid climate of the Jaguaribe

basin, Northeast Brazil, with CFSR as weather input for study-

ing monthly streamflow variation, stated that CFSR’s results

were good to very good, and had the best performance com-

pared to other weather input datasets (Bressiani et al. ).

Lastly, in the region dominated by the Asian monsoon climate,

CFSR demonstrated good performance to simulate monthly

streamflow variation in the largest river, the Yangtze River,

in China, and was considered an alternative input for the

large-scale basins (Lu et al. ). However, in some case

studies, CFSR data performed worse than ground-based data

and were not recommended (specifically for those study

areas) as an alternative input to replace the high-quality

Table 1 | Characteristics of some well-known reanalysis products (Lindsay et al. 2014)

NCEP-R1 NCEP-R2 CFSR 20CR MERRA-2 ERA5 JRA-25

Sponsoring
agencies

NCEP–NCAR NCEP–DOE NCEP NOAA–ESRL–CIRES NASA–GMAO ECMWF JMA

Temporal
coverage

1948–present 1979–present 1979–2017 1871–2012 1980–2017 1950–2019 1979–2004

Temporal
resolution

Sub-daily, daily,
monthly

Sub-daily, daily,
monthly

Sub-daily,
monthly

Sub-daily, daily,
monthly

Sub-daily, daily,
monthly

Sub-daily,
daily,
monthly

Sub-daily,
monthly

Spatial
coverage

Global grid Global grid Global grid Global grid Global grid Global grid Global grid

Spatial
resolution

210 km 210 km 38 km 210 km 50 km 31 km 120 km

References Kalnay et al.

(); Kistler
et al. ()

Kanamitsu
et al. ()

Saha et al.

()
Whitaker et al. ();
Compo et al. (,
)

Gelaro et al.

(); Tao
et al. ()

Hersbach et al.

()
Onogi et al.
()
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ground-based data (Dile & Srinivasan ; Roth & Lemann

). Although theCFSRdataset has demonstrated its perform-

ance in hydro-meteorological simulations around the world,

this has yet to be verified well in the data-sparse Arctic region.

Therefore, to fill this knowledge gap, this paper aims:

1. Investigate the performance of the CFSR in running

hydrological models in Arctic conditions, and

2. Examine whether CFSR data could be an alternative for

weather input and could replace the limited ground-

based data for hydrological models in the data-sparse

Arctic region.

STUDY AREA

An Arctic watershed, Målselv, located in northern

Norway, was chosen as the study area to investigate the

performance of CFSR (Figure 1). The watershed is distrib-

uted at high latitudes from 68�210N to 69�170N and

approximately 200 km above the Arctic circle (at

66�330N) calculated from the southernmost point of the

watershed. It covers an area of approximately 5,913 km2.

The elevation distribution of the ground surface is in the

range of 0–1,718 m. According to long-term data from

the Norwegian Water Resources and Energy Directorate

(NVE), the average annual precipitation in the study

area varies from approximately 500 to 1,500 mm. The

average annual air temperature fluctuates from �5 to

6 �C. The whole watershed has approximately 11 cat-

egories of land use, with wooded tundra, mixed tundra,

and deciduous broadleaf forest accounting for the highest

percentage of total land-use area: 32.38, 23.93, and

22.12% for each type, respectively (Supplementary

Material, Table S1). Sandy loam dominates the soil texture

of the watershed (Supplementary Material, Table S1).

Figure 1 | Map of the study area, Målselv watershed.
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MATERIALS AND METHODS

SWAT model

The physically based (or process-based) (Neitsch et al. ),

semi-distributed model SWAT was applied to test the quality

of CFSR data. The SWAT was developed to simulate the

anthropogenic impacts (Gassman et al. ) and climate

change impacts (Dile et al. ) on water resources and

environmental matters. The model has capacity to simulate

the large-scale catchments with complex conditions over a

long period. Especially, the SWAT demonstrates its

strengths to fulfill the requirements of the current modeling

philosophy: transparency of the model (Abbaspour et al.

). It means that calibration, validation, sensitivity, and

uncertainty analyses are performed by the model.

The model has several major components, including

weather, hydrology, soil (temperature and properties), plant

growth, nutrients, pesticides, bacteria and pathogens, and

land management (Arnold et al. ). The spatial heterogen-

eity of the study area is presented by discretizing the

watershed into smaller sub-basins (Abbaspour et al. ).

Each sub-basin is further subdivided into hydrologic response

units (HRUs) that have homogeneous topography, land use,

soil characteristics, and management. Hydrological simu-

lation in the SWAT model occurs in two major phases:

land phase and routing phase (Arnold et al. ). The land

phase works, based on the water balance formula, as follows:

SWt ¼ SW0 þ
X

t

i¼1

(Ri �Qi � Ei � Pi �QRi), (1)

where SWt is the soil water content at time t (mm), SW0 is

the initial soil water content (mm), Ri is the amount of pre-

cipitation on day i (mm), Qi is the amount of surface runoff

on day i (mm), Ei is the amount of evapotranspiration on

day i (mm), Pi is the amount of percolation on day i (mm),

and QRi is the amount of return flow on day i (mm).

Specifically, the surface runoff in the SWAT is calculated

separately for each HRU, using the Soil Conservation

Service’s curve number (CN) method, and then transmitted

for each sub-basin (Reddy et al. ). The water balance is

mainly controlled by climate factors, such as precipitation,

maximum/minimum air temperature, solar radiation, wind

speed, and relative humidity (Arnold et al. ). In the

SWAT, snow is considered, and it is calculated whenever

the air temperature falls below the freezing point. Addition-

ally, soil temperature is also calculated, since it influences

the water movement in soil (Arnold et al. ).

The loadings of water and other components, such as

sediment, nutrients, and pesticides from the land phase, are

transformed into the mainstream, where the second phase

(the routing phase) occurs (Arnold et al. ). In the routing

phase, the loadings are routed through the mainstream and

reservoirs within the catchment. Particularly, the routing

phase describes several processes taking place in the main-

stream, including the movement of water, mass flow,

chemicals process, flood routing, sediment routing, nutrient

routing, and pesticide routing. Streamflow in the mainstream

consists of the contributions of water yield (YIELD) from the

sub-basins. The YIELD is calculated by summarizing surface

runoff, lateral flow, and groundwater, subtracting the trans-

mission loss (Tolera et al. ). In this study, streamflow

and water balance components are main outputs simulated

by the SWAT, and these results are used to compare the per-

formances of two weather input datasets.

QSWAT interface

The SWAT model runs on a GIS (Geographical Information

System) platform where GIS functions are used to collect,

manipulate, visualize, and analyze the inputs and outputs

of the model (Srinivasan & Arnold ). Several GIS inter-

faces, e.g., GRASS-GIS (https://grass.osgeo.org/), ArcGIS

(http://www.esri.com/software/arcgis), MapWindow GIS

(https://www.mapwindow.org/), and the Quantum Geo-

graphical Information System QGIS (https://qgis.org/en/

site/), have been coupled with the SWAT model. Of them,

GRASS-SWAT is the first and major interface, while ArcS-

WAT, MWSWAT, and QSWAT are later developed (Dile

et al. ). ArcSWAT is the most popular interface; it, how-

ever, requires a license ArcGIS platform (Winchell et al.

) and very costly (Dile et al. ). Additionally, the pre-

sent version of ArcSWAT does not have an integrated

functionality for the visualization of model outputs (Dile

et al. ). MWSWAT has an advantage of being an open

source, but it shows limitations to perform in large water-

sheds and large input datasets (Chen et al. ). Among
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open-source GIS softwares, QGIS is evaluated as an outper-

formed tool (Chen et al. ). For example, QGIS could

satisfy the desired functionalities for water resource manage-

ment, and it owns most of functions like a commercial GIS

package. Because of the benefits of QGIS, it is highly desired

from SWAT users community to couple QGIS with the

SWAT model (Dile et al. ). Therefore, QSWAT is devel-

oped from that and it is currently considered as an emerging

SWAT interface. QSWAT was firstly tested in a study in the

Gumera watershed, Ethiopia and showed a successful per-

formance (Dile et al. ). To continue that success, the

present study applies the new interface QSWAT in order

to verify its performance in the Arctic conditions.

Data acquisition

To run the SWAT model, several inputs are required: (1)

spatial data, including Digital Elevation Map (DEM), soil,

and land use; and (2) time-series data, including climate

data and river discharge (Table 2).

A high-resolution DEM (10 × 10 m) is collected from the

Norwegian Mapping Authority. The DEM is used to define

the catchment topography and generate the catchment

boundary, sub-basins, and stream networks. Additionally,

other important parameters of the sub-basins, e.g., terrain

slope length, slope gradient, slope classes, and channel

length, are generated from the DEM. The soil data (scale

of 1:5,000,000) and land use (600 m resolution) are collected

from the Waterbase organization. The soil and land use are

reclassified to represent the specific land use

(Supplementary Material, Table S1) and soil types (Sup-

plementary Material, Table S2) of the catchment based on

the SWAT database.

The climate inputs used in this study are from two data

sources, which are used to compare their performances: (1)

the CFSR weather data (Figure 2(a)) and (2) the ground-

based data (Figure 2(b)). The CFSR global weather data

cover a 36-year period from 1 January 1979 to 31 July

2014 (TAMU ). In total, 21 weather grid points, which

are located inside and nearby the catchment, are picked

up by the SWAT model with the method of the nearest-

neighbor search (NNS). The CFSR time-series data are

almost continuous. In contrast, only four ground-based

weather stations located within and nearby the study area

have continuous time-series data and have the same time

window as the CFSR data (regarding the investigation

period of this study). Generally, most of the ground-based

weather stations locate in the downstream. Of them, two

weather stations are inside the watershed, while the other

two are outside and close to the watershed’s boundary.

The ground-based data are collected from the European Cli-

mate Assessment & Dataset project (ECAD). It is obvious

from Figure 2 that the networks of the available ground-

based weather stations (Figure 2(b)) in the Målselv water-

shed are highly scattered, while the CFSR weather grid

points (Figure 2(a)) are denser. Detailed description of the

CFSR weather grid points and the ground-based weather

stations and their rainfall data are summarized in Table 3.

River discharges, which are used formodel calibration and

validation, are collected from the NorwegianWater Resources

and Energy Directorate. Five datasets from five hydro-gauging

stations are gathered, with measurement intervals varying

from 30 min to 1 h. The raw dataset is then averaged to a

monthly interval dataset, in order to be compatible with the

time step format of monthly simulation in the SWAT model.

However, there are still some small gaps in the time-series

data of river discharges due to technical errors or other reasons.

Model setup

QSWAT version 1.9, a coupling of the hydrological model

SWAT version 2012 and the open-source QGIS version

2.6.1, is applied in this study for the evaluation of the

CFSR data. Before running the model, two necessary steps

Table 2 | Summarization of inputs and their sources to the SWAT model

Data type Resolution Source of data

DEM 10 × 10 m Geonorge
()

Land use approximately 600 m Waterbase
(a)

Soil approximately 5,000 m Waterbase
(b)

Climate Ground-based data: four stations ECAD ()

CFSR data: 21 grid points,
approximately 38 km grid

TAMU ()

River
discharge

Five stations Sildre ()
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Figure 2 | CFSR weather grid points (a) versus ground-based weather stations (b).

Table 3 | Description of the ground-based weather stations and the CFSR weather stations and their rainfall information (1995–2012) in the Målselv watershed

Weather data Station Latitude Longitude Elevation (m) Average annual rainfall (mm)

Ground-based ECAD_1057 69.1 18.5 76 711
ECAD_2749 69.2 19.2 27 852
ECAD_2748 68.9 18.3 114 903
ECAD_2744 68.6 18.2 230 967

CFSR CFSR_692184 69.2 18.4 156 1,413
CFSR_692188 69.2 18.8 516 1,382
CFSR_692191 69.2 19.1 194 1,350
CFSR_692194 69.2 19.4 954 1,329
CFSR_692200 69.2 20 440 1,303
CFSR_692197 69.2 19.7 970 1,314
CFSR_688197 68.8 19.7 587 1,059
CFSR_688200 68.8 20 1,140 1,005
CFSR_688188 68.8 18.8 1,000 1,267
CFSR_688194 68.8 19.4 1,040 1,119
CFSR_688191 68.8 19.1 800 1,192
CFSR_688184 68.8 18.4 267 1,320
CFSR_688181 68.8 18.1 175 1,366
CFSR_688203 68.8 20.3 760 957
CFSR_685203 68.5 20.3 686 750
CFSR_685200 68.5 20 708 826
CFSR_685188 68.5 18.8 837 1,345
CFSR_685194 68.5 19.4 1,290 1,039
CFSR_685184 68.5 18.4 1,041 1,437
CFSR_685197 68.5 19.7 668 923
CFSR_685191 68.5 19.1 880 1,192

3487 M. T. Bui et al | Evaluation of the CFSR data for hydrological model in the Arctic watershed, Målselv Journal of Water and Climate Change | 12.8 | 2021



including watershed delineation and HRUs creation are per-

formed (Dile et al. ). The watershed delineation step is

carried out by using the input of DEM. In this step, the

sub-basins and their parameters are generated based on

the stream networks and locations of sub-basin outlets, as

well as watershed outlets. The second step, HRUs creation,

is to divide each sub-basin into smaller units with specific

soil types, land uses, and terrain slopes’ distribution. The

HRUs were generated from the inputs of the land-use

map, the soil map, and slope classification. In this study,

five slope classes are defined: 0–5, 5–10, 10–25, 25–30,

and >30% (Supplementary Material, Table S3). Totally,

459 sub-basins, including 5,601 HRUs, are generated. The

sizes of sub-basins vary from 205 to 7,075 hectares (ha).

The QSWAT is run with monthly time steps from 1995 to

2012, including a 3-year warming-up period to let the

model reach the optimal stage from the estimated initial

condition (Arnold et al. ; Kim et al. ). A 10-year

period, 1998–2007, is used for model calibration, and the

remaining 5 years from 2008 to 2012 are for model vali-

dation. Figure 3 illustrates the overview of methodologies

used in this study.

Figure 3 | Schematic diagram of methodologies used in the present study.
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Model calibration, validation, and uncertainty analyses

Model calibration, validation, and uncertainty analyses are

performed with the Sequential Uncertainty Fitting Version

2 (SUFI-2) algorithm (Figure 4) in the SWAT Calibration

Uncertainties Program (SWAT_CUP) (Abbaspour et al.

). Outputs from the SWAT model are imported into

SWAT-CUP for analyses. For each weather input, five iter-

ations were performed, with 500 simulations for each,

totally 2500 simulations, in order to find the best fit between

observed data and simulated data. In each iteration, the

SUFI-2 algorithm produces all the possible simulation out-

puts in a distribution or range, which is called the 95%

prediction uncertainty (95PPU) range (Abbaspour et al.

). Principally, the 95PPU calculates the possible esti-

mated values, which are in the range from the lowest level

of 2.5% up to the highest level of 97.5% of the cumulative

distribution, by the method of Latin hypercube (LH)

Figure 4 | Flow chart of the SUFI-2 algorithm used in SWAT-CUP (Abbaspour 2015).
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sampling, a statistical method which is used to reduce the

number of samples from the multiple dimensional distri-

butions (Mckay et al. ; Özdemir ). The 95PPU

attempts to capture as many of the observed values within

the 95PPU’s range as possible.

Furthermore, the SUFI-2 algorithm uses two main indi-

cators, P-factor and R-factor, in order to measure the

goodness of fit between measured data and simulated data

(Abbaspour et al. , ). The first indicator, P-factor,

is the percent of observed data bracketed in the 95PPU

band. The values of P-factor range from 0 to 1, in which

the value of 1 presents the high accuracy of the simulation

results, or it means that 100% of observed data are bracketed

in the 95PPU band. For river discharge, the value of P-factor

is recommended to be higher than a value of 0.7 or 0.75,

depending on the project scale, quality of input data to run

the model, as well as data for calibration. The second indi-

cator, R-factor, presents the thickness of the 95PPU band

and is calculated by the ratio between the average width of

the 95PPU band and the standard deviation of the observed

variable. Ideally, the R-factor should be close to zero. For

river discharge, the value of R-factor is recommended to

be smaller than a threshold of 1.5, to indicate a highly accu-

rate simulation result. This threshold also depends on the

study conditions and quality of input data. Whenever accep-

table values of P-factor and R-factor are achieved in the last

iteration, sensitive statistical parameters are then calculated

for the calibrated variables. The ranges of every model par-

ameter obtained in the last iteration are the calibrated

parameters for the model. Table 4 provides a list of a total

of 18 model parameters including their ranges for cali-

bration and the best-fitted values after calibration. Such

model parameters are recommended as the sensitive ones

for river discharge calibration (Abbaspour et al. , ).

Evaluation of model performance

The simulated results are compared with the observed data

using the statistical coefficients, including (1) the coefficient

of determination – R2 (Equation (2)), measuring the fitness

of the relationship between the simulated and observed

values; (2) the Nash–Sutcliffe coefficient of efficiency –

NSE (Equation (3)); and (3) root mean square error, divided

by the standard deviation – RSR (Equation (4)).
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where Y
obs
i

and Y
sim
i

are the observed and simulated

values at time i, Y
obs
mean

and Y
sim
mean

are mean observed

and simulated data for the entire evaluation period, and n

is the total number of observations/simulations.

Table 5 provides the threshold values of every statistical

coefficient, R2, NSE, and RSR (Santhi et al. ; Van Liew

et al. ; Moriasi et al. ; Premanand et al. ).

Moreover, for the additional evaluation of the perform-

ance of the CFSR weather data and the ground-based

weather data, the simulation results of two major hydrology

components are considered in this study: (1) the annual

average water balance components, e.g., the total areal rain-

fall (PCP), actual evapotranspiration (ET), surface runoff

(SUR_Q), lateral runoff (LAT_Q), groundwater recharge

amount (PERCO), groundwater contribution to streamflow

(GW_Q), and water yield (YIELD¼ SUR_QþLAT_Qþ

GW_Q – Transmission losses) contributing to streamflow

and (2) the long-term average monthly streamflow. The

results are discussed in the following section.
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RESULTS AND DISCUSSION

Comparison of precipitation input between ground-

based weather data and CFSR weather data

Monthly precipitation, during the period of 1995–2012, from

the ground-based dataset and the CFSR dataset are averaged

for all stations across the whole watershed, and the results

are plotted as boxplots, where the general trend of the

long-term seasonal variation of precipitation, as well as the

variation of precipitation in each month for both weather

dataset, is displayed (Figure 5).

Generally, precipitation from the ground-based dataset

and the CFSR dataset have similar seasonal trends. March,

July, September, October, and November showed higher

variations in precipitation compared with the remaining

months. Magnitudes of monthly precipitation from the

CFSR dataset are higher approximately 11–46% than that

from the ground-based dataset, except September. The high-

est differences are observed in April–June when

Table 4 | Model parameters and their ranges for calibration

Parameters Description (unit)

Range

Fitted

valueMinimum Maximum

r_CN2.mgt Runoff CN (–) �0.225 0.051 �0.14

v_ESCO.hru Soil evaporation compensation factor (–) 0.067 0.202 0.14

r_SOL_AWC.sol Available water capacity of the soil layer (mmH2O/mm soil) �1 �0.581 �0.72

v_ALPHA_BF.gw Baseflow alpha factor (days) 0 0.12 0.09

v_GW_DELAY.gw Groundwater delay (days) 260.05 321.81 313.35

v_GW_REVAP.gw Groundwater ‘revap’ coefficient (–) 0.117 0.19 0.19

v_GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 2,215 3,318 3,285

v_REVAPMN.gw Threshold depth of water in the shallow aquifer for ‘revap’ to occur (mm) 252.18 382.86 353.45

v_SFTMP.bsn Snowfall temperature (�C) �2.72 0.99 �1.48

v_SMFMN.bsn Minimum melt rate for snow during the year (occurs on winter solstice)
(mmH2O �C�1 d�1)

1.767 6.47 5.33

v_SMFMX.bsn Maximum melt rate for snow during year (occurs on summer solstice)
(mmH2O �C�1 d�1)

1.914 5.744 2.91

v_SMTMP.bsn Snow melt base temperature (�C) �3.189 2.557 �0.56

v_TIMP.bsn Snowpack temperature lag factor (–) 0.145 0.309 0.15

a_CH_N2.rte Manning’s ‘n’ value for the main channel (–) 0.145 0.227 0.21

a_CH_K2.rte Effective hydraulic conductivity in main channel alluvium (mm/h) �0.01 70.781 22.01

r_SOL_K.sol Saturated hydraulic conductivity (mm h�1) 4.482 7.977 7.30

r_SOL_BD.sol Moist bulk density (g cm�3) 0.403 0.635 0.53

a_CANMX.hru Maximum canopy storage (mmH2O) 4.016 12.056 4.49

Note:

• The term ‘a_’ explains that a given value is added to the existing parameter value.

• The term ‘r_’ explains that an existing parameter value is multiplied by (1þ a given value).

• The term ‘v_’ explains that the existing parameter value is replaced by a given value.

Table 5 | Thresholds of R2, NSE, and RSR for the evaluation of the hydrological model’s

performance

Model

performance R
2 NSE RSR

Very good 0.70�R2
�

1.00
0.75<NSE�

1.00
0.00�RSR�

0.50

Good 0.60�R2
<

0.70
0.65<NSE�

0.75
0.50<RSR�

0.60

Satisfactory 0.50�R2
<

0.60
0.50<NSE�

0.65
0.60<RSR�

0.70

Unsatisfactory R2
< 0.50 NSE� 0.50 RSR> 0.70
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precipitation from the CFSR data is much higher approxi-

mately 45–46% than that from the ground-based data. In

previous studies in upper Awash catchment, Ethiopia

(Tolera et al. ) and in mountainous Black Sea catchment

(Cuceloglu & Ozturk ), they also demonstrated that

CFSR data were able to capture the seasonal trend of pre-

cipitation in ground-based data. Similar to findings from

our study, the higher in magnitudes of monthly precipitation

from the CFSR dataset compared with that from the ground-

based dataset were also detected in those studies. However,

in the tropical region (the study in upper Awash catchment,

Ethiopia), the significant differences of monthly precipi-

tation between the CFSR data and the ground-based data

were mostly observed in summer time (July–August), while

these were in wet seasons (December to April) in the tem-

perate climate zone in the Back Sea catchment. In

constrast, our study found the differences in monthly pre-

cipitation between two weather data sources from middle

spring to beginning of summer (April to June).

The seasonal variation of precipitation (1995–2012

periods) is locally investigated at four co-located points

(the points are closest together) between the ground-based

weather stations and the CFSR weather grid points

(Figure 6). Of them, two co-located points are inside and

the other two are outside of the watershed. As shown in

Figure 6, the seasonal trends of precipitation of the CFSR

data and ground-based data are almost similar at all the

co-located points. However, the magnitude of precipitation

from CFSR data is overestimated than that from the

ground-based data. Especially, one co-located point locating

inside the watershed (as in Figure 6(a)) has 8 months of a

year, e.g., January, February, April–June, September, Octo-

ber, and December, when precipitation from the CFSR

data is overestimated precipitation from the ground-based

data. At other co-located points, the significant differences

of precipitation between the CFSR data and the ground-

based data are observed in the months of January, April–

June, and December for co-located point 2 (Figure 6(b)),

and in February, April, June, and December for co-located

point 3 (Figure 6(c)), and in February, April–June, Septem-

ber, and December for co-located point 4 (Figure 6(d)). In

brief, the significant differences of monthly precipitation

between the CFSR data and the ground-based data at the

co-located points mostly occur in winter, from middle

spring to the beginning of summer, and from the beginning

to middle autumn.

Figure 7 describes the boxplots of variation of total

annual precipitation at four pairs of co-located points

between ground-based weather stations and CFSR weather

grid points. In general, at each pair of co-located points,

the values of annual rainfall from the CFSR weather grid

point are higher than that from the ground-based weather

station. For example, the average annual rainfall from the

CFSR data are higher approximately 49.70% (Figure 7(a)),

32.70% (Figure 7(b)), 31.60% (Figure 7(c)), and 36.90%

(Figure 7(d)) compared with that from the gauge-based data.

It is obvious that precipitation from the high-resolution

CFSR data is higher than that from the scattered ground-

based data. Therefore, it is estimated that simulation results,

e.g., streamflow or water balance components, would be

higher by using the CFSR weather input compared with

that by using the ground-based weather input.

Figure 5 | Ground-based and CFSR average monthly precipitation (1995–2012) for the entire watershed.
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Figure 6 | Ground-based and CFSR average monthly precipitation (1995–2012) at four co-located points.
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Comparison of model performance based on the

statistical coefficients R2, NSE, and RSR

The model performances for the calibration period are

shown in Table 6. Generally, the high-resolution CFSR

dataset demonstrated higher performance than the existing

limited ground-based dataset after calibration. However,

model performances are heterogeneous among five hydro-

gauging stations within the watershed (Table 6). According

to the performance rating from three statistical coefficients,

R2, NSE, and RSR, ground-based weather data performed

well at Høgskarhus and Målselvfossen stations and satis-

factorily at three remaining stations: Lundberg, Lille

Rostavatn, and Skogly. On the contrary, CFSR weather

data performed very well at two stations, Skogly and Mål-

selvfossen, and well at Lundberg, Lille Rostavatn, and

Høgskarhus. Høgskarhus and Målselvfossen are the two

stations where performance does not significantly differ

between ground-based data and CFSR data, and both

have good performances. A very good value of R2 achieved

at all five hydro-gauging stations, from using both weather

datasets, demonstrates a high correlation between obser-

vation and simulation (Table 6 and Supplementary

Material, Figure S1). In addition, the R2 values explain a

good agreement between measured data and estimated

results, in terms of timing for the runoff process occurring

in the sub-basins, as well as the hydrograph of streamflow

(Malago et al. ).

Figure 7 | Ground-based and CFSR total annual precipitation data for the period, 1995–2012.
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According to model validation results, the high-resolution

CFSR data (Table 7 and Supplementary Material, Figure S6)

also demonstrate its higher performance than the scattered

ground-based data (Table 7 and Supplementary Material,

Figure S5). For example, CFSR performed very well at

Lundberg and Skogly, and well at Lille Rostavatn, where

the performance of ground-based data is only satisfactory.

Additionally, model performance is good at Målselvfossen,

through the use of ground-based data, whereas it is very good

through the use of CFSR data. Noticeably, simulation results

at the Høgskarhus station in the validation period are worse

than those in the calibration period for both weather datasets.

This could be partly because of gaps in the time-series data of

river discharge used for validation (Supplementary Material,

Figure S6c). However, the relatively good values of R2

(Table 7 and Supplementary Material, Figure S2) achieved in

the validation period indicate that the simulated results have

high correlation with the observed data.

The performance of the CFSR data in the present study,

which is based on an evaluation of the statistical coeffi-

cients, is in agreement with the performance of the CFSR

data in the previous studies, such as the studies conducted

in the temperate climate zone (Najafi et al. ; Fuka

et al. ), the study in the tropical climate zone (Fuka

et al. ), the study in the Asian monsoon climate zone

(Lu et al. ), and the study in the semi-arid climate

zone (Bressiani et al. ). Such studies concluded that

the CFSR data were the potential sources for weather

inputs to run the hydrological models in ungauged and

large-scale catchments. According to outcomes from the pre-

sent study, it could be concluded that the CFSR data not

only perform well in temperate, tropical, semi-arid, and

Asian monsoon climate zones, but also in Arctic conditions.

However, findings from the present study also contradict

findings from other studies (Dile & Srinivasan ; Roth

& Lemann ), which stated that CFSR could not replace

Table 6 | Model performances for the calibration period (1998–2007)

Station Sub-basin Weather input R
2 NSE RSR Performance rating

Lundberg 381 Ground-based 0.71 0.55 0.67 Satisfactory
CFSR 0.73 0.69 0.56 Good

Lille Rostavatn 402 Ground-based 0.72 0.55 0.67 Satisfactory
CFSR 0.79 0.67 0.58 Good

Høgskarhus 408 Ground-based 0.73 0.71 0.54 Good
CFSR 0.74 0.65 0.59 Good

Skogly 412 Ground-based 0.77 0.60 0.63 Satisfactory
CFSR 0.77 0.77 0.48 Very good

Målselvfossen 444 Ground-based 0.82 0.74 0.51 Good
CFSR 0.85 0.82 0.42 Very good

Table 7 | Model performances for the validation period (2008–2012)

Station Sub-basin Weather input R
2 NSE RSR Performance rating

Lundberg 381 Ground-based 0.82 0.64 0.60 Satisfactory
CFSR 0.81 0.77 0.48 Very good

Lille Rostavatn 402 Ground-based 0.87 0.52 0.69 Satisfactory
CFSR 0.91 0.66 0.58 Good

Høgskarhus 408 Ground-based 0.66 0.46 0.73 Unsatisfactory
CFSR 0.73 0.59 0.64 Satisfactory

Skogly 412 Ground-based 0.78 0.55 0.67 Satisfactory
CFSR 0.87 0.82 0.42 Very good

Målselvfossen 444 Ground-based 0.86 0.72 0.52 Good
CFSR 0.88 0.83 0.41 Very good
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the high-quality ground-based data. However, in the data-

sparse regions like the Arctic, reanalysis data, e.g., the

CFSR, could be an alternative source, since there are not

enough representative meteorological stations for the large

catchment, or observed data often contain gaps or errors.

Comparison of the simulated streamflow hydrograph

According to the simulation results of the streamflow hydro-

graph, a good agreement between observed data and

simulated results is achieved from both ground-based

weather data (Supplementary Material, Figure S3 for

calibration and Supplementary Material, Figure S5 for

validation) and CFSR data (Supplementary Material,

Figure S4 for calibration and Supplementary Material,

Figure S6 for validation). A relatively high level of accuracy,

in terms of the timing of the streamflow hydrograph,

between observed data and simulated results is obtained.

Therefore, lag time is not detected in the simulation. This

finding is similar to findings in the previous study in

Upper Awash Basin, Ethiopia (Tolera et al. ). Regarding

the calibration period, the magnitude of peak flow is almost

captured at Skogly and Målselvfossen for both weather data-

sets. However, at Høgskarhus, peak flow is captured by

using the ground-based data, but it is slightly underestimated

by using the CFSR data. This could be explained by the fact

that some sub-basins upstream of Høgskarhus have higher

areal precipitation achieving from the ground-based data

than from the CFSR data. On the contrary, most values of

peak flow at the Lundberg station are captured by using

CFSR data, but those are somewhat underestimated by

using ground-based data. At the Lille Rostavatn station,

both weather datasets slightly underestimate the magnitude

of peak flow.

Regarding the validation period, the peak flows are

almost captured at Skogly and Målselvfossen, but they are

underestimated at Lille Rostavatn, for both weather datasets.

The differences in model performance between the two

weather datasets are observed at Høgskarhus and Lundberg.

For instance, the model performs well in peak flow at

Høgskarhus, but it performs worse at Lundberg from using

the ground-based dataset, whereas the model performance

at those stations shows the opposite behaviors through the

use of the CFSR weather data.

In terms of low-flow simulation, a relatively good fitness

between simulation and observation is achieved from the

calibration and validation period by using both weather

datasets. This finding is somewhat better than the finding

from the study in Upper Awash Basin, Ethiopia (Tolera

et al. ), since they concluded that simulation of low

flow was underestimated/overestimated by using the CFSR

data.

Comparison of the simulated water balance

components

Rainfall is one of the major inputs of water balance com-

ponents. In the SWAT, areal rainfall is calculated

separately for every sub-basin. In particular, each sub-basin

collects rainfall for itself from the stations (e.g., the

ground-based weather stations or the CFSR grid points)

that are closest to the centroid of the sub-basin by the

method of the NNS. The results of spatial variation of

areal rainfall calculated for every sub-basin, obtained from

ground-based weather data and CFSR weather data, are dis-

played as in Figure 8. Generally, the total rainfall amount

calculated for the whole watershed by CFSR data is approxi-

mately 24% higher than that by the ground-based data.

Approximately 88% of the watershed area has a rainfall

ratio between ground-based data and CFSR data (rainfall

ratio (Figure 8(c))¼ rainfall amount from ground-based

data (Figure 8(a))/rainfall amount from CFSR data

(Figure 8(b))) smaller than 1.0, of which 42% of areas in

the downstream sections have a rainfall ratio varying from

0.53 to 0.75, while 45.5% of areas in the middle sections

have a rainfall ratio varying from 0.75 to 1.0. Exceptionally,

approximately 12% of the watershed in the uppermost areas

have a rainfall ratio higher than 1.0 which varies from 1.0 to

1.32. This indicates that rainfall in some parts in the

upstream calculated from the CFSR dataset is lower than

that from the ground-based dataset.

The higher rainfall amount from the CFSR dataset than

from the ground-based dataset results in higher simulation

results of some water balance components (Table 8). This

finding is in agreement with findings from the previous

studies in the tropical climate zone (Dile & Srinivasan

; Tolera et al. ). For example, in this study, water

yield (WYLD) contributing to streamflow from the CFSR
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Figure 8 | Spatial variation in the ratio of average annual rainfall (1998–2007) between the ground-based weather data and the CFSR global weather data.
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data is around 11% higher than that from the ground-based

data. Actual ET, lateral flow (LAT_Q), and amount of

groundwater recharge (PERC) generated from the CFSR

data are also higher than from the ground-based weather

data. However, the groundwater amount (GW_Q) produced

from the ground-based data is higher than that from CFSR

data. Noticeably, the surface runoff component generated

from the two weather datasets is almost similar.

Comparison of the simulation results of long-term

average monthly streamflow

The simulated monthly streamflows, which are generated

from ground-based data and CFSR data, are averaged for a

10-year period, 1998–2007, and the results are compared

with the averaged values of observed data and shown in

Figure 9. According to the graphs in Figure 9, both weather

datasets simulate quite well the low value of the average

monthly flow, except that slight overestimations are

observed in September at Høgskarhus (Figure 9(b)) and

Skogly (Figure 9(c)) from the ground-based data. However,

the simulation of peak value of the average monthly flow dif-

fers somewhat between two weather datasets. For example,

the CFSR replicates the peak flow at Lundberg (Figure 9(a))

and Skogly better than the ground-based data. In contrast,

the ground-based data replicate the peak flow at Høgskarhus

better than CFSR data. The ground-based data generated

higher peak flows at Høgskarhus and Skogly than the

CFSR data. This could be because of the contribution of

higher areal rainfall in upstream sub-basins from the

ground-based data, compared with that from the CFSR

data. Interestingly, the graphs of long-term average monthly

streamflows at Lille Rostavatn (Figure 9(d)) and Målselvfos-

sen (Figure 9(e)) generated from both weather datasets are

almost similar, excluding a slightly higher peak flow at

Lille Rostavatn achieved from the CFSR data compared

with the ground-based data. The graphs of long-term average

monthly streamflow at the downstream station, Målselvfos-

sen, demonstrate that a fairly good model performance

was achieved from both weather datasets.

In brief, a relatively good model performance in terms of

simulation of the long-term average monthly streamflow, as

well as the consistency of modeling results between the

ground-based dataset and the CFSR dataset, achieved at Lille

Rostavatn and Målselvfossen compared with other hydro-gau-

ging stations, have demonstrated the influences of the

representativeness of ground-based weather stations across

the Målselv watershed. Since the representative ground-

based weather stations are missing for the upstream sub-

basins at hydro-gauging stations Lundberg, Skogly, and Hogs-

karhus, areal rainfall calculated for those sub-basins are from

the ground-based weather stations in the downstream and out-

side of the watershed. However, such weather stations might

not be the representative weather stations for the upstream

sub-basins. As a result, the simulation results of long-term aver-

age monthly streamflow at Lundberg, Skogly, and Hogskarhus

stations are not consistent between two weather datasets. In

contrast, the hydrographs of the long-term average monthly

streamflow at Lille Rostavatn and Målselvfossen are almost

consistent between two weather datasets. The reason could

be because these sub-basins receive correct rainfall from the

representative weather stations.

Uncertainty analysis of the modeling results from the

two weather inputs

Values of P-factors, calculated at all five hydro-gauging

stations, from both weather input datasets, in the calibration

Table 8 | Comparison of the simulated water balance components

Weather dataset Rainfall ET SUR_Q LAT_Q PERC GW_Q WYLD

Ground-based (mm) 915.2 144.8 286.7 92.5 282.2 255.3 740.8
(%) 100 15.8 31.3 10.1 30.8 27.9 80.9

CFSR (mm) 1192 170.8 286.5 391.1 310.5 127.5 834.9
(%) 100 14.3 24.0 32.8 26.0 10.7 70.0

Ground-based/CFSR difference (mm) �276.7 �26.0 0.2 �298.6 �28.3 127.9 �94.1
(%) �23.2 �15.2 0.1 �76.4 �9.1 100.3 �11.3
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period, are �0.75, except that the value of P-factor at the Lille

Rostavatn station calculated from the ground-based dataset is

slightly under 0.70 (Figure 10(a)). Regarding the validation

period, values of P-factors at most hydro-gauging stations,

from both weather input datasets, are higher than 0.70,

excluding the results at Skogly and Lille Rostavatn from the

ground-based dataset (Figure 10(c)). The good values of P-fac-

tors achieved from the uncertainty analyses indicate that the

measured river discharge is simulated well by the model, or

the modeling error is low. The accuracy of modeling results

by using the high-resolution CFSR dataset is higher than

that by using the existing scattered ground-based dataset.

Figure 9 | Average monthly streamflow (in m3/s) during 1998–2007, generated from observed data and simulation with ground-based weather data and CFSR weather data.
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Values of R-factors obtained from both weather input

datasets are �1.50 for both calibration and the validation

periods, except that R-factors at Høgskarhus and Skogly,

which are obtained from the ground-based dataset, are

higher than 1.50 (Figure 10(b) and 10(d)). Therefore, based

on the analyzed results of R-factors, it could be concluded

that using the high-resolution CFSR weather input to simu-

late river discharge in the Målselv watershed could

produce a high certainty of modeling results. In contrast,

using the available scattered ground-based data to simulate

river discharge may produce uncertain results in upstream

sections of the watershed, particularly the areas close to

Høgskarhus and Skogly stations. This is because most of

the available ground-based stations are located in the down-

stream of the watershed, and there is a lack of representative

stations in the middle, as well as in the upstream, sections.

In brief, according to the above analyses of the statistical

coefficients of model performance (e.g., R2, NSE, and RSR),

the uncertainty measures (P-factor and R-factor), the simu-

lation results of water balance components, monthly

streamflow hydrograph, and long-term average monthly

streamflow, the present study demonstrates that using the

high-resolution CFSR weather input to run the SWAT

model produces better modeling results than using the exist-

ing limited ground-based weather input, in the Arctic

watershed, Målselv. It could be interpreted that one of the

underlying reasons leading to lower model performance by

using the ground-based weather input in this study area is

that most of the available meteorological stations are located

in the downstream sections, and there is a lack of represen-

tative stations in the middle, as well as in the upstream,

sections. The Målselv watershed has characteristics of

mountainous topography, where rainfall is high variant in

space and time. Therefore, the scattered ground-based net-

works could not represent well the rainfall feature of the

whole large watershed, unlike the denser grid points of the

Figure 10 | Uncertainty analysis for streamflow simulation: (a) P-factors for the calibration period; (b) R-factors for the calibration period; (c) P-factors for the validation period; and

(d) R-factors for the validation period.
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global reanalysis weather data CFSR distributed across the

whole watershed. Furthermore, the SWAT model used the

NNS method to calculate the areal rainfall for every sub-

basin. This approach could result in uncertain outputs

when the local meteorological data are recognized to be

representative of larger areas. To our knowledge, the

CFSR dataset has been used for the first time to run the

QSWAT model in the Arctic watershed Målselv by this

study. Since the available ground-based weather data are

limited in this study area, the CFSR dataset is evaluated as

a reliable alternative source. Also, performances and cer-

tainties of the CFSR data are verified in this study via the

evaluation of multiple factors and criteria. It could be, there-

fore, highly reliable to apply the CFSR dataset for running

hydrological models in Målselv watershed. According to

the performance of the CFSR input dataset in this case

study, it is expected that CFSR weather data could be a

potential source to be widely applied in other Arctic

watersheds.

CONCLUSIONS

Collecting enough weather input data to run hydrological

models in the data-sparse Arctic region is a challenge for

all modelers. In this study, the possibility of using the high-

resolution global reanalysis weather data, CFSR, as an

alternative data input for the hydrological models was inves-

tigated in an Arctic watershed Målselv. The performance of

CFSR data is compared with the ground-based (gauged) data

through running the hydrological model QSWAT. Model

performance with the high-resolution CFSR data is higher

than that with the existing scattered ground-based data via

the evaluation of the statistical coefficients. The NSE coeffi-

cient is in the range of 0.65–0.82 (good to very good) with

the CFSR weather input, whereas it is in the range of

0.55–0.74 (satisfactory to good) with the ground-based

weather input. The simulation results also demonstrate the

high capacity of CFSR data to replicate the monthly average

streamflow, in terms of monthly average hydrograph, peak

and low-flow values, during a 10-year period, 1998–2007.

In contrast, the ground-based weather data showed lower

performance than the CFSR data because the network of

the ground-based weather station is scattered with only

two stations inside and two stations outside the watershed.

In addition, most of the ground-based weather stations

locate in the downstream. The representativeness of weather

stations in the middle and upstream is missing. The higher

rainfall amount and its spatial variation from the CFSR data-

set than that from the ground-based dataset leads to higher

simulation results of some water balance components, in

terms of actual evapotranspiration, lateral flow, ground-

water recharge, and water yield contributing to

streamflow. By evaluating the uncertainty measures, P-fac-

tors (with results �0.70) and R-factors (with results �1.5),

CFSR data demonstrated its capacity to produce a high cer-

tainty of modeling results in the Målselv watershed. The

promising results from this study will open the chances for

hydrological applications of the CFSR data in other water-

sheds in the Arctic region.
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Table S1. Land use classification in SWAT model.

Land use code Area (ha) %Watershed Crop name

GRAS 33046.05 5.68 grassland

SHRB 50757.53 8.73 shrubland

FODB 128666.06 22.12 deciduous broadleaf forest

FOEN 730.48 0.13 evergreen needleleaf forest

FOMI 9126.23 1.57 mixed forest

WATR 23924.18 4.11 water

WEWO 1535.38 0.26 wooded wetland

BSVG 3658.14 0.63 barren or sparsely vegetated

TUWO 188328.17 32.38 wooded tundra

TUMI 139179.82 23.93 mixed tundra

TUBG 2591.84 0.45 bare ground tundra

Table S2. Soil classification in SWAT model. 

Soil code Area (ha) %Watershed Texture

Po35-1b-6611 115250.66 19.82 sandy loam

I-Re-Rx-1-3125 409375.91 70.39 sandy loam

I-Po-Od-1-3118 15540.66 2.67 sandy loam

WATER-6997 41376.65 7.11 water

Table S3. Slope classification in SWAT model. 

% of slope Area (ha) %Watershed

0-5.0 107394.5 18.47

5.0-10.0 78841.49 13.56

10.0-25.0 191854.09 32.99

25.0-30.0 39609.69 6.81

> 30.0 163844.11 28.17



Figure S1. Scatter plots of observed and simulated streamflow from using CFSR data and ground-based data
(ECAD) for the calibration period (1998-2007): (a,b) at Lundberg; (c,d) at Lille Rostavatn; (e,f) at Høgskarhus;

(g,h) at Skogly; and (i,j) at Målselvfossen.



Figure S2. Scatter plots of observed and simulated streamflow from using CFSR data and ground-based data
(ECAD) for the validation period (2008-2012): (a,b) at Lundberg; (c,d) at Lille Rostavatn; (e,f) at Høgskarhus; (g,h)

at Skogly; and (i,j) at Målselvfossen. 



Figure S3. Calibration results for the period 1998-2007 by monthly simulation with ground-based weather data:
(a) at Lundberg; (b) at Lille Rostavatn; (c) at Høgskarhus; (d) at Skogly; and (e) at Målselvfossen. 



Figure S4. Calibration results for the period 1998-2007 by monthly simulation with CFSR global weather data: (a)
at Lundberg; (b) at Lille Rostavatn; (c) at Høgskarhus; (d) at Skogly; and (e) at Målselvfossen.



Figure S5. Model validation for the period 2008-2012 by monthly simulation with ground-based weather data: (a)
at Lundberg; (b) at Lille Rostavatn; (c) at Høgskarhus; (d) at Skogly; and (e) at Målselvfossen.



Figure S6. Model validation for the period 2008-2012 by monthly simulation with CFSR global weather data: (a)
at Lundberg; (b) at Lille Rostavatn; (c) at Høgskarhus; (d) at Skogly; and (e) at Målselvfossen.
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ABSTRACT

The effects ofwatershed subdivisions on hydrological simulations have not been evaluated in Arctic conditions yet. This study applied the Soil and

Water Assessment Tool and the threshold drainage area (TDA) technique to evaluate the impacts of watershed subdivision on hydrological simu-

lations at a 5,913-km2Arcticwatershed,Målselv. Thewatershedwas discretized according to four TDA scheme scales including 200, 2,000, 5,000,

and 10,000 ha. The impacts of different TDA schemes on hydrological simulations in water balance components, snowmelt runoff, and stream-

flow were investigated. The study revealed that the complexity of terrain and topographic attributes altered significantly in the coarse

discretizations: (1) total stream length (�47.2 to �74.6%); (2) average stream slope (�68 to �83%); and (3) drainage density (�24.2 to

�51.5%). The spatial density of weather grid integration reduced from�5 to�33.33% in the coarse schemes. The annual mean potential evapo-

transpiration, evapotranspiration, and lateral flow slightly decreased,while areal rainfall, surface runoff, andwater yield slightly increasedwith the

increases of TDAs. It was concluded that the fine TDAs produced finer and higher ranges of snowmelt runoff volume across the watershed. All

TDAs had similar capacities to replicate the observed tendency of monthly mean streamflow hydrograph, except overestimated/underestimated

peak flows. Spatial variation of streamflowwaswell analyzed in the fine schemeswith high density of streamnetworks,while the coarse schemes

simplified this. Watershed subdivisions affectedmodel performances, in theway of decreasing the accuracy ofmonthly streamflow simulation, at

60% of investigated hydro-gauging stations (3/5 stations) and in the upstream. Furthermore, watershed subdivisions strongly affected the cali-

bration process regarding the changes in sensitivity ranking of 18 calibrated model parameters and time it took to calibrate.

Key words: Arctic watershed Målselv, hydrological simulations, snowmelt runoff, SWAT, threshold drainage area (TDA), watershed subdivisions

HIGHLIGHTS

• The annual mean PET, ET, and lateral flow slightly decreased, while rainfall, surface runoff and water yield slightly increased with the

increase of TDAs.

• The fine TDAs produced finer and higher ranges of snowmelt runoff volume across the watershed.

• All TDAs had similar capacities to replicate the observed tendency of monthly mean streamflow hydrograph, except overestimated/under-

estimated peak flows.

• Spatial variation of streamflow was well analysed in the fine schemes compared to the coarse ones.

• The scales of watershed subdivisions affected model performances, and sensitivity ranking of 18 calibrated model parameters in five hydrolo-

gical subgroup processes (e.g. surface runoff, lateral flow, snowmelt, channel water routing, and goundwater) and time taking for calibration.

INTRODUCTION

The semi-distributed model SWAT (Soil And Water Assessment Tool) (Neitsch et al. 2009) was developed to predict the

impacts of human activities (Gassman et al. 2007) and climate change (Dile et al. 2013) on environment and water resources

in large complex watersheds. Lumped models consider the entire watershed/basin as a single system (Devi et al. 2015); on the

other hand, the semi-distributed models like SWAT divide the whole watershed/basin into smaller sub-watersheds/sub-basins

(Daofeng et al. 2004; Dwarakish & Ganasri 2015). It is assumed that each sub-basin is a homogeneous unit with representa-

tive parameters for the entire sub-basin (Bingner et al. 1997). Choosing the size for the sub-basins also influences the

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and
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homogeneous assumption because the larger the sizes of the sub-basins, the higher variable conditions the sub-basins have

(Bingner et al. 1997). When the sizes of sub-basins are reduced and the number of sub-basins are increased, it significantly

influences the amounts of required input data and model parameters, the computational process (Bingner et al. 1997), as

well as the calibration effort since the large number of sub-basins may require more adjusted model parameters needed to

optimize the simulation results and more iterations needed for running the calibration (Rouhani et al. 2009).

Watershed delineation is considered as an important preliminary step since the accuracies of the modeling results, e.g.,

runoff (Rouhani et al. 2009; Gong et al. 2010; Chaplot 2014), streamflow (Norris & Haan 1993; Rouhani et al. 2009), and

soil erosion and pollution (Gong et al. 2010) may be influenced by the delineation resolutions, beside the quality of input

data (Chaplot et al. 2005; Ning et al. 2015; Nazari-Sharabian et al. 2020). For example, the accuracy of runoff simulation results

decreases at the coarse levels of watershed discretization due to the effects of the changes in the distribution of runoff curve

numbers over the entire watershed, particularly in the SWAT model (Rouhani et al. 2009). Increasing or decreasing numbers

of sub-watersheds also influences the accuracy of simulation of peak flows or extreme flows (Rouhani et al. 2009). In particular,

the deviation between observed and simulated peak flows/extreme flows increases when the number of sub-watershed

increases. This is because higher numbers of sub-watersheds lead to higher variation of the runoff values that contribute to

streamflow. In addition, the values of runoff curve numbers are automatically updated according to the variation of soil moist-

ure condition in each sub-watershed. Therefore, when the runoff curve numbers have high fluctuation, then the values of runoff

contributing to streamflow also highly fluctuate. As a result, the accuracy of simulated peak flows/extreme flows is influenced

(Rouhani et al. 2009). Moreover, delay in the travel time of runoff occurring in the watersheds with large numbers of sub-water-

sheds may result in lower values of simulated peak flows compared to that with small numbers of sub-watersheds. The reason is

because runoff from the upper sub-watersheds could reach to the outlet of the watershed only after runoff from the lower sub-

watersheds has been already discharged (Rouhani et al. 2009). Furthermore, increasing the number of sub-watersheds leads to

increasing channel slope and drainage density that result in higher simulation results of somewater balance components (Chen

et al. 2021). Also, the change in drainage density also influences the accuracy of runoff prediction (Goodrich 1992). Finally, the

automated computational processes of morphological and hydrological parameters of the watershed are strongly influenced by

the chosen numbers and sizes of sub-watersheds (Munoth & Goyal 2019b).

The most natural subdivision method is dividing a watershed into its natural sub-watersheds based on topography data,

which are extracted from a digital elevation model (DEM). Such watershed subdivision also aims to preserve the watershed’s

natural boundaries, flowpaths, as well as channels for realistic flow routing (Zhang et al. 2004). With the development of GIS

(geographic information system) technologies, several watershed subdivision approaches have been developed to investigate

the impacts of watershed subdivision on modeling outputs (Savvidou et al. 2014), including (1) critical source area (CSA)

(Thieken et al. 1999; FitzHugh & Mackay 2000; Kalin et al. 2003; Di Luzio & Arnold 2004; Arabi et al. 2006); (2) threshold

drainage area (TDA) (Nour et al. 2008); (3) aggregated simulation area (Lacroix 1999); (4) representative elementary areas

(Wood et al. 1988); (5) representative elementary watershed (Reggiani & Rientjes 2005); (6) hydrologic similar units

(Karvonen et al. 1999); (7) functional units (Argent et al. 2006); and (8) hydrologic response units (HRUs) (Flugel 1995,

1997). In the SWAT model, watershed subdivision is basically based on the TDA, which is the minimum upstream drainage

area for a channel to originate (Aouissi et al. 2013), or as a percentage of total catchment area (Di Luzio & Arnold 2004;

Kumar & Merwade 2009). Each sub-basin in SWAT is further subdivided into smaller HRUs.

Many previous studies around the world applied the SWAT model to investigate the impacts of watershed subdivision on

the results of hydrological simulations, including runoff (Norris & Haan 1993; Bingner et al. 1997; Jha et al. 2004; Arabi et al.

2006; Rouhani et al. 2009; Chaplot 2014; Munoth & Goyal 2019a), water balance components (Tripathi et al. 2006; Chaplot

2014; Chen et al. 2021), and streamflow (Mamillapalli et al. 1996; FitzHugh & Mackay 2000; Haverkamp et al. 2002; Jha

et al. 2004; Muleta et al. 2007; Rouhani et al. 2009; Aouissi et al. 2013, 2018; Chiang & Yuan 2015; Ozdemir et al. 2017;

Pignotti et al. 2017; Chen et al. 2021). Regarding the studies on runoff, there was inconsistency among previous findings.

For example, in a study in the 21.3-km2 Goodwin Creek Watershed, in northern Mississippi, USA, it was found that

values of runoff volume generated from 10 different levels of watershed subdivision based on different values of the CSA

were not significantly impacted by the chosen number and size of sub-watersheds (Bingner et al. 1997). For example, the

simulation of total annual runoff volume varied less than 5% among 10 watershed subdivision schemes (Bingner et al.

1997). In contrast, little variation in the total simulated surface runoff among 12 sub-watershed delineation schemes was

detected in a study in four Iowa watersheds, USA, with the areas varying from 2,000 to 18,000 km2 ( Jha et al. 2004). However,

the variation in the total simulated surface runoff was not clearly quantitative in such a study (Jha et al. 2004). Also, changes
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in runoff simulation were found in a study in the 384-km2 Grote Nete River catchment, in Flanders, Belgium (Rouhani et al.

2009). They pointed out that the larger number of sub-watersheds in the watershed delineation schemes resulted in higher

variation of runoff that led to higher fluctuation in the values of simulated extreme flows (Rouhani et al. 2009). Nevertheless,

the deviation of simulated peak flow among watershed delineation schemes was not clearly quantified (Rouhani et al. 2009).

Another study in the 65,145-km2 Tapi River, in India, concluded that surface runoff decreased (approximately 35%) when

TDA increased (from 25 to 400 km2) (Munoth & Goyal 2019a). In contrast, a study in a 26.12-km2
flat watershed, the

Walnut Creek watershed, in central Iowa, USA, found that surface runoff increased (approximately 15%) when TDA

increased (from 23 to 654 ha) (Chaplot 2014). However, the larger relative errors, between observed and simulated results,

were also detected for the coarse watershed subdivision schemes with higher TDA values (Chaplot 2014). For example, the

relative error for estimated runoff from TDA 654 ha was approximately 15%, while it was 0% from TDA 23 ha or approxi-

mately 8% from TDA 100 ha (Chaplot 2014). Therefore, it was learned from that study that using the coarse watershed

subdivision schemes could produce higher values of surface runoff volume, but at the same time, the simulated results

were more uncertain compared to those by using the fine schemes.

Similar to the studies in runoff, the changes in the results of streamflow simulations under different watershed delineation

schemes were also inconsistent among previous studies. For example, it was found in a study in the four Iowa watersheds,

USA, that streamflow components were increased only less than 7% when the number of sub-watersheds increased (from

5 to 53) for a 1,929-km2 watershed, which indicated quite insensitive streamflow to the number of sub-watersheds (Jha

et al. 2004). In other studies, the changes in watershed subdivision schemes had slight impacts on the results of streamflow

simulation (FitzHugh & Mackay 2000; Aouissi et al. 2013; Chiang & Yuan 2015). For example, the simulated annual and

monthly streamflow, in a 62-km2 Pheasant Branch watershed, Dane County, Wisconsin, USA, slightly increased (approxi-

mately 12%) from the coarse schemes to the fine schemes (FitzHugh & Mackay 2000). In a study in the 418-km2 Joumine

watershed, northern Tunisia, the simulated annual and monthly streamflow were only few percentage of variation among

watershed delineation schemes (Aouissi et al. 2013). In a study in the large-scale watershed, the Kaskaskia River watershed

in Illinois, USA, with 11,350 km2, the simulated average annual streamflow increased by less than 2% from the finest scheme

to the coarsest scheme (Chiang & Yuan 2015). However, a study in a small-scale watershed, the 26.12-km2 Walnut Creek

watershed, in central Iowa, USA, found significant increase of mean streamflow (approximately 62%) when TDA increased

from 23 to 654 ha (Chaplot 2014). However, that study also pointed out that simulation of streamflow by using the coarse

watershed subdivision solution produced higher uncertain results than by using the finer watershed subdivision solution

(Chaplot 2014). For example, the relative error between observed data and simulated results of mean streamflow was

163% for TDA 654 ha, while it was less than 6% for TDAs 23, 100, and 261 ha (Chaplot 2014). Another study in the

4,297-km2 Bosque River watershed, Texas, USA, found the positive effects of changes in watershed subdivision schemes

on the accuracy of streamflow prediction (Mamillapalli et al. 1996). Such study revealed that the accuracy of streamflow pre-

diction was improved by increasing the number of sub-watersheds and/or the number of HURs (Mamillapalli et al. 1996).

This finding was also similar to findings from other studies in the Weiherbach (6.3 km2) and Dietzhoelze (81.7 km2) water-

sheds, Germany, and the Bosque River watershed (4,297 km2) in Texas, USA (Haverkamp et al. 2002; Muleta et al. 2007). In

contrast, the accuracy of peak flow prediction was concluded to be decreased (approximately 20%) when numbers of sub-

watersheds increased in a study in the 384-km2 Grote Nete River catchment, in Flanders, Belgium (Rouhani et al. 2009).

Recently, a study in the 491,700-km2 Upper Mississippi River Basin, USA, found that the fine schemes of watershed delinea-

tion (12-digit sub-basin scenario) yielded higher values of streamflow simulation (approximately 1.79–7.17%) compared to the

coarser schemes (8-digit sub-basin scenario), since the fine schemes are able to capture a sophisticated level of the spatial

variation of watershed features including variation of rainfall regime (Chen et al. 2021). This finding agreed with the finding

of a previous study in the 152.29-km2 Little Washita watershed, near Chickasha, Oklahoma, USA, since they pointed out that

the number of sub-watersheds strongly impacted the simulated streamflow hydrograph (Norris & Haan 1993). In particular,

the estimated peak flow increased approximately 30% when the number of sub-watersheds increased from 1 and 2 sub-water-

sheds up to 15 sub-watersheds (Norris & Haan 1993).

Regarding studying water balance components, a previous study in the 90.23-km2 Nagwan watershed in India revealed that

the size and number of sub-watersheds had significant impacts on the simulation results of evapotranspiration (ET), percola-

tion, and soil water (SW) content, with the exception of surface runoff (Tripathi et al. 2006). For example, increasing the

number of sub-watersheds (from a single watershed to the discretization of 12 and 22 sub-watersheds) resulted in increasing

approximately 0.28–61.4% ET, 4.48–26.7% percolation, and 17.7–22.3% SW content (Tripathi et al. 2006). A study in a
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26.12-km2
flat watershed, the Walnut Creek watershed, in central Iowa, USA, found that decreasing sizes of sub-watersheds

(from 654 ha down to 23 ha) or increasing numbers of sub-watersheds (from 1–4 to 96–115) resulted in increased ET (4.6%),

decreased SW (5.1%), decreased percolation (2.8%), decreased surface runoff (15.1%), and decreased groundwater (2.4%)

(Chaplot 2014). In this case, the trends of changes were not consistent for every water balance component, particularly in

ET (Chaplot 2014). Another study in the 4,91,700-km2 Upper Mississippi River Basin, USA, found that the simulation results

of surface runoff, lateral flow, groundwater flow, and water yield (WYLD) increased approximately 0.98, 92, 2.73, and 2.07%,

respectively, when the number of sub-watersheds and HRUs increased (Chen et al. 2021).

However, the fine watershed delineation does not always yield higher model performances compared to the coarse

schemes (Boyle et al. 2001; Reed et al. 2004; Rouhani et al. 2009). For example, some previous studies stated that the model-

ing results are better when using the semi-lumped and semi-distributed model structures compared to those using the

distributed models (Ogden & Julien 1994; Smith et al. 2004; Das et al. 2008). The reason is that the capacities to capture

the important features of the watersheds and variation of rainfall regime of the coarse watershed delineation are better

than those of the fine one. This argument is somewhat against the argument in the study in the Upper Mississippi River

Basin, USA (Chen et al. 2021).

In another method of assessment, a study in two small-scale watersheds, the Dreisbach (6,23 km2) and the Smith Fry

(7,30 km2) watersheds, in Maumee River Basin, Allen County, Indiana, USA, demonstrated the importance of manner of

watershed subdivision on the efficiency of different best management practices (BMPs) for controlling the fate and transport

of nutrients (e.g., total nitrogen and total phosphorus) and sediment within the watersheds (Arabi et al. 2006). Herein, nutri-

ents and sediments are transported into the channels by surface runoff and lateral subsurface flow (Arabi et al. 2006).

Therefore, the changes in these water balance components because of different watershed subdivision solutions could poten-

tially affect the estimation of nutrient and sediment outputs. Besides that, the study found that watershed subdivisions caused

discrepancies in watershed characteristics, e.g., drainage density, channel networks which affected nutrient and sediment

yields (Arabi et al. 2006). In particular, it was expected from the study that more studies in future should be focused on

the larger watersheds to verify the impacts of watershed subdivision scales on BMPs of the watersheds, since the larger water-

sheds may reveal different trends of changes compared to the smaller watersheds (Arabi et al. 2006). Also, it was highly

expected from the study that the impacts of watershed subdivision should deserve more attention in future than those carried

out in the past because of uncertainties resulting from different spatial resolutions (Arabi et al. 2006).

Beside the impacts of watershed delineation, density and spatial distribution of weather data input are also the important

factors that may affect the modeling results (Chaubey et al. 1999; Bardossy & Das 2008; Aouissi et al. 2013, 2018; Chaplot

2014; Chen et al. 2021). For example, the high uncertainty in the estimated model parameters in the hydrological models

results from using spatial homogeneity of rainfall and does not consider the refined variation of rainfall input (Chaubey

et al. 1999). In addition, the performances of the hydrological models significantly decline when the density of integrated

rain gauges is reduced (Bardossy & Das 2008). Also, the accuracy of streamflow simulation is significantly impacted by

the spatial distribution of rain-gauge networks (Aouissi et al. 2013, 2018). It was found from a study in the 26.12-km2

Walnut Creek watershed, in central Iowa, USA, that spatial resolution of rain-gauge networks significantly impacted water

balance components in different manners (Chaplot 2014). For example, when increasing the number of rain gauges from

1 to 13, ET decreased approximately 17.7%, SW content increased approximately 41.3%, percolation increased approxi-

mately 66.67%, surface runoff decreased approximately 40.9%, and groundwater decreased approximately 42.1% (Chaplot

2014). Furthermore, it was learned from a study in the 491,700-km2 Upper Mississippi River Basin, USA, that higher

values of streamflow prediction were yielded from the denser weather networks compared to those from the scatter networks

(Chen et al. 2021). For example, the simulated average monthly streamflow increased approximately 6.30–8.32% by using the

denser climate dataset compared to using the sparser dataset in a large-scale watershed (Chen et al. 2021). However, the influ-

ences of weather networks density on hydrological simulations might vary from region to region and might depend upon the

environmental characteristics or conditions of the investigated watersheds, where the differences in rainfall types (e.g., con-

vective or advective), rainfall seasonality, the importance of snow accumulation and snowmelt processes, topographic

features, and land use are identified (Bardossy & Das 2008; Chaplot 2014). The regions with complex hydrological processes

might require high density of rain-gauge networks (Bardossy & Das 2008). Therefore, more studies are necessary to verify the

effects of density and spatial distribution of weather data on hydrological simulations.

Obviously, the impacts of watershed subdivision and spatial resolution of weather networks on hydrological simulations

were significantly investigated in numerous regions around the world, where there are differences in climate conditions,
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topography, land-use, and hydrological regimes. This contributed valuable knowledge for the scientific community; however,

a consensus has not yet been obtained among outcomes under different environmental conditions (Mulungu & Munishi

2007; Chaplot 2014). For example, using the fine watershed delineation schemes could result in both positive and negative

effects on the accuracy of hydrological simulations compared to those by using the coarse schemes. Similarly, the impacts of

weather network density on hydrological simulations also varied regionally and could depend upon different environmental

characteristics or conditions (Mulungu & Munishi 2007; Chaplot 2014). Therefore, the consequences of watershed subdivi-

sion and spatial density of weather networks on hydrological simulations are still a controversial issue. In addition, most of

the previous studies were conducted in tropical/sub-tropical or temperate climate zones. However, studies in the Arctic

region, with complex hydrological processes and sparse weather data, are still limited. Moreover, snowmelt runoff is an

important component in the Arctic hydrology, since it contributes approximately 75% of the total annual flow in many

Arctic watersheds (Woo 1980). Nevertheless, studies on the effects of watershed subdivision and weather network density

on snowmelt runoff have not been addressed in previous studies. Also, many studies assessed the changes in streamflow,

because of watershed subdivisions, mostly at the basin outlet or at certain hydro-gauging stations. However, the spatial vari-

ation of streamflow in each sub-basin, which is important for the case of flood hotspots analysis because of watershed

delineation solutions, has not been well investigated. Therefore, to fill the existing knowledge gaps as well as to satisfy the

expectation of previous studies, this paper conducted a study in the Arctic conditions to investigate the combined effects

of watershed subdivision scale and weather network density on the results of hydrological simulations. In particular, out-

comes of the present study aim to answer the following pertinent questions:

1. How much discrepancies in watershed characteristics and land-use composition could change?

2. How much model performance (in terms of statistical indicators) could be influenced?

3. How much snowmelt runoff volume and water balance components could vary spatially across the watershed?

4. How much streamflow could vary in temporal–spatial patterns across the watershed?

5. How much the sensitivity of model parameters under the Arctic conditions could be influenced?

STUDY AREA

Målselv watershed in northern Norway, distributing from 68°210N to 69°170N, was selected as the study area (Figure 1). This

is a large-scale watershed with an area of approximately 5,913 km2. Målselv has the features of mountainous terrain with the

ground surface elevation ranges from 0 to 1,718 m. This area is located in the cold climate zone with the average annual air

temperature varying from �5 to 6 °C. Rainfall regime is also highly variant across the watershed. The long-term average

annual rainfall in this area fluctuates from ∼500 to 1,500 mm.

MATERIALS AND METHODS

SWAT model

The physically based, semi-distributed SWAT model (Neitsch et al. 2009) was used. The SWAT includes two important phases

in its structure such as land phase and routing phase (Du et al. 2013) to describe the water cycle in the watershed. The land

phase works based on a water balance equation as follows:

SWt ¼ SW0 þ
X

t

i¼1

(Ri �Qi � Ei � Pi �QRi) (1)

where SWt is the SW content at time t (mm), SW0 is the initial SW content (mm), Ri is the amount of precipitation on day i

(mm), Qi is the amount of surface runoff on day i (mm), Ei is the amount of ET on day i (mm), Pi is the amount of percolation

on day i (mm), and QRi is the amount of return flow on day i (mm).

The routing phase describes several processes occurring in the stream including movement of water, sediments, flow mass

in the channel, and transformation of chemicals in the stream and streambed.

The QSWAT interface, version 1.9, was used in this study. This is a coupling product of the hydrological model SWAT ver-

sion 2012 and the open-source QGIS version 2.6.1.
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Data acquisition

In order to run the SWAT model, several temporal-spatial input data including time series of climate data such as precipi-

tation, maximum and minimum air temperature, wind speed, relative humidity, solar radiation, and spatial (grid) data

such as land use, soil, and topography (e.g., DEM) were required. In addition, time series of river discharge were needed

for model calibration and validation. These data were collected from several sources. Details of data types, data resolution,

and sources of data are summarized in Table 1.

Methods for development of the TDA schemes

The technique of watershed subdivisions in the SWAT model is based on the values of the TDA. Four different TDA schemes,

using TDA values of 200, 2,000, 5,000, and 10,000 ha, were developed in this study.

Figure 1 | Map of study area: Målselv watershed.

Table 1 | Summary of data inputs and their sources using the SWAT model

Data type Resolution Sources

Spatial data (grid) DEM 10� 10 m Geonorge (2013)

Land use ∼600 m Waterbase (2007a)

Soil ∼5,000 m Waterbase (2007b)

Temporal data (time series) Climate data: climate forecast system reanalysis ∼38 km grid TAMU (2012)

River discharge Five stations Sildre (2020)
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Methods for HRU creation

Watershed subdivision and HRU creation were performed for each option of TDA values. Multiple HRUs were generated for

each sub-basin, from the inputs of land use, soil, and slope classes, based on an HRU threshold (Figure 2). This threshold

considers the percentage of the representative land use/soil/slope for each sub-basin. The HRU thresholds from 5 to 15%

were widely used in many studies (Sexton et al. 2010; Srinivasan et al. 2010; Han et al. 2012; EPA 2013). In this study,

the designed HRU thresholds for land use, soil, and slope were 5% for each. According to this threshold, only types of

land use, soil, and slope, which are higher than 5% of the sub-basin area, were considered. In addition, the terrain slope

was classified into five classes such as 0–5, 5–10, 10–25, 25–30, and .30%.

Figure 2 | The algorithm for HRU definition in SWAT (Her et al. 2015).
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Model running, calibration, validation, sensitivity, and uncertainty analysis

For each level of watershed subdivision, the model ran on a monthly time step from 1995 to 2012, including a 3-year warming

up period (1995–1997). The 10-year period, from 1998 to 2007, was used for model calibration, and the remaining 5 years,

from 2008 to 2012, were used for model validation.

The Sequential Uncertainty Fitting Version 2 (SUFI-2) algorithm in the SWAT Calibration Uncertainties Program

(SWAT_CUP) (Abbaspour et al. 2007) was used for model calibration, model validation, parameters sensitivity, and uncer-

tainty analyses. Each SWAT model corresponding to each watershed subdivision scheme was calibrated separately. A

total of 18 model parameters, which were recommended as the most sensitive parameters for streamflow calibration (Abbas-

pour et al. 2007, 2015), were used in calibration and validation processes. Those model parameters are classified into five

different subgroup processes of hydrological cycle, including (1) surface runoff (e.g., CN2.mgt and CANMX.hru); (2) lateral

flow (e.g., ESCO.hru, SOL_AWC.sol, SOL_BD.sol, and SOL_K.sol); (3) snowmelt (e.g., SMTMP.bsn, TIMP.bsn,

SMFMN.bsn, SMFMX.bsn, and SFTMP.bsn); (4) channel water routing (e.g., CH_K2.rte and CH_N2.rte); and (5) ground-

water (e.g., ALPHA_BF.gw, GW_REVAP.gw, GWQMN.gw, REVAPMN.gw, and GW_DELAY.gw). The finest scheme

used a total of 2,500 simulations to detect the optimal model parameters, while each of the other coarser schemes used a

total of 2,000 simulations. In addition, cross-validation was approached to test whether or not the calibrated model par-

ameters achieved from the finest watershed subdivision scheme could also perform well in other coarser schemes. All the

possible results, which are found during the calibration process, are distributed in the so-called 95PPU band. The two stat-

istical indicators, such as P-factor and R-factor, were used to measure the uncertainty of the calibration results. Herein,

the values of P-factor range from 0 to 1, of which a threshold of 0.7 or 0.75 is suggested for river discharge calibration.

The optimal values of R-factor, which presents the thickness of the 95PPU band, should be close to zero. For river discharge

calibration, the value of R-factor is suggested to be smaller than 1.5. When the thickness of the 95PPU band is large, it means

that the possibility of the model to capture most of the observed data is high; however, the model uncertainty is also high.

Global sensitivity analysis in the SUFI-2 algorithm was approached to detect the most sensitive model parameters used for

calibration. The concept of global sensitivity analysis is to estimate the average changes of the objective function as the results

of the changes of each parameter, whereas all other parameters are changing (Abbaspour 2015). In particular, the parameter

sensitivities are determined based on the multiple regression formula as follows:

g ¼ aþ
X

m

i¼1

bibi (2)

where g is the objective function for calibration, α is the regression constant, bi is the regression coefficient of calibrated par-

ameter, and bi is the calibrated parameter.

To identify whether or not a parameter bi is significant in sensitivity analysis, a t-test was used. This method uses two indi-

cators, namely p-value and t-stat, to measure and rank the sensitive level of each calibrated model parameter. The hypothesis

of the t-test method is that the larger the absolute values of t-stat, and the smaller the p-values, the more sensitive the par-

ameters are determined. In addition, a parameter is considered significant in sensitivity analysis if the p-value calculated

for that parameter is smaller than a value of 0.05. Finally, all calibrated model parameters are ranked for their sensitivity

levels according to the magnitudes of t-stat and p-value.

Evaluation of model performance

The three statistical coefficients were used to measure the good fit between the simulation and observation, including (1) the

coefficient of determination – R2 (Equation (3)), measuring the fitness of the relationship between the simulated and observed

values; (2) the Nash–Sutcliffe coefficient of efficiency – NSE (Equation (4)); and (3) root-mean-square error, divided by the

standard deviation – RSR (Equation (5)).

R2
¼ 1�

P

n

i¼1

(Yobs
i � Yobs

mean)(Y
sim
i � Y sim

mean)

P

n

i¼1

(Yobs
i � Yobs

mean)
2

� �1
2
P

n

i¼1

(Y sim
i � Y sim

mean)
2

� �1
2

, (3)
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NSE ¼ 1�

P

n

i¼1

(Yobs
i � Y sim

i )
2

P

n

i¼1

(Yobs
i � Yobs

mean)
2
, (4)

RSR ¼

P

n

i¼1

(Yobs
i � Y sim

i )
2

� �1
2

P

n

i¼1

(Yobs
i � Yobs

mean)
2

� �1
2

, (5)

where Yobs
i and Y sim

i are the observed and simulated values at time i, Yobs
mean and Y sim

mean are the mean observed and simulated

data for the entire evaluation period, and n is the total number of observations/simulations.

The threshold values of the statistical coefficient R2, NSE, and RSR for monthly simulation are shown in Table 2 (Santhi

et al. 2001; Van Liew et al. 2003; Moriasi et al. 2007; Premanand et al. 2018).

Evaluation of the hydrological simulations

To investigate the effects of watershed subdivisions on the hydrological simulations, the present study focused on the evalu-

ation of the simulation results of water balance components and streamflow. Regarding water balance components, the

annual mean values of total areal rainfall (PCP), actual ET, surface runoff (SUR_Q), snowmelt runoff, lateral runoff

(LAT_Q), groundwater recharge amount (PERCO), groundwater contribution to streamflow (GW_Q), and WYLD (YIELD

¼ SUR_Qþ LAT_QþGW_Q – Transmission losses) contributing to streamflow were calculated. In addition, to compare

the spatial variation of such water balance components across the entire watershed among different TDA schemes, the

GIS maps were produced. Furthermore, the long-term monthly average streamflow at five different hydro-gauging stations

was analyzed. Also, the GIS maps of the spatial variation of the long-term annual mean streamflow were produced. The

ArcGIS software version 10.6.1 was used in this study for generating the GIS maps and for spatial analysis. The results

are discussed in the following section.

RESULTS AND DISCUSSION

Discrepancies in watershed characteristics and land-use composition resulting from different TDA schemes

The methods of watershed delineation have significant impacts on the levels of terrain complexity as well as the topographic

attributes. The number of sub-basins declined 75, 90, and 96% in the coarse TDAs 2,000 ha (115 sub-basins), 5,000 ha (48 sub-

basins), and 10,000 ha (18 sub-basins), respectively, compared to the finest TDA 200 ha (459 sub-basins) (Table 3; Figure 3).

When numbers of sub-basins increase and the sub-basin sizes decrease, the accurate level of the representative land uses for

the watershed will be high. For example, the TDAs 200 ha (with 459 sub-basins) and 2,000 ha (with 115 sub-basins) presented

a total of 11 main land-use groups for the entire watershed, while other coarser schemes such as TDAs 5,000 and 10,000 ha

lost two and four land-use groups, respectively. In addition, the areas of each land-use group varied as the number of sub-

basins declined, of which some land-use groups decreased in their areas while others increased, but the magnitudes of

decreasing were greater than those of increasing (Table 4). For example, land-use groups of barren or sparsely vegetated,

mixed forest, grassland, shrubland, bare ground tundra, water, and wooded wetland had declining trends, whereas the

remainder had slight increasing trends. In particular, under TDA scheme 2,000 ha, the area of wooded wetland decreased

approximately 70% compared to the finest scheme 200 ha, and this was the highest ratio among the decreased land-use

Table 2 | Thresholds of R2, NSE, and RSR for evaluation of the hydrological model’s performance

Model performance R2 NSE RSR

Very good 0.70�R2
� 1.00 0.75,NSE� 1.00 0.00�RSR� 0.50

Good 0.60�R2
, 0.70 0.65,NSE� 0.75 0.50,RSR� 0.60

Satisfactory 0.50�R2
, 0.60 0.50,NSE� 0.65 0.60,RSR� 0.70

Unsatisfactory R2
, 0.50 NSE� 0.50 RSR. 0.70
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groups. Regarding TDA scheme 5,000 ha, the highest percentage of decreasing area (approximately 75%) was in the group of

barren or sparsely vegetated. For the coarsest scheme 10,000 ha, mixed forest had the highest percentage of declined area

with approximately 55%. Noticeably, two land-use groups, evergreen needleleaf forest and wooded wetland, disappeared

Figure 3 | Number of sub-watersheds generated by four different TDA schemes.

Table 3 | Summary of watershed and sub-watershed features under different TDA schemes

TDA 200 ha TDA 2,000 ha TDA 5,000 ha TDA 10,000 ha

Number of sub-basins 459 115 48 18

Number of HRUs 5,601 2,102 1,098 518

Total drainage area (km2) 5,815.44 5,805.54 5,805.54 5,805.54

Maximum sub-basin area (km2) 70.75 166.68 345.26 881.19

Minimum sub-basin area (km2) 2.05 20.04 52.53 116.68

Average sub-basin area (km2) 12.67 50.48 120.95 322.53

Average sub-basin elevation (m) 637.81 664 629.66 671.69

Average overland sub-basin slope (%) 25.95 24.05 23.85 25.18

Total stream length (km) 1,921.76 1,014.65 688.19 487.97

Average stream slope (%) 7.32 2.35 1.46 1.22

Levels of stream order 5.00 4.00 4.00 3.00

Drainage density (km km�2) 0.33 0.17 0.12 0.08

Number of weather grid points integration 21 20 18 14
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under TDA scheme 5,000 ha, while TDA scheme 10,000 ha lost four land-use groups, namely barren or sparsely vegetated,

evergreen needleleaf forest, bare ground tundra, and wooded wetland. In contrast, other land-use groups including deciduous

broadleaf forest, evergreen needleleaf forest (excluding TDA 5,000 ha and TDA 10,000 ha), mixed tundra, and wooded tundra

slightly decreased in their areas compared to the finest scheme 200 ha. For land-use groups with increased areas, the highest

percentage of increasing was only 6.5% and this was for the group of wooded tundra under TDA 10,000 ha. Obviously, land-

use groups with small areas significantly decreased, even disappeared in the coarse schemes. This is because the threshold for

the HRU definition in the present study was 5% for land-use/soil/slope. Therefore, the land uses with their areas smaller than

5% of the sub-basin areas were not defined, since they were regrouped into the major land-use groups. The decrease in the

areas of the minor land-use groups in the coarse watershed subdivision schemes was also validated in some previous studies

in the USA (Bingner et al. 1997; Chiang & Yuan 2015; Chen et al. 2021). Table 3 provides the summary of the discrepancies

in watershed characteristics resulting from the changes in TDA schemes.

In addition to the changes in the presence of land uses over the watershed resulting from the changes (decreasing) in the

number of sub-watersheds, other topographic attributes were also changed. For example, the increases of sub-basins’ sizes

resulted in the changes in the average elevation and average overland slope of the sub-basins, which may affect the surface

runoff process (Table 3). The finest TDA 200 ha had the highest average sub-basin slope compared to other coarse schemes.

Such an increase in the overland slope could result from a better representation of spatial variation of surface elevation by

discretization to smaller sub-watershed. In addition, the finest TDA scheme generated denser stream networks. For example,

the TDA 200 ha produced approximately 1,922 km total stream length with 5 levels of stream order, while other coarser

schemes 2,000, 5,000 and 10,000 ha produced approximately 1,015 km stream length (�47%) with 4 levels of stream

order, 688 km stream length (�64%) with 4 levels of stream order, and 488 km stream length (�75%) with 3 levels of

stream order, respectively (Figure 4). The decrease in stream length could affect some important in-stream processes. How-

ever, generating more sub-channels may not be realistic, since the channels from a very detailed level of sub-watershed

description may only represent the low-lying areas in nature but they may not be existing/real channels. Moreover, the aver-

age stream slope remarkably declined (approximately 68–83%) from the finest scheme to the coarsest scheme. Drainage

density dropped from 0.33 km km�2 (TDA 200 ha) to 0.17 km km�2 (TDA 2,000 ha), 0.12 km km�2 (TDA 5,000 ha), and

0.08 km km�2 (TDA 10,000 ha). The decrease in drainage density of the coarse TDAs may affect the accuracy of runoff simu-

lation. However, one of the advantages of using the coarse watershed subdivisions is requiring less inputs, computation time

(e.g., for running the model, calibration, and validation), as well as computer resources (e.g., reducing storage space). For

example, in this study, in order to run 500 simulations for one iteration in the calibration process, it took around 56 h for

the TDA 200 ha, while it was only 19.1, 7, and 3.2 h for TDA 2,000, TDA 5,000, and TDA 10,000 ha, respectively. Therefore,

using a lower number of sub-watersheds could benefit some users in the cases of limitations in time and the available

Table 4 | Changes of land use and HRUs (in ha and in %) under four different TDA schemes
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resources. However, for the watersheds with high variation of land uses, it may require a detailed analysis of sub-watersheds

for sophisticated description of the important features of the watersheds. The decreases in drainage density, total stream

length, stream order level, average sub-watershed slope, and average stream slope in the coarse schemes compared to

those in the fine schemes in the present study also agreed with findings from previous studies, but the level of declines

depended upon the drainage area of the study area as well as the designed TDA values (Bingner et al. 1997; Jha et al.

2004; Chiang & Yuan 2015; Munoth & Goyal 2019a; Chen et al. 2021).

The influences of watershed subdivisions on model performance in terms of statistical indicators

During the calibration period, at Lille Rostavatn and Målselvfossen hydro-gauging stations, model performances were rela-

tively stable under the changes of number of sub-watersheds. Although the number of integrated weather grids decreased

due to the decrease of numbers of sub-watersheds, the selected weather grid points may be the correct representatives for

the watershed as well as for the sub-watersheds surrounding these two hydro-gauging stations. The negligible impact of water-

shed subdivision on model performance was also validated in previous studies (Aouissi et al. 2013, 2018). In contrast, model

performances at three remaining stations fluctuated under different watershed subdivisions. For example, at Høgskarhus

station, model performance increased from TDAs 200 to 2,000 ha, then slightly decreased when numbers of sub-watersheds

decreased. At Skogly station, model performance declined gradually when numbers of sub-watersheds decreased. At Lund-

berg, model performance highly fluctuated. For instance, it was stable from TDAs 200 to 2,000 ha, then decreased with

TDA 5,000 ha, and afterward increased with TDA 10,000 ha. The decreases in model performances in the coarse schemes

in the present study agreed with conclusions from the previous studies (Mamillapalli et al. 1996; Haverkamp et al. 2002;

Tegegne et al. 2019). Obviously, model performances were heterogeneous among hydro-gauging stations under the changes

Figure 4 | Density and order of stream networks generated by four different TDA schemes.
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of TDA schemes (Figure 5(a)). The reasons could be the complexity of hydrological processes as well as topographic charac-

teristics in the Arctic.

The general tendencies of the changes in model performances in the validation period were repeated to those in the cali-

bration period at Målselvfossen, Lundberg, and Høgskarhus, except at Skogly and Lille Rostavatn (Figure 5(b)). Details of the

statistical coefficients for calibration and validation at all five hydro-gauging stations under different TDA schemes are pre-

sented in Tables 5–9.

The influences of watershed subdivisions on water balance components

Rainfall is one of the main inputs of water balance components. It was observed from the present study that the annual

mean values of areal rainfall increased with the decreases in the number of sub-watersheds (Figure 6(a)). However, the mag-

nitudes of deviations in annual mean values of areal rainfall were not significant among the TDA schemes. For example, the

gap in the annual mean values of areal rainfall was only 24 mm between TDAs 200 and 10,000 ha. It could be interpreted

that the coarse scheme had higher rainfall input than the finer scheme because fewer weather grid points in the coarse

scheme generated more uniform rainfall across the watershed. In particular, the average and minimum values of annual

rainfall from 14 weather grids in the TDA 10,000 ha were 1,207 and 826 mm, respectively, which were higher than those

from 21 weather grids in the TDA 200 ha, with 1,185 and 750 mm, respectively. Therefore, the integrated rainfall

amount from the coarse scheme was higher than that from the fine scheme, although the number of integrated weather

grids from the coarse scheme was less than that from the fine scheme. Also, the denser weather grid points of the fine

TDA scheme produced lower rainfall amount, since rainfall had high variation among weather grids. This could be true

for the mountainous watershed, since rainfall is usually high variation. Figure 7(a)–7(d) illustrates the spatial variation of

areal rainfall resulting from different resolutions of watershed discretizations. Obviously, the higher number of sub-water-

sheds produced finer variation of areal rainfall across the watershed. The finest scheme was able to display some

Figure 5 | Model performances for calibration and validation under four different TDA schemes.

Table 5 | Comparison of model performance at Lundberg

TDA (ha) Sub-basin

Calibration Validation

p-factor r-factor R2 NSE RSR p-factor r-factor R2 NSE RSR

200 381 0.88 1.08 0.73 0.69 0.56 0.90 1.00 0.81 0.77 0.48

2,000 87 0.80 0.76 0.73 0.69 0.55 0.78 0.67 0.84 0.77 0.48

5,000 32 0.58 0.64 0.57 0.50 0.71 0.72 0.59 0.76 0.68 0.56

10,000 10 0.75 0.84 0.73 0.69 0.56 0.81 0.73 0.82 0.77 0.48
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locations in the watershed with low rainfall amount. For example, based on Figure 7(a), the minimum value of annual mean

rainfall in some sub-basins in the upstream, from the finest TDA scheme 200 ha, was 758 mm which was lower at 87 mm

compared to that from other coarser schemes.

Annual mean potential ET (PET) (Figure 6(b)) and actual ET (Figure 6(c)) slightly increased from TDAs 200 to 5,000 ha,

then slightly decreased to TDA 10,000 ha. This could be because the coarse scheme 10,000 ha simplified the land-use and

cropland variations that resulted in lower ET amount. For example, the coarse scheme 10,000 ha lost 4 land-use groups com-

pared to 11 land-use groups in the fine scheme 200 ha (Table 4). In contrast, annual mean lateral flow (LATQ) dropped from

Table 7 | Comparison of model performance at Høgskarhus

TDA (ha) Sub-basin

Calibration Validation

p-factor r-factor R2 NSE RSR p-factor r-factor R2 NSE RSR

200 408 0.80 1.10 0.74 0.65 0.59 0.80 1.24 0.73 0.59 0.64

2,000 94 0.71 0.94 0.79 0.79 0.46 0.61 1.10 0.75 0.65 0.59

5,000 35 0.72 0.87 0.79 0.79 0.46 0.59 0.97 0.74 0.60 0.63

10,000 14 0.71 0.95 0.77 0.77 0.48 0.66 1.11 0.72 0.66 0.58

Table 8 | Comparison of model performance at Skogly

TDA (ha) Sub-basin

Calibration Validation

p-factor r-factor R2 NSE RSR p-factor r-factor R2 NSE RSR

200 412 0.98 1.59 0.77 0.77 0.48 0.95 1.47 0.87 0.82 0.42

2,000 95 0.80 1.21 0.81 0.69 0.56 0.60 1.17 0.88 0.80 0.44

5,000 37 0.83 1.15 0.8 0.73 0.52 0.63 1.06 0.89 0.74 0.51

10,000 16 0.91 1.30 0.77 0.64 0.60 0.90 1.32 0.88 0.84 0.40

Table 9 | Comparison of model performance at Målselvfossen

TDA (ha) Sub-basin

Calibration Validation

p-factor r-factor R2 NSE RSR p-factor r-factor R2 NSE RSR

200 444 0.94 1.57 0.85 0.82 0.42 0.91 1.58 0.88 0.83 0.41

2,000 108 0.82 1.10 0.86 0.85 0.39 0.77 1.08 0.88 0.85 0.38

5,000 43 0.86 1.09 0.85 0.83 0.41 0.86 1.08 0.89 0.87 0.36

10,000 13 0.82 1.06 0.85 0.83 0.41 0.86 1.07 0.87 0.85 0.39

Table 6 | Comparison of model performance at Lille Rostavatn

TDA (ha) Sub-basin

Calibration Validation

p-factor r-factor R2 NSE RSR p-factor r-factor R2 NSE RSR

200 402 0.75 0.95 0.79 0.67 0.58 0.72 0.89 0.91 0.66 0.58

2,000 92 0.63 0.69 0.78 0.67 0.58 0.47 0.62 0.91 0.66 0.59

5,000 34 0.58 0.66 0.81 0.67 0.57 0.43 0.59 0.91 0.71 0.54

10,000 4 0.50 0.60 0.78 0.60 0.63 0.33 0.52 0.89 0.56 0.66
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TDAs 200 to 5,000 ha, after which it went up to TDA 10,000 ha (Figure 6(e)). The annual mean surface runoff (SURFQ)

(Figure 6(d)) and WYLD (Figure 6(f)) had similar trends. In general, SURFQ and WYLD had an upward trend from

TDAs 200 to 10,000 ha, but the trend dropped down to TDA 5,000 ha. Therefore, this could reveal that the TDA 5,000 ha

could be a threshold which sketched the line of the discrepancies between watershed subdivision schemes. The water balance

components could increase/decrease if the number of sub-watersheds was lower/higher than this threshold.

Although the annual mean values of PET and ET decreased, and surface runoff and WYLD increased when TDA

increased, the magnitudes of these changes were not significant. The trends of changes in such water balance components

from the present study agreed with findings from the previous studies in the 21.3-km2 Goodwin Creek Watershed, in northern

Mississippi, USA (Bingner et al. 1997), the four Iowa watersheds (2,000–18,000 km2), USA (Jha et al. 2004), and the

26.12-km2 Walnut Creek watershed, in central Iowa, USA (Chaplot 2014). The slight increase in surface runoff and

WYLD in the present study could suggest that rainfall amount had a slight increasing trend, and PET and ET had a slight

decreasing trend when the number of sub-watersheds decreased. Therefore, additional water was more than water loss. How-

ever, the findings from the present study also contradicted the findings in the study at the 65,145-km2 Tapi River, India, since

they concluded that surface runoff decreased when TDA increased (Munoth & Goyal 2019a). They stated that reduction in

the number of streams was the reason for decreasing runoff in the coarse schemes. However, loss of streams could affect sedi-

ment yield more than runoff volume (Bingner et al. 1997), since stream loss would result in loss of deposition process in

streams (Jha et al. 2004).

According to the GIS maps of the spatial variation of ET (Figure 7(e)–7(h)), SURQ (Figure 7(i)–7(l)), and WYLD

(Figure 7(m)–7(p)), the higher number of sub-watersheds produced finer variation of water balance components. This was

in agreement with the study in the 384-km2 Grote Nete River catchment, in Flanders, Belgium (Rouhani et al. 2009). In

addition, hotspots (e.g., the places with extremely high/low values of water balance components in comparison to their sur-

roundings) were presented more clearly in the finer schemes than those in the coarser ones.

The influences of watershed subdivisions on spatial variation of snowmelt runoff

Snowmelt is the main source of spring runoff in the Arctic. Determining the vulnerable locations due to high snowmelt runoff

volume is highly important for risk management, e.g., flash flood, erosion, and landslide. In general, four different TDA

schemes produced similar locations with high or low snowmelt volume across the watershed (Figure 8).

Figure 6 | The changes in annual mean values of some water balance components under different TDAs.
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Figure 7 | Spatial variation of annual mean values of some water balance components under four TDA schemes: PRECIP, precipitation (a–d);
ET, actual evapotranspiration (e–h); SURQ, surface runoff (i–l); and WYLD, water yield (m–p).
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Figure 8 | Spatial variation of annual mean snowmelt runoff volume (1998–2007) under four TDA schemes. Please refer to the online version
of this paper to see this figure in colour: http://dx.doi.org/10.2166/wcc.2021.173.
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However, the maximum and minimum amounts of snowmelt runoff as well as the areas of sub-basins dominating by snow-

melt are somewhat different among four TDAs. The reason could be that the fine TDA schemes have higher land-use

composition, which could result in decreasing snow albedo and accelerate the snowmelt process (Szczypta et al. 2015).

Therefore, the higher values of maximum snowmelt volume were found in the fine schemes. Moreover, the fitted model par-

ameters were somewhat different among four TDA schemes during the calibration process (Supplementary Tables S1– S5).

This could result in the differences in calculated snowmelt runoff across the watershed.

Furthermore, it is obvious from Figure 8 that the fine TDAs 200 ha (Figure 8(a)) and 2,000 ha (Figure 8(b)) generated finer

and higher ranges of annual mean snowmelt volume across the watershed. Also, TDAs 200 and 2,000 ha could point out

some hotspot locations of snowmelt volume within the watershed (marked with dark red colors). The relatively high

annual mean value of snowmelt runoff volume and its large impacted areas were detected in the central section of the water-

shed. However, magnitude and impacted areas were inconsistent among four TDAs. For example, the annual mean snowmelt

of 450–500 mm accounted for the largest area with 2,462 km2, calculated from TDA 200 ha, while the annual mean snowmelt

of 500–550 mm accounted for the largest impacted area with 3,338 km2, achieved from TDA 2,000 ha. TDA 5,000 ha had the

largest impacted area (2,896 km2) regarding the annual mean snowmelt of 400–450 mm. Similar to TDA 200 ha, TDA

10,000 ha detected the largest impacted area (1,927 km2) regarding the annual mean snowmelt of 450–500 mm. Based on

the spatial distribution of simulated snowmelt runoff, it is recommended from the present study that more inspection

should be focused on the central parts of the watershed as well as the locations of snowmelt hotspots for better risk manage-

ment due to high snowmelt volume. Additionally, the central sections of the watershed and locations of snowmelt hotspots

are the high mountain areas; therefore, the risks for flash flood or landslide could be high.

The influences of watershed subdivisions on streamflow simulation

For each TDA scheme, the simulation result of monthly streamflow during a 10-year period, from 1998 to 2007, was averaged

for each hydro-gauging station, and all the results were plotted as shown in Figure 9. According to Figure 9, all TDA schemes

Figure 9 | Monthly mean streamflow (1998–2007) under four TDAs at five hydro-gauging stations.
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had capacities to simulate the observed tendency of monthly mean streamflow at all five hydro-gauging stations. However, the

accuracy of simulation of monthly mean peak discharge was heterogeneous among TDA schemes as well as among five

hydro-gauging stations. For example, the finest scheme TDA 200 ha performed quite well in simulating peak flow at Lundberg

and Målselvfossen, while the coarsest scheme 10,000 ha was able to capture the peak flow at Høgskarhus and also at Mål-

selvfossen. Lille Rostavatn was only the station where all TDA schemes yielded similarly the simulations of peak flows.

Therefore, the present study found that the accuracy of streamflow simulation did not totally depend on the levels of water-

shed discretization, but may also be controlled by other factors such as the geographic location and/or topographic

characteristics of the sub-basins surrounding the investigated hydro-gauging stations. Unlike the homogeneous effects of

watershed subdivisions on streamflow simulation in the previous studies, heterogeneous effects were found in the present

study. For example, a previous study concluded that the accuracy of streamflow prediction was only increased (Mamillapalli

et al. 1996) or decreased (Rouhani et al. 2009) when the number of sub-watersheds increased. Thus, it could be revealed that

because of the complexity of hydrological cycles in the Arctic conditions as well as the topographic characteristics of the

watershed, it could result in the heterogeneous effects of watershed subdivisions on streamflow simulations at different

locations within the watershed. Furthermore, the heterogeneous effects of watershed subdivisions on the simulation results

of streamflow hydrograph from the present study could help to explain the impacts of topographic variation compared to the

homogeneous effects of watershed subdivisions in a flat watershed, e.g., the 152.29-km2 Little Washita watershed, USA

(Norris & Haan 1993). For example, that study found that the simulated peak flow linearly increased with the increase of

number of sub-watersheds (Norris & Haan 1993).

Figure 10 illustrates the spatial variation of annual mean streamflows resulting from different TDA schemes. Under the

finest TDA 200 ha, five levels of stream order were generated and displayed the high variation of the annual mean streamflow

Figure 10 | Spatial variation of annual mean sreamflow (1998–2007) in different stream order levels in each TDA scheme. Q1–Q5 denote
streamflows in stream order levels 1–5, respectively.
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across the entire watershed (Figure 10(a)). Levels of stream order gradually declined in the coarser schemes TDA 2,000 ha

(Figure 10(b)), TDA 5,000 ha (Figure 10(c)), and TDA 10,000 ha (Figure 10(d)) because of the decrease in number of sub-

basins and the increase in sub-basins’ sizes. As a consequence, flow data in the coarser schemes were only detected in the

major streams. In contrast, the finest TDA scheme was able to detect some minor streams and their flow values within

the watershed; however, such minor streams may not be realistic and may not exist on ground.

Additionally, discrepancies in stream order levels from the fine schemes to the coarse schemes resulted in differences in the

spatial distribution of streamflow values. For example, range of values and spatial distribution of streamflow data Q1 (for

stream order level 1), Q2 (for stream order level 2), Q3 (for stream order level 3), Q4 (for stream order level 4, except

TDA 10,000 ha), and Q5 (for stream order level 5, and only defining in TDA 200 ha) were inconsistent from the finest

scheme to the coarsest scheme. This might affect the management of water resources by zones subdivisions. The coarser

schemes simplified the stream networks and may lose some important in-stream processes. Loss of minor streams and

their flow data may also affect local flood risk analysis (if this task would be planned to carry out in the future studies).

For example, total stream length (e.g., minor streams) and drainage density generated from the coarsest TDA 10,000 ha

reduced approximately 75% compared to those from the finest TDA 200 ha.

The influences of spatial density of the integrated weather grids on hydrological simulations

In the SWAT model, the nearest neighbor search (NNS) method is used to pick up the weather grid point representative for each

sub-basin. According to this technique, one weather grid point closest to the centroid of a sub-basin is selected. The areal rainfall

was then calculated for each sub-basin based on the rainfall data from the selected weather grid point. It was observed in this study

that the number of weather grid points dropped from 21 grids in TDA 200 ha to 20 grids (�5%), 18 grids (�14.3%), and 14 grids

(�33.33%) in TDAs 2,000, 5,000, and 10,000 ha, respectively (Figure 4). Fewer weather grid points produced more uniform dis-

tribution of areal rainfall across the watershed (Figure 7(b)–7(d)). As a result, the spatial variation of other water balance

components was also influenced (Figure 7(e)–7(p)), since rainfall is the main input to generate water resources in the watershed.

The influences of watershed subdivisions on the sensitivity of model parameters

Global sensitivity analysis in the SUFI-2 algorithm in the SWAT-CUP program detected the most sensitive model parameters

among 18 model parameters used for calibration. It was found in the present study that the number of sensitive model param-

ters and their ranks changed significantly under different TDA schemes. Figure 11 provides the sensitivity changes of each

calibrated parameter, which is classified into four different hydrological subgroup processes, while Figure 12 provides the sen-

sitivity rank for all 18 calibrated parameters, based on the values of t-stat (magnitude of sensitivity) and p-value (significance

of sensitivity), under each TDA scheme. Herein, the sensitivity rank, from highest to lowest, is the bottom-up order.

Regarding the surface runoff subgroup process (Figure 11(b)), runoff curve number CN2 showed its higher impacts (e.g.,

higher sensitivity rank) on the formation of runoff than the remaining parameter when the number of sub-watersheds chan-

ged (decreased). This is because CN2 depends strongly on land-use and soil characteristics of the watershed (Tegegne et al.

2019). Therefore, the discrepancies in land-use/soil composition by changing TDAs (e.g., the coarsest TDA 10,000 ha lost 4

land-use groups (�36.36%) compared to the finest TDA 200 ha) resulted in high fluctuation of CN2 values. The findings from

the present study contradicted findings from the previous study in the Yongdam watershed in South Korea and in the Gilge-

labay watershed in Ethiopia, since the sensitivity of CN2 in those studies increased when the number of sub-watersheds

increased (Tegegne et al. 2019).

Parameters of soil properties, which governed the lateral flow process, fluctuated under changes of TDAs (Figure 11(c)).

However, these soil parameters were not ranked in high sensitivity levels. Based on soil map, there are not many soil

types in the Målselv watershed, and sandy loam dominates the major area. Therefore, the fluctuation of soil parameters

resulted from changes in land-use composition rather than from changes in soil textures/types. The consequences of land-

use change on soil properties such as soil moisture, infiltration capacity, and water storage were well validated in previous

studies (Moges et al. 2013).

Several parameters in the snowmelt subgroup process had higher sensitivity rank orders compared to parameters of other

subgroup processes (Figure 11(d)). The changes in watershed subdivision scales also resulted in the fluctuation of these par-

ameters. The reason could be the changes in land-use structure in the watershed. For example, high/low density of land cover

significantly affects the amount of snowfall accumulated on the ground, snow interception, sublimation process of snow,

snow surface radiation balance (by the shading of trees), and snow albedo (Szczypta et al. 2015).
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Changes in TDAs also resulted in the fluctuation of the sensitivity ranks of parameters in channel water routing

(Figure 11(e)). However, the sensitivity ranks of the Manning’s value (n) for the main channel (CH_N2) were more stable

than those of the effective hydraulic conductivity in the main channel (CH_K2) in the channel subgroup process. The vari-

ation of parameters in the channel water routing process could result from the discrepancies in terrain complexity and the

topographic attributes such as average overland sub-basins slope, streams length, average streams slope, and streams

width (Table 3).

Most of the parameters in the groundwater subgroup process had low sensitivity rank and highly fluctuated (except

GW_DELAY) when the number of sub-watersheds decreased (Figure 11(f)). The reasons for the fluctuation of parameters

in the groundwater subgroup process could be the consequences of the changes in land-use structures and the associated

soil properties, which affected the processes of infiltration, groundwater recharge, water transmission in soil, as well as evap-

oration from soil layers.

CONCLUSIONS

Watershed delineation is an important preliminary step for setting up the hydrological models. The application of the TDA

technique for watershed subdivisions has a significant impact on hydrological simulation results. This study used the TDA

technique to discretize the Målselv watershed, an Arctic watershed in the North of Norway. Four different TDA schemes,

from the finest to the coarsest one, including 200, 2,000, 5,000, and 10,000 ha, were designed. The aim was to evaluate

the impacts of different TDA schemes and spatial density of weather grid integration on hydrological simulations. The simu-

lation results of water balance components, snowmelt runoff volume, and streamflow were evaluated. The main conclusions

were drawn from the present study as follows:

1. The complexity of terrain and topographic attributes changed significantly with increasing TDA values such as decreasing

total stream length, average stream slope, and drainage density. Stream order levels also declined as TDA increased.

Figure 11 | Changes in sensitivity ranks of all 18 calibrated parameters, under five hydrological subgroup processes, by changes in TDAs.
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Figure 12 | Sensitivity ranks (in bottom-up orders) of 18 calibrated parameters by global sensitivity analysis in SWAT-CUP: (a) TDA 200;
(b) TDA 2,000; (c) TDA 5,000; and (d) TDA 10,000 ha.

Journal of Water and Climate Change Vol 12 No 8, 3539

Downloaded from http://iwaponline.com/jwcc/article-pdf/12/8/3518/976923/jwc0123518.pdf
by guest
on 19 April 2022



2. The spatial density of weather grid point integration decreased from �5 to �33.33% in the coarse schemes 2,000, 5,000,

and 10,000 ha compared to the finest scheme 200 ha. Fewer numbers of weather grid points produced more uniform dis-

tribution of areal rainfall across the watershed, particularly TDA 10,000 ha.

3. Watershed subdivision did not strongly affect the model performances during the calibration period at Lille Rostavatn

and Målselvfossen hydro-gauging stations compared to the remaining stations in upstream.

4. Watershed subdivisions affected the spatial variation of areal rainfall across the watershed, but the total rainfall amount

for the whole watershed was only slightly changed.

5. The changes in annual mean values of water balance components from the finest TDA 200 ha to the coarsest TDA

10,000 ha: rainfall (increased), PET and ET (decreased), surface runoff (increased), lateral flow (decreased), and WYLD

(increased). However, the magnitudes of changes were not significant. The coarsest TDA 10,000 ha simplified land-use

composition (e.g., loss of 4 land-use groups compared to TDA 200 ha with 11 groups) resulted in decreasing PET and ET.

6. The fine TDAs produced finer variation of snowmelt runoff volume and higher values of maximum snowmelt runoff

volume across the watershed. Most TDAs detected similarly the most vulnerable areas by high snowmelt runoff

volume, which are located in the central sections of the watershed and dominated by highly mountainous terrain. There-

fore, high inspection should be focused on the central parts for better risk management, especially the risks of flash flood,

erosion, and landslide.

7. All four TDA schemes had similar capacities to replicate the observed tendency of monthly mean streamflow hydrograph

at all five hydro-gauging stations within the watershed. However, monthly mean peak flow had slight discrepancies

among TDA schemes and among five hydro-gauging stations. Lille Rostavatn station was the only one where all four

TDA schemes produced similar simulations of monthly mean peak flows.

8. The finest TDA scheme 200 ha could generate a high spatial variation of streamflow and could reveal the flow values of

the minor streams, while other coarser schemes only showed streamflow in the major streams. Therefore, using the

coarse schemes could influence the accuracy/detail of local flood risk analysis or finding flood hotspots in case such

studies would be planned in future.

9. Watershed subdivisions strongly affected the calibration process regarding the changes in numbers and disordering the

sensitivity ranks among the 18 calibrated model parameters.

10. One of the advantages of using the coarse TDA schemes was highlighted in the calibration process since the calibration

time for approximately 5,913 km2 watershed, and for simulation with monthly time step, decreased (approximately 5.7–

34%) when the number of sub-watersheds decreased (from 459 to 18). This would benefit the users who have limitations

in time and the available resources for running the model.

In brief, according to findings from the present study, it would be recommended that choosing the suitable threshold of

TDA for watershed subdivision could depend on several factors including the purposes of studies, the expected level of accu-

racy in the output variables, the limited/allowed time, or the available resources that using the fine schemes or the coarse

schemes would be an appropriate choice. Moreover, findings from the present study could help to enrich knowledge in

designing the TDA for watershed delineation in hydrological models, particularly in the Arctic environment.
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Table S1. Model parameters and their ranges for calibration of TDA 200 ha scheme.

Parameter_Name Fitted_Value Min_value Max_value

1:R__CN2.mgt -0.140419 -0.225354 0.051306

2:V__ESCO.hru 0.137255 0.067328 0.202062

3:R__SOL_AWC(..).sol -0.719963 -1 -0.58141

4:V__ALPHA_BF.gw 0.092278 0 0.120625

5:V__GW_DELAY.gw 313.35376 260.054504 321.814941

6:V__GW_REVAP.gw 0.185378 0.11655 0.185724

7:V__GWQMN.gw 3,284.766357 2,215.622559 3,318.970215

8:V__REVAPMN.gw 353.454437 252.175049 382.858124

9:V__SFTMP.bsn -1.478742 -2.722426 0.990062

10:V__SMFMN.bsn 5.327663 1.767545 6.470475

11:V__SMFMX.bsn 2.905475 1.9135 5.743518

12:V__SMTMP.bsn -0.563781 -3.189911 2.556543

13:V__TIMP.bsn 0.153424 0.145087 0.308557

14:A__CH_N2.rte 0.210441 0.144594 0.227212

15:A__CH_K2.rte 22.005863 -0.01 70.780556

16:R__SOL_K(..).sol 7.302452 4.482007 7.976982

17:R__SOL_BD(..).sol 0.527241 0.402725 0.635465

18:A__CANMX.hru 4.49081 4.016488 12.05584

Table S2. Model parameters and their ranges for calibration of TDA 2,000 ha scheme.

Parameter_Name Fitted_Value Min_value Max_value

1:R__CN2.mgt -0.202589 -0.244324 -0.109258

2:V__ESCO.hru 0.141132 0.126909 0.217501

3:R__SOL_AWC(..).sol -0.770458 -0.898907 -0.696625

4:V__ALPHA_BF.gw 0.080682 0.060437 0.125955

5:V__GW_DELAY.gw 280.552307 260.572845 299.825226

6:V__GW_REVAP.gw 0.128529 0.128006 0.152908

7:V__GWQMN.gw 2,933.4104 2,632.426514 3,242.94165

8:V__REVAPMN.gw 353.934723 319.5625 386.827148

9:V__SFTMP.bsn -0.776701 -2.957009 -0.235027

10:V__SMFMN.bsn 6.132335 4.344446 6.532805

11:V__SMFMX.bsn 2.101861 0.052462 2.643358

12:V__SMTMP.bsn -1.44298 -2.561037 -0.226889

13:V__TIMP.bsn 0.162583 0.087159 0.195061

14:A__CH_N2.rte 0.216995 0.148336 0.2189

15:A__CH_K2.rte 20.01582 -0.01 28.804127

16:R__SOL_K(..).sol 7.47199 6.671738 8.134722

17:R__SOL_BD(..).sol 0.465665 0.408225 0.553643

18:A__CANMX.hru 7.735365 5.416529 8.378006



Table S3. Model parameters and their ranges for calibration of TDA 5,000 ha scheme.

Parameter_Name Fitted_Value Min_value Max_value

1:R__CN2.mgt -0.218662 -0.2305 -0.042592

2:V__ESCO.hru 0.038918 0.027637 0.143937

3:R__SOL_AWC(..).sol -0.831782 -0.981414 -0.71469

4:V__ALPHA_BF.gw 0.054165 0.036839 0.110565

5:V__GW_DELAY.gw 293.679962 262.611511 302.088562

6:V__GW_REVAP.gw 0.147794 0.147637 0.2

7:V__GWQMN.gw 2,724.644775 1,953.468628 2,863.948242

8:V__REVAPMN.gw 313.664642 297.182465 387.248932

9:V__SFTMP.bsn -1.872779 -3.593377 -0.537253

10:V__SMFMN.bsn 3.98527 3.232036 6.162907

11:V__SMFMX.bsn 2.285399 0.750716 4.079747

12:V__SMTMP.bsn 0.010809 -1.848708 1.088918

13:V__TIMP.bsn 0.357964 0.216262 0.358676

14:A__CH_N2.rte 0.16136 0.134631 0.196361

15:A__CH_K2.rte 17.719742 -0.01 42.507366

16:R__SOL_K(..).sol 7.125256 5.856942 8.608164

17:R__SOL_BD(..).sol 0.523839 0.481252 0.638398

18:A__CANMX.hru 9.633927 7.147029 13.411258

Table S4. Model parameters and their ranges for calibration of TDA 10,000 ha scheme.

Parameter_Name Fitted_Value Min_value Max_value

1:R__CN2.mgt -0.26423 -0.335077 -0.077451

2:V__ESCO.hru 0.041533 0.000554 0.13491

3:R__SOL_AWC(..).sol -0.541184 -0.82821 -0.484466

4:V__ALPHA_BF.gw 0.076619 0.043474 0.130468

5:V__GW_DELAY.gw 255.968231 255.570694 299.74176

6:V__GW_REVAP.gw 0.12278 0.100737 0.157403

7:V__GWQMN.gw 2,586.822021 2,393.70459 3,010.693359

8:V__REVAPMN.gw 360.228058 288.296051 360.589508

9:V__SFTMP.bsn -1.541736 -4.205944 -0.741434

10:V__SMFMN.bsn 3.64668 0.918192 4.620346

11:V__SMFMX.bsn 1.543673 0.566868 4.018476

12:V__SMTMP.bsn -1.379928 -2.279684 0.945248

13:V__TIMP.bsn 0.193803 0.18602 0.26795

14:A__CH_N2.rte 0.188068 0.124717 0.193057

15:A__CH_K2.rte 10.059103 -0.01 45.551552

16:R__SOL_K(..).sol 6.843474 5.661222 8.021008

17:R__SOL_BD(..).sol 0.465102 0.304835 0.525285

18:A__CANMX.hru 3.596716 1.23811 8.450973

Note: 

 The term “A_” explains that a given value is added to the existing parameter value.

 The term “R_” explains that an existing parameter value is multiplied by (1 + a given value).

 The term “V_” explains that the existing parameter value is replaced by a given value. 



Table S5. Description of calibrated model parameters.

Parameter Name Description Subgroup process

CN2.mgt SCS runoff curve number f surface runoff

CANMX.hru Maximum canopy storage surface runoff

ESCO.hru Soil evaporation compensation factor lateral flow

SOL_AWC(..).sol Available water capacity of the soil layer lateral flow

SOL_BD(..).sol Moist bulk density lateral flow

SOL_K(..).sol Saturated hydraulic conductivity lateral flow

SMTMP.bsn Snow melt base temperature snowmelt

TIMP.bsn Snow pack temperature lag factor snowmelt

SMFMN.bsn
Minimum melt rate for snow during the year (occurs on 
winter solstice) snowmelt

SMFMX.bsn
Maximum melt rate for snow during year (occurs on 
summer solstice) snowmelt

SFTMP.bsn Snowfall temperature snowmelt

CH_K2.rte Effective hydraulic conductivity in main channel alluvium
Channel water 
routing

CH_N2.rte Manning's "n" value for the main channel
Channel water 
routing

ALPHA_BF.gw Baseflow alpha factor (days) ground water

GW_REVAP.gw Groundwater "revap" coefficient ground water

GWQMN.gw
Treshold depth of water in the shallow aquifer required 
for return flow to occur (mm) ground water

REVAPMN.gw
Threshold depth of water in the shallow aquifer for 
"revap" to occur (mm) ground water

GW_DELAY.gw Groundwater delay (days) ground water
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Abstract  18 

Climate change (CC) is expected to alter hydrological cycle in the Arctic, which may lead to increase intensity 19 
and frequency of hydrological extremes, including floods. The changes in flooding due to CC are expected to 20 
significantly impact on human life, infrastructures, the environment, ecosystem, and socio-economic 21 
development of the affected areas. However, projections of flood changes may be more complicated in the 22 
region with highly heterogeneous hydrological regimes like Norway. Thus, this study conducted an 23 
investigation of CC impacts on future changes in magnitude and frequency of floods. Six Norwegian Arctic 24 
catchments, which were further categorised into two rainfall-dominated, three snowmelt-dominated, and one 25 
mixed rainfall/snowmelt catchments, were investigated. The state-of-the-art Soil and Water Assessment Tool 26 
(SWAT) was coupled to five ensemble Global and Regional Climate Models, developed by EURO-CORDEX 27 
initiative project, to perform flood projections. Nine flood quantiles, i.e., 2-,5-,10-,20-,50-,100-,200-,500-, and 28 
1000-year floods were estimated, of which the 200-,500-, and 1000-year floods were defined extreme floods, 29 
while the 2-, and 5-year floods were small floods. High emission scenario (RCP8.5) was applied to examinate 30 
flood changes from the reference period (1976-2005) to the near future (2041-2070). This study found that 31 
upward trend of annual air temperature was projected (+1.2 to +5.0oC), while annual rainfall would be high 32 
fluctuation (-46.0 to +36%). Noticeably, the reduction of rainfall would be higher for rainfall-dominated 33 
catchments than that for snowmelt-dominated catchments. This would result in decreases (-25 to <-5%) but 34 
increases (>1 to <22%) of the (median) future flood magnitudes for rainfall-dominated catchments and 35 
snowmelt-dominated catchments, respectively. The mixed catchment is expected to experience both decrease 36 
(small flood, >-2%) and increase (<4 to <14%) patterns. Compared to the reference period, extreme flood 37 
events in the near future period are projected to occur more frequent, but with lower magnitudes, in northern 38 
(snowmelt-dominated) and southern (rainfall-dominated) catchments. Such behaviors would oppose to inland 39 
catchments in the centre of the Norwegian Arctic with snowmelt regimes. The changes in future small flood 40 
events would be in the opposite behaviors to those of the extreme floods. Furthermore, the changes in future 41 
extreme flood events are expected to be complicated in the rainfall-dominated catchment and near the coast 42 
due to high variation of future rainfall in this region. Finally, uncertainties in floods projection were detected 43 
in the climate-hydrology modelling chain, and level of uncertainty was dissimilar regarding catchments’ 44 
scales, and the dominant flood regimes.    45 

Keywords: Norwegian Arctic, climate change, global and regional climate models, SWAT, future floods, 46 
rainfall/snowmelt regime.   47 

  48 
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Introduction 54 

Flooding is one of the most destructive natural hazards (Xu et al. 2019; Engeland et al. 2020), which has a 55 
significantly impact on human life, infrastructures, the environment, ecosystem, and the socio-economic 56 
development of the affected areas (McGrath et al. 2015; Vinet 2017; Quintero et al. 2018; Talbot et al. 2018). 57 
It has been stated in various studies that the economic damages and other consequences caused by flooding are 58 
increasing together because of climate change (Field et al. 2012; Murray & Ebi 2012; Hirabayashi et al. 2013; 59 
Alfieri et al. 2017; Engeland et al. 2020). Noticeably, climate change have increased the magnitude and 60 
frequency of floods (IPCC 2013; Quintero et al. 2018), which result in severely impacts on the society (Nemry 61 
& Demirel 2012; Doocy et al. 2013). Magnitude and frequency of floods are defined as important indicators of 62 
flood hazard indexes for flood risk assessment and mitigation (Richter et al. 1996; Logsdon & Chaubey 2013; 63 
Xu et al. 2019). Recently, several international studies concluded that the magnitude and frequency of design 64 
floods, particularly the extremely high floods, are influenced by climate change and landuse change, among 65 
other impact factors (Rojas et al. 2013; Madsen et al. 2014; Alfieri et al. 2015; Mallakpour & Villarini 2015). 66 
According to that, it is necessary to estimate the changes in the future magnitude and frequency of floods 67 
compared to the historical scenarios under climate change. It aims to support for flood mitigation measures to 68 
resist the future climate changes.     69 

However, projections of floods exists numerous challenges regarding to the reliability of future climate change 70 
data (e.g., the selections of climate change scenarios, climate models, and the ways to transfer climate change 71 
information from global scale to catchment scale) as well as uncertainties (e.g., in the climate-hydrology 72 
modelling chain) of the projections. Normally, flood frequency is estimated based on time series data of river 73 
discharge at an interested hydro-gauging station. However, future streamflows are not available and normally 74 
estimated based on modelling. Recently, coupling climate models and hydrological models is preferred by the 75 
scientists to estimate future streamflows under the climate change impacts (Lawrence & Hisdal 2011; Meresa 76 
et al. 2016). The methodology of such coupling models is running the hydrological models using climate data 77 
inputs which are projected by the General Circulation Models (GCMs). The GCMs are the great and common 78 
tools to produce the projected climate data for the future climate conditions (Chen et al. 2021). However, their 79 
spatial resolutions are usually coarse (approx. 111-222 km grid (Flato et al. 2013)) and they do not have 80 
capacities to simulate accurately the physical and dynamical processes of the climate system at the watershed 81 
scales or local scales (Chen et al. 2021). Although the GCMs are physically based, there still exist numerous 82 
empirically numerical approximations of the sub-grid processes (IPCC 2015). Such simplifications may cause 83 
significant mistakes when directly transferring the climate model outputs into the impacts models (IPCC 2015). 84 
Thus, outputs from the GCMs are seldom directly used as inputs for the hydrological models for impacts 85 
assessment because of the biases. Instead, downscaling and/or bias-correction of climate data outputs from the 86 
GCMs, e.g. using the Regional Climate Models (RCMs), are normally performed prior to drive the hydrological 87 
models (Wilby et al. 2002; Zhang 2005; Schmidli et al. 2006; Chen et al. 2011a). Various bias correction 88 
methods, such as the simple-skill mean-based linear scaling (correcting the mean values between climate model 89 
simulations and observation data), or the higher-skill distribution-based quantile mapping (taking into account 90 
the higher moments of a distribution), have been applied to significantly reduce biases of the climate models 91 
outputs (Piani et al. 2010; Teutschbein & Seibert 2013; Chen et al. 2018; Chen et al. 2019; Gutierrez et al. 92 
2019; Chen et al. 2021). However, most of bias correction methods work based on the hypothesis of stationary 93 
bias, but ignor the nonstationary of the future climate conditions. It means that the magnitude of bias/error is 94 
assumed to be constant over the time, from historical to future period (Chen et al. 2021). In addition, bias 95 
correction methods normally adjust the climate variables independently and disregard the inter-variable 96 
dependence, which is very important to correct evaluation of climate change impacts. Because of the limitations 97 
of bias correction methods for the climate model simulations, the reliability of bias correction is questioned 98 
among scientific community (Maraun 2012; Chen et al. 2015; Hui et al. 2019; Chen et al. 2020). Therefore, the 99 
parallel use of raw and bias-corrected climate model outputs in hydrological modelling has been investigated. 100 
Some previous studies found that using raw climate model outputs to drive the hydrological model yielded 101 
reliable projections of future flood risk (Meresa & Romanowicz 2017; Xu et al. 2019).                    102 

Moreover, there are always high uncertainties in the assessment of climate change impacts on hydrology and 103 
water resources (Jones 2000; Heal & Kristrom 2002; Collins et al. 2006; Ghosh & Mujumdar 2007; Dunn et al. 104 
2012; Jung et al. 2012). The uncertainties come from (1) future emission scenarios, (2) General Circulation 105 
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Models-GCMs (e.g., initial conditions of the GCMs), (3) techniques for downscaling the GCMs or bias 106 
correction of the raw GCMs’ outputs, and (4) hydrological models (e.g., structures and parameterization of the 107 
hydrological models) etc.(Kay et al. 2009; Zhang et al. 2014; Meresa & Romanowicz 2017). Of the uncertainty 108 
sources, the structures of the GCMs are the most uncertain sources (Kay et al. 2009; Chen et al. 2011b; 109 
Woldemeskel et al. 2012). However, other studies argued that the significant sources of uncertainties could be 110 
from (a) future emission scenarios (Maurer 2007), (b) downscalling techniques (Khan et al. 2006), or (c) 111 
hydrological models (Najafi et al. 2011). Thus, there has not been a scientific consensus on the sources of 112 
uncertainties in climate change impacts assessment on water resources systems yet. In addition, the uncertainties 113 
sources could be highly variant among the studied catchments around the world with different characteristics 114 
and climate conditions (Chen et al. 2017; Chen et al. 2021). Therefore, investigation of the uncertainties of 115 
future projections in climate change impacts has been highly recommended by the scientific communities for 116 
adaption strategies (Katz et al. 2013). Taking into that concern, the uncertainties of the projections of future 117 
flood frequency, and subsequent flood risk assessment in the extreme climate like the Arctic should be included 118 
together with the projection analysis.    119 

Consideration of the above issues, projections of changes in future floods may be more complicated in the 120 
region with highly heterogeneous hydrological regimes like Norway. Thus, this study contributed to shed more 121 
light on how future climate change could alter flooding in the region having complex hydrological processes, 122 
and highly sensitive to climate change compared to rest of the world. In particular, this study coupled state-of-123 
the-art Soil and Water Assessment Tool (SWAT) (Jayakrishnan et al. 2005; Setegn et al. 2011; Ficklin et al. 124 
2012; Zhang et al. 2013; Xu et al. 2019) with multiple ensemble GCM_RCM simulations (both raw and bias 125 
correction) to project the changes in magnitude and frequency of floods, from the reference period (1976-2005) 126 
to the near future (2041-2070) of the 21st century, in six Norwegian Arctic catchments. Those catchments were 127 
classified into three different flood regimes, i.e., rainfall-dominated, snowmelt-dominated, and mixed 128 
rainfall/snowmelt regimes. Uncertainties of the projections were also investigated. Findings from this study 129 
aimed to answer the following research questions:   130 

When investigating the impacts of climate change on future floods (in 2041-2070 period) in different 131 
Norwegian Arctic catchments with variation in geographical distribution, latitudes, characteristics, 132 
scales/sizes, and the dominant hydrological regimes: 133 

1. How are the performances of the hydrological SWAT model to reconstruct/estimate the daily 134 
streamflows in different Norwegian Arctic catchments quantified? 135 

2. Do bias-corrected and raw climate models’ simulations have similar/different performances to project 136 
future climate change as well as to drive the hydrological model SWAT in the Arctic environment?  137 

3. How are the changes in magnitudes and frequencies of floods under future climate conditions in 138 
different Norwegian Arctic catchments estimated? 139 

4. How are the future changes in small-size floods and large-size/extreme floods in different Norwegian 140 
Arctic catchments projected? 141 

5. To what extent are the uncertainties of the projected floods in the Arctic environment measured? 142 

Study area 143 

The selection of studied catchments in this study was based on several criteria: (1) geographical distribution i.e. 144 
from coastal zones to inland areas, and latitude distribution, i.e. from southern region to northern region, and 145 
above the Arctic circle, (2) catchments’ scales (i.e. small-scale and large-scale), and (3) flood regimes. The 146 
flood regimes in Norway were classified into three types: (1) rainfall-dominated, (2) snowmelt-dominated, and 147 
(3) mixed rainfall/snowmelt-dominated, according to the Norwegian Water Resources and Energy Directorate 148 
(NVE) (Lawrence & Hisdal 2011). A catchment is identified as rainfall-dominated flood regime if at least two-149 
thirds percentage (approx. 67%) of annual peak flows occurs inside the period of August-February, when most 150 
of rainfall contributes to peak flows. In contrast, a snowmelt-dominated flood regime is defined if at least two-151 
thirds percentage of annual peak flows occur inside the snowmelt season from March-July. When a catchment 152 
has glacier cover > 25% of the total catchment area, the snowmelt season could expand to August. In case a 153 
catchment with the percentage of annual peak flow occuring during August-February (rainfall-dominated)  and 154 
March-July (snowmelt-dominated) is smaller than 67%, they are recognized as mixed rainfall/snowmelt-155 
dominated flood regime. This study used 30-year daily observed discharges (1976-2005) for flood regime 156 
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classification. Totally, six catchments locating above the Arctic circle were selected as study catchments, which 157 
are categorized into two rainfall-dominated, three snowmelt-dominated, and one mixed rainfall/snowmelt 158 
catchments (Fig.  1 and Table 1). In addition, one more large-scale catchment Altavassdraget (Fig.  1, numbered 159 
7) is used for verification of the transferability of the calibrated model parameters from one catchment to 160 
another, according to their geographical proximity and hydrological similarity.  161 

 162 

 163 

Fig.  1. Map of study areas and the Norwegian Arctic subcatchments.164 
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Materials and methods 170 

1.1. QSWAT model 171 

The QSWAT model was used in this research (version 1.9), which is a coupling of physically-based, semi-172 
distributed SWAT model (version 2012) (Neitsch et al. 2009) and the open source QGIS (version 2.6.1). The 173 
SWAT model includes two important phases to describe the hydrological cycle in a catchment, including land 174 
phase and routing phase (Du et al. 2013). The land phase works according to the following water balance 175 
equation (Eq. (1)): 176 
 177 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑖 − 𝑄𝑖
𝑡
𝑖=1 − 𝐸𝑖 − 𝑃𝑖 − 𝑄𝑅𝑖),  (1) 

Where 178 

 𝑆𝑊𝑡: soil water content at time t (mm), 179 

 𝑆𝑊0: the initial soil water content (mm), 180 

 𝑅𝑖: amount of precipitation on day i (mm), 181 

 𝑄𝑖: amount of surface runoff on day i (mm), 182 

 𝐸𝑖: amount of evapotranspiration on day i (mm), 183 

 𝑃𝑖: amount of percolation on day i (mm), and 184 

 𝑄𝑅𝑖: amount of return flow on day i (mm). 185 

While, the routing phase simulates various in-stream processes i.e. water movement, sediments, flow mass, 186 
transformation of chemicals in the stream and streambed. 187 

1.2. Data acquisition 188 

To run SWAT model, intensive spatial-temporal data were gathered (Table 2), including climate data (e.g., 189 
precipitation, maximum and minimum air temperature, wind speed, relative humidity, solar radiation), and 190 
spatial data i.e. land use (Waterbase 2007a), soil (Waterbase 2007b) and topography (typically digital elevation 191 
model (DEM), (Geonorge 2013)). This study used climate data from climate forecast system reanalysis (CFSR) 192 
(Saha et al. 2010) because of its high-spatial resolution and continuous time series data (Table 2 and Figure 2, 193 
(TAMU 2012)). The high reliability for using CFSR in the Norwegian Arctic has been demonstrated and 194 
validated in a previous study (Bui et al. 2021). Moreover, daily time series of river discharge were also collected 195 
from the Norwegian Water Resources and Energy Directorate (Sildre 2020) for calibration and validation of the 196 
SWAT. 197 

Table 2. Summary of data inputs and their sources for using in the SWAT model. 198 

Data type  Spatial resolution 
Temporal 

resolution 
Sources 

Spatial data (grid) 

DEM 10 x 10 m  (Geonorge 2013) 

Land use ̴ 600 m  (Waterbase 2007a) 

Soil ̴ 5000 m  (Waterbase 2007b) 

Temporal data 

(time series) 

Climate data: CFSR ̴ 38 km grid Daily (TAMU 2012) 

EURO-CORDEX RCMs ̴ 12.5 km grid Daily (Jacob et al. 2014) 

River discharge  Daily (Sildre 2020) 

 199 
 200 
 201 
 202 
 203 
 204 
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 205 

Fig.  2. Spatial resolution of weather inputs from CFSR and GCM_RCMs. 206 

1.3. Climate models data  207 

To conduct climate change impacts assessment, the projected climate change data (e.g., precipitation, max and 208 
min air temperature) were collected from five RCMs driven by four GCMs, which were generated by the EURO-209 
CORDEX (Coordinated Downscaling Experiment for Europe) initiative project (Jacob et al. 2014). This study 210 
used data from the EUR-11 grid with spatial resolution of approx. 12.5 km (Table 3 and Fig.  2). 211 

Table 3. Summary of the climate models data. 212 

GCMs RCMs 

Denote of 

ensemble 

models 

Institutes 
Spatial 

resolution 
RCP Ensemble 

Reference 

period 

Future 

period 

Bias 

correction 

method 

ICHEC-

EC-

EARTH 

RCA4_v1 GCM_RCM1 SMHI 

̴ 12.5 km 8.5 r1i1p1 
1976-

2005 

2041-

2070 

Not 

applicable 

ICHEC-

EC-

EARTH 

RACMO22E_v1 GCM_RCM2 KNMI CDFt 

MPI-M-

MPI-ESM-

LR 

REMO2009_v1 GCM_RCM3 
MPI-

CSC 
CDFt 

CNRM-

CERFACS-

CNRM-

CM5 

CCLM4-8-

17_v1 
GCM_RCM4 CLMcom CDFt 

IPSL-IPSL-

CM5A-MR 
WRF331F_v1 GCM_RCM5 

IPSL-

INERIS 
CDFt 

 213 
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Moreover, the high-emission scenario of the Representative Concentration Pathway (RCP) 8.5 was applied 214 
according to the national guidance for climate change adaption in Norway (Miljøverndepartement 2012). The 215 
30-years time slice of the near future (2041-2070) was used compared to the 30-years time slice of the reference 216 
(1976-2005). Of the five RCMs (Table 3), the outputs of the four RCMs (e.g., precipitation and air temperature) 217 
were bias corrected within the framework of the EURO-CORDEX project using the general Cumulative 218 
Distribution Function transformation method (CDFt) (Vrac et al. 2012), and one remaining RCM output was 219 
raw or unbias-corrected. The purpose of integrating the raw climate model simulation in this study was to 220 
compare performance of the raw and bias-corrected climate data in the projections of future flood changes.  221 

1.4. Model running, calibration, and validation 222 

Based on input of the CFSR data, the SWAT model picks up the representative weather grid for each sub-basin 223 
based on the method of the nearest neighbor search. The SWAT model run on daily time step from 1995-2007 224 
based on the relatively latest of the available CFSR input. The first three years (1995-1997) was for warming 225 
up, and the remaining ten years (1998-2007) was for model calibration. According to the available climate 226 
inputs of the CFSR dataset, the model was validated from 1981-2005 to verify that the calibrated model 227 
parameters could work well for a long-term period. However, the time length for validation are not the same 228 
among hydro-gauging stations (i.e. variation from 20 to 25 years) and depended on the available measured river 229 
discharges from each of the catchments. In addition, the study employed the Sequential Uncertainty Fitting 230 
Version 2 (SUFI-2) algorithm in the SWAT Calibration Uncertainties Program (SWAT_CUP) for model 231 
calibration, model validation, parameters sensitivity and uncertainty analyses (Abbaspour et al. 2007). Total 21 232 
model parameters, which were categorised into five different hydrological subgroup processes i.e. snowmelt, 233 
surface runoff, lateral runoff, channel water routing and ground water, were calibrated and validated 234 
(supplementary Table S1 to Table S7). These parameters were the most sensitivity parameters for streamflow 235 
calibration (Abbaspour et al. 2007; Abbaspour et al. 2015).  2,000-2,500 simulations were performed for each 236 
catchment to achieve the optimal model parameters. In addition, cross-validation was conducted to verify if the 237 
calibrated model parameters from one catchment could also perform well in another catchment, or the 238 
transferability of the calibrated model parameters. The SUFI-2 algorithm produces all stochastic results 239 
confined in a so-called 95PPU (95 Percent Prediction Uncertainty) band. Such values are calculated at the 2.5% 240 
(lower) and 97.5% (upper) levels of an output hydrological variable, and do not allow  5% of the very bad 241 
simulations.    242 

1.5. Evaluation of model performance 243 

In this study, three statistical coefficients were employed to quantify the goodness of fit between simulated and 244 
measured data including: (1) the coefficient of determination R2 (Eq. (2)), measuring the fitness of the linear 245 
relationship between the simulated and observed values; (2) the Nash-Sutcliffe coefficient of efficiency NSE 246 
(Eq. (3)); and (3) root mean square error, divided by the standard deviation-RSR (Eq. (4)).  247 

𝑅2 = 1 −

∑ (𝑌 𝑜𝑏𝑠
𝑖

− 𝑌 𝑜𝑏𝑠
𝑚𝑒𝑎𝑛

)
𝑛

𝑖=1
(𝑌 𝑠𝑖𝑚

𝑖
− 𝑌 𝑠𝑖𝑚

𝑚𝑒𝑎𝑛
)

[∑ (𝑌 𝑜𝑏𝑠
𝑖

− 𝑌 𝑜𝑏𝑠
𝑚𝑒𝑎𝑛

)
2𝑛

𝑖=1
]

1/2

[∑ (𝑌 𝑠𝑖𝑚
𝑖

− 𝑌 𝑠𝑖𝑚
𝑚𝑒𝑎𝑛

)
2𝑛

𝑖=1
]

1/2
, 

 

(2) 

𝑁𝑆𝐸 = 1 −

∑ (𝑌𝑜𝑏𝑠
𝑖  — 𝑌𝑠𝑖𝑚

𝑖 )
2

𝑛

𝑖=1

∑ (𝑌𝑜𝑏𝑠
𝑖  — 𝑌 𝑜𝑏𝑠

𝑚𝑒𝑎𝑛)
2

𝑛

𝑖=1

, 

 

(3) 

𝑅𝑆𝑅 =

[∑ (𝑌𝑜𝑏𝑠
𝑖  — 𝑌𝑠𝑖𝑚

𝑖 )
2

𝑛

𝑖=1

]

1/2

[∑ (𝑌𝑜𝑏𝑠
𝑖  — 𝑌 𝑜𝑏𝑠

𝑚𝑒𝑎𝑛)
2

𝑛

𝑖=1

]

1/2, 

 

(4) 

Where 248 

𝑌 𝑜𝑏𝑠
𝑖

 and 𝑌 𝑠𝑖𝑚
𝑖

 describe the observed and simulated values at time 𝑖, 249 

𝑌 𝑜𝑏𝑠
𝑚𝑒𝑎𝑛

 and 𝑌 𝑠𝑖𝑚
𝑚𝑒𝑎𝑛

 describe mean observed and simulated data for the entire evaluation period, and 250 
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n describes total number of observations/simulations. 251 

The thresholds of three statistical coefficient R2, NSE and RSR for daily simulation are summarised in Table 4 252 
(Santhi et al. 2001; Van Liew et al. 2003; Fernandez et al. 2005; Moriasi et al. 2007; Premanand et al. 2018; 253 
Koycegiz & Buyukyildiz 2019). 254 

Table 4. Thresholds of R2, NSE and RSR for evaluation of the hydrological model’s performance. 255 

Model performance R2 NSE RSR 

Very good 0.75 < R2 ≤ 1.00 0.75 < NSE ≤ 1.00 0.00 ≤ RSR ≤ 0.50 

Good 0.60 < R2 ≤ 0.75 0.60 < NSE ≤ 0.75 0.50 < RSR ≤ 0.60 

Satisfactory 0.50 < R2 ≤ 0.60 0.36 < NSE ≤ 0.60 0.60 < RSR ≤ 0.70 

Unsatisfactory 0.25 < R2 ≤ 0.50 0.00 < NSE ≤ 0.36            RSR > 0.70 

1.6. Establishing the ensemble of the hydrological projections 256 

In the studies of climate change impacts, because of the uncertainties associated with climate change scenarios, 257 
the ensemble approaches i.e. using multiple models and/or multiple scenarios are normally recommended to 258 
achieve a wide spectrum of the possible outcomes. To achieve that, this study forced the SWAT model with 259 
inputs from five different RCMs driven by four different GCMs to gain the historical and future daily 260 
streamflows. Such simulated and projected streamflows were used in the later stage for estimating the changes 261 
in magnitudes and frequencies of the future floods.     262 

1.7. Flood frequency analysis 263 

The target of flood frequency analysis is to estimate a flood magnitude with a certain occurrence probability or 264 
return period (Cunnane 1989; Wilson et al. 2011). Various statistical distributions models have been developed 265 
for estimation of flood frequency at the specific sites such as Log-normal, Gumbel (Generalized Extreme Value 266 
Type I-EV1), Generalized Extreme Value (GEV), Gamma, Log-Pearson, Gaussian Normal, Pareto, Weibull, 267 
etc. (Cunnane 1989; Wilson et al. 2011). Of them, the distribution models producing the best fit to Norwegian 268 
catchments are normally either the Gumbel distribution (with two model parameters i.e. location parameter and 269 
scale parameter) or the GEV (with three model parameters i.e. location parameter, scale parameter, and shape 270 
parameter) (Midttømme et al. 2011; Wilson et al. 2011). However, for the length of river discharge time series 271 
data from 30-50 years, the Gumbel distribution is more recommended than the GEV distribution (Wilson et al. 272 
2011). In addition, the previous practical applications found that the GEV distribution model was highly 273 
sensitive to the outlying events, and the frequency curve could follow the specific peculiarities of the dataset 274 
distribution because of the high flexibility of the model with high number of parameters (Cunnane 1985; 275 
Saelthun & Andersen 1986; Wilson et al. 2011). Moreover, the shape parameter of the GEV distribution model 276 
is hard to estimate with short time series data and could yield high uncertainty of estimated extreme flood events 277 
with large return period quantiles (Odry & Arnaud 2017). According to the previous references, this study 278 
selected the Gumbel distribution for estimation of flood frequency based on each 30-year time series of the 279 
streamflow in the reference period (1976-2005) and the near future period (2041-2070). The Gumbel 280 
distribution has its cumulative distribution function (cdf) as follows (Singh 1998): 281 

𝐹(𝑥) = 𝑒𝑥𝑝[−𝑒𝑥𝑝−𝑦] 

 

Where 

y = a(x − b): reduced variate 

x: peak flow data 

a >0: a concentration parameter 

−∞ < b < x: a parameter for measure of central tendency 

Parameter a and b were estimated by the most popular method of moments (MOM) (Lowery & 

Nash 1970; Landwehr et al. 1979; Singh 1998) 

(5) 

 

Estimate the reduced variate yt for a given return period T: 

𝑦𝑡 = − 𝑙𝑛 {𝑙𝑛 (
𝑇

𝑇 − 1
)} 

 

 

 

(6) 
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Where 

 𝑇 =
1

1−𝐹
 

 282 
This study examinated the estimated peak flows for 2, 5, 10, 20, 50, 100, 200, 500,1000-years return periods 283 
based on each daily flow dataset for the reference period (1976-2005) and the near future period (2041-2070), 284 
and for every six investigated catchments.    285 

1.8. Uncertainties analysis 286 

Quantifying uncertainties in the estimation of floods is an indispensable procedure to minimize the over/under-287 
estimation of the flood scenarios, so does the planning of the flood mitigation measures (Wiltshire 1987; Wilson 288 
et al. 2011). This study addressed the multiple uncertainty sources coming from the hydrological model SWAT 289 
and the weather inputs from GCM_RCMs. Thus, the estimated flood frequencies were provided in tandem with 290 
their uncertainties bands/envelopes. Herein, the 95PPU (95 Percent Prediction Uncertainty) band were applied, 291 
where the optimal/expected results were present at the mean/median curve together with the upper limited curve 292 
(at 97.5%) and lower limited curve (at 2.5%) of the uncertainty band. By doing this way, it is possible to produce 293 
a wide spectrum of the projected results. The SWAT-CUP program generated the stochastic results of daily 294 
simulated streamflow distributed within the 95PPU band. Such daily streamflows were generated from each 295 
input of five GCM_RCMs for both reference period (1976—2005) and near future period (2041-2070). The 296 
flood frequencies were, therefore, estimated for each option of GCM_RCMs input with their uncertainty 297 
envelopes. According to the distribution of such uncertainty envelopes driven by each GCM_RCM input, the 298 
uncertainty of the  projected flood changes could be quantified. Moreover, the uncertainties were also identified 299 
and compared among six catchments with three different flood regimes.      300 

Results and discussion 301 

1.9. Evaluation of model performance 302 

Table 5 revealed that model performances were somewhat different among six catchments. Particularly, 60% 303 
of the investigated gauging sites had good performances, while the remaining 40% of gauging sites had 304 
satisfactory performances. The general trend could be observed that the simulation of daily streamflow by 305 
SWAT model was better for the snowmelt-dominated catchments than that for the rainfall-dominated and mixed 306 
catchments. The rainfall-dominated catchment locating nearby the coastal zone had lower performance than the 307 
inland catchment. This could be because highly variant and the domination of precipitation in the coastal area 308 
compared to the farther inland area. Moreover, the SWAT performed better for the large-scale catchments than 309 
the smaller ones (supplementary Fig. S1- Fig. S4). Furthermore, model performances were different among 310 
gauging stations at the large-scale and snowmelt-dominated catchment, e.g. the Målselv (Table 5, 311 
supplementary Fig. S2 and Fig. S4). This explained high variation of local climate condition and catchments’ 312 
characteristics of the Norwegian Arctic catchments. Regarding model validation, this study verified that the 313 
model could work well with the calibrated parameters for the long-term period (20-25 years). Thus, this study 314 
concluded that the calibrated SWAT models were highly reliable for investigating the impacts of future climate 315 
on floods. 316 

1.10. Transferability of the calibrated model parameters 317 

Table 6 demonstrated the relatively high transferability of the calibrated model parameters between the donors 318 
and the recipients catchments, which have similar flood regimes, and geographical proximity. This finding could 319 
open the doors for applying the method of transferring the models parameters between gauged and ungauged 320 
catchments in the data-sparse environment. Also, finding from this study could satisfy the expectation of the 321 
geographical transferability of the hydrological model’s parameters from one to other locations, and that the 322 
model parameters have physical relationship (Vörösmarty et al. 1989; Xu 1999). However, at the rainfall-323 
dominated catchment Strandvassbotn nearby the coastal, model performance was slightly lower than the 324 
satisfactory threshold. This indicated that transferability of the model parameters was harder to perform in the 325 
catchment where flow regime is high fluctuation because of high rainfall variation.            326 
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1.11. Projected changes in future climate 334 

Fig. 3 presented the projected changes in future climate in six Norwegian Arctic catchments.  335 

 336 

Fig.  3. Deviations in the near future (2041-2070) of annual precipitation-pcp (in %), and annual average air temperature-337 
tmp (in oC) from the reference period (1976-2005), projected from five ensemble GCM_RCMs. 338 



 15 of 26 

 

In general, annual rainfall in the future period (2041-2070) is expected both increase and decrease trends 339 
compared to that in the reference period (1976-2005). For example, the deviation of annual precipitation, 340 
averaged from five GCM_RCMs, from the 2041-2070 period to the 1976-2005 period is expected to fall in the 341 
range of -32.9 to +33.7%, -35.1 to +35.3%, -46.0 to +35.9%, -24.7 to +32.4%, -31.0 to +33.5%, and -33.8 to 342 
+35.4% for Lakselva, Strandvassbotn, Marsvikelva, Målselv, Halselva, Karpelva catchments, respectively. In 343 
contrast to high fluctuation in the projected rainfall, the average annual air temperature only presented the 344 
upward trend in the near future period. For instance, the average annual air temperature would increase 1.2-345 
4.3oC, 1.2-4.4oC, 1.3-4.2oC, 1.4-4.7oC, 1.5-5.0oC, and 1.9-5.0oC, at Lakselva, Strandvassbotn, Marsvikelva, 346 
Målselv, Halselva, Karpelva catchments, respectively. Also, magnitudes of the increases in air temperature were 347 
linear to the latitudes of the investigated catchments. This corresponds to the prospect that climate change is 348 
more intensified toward to the north (AMAP 2011; Vormoor et al. 2016; AMAP 2017). Noticeably, the 349 
projections from the GCM_RCM5 were much higher than the remaining models (approx. 1.2-2.7 oC and 350 
catchments dependent) and such gaps were linear to the increase in the latitudes. The findings in this study 351 
added further confirmation regarding the catchment dependent of the climate models’ performances (Chen et 352 
al. 2017; Chen et al. 2021). The differences in the projections of climate change among five ensemble 353 
GCM_RCMs inputs were expected to result in uncertainties in the estimated flood frequencies and flood 354 
magnitudes.  355 

1.12. Projected changes in flood magnitudes      356 

Fig. 4 explained the trend and spatial variation of the changes in future flood magnitudes (2041-2070), averaged 357 
from five ensemble GCM_RCMs, compared to those of the reference period (1976–2005).  358 

 359 

Fig.  4. The average (avg) changes in nine flood quantiles from the historical (1976-2005) to the future (2041-2070) in six 360 
Norwegian Arctic catchments (numbered 1-6) under high emission scenario (RCP8.5) of climate change. Q_U95PPU, 361 
Q_M95PPU, and Q_L95PPU denote the upper limited (at 97.5%), median and lower limited (at 2.5%) curves of the 362 

estimated discharges. 363 

 364 
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Magnitudes of nine flood quantiles were estimated corresponding to nine different flood return periods, in six 365 
Norwegian Arctic catchments.This study found that magnitudes of the future floods were expected to increase 366 
in most of the snowmelt-dominated catchments, excluding the Karpelva. This could explain the strong effects 367 
of the changes in air temperature and precipitation on snow regimes (Vormoor et al. 2016). The rising air 368 
temperature plus the occurrence of rain-on-snow events (AMAP 2011, 2017) cause higher snowmelt which 369 
contribute to higher peak flows. In contrast, in the two rainfall-dominated catchments Strandvassbotn and 370 
Marsvikelva, the futures flood magnitudes presented the decreased patterns. The reason was because rainfall 371 
(the main source for generating runoff) in these two catchments were expected to have larger drop (>21%) than 372 
that in the snowmelt-dominated and mixed catchments (Fig. 3). Also, the high increases in air temperature (Fig. 373 
3) would enhance evaporation and may result in reduction of runoff. Further reasons could originate from the 374 
projected results of the selected GCM_RCMs. For example, the projection from the GCM_RCM2 presented 375 
larger decrease (e.g., 15-46% at Strandvassbotn, and 9.5-35% at Marsvikelva) in future rainfall than that from 376 
the remaining GCM_RCMs (Fig. 3). Therefore, the selection of the driven climate models is very important and 377 
high impacts on the projected flood. In the mixed rainfall/snowmelt-dominated catchment Lakselva, future flood 378 
quantiles were projected both decrease (applicable for small flood i.e. the 2-year flood) and increase in the 379 
magnitudes. 380 

 381 

Fig.  5. Median changes (in %) in floods magnitudes from the reference period (1976-2005) to the future (2041-2070) in 382 
six Norwegian Arctic catchments (numbered 1-6) under high emission scenario (RCP8.5) of climate change. 383 

Fig. 5 presented the absolute percentage of changes in the median magnitudes of future floods. For example, in 384 
the snowmelt-dominated catchments (excluding the Karpelva), median magnitudes of future floods would have 385 
a slight increase (from >1 to < 22%) and increase linearly with the increase of flood quantiles. Exceptionally, 386 
at Høgskarhus and Skogly gauging stations of Målselv catchment, the percentage increase of floods declined 387 
with the increase of flood quantiles. Regarding to the two rainfall-dominated catchments, the percentages of 388 
decrease in estimated flood magnitudes in the Strandvassbotn catchment, nearby the coastal, were quite low (< 389 
7%) and the reductions were unlinearly with the increase of flood quantiles. In contrast, the ratios of decrease 390 
in future floods magnitudes in the Marsvikelva, somewhat far the coastal, were higher ( >10 to < 25%), and the 391 
declines were linearly with the increase of flood quantiles. Furthermore, in the large-scale and snowmelt-392 



 17 of 26 

 

dominated catchment Målselv, the predicted rising in flood magnitudes were significantly variant among hydro-393 
gauging stations. Particularly, the increased flood magnitudes at the upstream stations, i.e. Lundberg, were in 394 
higher range compared to those at the remaining stations. For example, the increased flood magnitudes at 395 
Lundberg station was expected from > 2.5 to < 22%, while it was in the range of >6 to <10%, <3.5 to < 5%, 396 
>10 to <13%, >1 to <6% for Høgskarhus, Skogly, Lille Rostavatn, and Målselvfossen stations, respectively. 397 
The snowmelt-dominated catchment Karpelva in the uppermost area was predicted to experience a decrease 398 
pattern of future flood magnitudes, i.e. from <2 up to <31% corresponding to 2-year flood to 1000-year flood. 399 
In short, the (maximum) decreases (in %) in future flood magnitudes were expected to higher (approx. 1.4 times) 400 
than the increases pattern, and spatial variation of the changes in flood magnitudes were also highlighted in the 401 
near future (2041-2070) for Norwegian Arctic catchments. 402 

1.12.1. Projected changes in magnitudes of small floods 403 
In this study, the small floods i.e. 2-year and 5-year floods were considered. It was found that the median 404 
magnitudes, between the future (2041-2070) and the reference (1976-2005) period, of the small floods were 405 
expected to decrease in the northern catchment (i.e. Karpelva, snowmelt-dominated) and the southern 406 
catchments (i.e. Marsvikelva, and Strandvassbotn (rainfall-dominated), and the mixed catchment Lakselva (only 407 
2-year flood)), whereas they were projected to increase in the remaining catchments (Table 7).     408 

Table 7. Median changes in future magnitudes of small and extreme floods. 409 

   Small floods Extreme floods 

Catchments 
Area 

(km2) 

Flood 

regimes 

2-year 

flood 

5-year 

flood 
200-year flood 500-year flood 1000-year flood 

Karpelva 129 Snowmelt -1.7 -8.8 -27.8 -29.3 -30.3 

Halselva 143 Snowmelt +3.4 +7.6 +15.7 +16.9 +17.8 

Målselv 5815 Snowmelt      

    at Lundberg  Snowmelt +3 +11.4 +19.9 +20.7 +21.3 

    at Lille Rostavatn  Snowmelt +10.5 +11.6 +12.5 +12.6 +12.7 

    at Høgskarhus  Snowmelt +9.1 +7.6 +6.4 +6.3 +6.2 

    at Skogly  Snowmelt +4.4 +4.0 +3.6 +3.6 +3.6 

    at Målselvfossen  Snowmelt +1.2 +2.9 +5.5 +5.8 +6.0 

Marsvikelva 32 Rainfall -11.4 -18.6 -24.3 -24.8 -25.2 

Strandvassbotn 26 Rainfall -6.4 -6.1 -5.7 -5.7 -5.6 

Lakselva 297 Mixed -1.4 +3.9 +12.0 +13.1 +13.7 

 410 

1.12.2. Projected changes in magnitudes of extreme floods  411 
The trends of median changes in magnitudes of the extreme floods i.e. 200-year, 500-year and 1000-year floods 412 
in six Norwegian Arctic catchments was found to be similar to those of the small floods. However, the absolute 413 
values of the changes in the extreme floods would be more significant than those of the small floods, excluding 414 
at Høgskarhus and Skogly hydro-gauging stations of the Målselv catchment and Strandvassbotn catchment 415 
(Table 7).  416 

1.13. Projected changes in likelihood exceedance  417 

1.13.1. Projected changes in likelihood exceedance of small floods  418 
Table S8, Table S9 (in supplementary material), and Fig. 6 provided the probable median changes in future 419 
flood events (in %) exceeding the 2-year, and 5-year floods. In general, the projections of the likelihood 420 
exceedance of small floods in the future were highly variation among ensemble GCM_RCM inputs. However, 421 
the average results revealed that small flood events would reduce in the northern catchment (Karpelva, 422 
snowmelt-dominate) and southern catchments (Marsvikelva, rainfall-dominated). In the rainfall-dominated 423 
catchment nearby the coastal, small floods would occur more frequent in the future although their magnitudes 424 
would slightly decrease (Table 7). Regarding the mixed catchment Lakselva, both decrease (for 2-year flood) 425 
and increase (for 5-year flood) of exceeding events were projected. In the central regions of the Norwegian 426 
Arctic with snowmelt-dominated regimes (e.g., Målselv and Halselva), small flood events in the future would 427 
occur more frequent compared to those in the reference period.      428 

429 
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 430 

Fig.  6. Projected changes in likelihood exceedance of small and extreme floods, averaged from five ensemble 431 
GCM_RCMs inputs. 432 

1.13.2. Projected changes in likelihood exceedance of extreme floods  433 
The probable median changes in future flood events (in %) exceeding the 200, 500 and 1000-year floods were 434 
presented from Table S10 to Table S12 (in supplementary material), and Fig. 6. Additionally, Fig. S5 and Fig. 435 
S7 (in supplementary) presented hydrographs of future annual peak flood events (or maximum annual peak 436 
flows) which could exceed extreme floods (estimated by discharge data of the reference period (1976-2005)). 437 
Also, Fig. S6 and Fig. S8 (in supplementary) were the same but using both estimated flood quantiles by 438 
discharge data of the reference period (1976-2005) and the future (2041-2070).  439 
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The projection of future changes in likelihood exceedance of extreme floods were found to totally oppose to 440 
those of the small floods. For example, in the southernmost and nearby the coastal (rainfall-dominated), and in 441 
the northernmost areas (snowmelt-dominated) of the Norwegian Arctic, extreme flood events could occur more 442 
frequent but with lower magnitudes compared to the historical conditions (Table 7). In contrast, extreme flood 443 
events would reduce, but with increased floods magnitudes (Table 7), in the central regions of the Norwegian 444 
Arctic, where snowmelt is governing the hydrological regime. Noticeably, in the rainfall-dominated catchment 445 
nearby the coastal (i.e. Strandvassbotn), the changes in future extreme flood events would be more complicated 446 
since it would increase (for 500-year flood) or decrease (for 200-year and 1000-year floods). The reason could 447 
be high fluctuation of future rainfall, which is dominating the hydrlogical regime in such catchment. The 448 
changes in frequency and intensity of extreme floods under climate change, found in this study, were the 449 
verification for previous studies (IPCC 2013; Rojas et al. 2013; Madsen et al. 2014; Alfieri et al. 2015; 450 
Mallakpour & Villarini 2015; Quintero et al. 2018), and the cases in Norway (Vormoor et al. 2016). Also, the 451 
results from this study could contribute to additional knowledge in case the measures for flood management 452 
and mitigation, e.g. flood hazard mapping (with 200-year flood) or dam safety management (with 500 and 1000-453 
year floods) (Wilson et al. 2011), would be planned in the same study areas or any other regions with similar 454 
climate and hydrological characteristics.  455 
Furthermore, performance of the ensemble GCM_RCM simulations were distinguished in the projections 456 
between small floods and extreme floods. This was because most of the ensemble GCM_RCM inputs could 457 
produce the projection of future changes in the likelihood exceedance of small floods. However, it would be 458 
harder for the projections of extreme floods. For example, only the ensemble GCM_RCM1 could produce the 459 
projected changes in future flood events exceeding the extreme flood quantiles in most of catchments. While, 460 
other ensemble models could only provide the projections in Marsvikelva catchment (by GCM_RCM2 and 461 
GCM_RCM3) and Strandvassbotn (by GCM_RCM3). 462 

1.14. Uncertainties analysis in the projection of future floods  463 

1.14.1. Uncertainties from the hydrological model SWAT 464 

Table 13 provided two statistical measures, i.e. p-factor and r-factor, to quantify uncertainties from the 465 
hydrological model SWAT (Abbaspour et al. 2004; Abbaspour et al. 2015). The results in Table 13 explained 466 
that the daily observed streamflow could be satisfactorily bracketed by the 95PPU band of the stochastic 467 
simulations, and the uncertain envelopes were quite narrow, or the simulated results were highly reliable.    468 

Table 8. Quantification of uncertainties from the hydrological model SWAT. 469 

Catchments 
p-factor r-factor 

Calibration Optimal Validation Calibration Optimal Validation 

Karpelva 0.94 

> 0.70 

0.92 1.08 

< 1.5 

1.08 

Halselva 0.82 0.89 1.26 1.21 

Målselv at Lunderg 0.56 0.52 0.70 0.72 

Målselv at Lille Rostavatn 0.69 0.74 0.60 0.60 

Målselv at Høgskarhus 0.56 0.43 0.82 0.86 

Målselv at Skogly 0.73 0.67 1.15 1.15 

Målselv at Målselvfossen 0.69 0.66 0.95 0.96 

Marsvikelva 0.79 0.83 1.12 1.22 

Strandvassotn 0.55 0.48 0.45 0.43 

Lakselva 0.77 0.77 1.71 1.64 

 470 

1.14.2. Uncertainties from the ensemble GCM_RCMs simulations 471 

It was stated that inputs from climate models added further sources to uncertainties of the projected hydrology 472 
(Kay et al. 2009; Chen et al. 2011b; Woldemeskel et al. 2012). The results from this study agreed with such 473 
statements. Fig.  7 and Fig.  8 provided in detail uncertainties of the estimated flood frequencies and flood 474 
magnitudes, yielded from different ensemble GCM_RCMs inputs. 475 
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In general, the widths of uncertain envelopes increased linearly with the increase of flood quantiles. This 476 
explained larger uncertain for the estimation of higher flood quantiles. Most of GCM_RCMs inputs yielded 477 
similar thickness of uncertainties envelopes of estimated flood frequency in snowmelt-dominated catchments 478 
(i.e. Karpelva, Halselva and Målselv) but they produced high variation for the results in rainfall-dominated 479 
catchments (i.e. Marsvikelva and Strandvassbotn). The high variation of the uncertainties envelopes in the two 480 
rainfall-dominated catchments clarified higher sensitive to climate change in rainfall-dominated catchments. 481 
Other reasons could be from the bias correction methods to adjust the GCM_RCMs simulations. The bias 482 
correction methods could fail to capture the temporal structure of daily rainfall which is critical for hydrological 483 
simulations in the rainfall-dominated catchments (Chen et al. 2017). In the mixed catchment (i.e. Lakselva), 484 
only the raw GCM_RCM1 inputs produced dissimilar uncertainties envelopes compared to remaining models. 485 

 486 

Fig.  7. Uncertainties in the estimation of the probable peak discharges corresponding to different return periods, in the 487 
reference period (1971-2005) and the future period (2041-2070), in the small-scale Norwegian Arctic catchments. 488 
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 489 

Fig.  8. Uncertainties in the estimation of the probable peak discharges corresponding to different return periods, in the 490 
reference period (1971-2005) and the future period (2041-2070), in the large-scale Norwegian Arctic catchment Målselv. 491 

Among six investigated catchments, uncertainties envelopes of projected floods in the Karpelva, Halselva were 492 
quite broader than those in the remaining catchments. However, the results of calibration and validation of the 493 
hydrological models in the Karpelva, Halselva were better than those in the remaining catchments (Table 13). 494 
This revealed that uncertainties from the climate models were larger than those from the hydrological models. 495 
Findings from this study were agreed with findings from the previous studies (Wilby & Harris 2006; Chen et 496 
al. 2011a). However, this also againsted to another study, since they concluded that uncertainties from the 497 
hydrological model were larger than those from the GCMs (Najafi et al. 2011). Nevertheless, this could be 498 
because performances of both hydrological models and climate models varry from catchments to catchments 499 
(Chen et al. 2017; Chen et al. 2021). 500 

Beside the uncertainties envelopes, using different ensemble GCM_RCM inputs resulted in dissimilar absolute 501 
values of estimated flood quantiles. This influenced the mean/median values of the projected floods. Also, using 502 
different time frame of the ensemble GCM_RCM simulation could yield different results of estimated floods. 503 
Thus, it is suggested that using the results of floods projections in this study only applied for the selected 504 
ensemble GCM_RCM simulations and within the investigated time frame.           505 
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Furthermore, it was claimed that using directly raw GCM_RCM to drive impacts models could yield unreliable 506 
projections (IPCC 2015). However, this study found that applications of raw model simulations were still 507 
reliable in some certain cases. For example, magnitudes of the estimated floods by using the raw model 508 
(GCM_RCM1) were similar to those by using the bias-corrected models (e.g., GCM_RCM3 in Karpelva 509 
catchment, or all bias-corrected GCM_RCMs in Lakselva catchment). The possibility of using the raw 510 
GCM_RCM in this study was in the consensus with findings from the previous studies outside the Norwegian 511 
Arctic (Chen et al. 2017; Meresa & Romanowicz 2017; Xu et al. 2019).        512 

Concluding remarks 513 

Consideration of the severe impacts of flooding on human life, the environment, ecosystem, and socio-economic 514 
development, especially under the context of global climate change, the projections of flood changes in the 515 
future is of great significance for better management and mitigation of the flooding. This study coupled multiple 516 
climate models simulations and hydrological model SWAT to project future floods (in 2041-2070) in six 517 
Norwegian Arctic catchments, which have variation in geographical distribution, scales, and dominant flood 518 
regimes. The key findings from this study were summarised as follows:   519 

i. The SWAT model demonstrated its high reliability to simulate daily streamflow in the Arctic environment, 520 

ii. Annual precipitation were expected to experience both increase and decrease patterns, while annual air 521 
temperature were only in the upward trend and more intensified towards the north, 522 

iii. The median magnitudes of floods were projected to increase in most of snowmelt-dominated catchments, 523 
but decrease in the rainfall-dominated catchments. While the mixed catchment would experience both 524 
decrease (applicable for the small flood) and increase patterns, 525 

iv. Extreme flood events were expected to occur more frequent, but with lower magnitudes in southern 526 
catchments (rainfall-dominated), and in northern catchment (snowmelt-dominated). This opposed to the 527 
central catchments (snowmelt-dominated), 528 

v. Changes in extreme flood events in the rainfall-dominated catchment and near the coast were more complex 529 
to project due to high variation of future rainfall regime in this region,  530 

vi. Future changes in likelihood exceedance of small flood events were projected in the opposite behaviors to 531 
those of extreme floods, 532 

vii. Five ensemble GCM_RCMs inputs yielded higher variation of the projected floods in the rainfall-dominated 533 
catchments than those in the snowmelt-dominated catchments, 534 

viii. In the modelling chain for floods projections in the Norwegian Arctic environment, uncertainties from the 535 
ensemble GCM_RCMs were found to be larger than those from the hydrological model SWAT, 536 

ix. Using the raw climate model simulations to drive the impact models was found to be reliable in some certain 537 
cases. It is, therefore, recommend to consider both raw and bias-corrected climate models in climate change 538 
impacts assessment.            539 

Outcomes from this study would support the scientists, decision makers and planners to propose suitable 540 
strategies for flood mitigation and management. Also, this would contribute to sustainable environment and 541 
ecosystem conservation in the Arctic.  542 
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Table S1  18 

Description of the calibrated model parameters. 19 

Parameter Name Description Subgroup process 

SMTMP.bsn Snow melt base temperature 

Snowmelt 

 

TIMP.bsn Snow pack temperature lag factor 

SMFMN.bsn 
Minimum melt rate for snow during the year (occurs on 

winter solstice) 

SMFMX.bsn 
Maximum melt rate for snow during year (occurs on 

summer solstice) 

SFTMP.bsn Snowfall temperature 

SNO50COV 
Snow water equivalent that corresponds to 50% snow 

cover 

SNOCOVMX 
Minimum snow water content that corresponds to 100% 

snow cover 

TLAPS Temperature lapse rate 

CN2.mgt SCS runoff curve number f 
Surface runoff 

CANMX.hru Maximum canopy storage 

ESCO.hru Soil evaporation compensation factor 

Lateral flow 
SOL_AWC(..).sol Available water capacity of the soil layer 

SOL_BD(..).sol Moist bulk density 

SOL_K(..).sol Saturated hydraulic conductivity 

CH_K2.rte 
Effective hydraulic conductivity in main channel 

alluvium Channel water routing 

CH_N2.rte Manning's "n" value for the main channel 

ALPHA_BF.gw Baseflow alpha factor (days) 

Ground water 

GW_REVAP.gw Groundwater "revap" coefficient 

GWQMN.gw 
Treshold depth of water in the shallow aquifer required 

for return flow to occur (mm) 

REVAPMN.gw 
Threshold depth of water in the shallow aquifer for 

"revap" to occur (mm) 

GW_DELAY.gw Groundwater delay (days) 

 20 
  21 



Table S2  22 

Model parameters and their ranges for calibration at Lakselva catchment. 23 

Parameter_Name Fitted_Value Min_value Max_value 

1:V__SNO50COV.bsn 0.372068 0.194828 0.373678 

2:V__TLAPS.sub 4.783616 3.632595 8.009101 

3:V__SNOCOVMX.bsn 148.8052 73.77092 189.386124 

4:R__CN2.mgt -0.19771 -0.36305 -0.168306 

5:V__ESCO.hru 0.172988 0.094391 0.219745 

6:R__SOL_AWC(..).sol 8.232051 6.303628 8.613116 

7:V__ALPHA_BF.gw 0.656814 0.440427 0.668443 

8:V__GW_DELAY.gw 59.9978 15.00158 190.084167 

9:V__GW_REVAP.gw 0.123949 0.113642 0.171224 

10:V__GWQMN.gw 1629.057 1621.968 2266.496338 

11:V__REVAPMN.gw 291.2728 232.0549 349.784393 

12:V__SFTMP.bsn -2.59797 -4.54422 0.969232 

13:V__SMFMN.bsn 7.109924 3.697446 9.054555 

14:V__SMFMX.bsn 2.679136 0 6.075138 

15:V__SMTMP.bsn -0.04044 -4.61297 2.346734 

16:V__TIMP.bsn 0.613599 0.359165 0.627839 

17:A__CH_N2.rte 0.179857 0.139561 0.202035 

18:A__CH_K2.rte 393.1027 313.3356 454.516235 

19:R__SOL_K(..).sol 59.72704 35.81412 69.35257 

20:R__SOL_BD(..).sol 1.601312 1.336435 1.875899 

21:A__CANMX.hru 61.31247 51.09523 77.226265 

Note:  24 
 The term “A_” explains that a given value is added to the existing parameter value. 25 
 The term “R_” explains that an existing parameter value is multiplied by (1 + a given value). 26 
 The term “V_” explains that the existing parameter value is replaced by a given value. 27 
 28 

29 



Table S3  30 

Model parameters and their ranges for calibration at Strandvassbotn catchment. 31 

Parameter_Name Fitted_Value Min_value Max_value 

1:V__SNO50COV.bsn 0.771824 0.548834 0.9 

2:V__TLAPS.sub -1.24694 -2.86481 2.337343 

3:V__SNOCOVMX.bsn 244.4058 183.3297 361.394226 

4:R__CN2.mgt 0.574274 0.455392 0.697514 

5:V__ESCO.hru 0.631558 0.382975 0.761335 

6:R__SOL_AWC(..).sol 3.472722 1.975952 5.401056 

7:V__ALPHA_BF.gw 0.913628 0.821175 1 

8:V__GW_DELAY.gw 219.9303 128.291 292.225311 

9:V__GW_REVAP.gw 0.131683 0.091036 0.15628 

10:V__GWQMN.gw 212.0551 0 2058.787354 

11:V__REVAPMN.gw 134.0218 106.6393 194.685883 

12:V__SFTMP.bsn 0.501128 -3.33046 6.519385 

13:V__SMFMN.bsn 9.598757 5.922366 9.993673 

14:V__SMFMX.bsn 8.117971 6.764509 12.2001 

15:V__SMTMP.bsn 0.002693 -6.95033 2.613663 

16:V__TIMP.bsn 0.434026 0.428843 0.774345 

17:A__CH_N2.rte 0.269336 0.205497 0.286 

18:A__CH_K2.rte 249.631 239.995 315.868683 

19:R__SOL_K(..).sol 45.61824 43.86684 65.488998 

20:R__SOL_BD(..).sol 1.647193 1.297402 1.78662 

21:A__CANMX.hru 26.76851 15.48557 36.496628 

Table S4  32 

Model parameters and their ranges for calibration at Marsvikelva catchment. 33 

Parameter_Name Fitted_Value Min_value Max_value 

1:V__SNO50COV.bsn 0.469691 0.007047 0.473893 

2:V__TLAPS.sub -2.51483 -3.22829 -0.515536 

3:V__SNOCOVMX.bsn 463.3235 395.5084 500 

4:R__CN2.mgt 0.355821 0.156518 0.391268 

5:V__ESCO.hru 0.667015 0.460346 0.789962 

6:R__SOL_AWC(..).sol 10.79056 6.38537 11.661043 

7:V__ALPHA_BF.gw 0.933666 0.744764 0.943818 

8:V__GW_DELAY.gw 346.9136 310.885 451.073975 

9:V__GW_REVAP.gw 0.047743 0.035708 0.10294 

10:V__GWQMN.gw 7.997381 0 727.034607 

11:V__REVAPMN.gw 201.9666 129.1458 273.918671 

12:V__SFTMP.bsn -1.02481 -4.14995 4.70313 

13:V__SMFMN.bsn 9.95223 6.091054 12.152555 

14:V__SMFMX.bsn 2.007376 0 4.551873 

15:V__SMTMP.bsn -0.70504 -6.57072 2.35726 

16:V__TIMP.bsn 0.279031 0.13264 0.287224 

17:A__CH_N2.rte 0.24621 0.207118 0.267726 

18:A__CH_K2.rte 241.0897 193.0853 278.048767 

19:R__SOL_K(..).sol 59.75678 45.51609 65.488998 

20:R__SOL_BD(..).sol 0.987031 0.755555 1.226993 

21:A__CANMX.hru 16.23683 6.319052 31.684206 



Table S5  34 

Model parameters and their ranges for calibration at Målselva catchment. 35 

Parameter_Name Fitted_Value Min_value Max_value 

1:V__SNO50COV.bsn 0.446531 0.33627 0.586296 

2:V__TLAPS.sub 4.28545 0.04978 7.627006 

3:V__SNOCOVMX.bsn 305.6337 236.138 412.0764 

4:R__CN2.mgt -0.2507 -0.26087 -0.16924 

5:V__ESCO.hru 0.075634 0.063548 0.238712 

6:R__SOL_AWC(..).sol 0.841821 -0.19871 1.404575 

7:V__ALPHA_BF.gw 0.571225 0.45284 0.603266 

8:V__GW_DELAY.gw 138.7014 49.41261 148.2928 

9:V__GW_REVAP.gw 0.106467 0.104251 0.143121 

10:V__GWQMN.gw 1679.324 1143.926 2152.208 

11:V__REVAPMN.gw 401.8657 321.9861 440.6779 

12:V__SFTMP.bsn -4.02599 -8.37578 -2.97231 

13:V__SMFMN.bsn 6.398767 5.234928 8.45886 

14:V__SMFMX.bsn 7.01304 6.44629 11.13017 

15:V__SMTMP.bsn 0.647612 -1.76791 4.347335 

16:V__TIMP.bsn 0.013455 0 0.101167 

17:A__CH_N2.rte 0.083273 0.017849 0.110649 

18:A__CH_K2.rte 274.74 190.8205 332.8163 

19:R__SOL_K(..).sol 11.74589 11.73347 14.21723 

20:R__SOL_BD(..).sol -0.10295 -0.11483 0.01862 

21:A__CANMX.hru 74.25598 68.92331 82.7744 

Table S6  36 

Model parameters and their ranges for calibration at Halselva catchment. 37 

Parameter_Name Fitted_Value Min_value Max_value 

1:V__SNO50COV.bsn 0.077217 0 0.136668 

2:V__TLAPS.sub -3.17052 -4.67426 -2.459617 

3:V__SNOCOVMX.bsn 321.6501 223.5091 463.462769 

4:R__CN2.mgt 0.168899 0.166434 0.283828 

5:V__ESCO.hru 0.824999 0.725746 0.830776 

6:R__SOL_AWC(..).sol 3.519947 2.683237 4.879325 

7:V__ALPHA_BF.gw 0.09354 0.022898 0.168552 

8:V__GW_DELAY.gw 113.7252 0 134.905304 

9:V__GW_REVAP.gw 0.026366 0.02 0.041579 

10:V__GWQMN.gw 2415.427 2140.499 3455.947021 

11:V__REVAPMN.gw 136.1137 87.5749 262.805389 

12:V__SFTMP.bsn 4.056153 -2.07028 4.440275 

13:V__SMFMN.bsn 2.097047 1.286147 3.860434 

14:V__SMFMX.bsn 15.73803 15.27752 19.66333 

15:V__SMTMP.bsn -0.57026 -4.65451 2.375171 

16:V__TIMP.bsn 0.712901 0.614402 0.734376 

17:A__CH_N2.rte 0.281275 0.244184 0.286 

18:A__CH_K2.rte 206.3314 197.3828 302.660187 

19:R__SOL_K(..).sol 30.00618 29.11426 30.423979 

20:R__SOL_BD(..).sol 0.415157 0.192496 0.512872 

21:A__CANMX.hru 87.53735 79.26406 95.91053 



Table S7  38 

Model parameters and their ranges for calibration at Karpelva catchment. 39 

Parameter_Name Fitted_Value Min_value Max_value 

1:V__SNO50COV.bsn 0.121458 0 0.223679 

2:V__TLAPS.sub -1.62143 -5.96032 -1.228701 

3:V__SNOCOVMX.bsn 320.3033 283.6223 415.095337 

4:R__CN2.mgt 0.286459 0.027319 0.435413 

5:V__ESCO.hru 0.786523 0.523386 0.806634 

6:R__SOL_AWC(..).sol 6.72311 5.63689 7.532562 

7:V__ALPHA_BF.gw 0.140534 0.068671 0.335821 

8:V__GW_DELAY.gw 391.9123 356.6408 452.227478 

9:V__GW_REVAP.gw 0.116913 0.08721 0.136964 

10:V__GWQMN.gw 1652.137 0 1657.108398 

11:V__REVAPMN.gw 282.6724 201.7739 296.836761 

12:V__SFTMP.bsn 13.17356 7.336163 14.986744 

13:V__SMFMN.bsn 7.710621 6.51554 15.238759 

14:V__SMFMX.bsn 5.631604 1.943751 6.582559 

15:V__SMTMP.bsn 0.04126 -3.33755 2.931115 

16:V__TIMP.bsn 0.56778 0.377529 0.677137 

17:A__CH_N2.rte 0.011258 -0.01961 0.048228 

18:A__CH_K2.rte 213.2674 211.6405 336.788971 

19:R__SOL_K(..).sol 10.9921 6.980662 14.739726 

20:R__SOL_BD(..).sol 1.190092 0.501049 1.438523 

21:A__CANMX.hru 83.83518 65.53342 100 
 40 

  41 



Table S8 42 

Median changes in the probable future flood events exceeding the 2-year flood. 43 

Catchments 
Area 

(km2) 

Flood 

regimes 

Probable exceeding events (%) 

GCM_RCM1 GCM_RCM2 GCM_RCM3 GCM_RCM4 GCM_RCM5 Average 

1c 2d 1 2 1 2 1 2 1 2 1 2 

Karpelva 129 Snowmelt +3.4 +3.4 -100 -100   -100 -100   -66 -66 

Halselva 143 Snowmelt   +300 +300 +167 +167 -75 -75 -20 -20 93 93 

Målselva 5815 Snowmelt             

  at Lundberg  Snowmelt -3.3 -3.3 +83.3 +83.3 +160 +140 -22.2 -33.3 -41.7 -41.7 35.2 29.0 

  at Lille 

Rostavatn 
 Snowmelt  -7.7 +55.6 +44.4 +116.7 +100    -8.3 86.2 32.1 

  at Høgskarhus  Snowmelt  -7.7 +20  +66.7 +55.6 -10 -30 +9.1 -9.1 21.5 2.2 

  at Skogly  Snowmelt   -7.1 -7.1 +50 +41.7 -7.7 -7.7 -7.7 -23.1 6.9 1.0 

  at 

Målselvfossen 
 Snowmelt   +42.9 +12.9 +77.8 +77.8 -54.5 -54.5 -25 -37.5 10.3 -0.3 

Marsvikelva 32 Rainfall -6.7   +7.1 -36.4 -36.4 -45.5 -45.5 +12.5 +75 -19 0.1 

Strandvassbotn 26 Rainfall +45.5 +54.5 +62.5 +75 -26.7 -6.7 +300 +400 -58.8 -47.1 64.5 95.1 

Lakselva 297 Mixed +8.3 +8.3 +5.6 +5.6 +5.3 +5.3 -47.1 -47.1 -44.4 -38.9 -15 -13 
c Probable future flood events exceed the extreme floods quantiles (estimated from discharges of the reference period (1976-2005)) 44 
d Probable future flood events exceed the extreme floods quantiles (estimated from discharges of the future period (2041-2070)) 45 
“+”: increase of exceeding events 46 
“-“: decrease of exceeding events 47 
 48 

Table S9 49 

Median changes in the probable future flood events exceeding the 5-year flood.  50 

Catchments 
Area 

(km2) 

Flood 

regimes 

Probable exceeding events (%) 

GCM_RCM1 GCM_RCM2 GCM_RCM3 GCM_RCM4 GCM_RCM5 Average 

1e 2f 1 2 1 2 1 2 1 2 1 2 

Karpelva 129 Snowmelt +3.4 +3.4   -100 -100     -48.3 -48.3 

Halselva 143 Snowmelt   +100  +100    +100  100  

Målselva 5815 Snowmelt             

  at Lundberg  Snowmelt +5.6 -11.1 +600 +400 +100 +100 -50 -50 +33  138 110 

  at Lille 

Rostavatn 

 Snowmelt 
+18.8 -12.5 +100  +600 +500 -33 -67 +100 -50 157 93 

  at Høgskarhus  Snowmelt +12.5 -18.8 +100 +100 +300 +300 -50 -50 -25 -50 68 56 

  at Skogly  Snowmelt +5 +5 +150 +150 +100 +100 -100 -100  -100 39 11 

  at 

Målselvfossen 

 Snowmelt 
+12  +100 +100 +100 +100   -100 -100 28 33 

Marsvikelva 32 Rainfall +133 +233 -66.7 -66.7 -100 -75  +100  +100 -11 58 

Strandvassbotn 26 Rainfall +100 +100 +100 +100 -60 -60   -100 -100 10 10 

Lakselva 297 Mixed +100 +100 +42.9 +28.6 +75 +75 -89 -89   32.3 28.7 
e Probable future flood events exceed the extreme floods quantiles (estimated from discharges of the reference period (1976-2005)) 51 
f Probable future flood events exceed the extreme floods quantiles (estimated from discharges of the future period (2041-2070)) 52 
“+”: increase of exceeding events 53 
“-“: decrease of exceeding events 54 
 55 

Table S10 56 

Median changes in the probable future flood events exceeding the 200-year flood.  57 

Catchments 
Area 

(km2) 

Flood 

regimes 

Probable exceeding events (%) 

GCM_RCM1 GCM_RCM2 GCM_RCM3 GCM_RCM4 GCM_RCM5 Average 

1g 2h 1 2 1 2 1 2 1 2 1 2 

Karpelva 129 Snowmelt +38 +38         38 38 

Halselva 143 Snowmelt  -32          -32 

Målselva 5815 Snowmelt             

  at Lundberg  Snowmelt -17 -50         -17 -50 

  at Lille Rostavatn  Snowmelt -25 -75         -25 -75 

  at Høgskarhus  Snowmelt -50 -75         -50 -75 

  at Skogly  Snowmelt +100          100  

  at Målselvfossen  Snowmelt  -29          -29 

Marsvikelva 32 Rainfall   +100 +100 -100 -100     0 0 

Strandvassbotn 26 Rainfall     -25 -25     -25 -25 

Lakselva 297 Mixed             
g Probable future flood events exceed the extreme floods quantiles (estimated from discharges of the reference period (1976-2005)) 58 
h Probable future flood events exceed the extreme floods quantiles (estimated from discharges of the future period (2041-2070)) 59 
“+”: increase of exceeding events 60 
“-“: decrease of exceeding events 61 

 62 
 63 
 64 

  65 



Table S11 66 

Median changes in the probable future flood events exceeding the 500-year flood.  67 

Catchments Area (km2) Flood regimes 

Probable exceeding events (%) 

GCM_RCM1 GCM_RCM2 GCM_RCM3 GCM_RCM4 GCM_RCM5 Average 

1i 2j 1 2 1 2 1 2 1 2 1 2 

Karpelva 129 Snowmelt +12 +71         12 71 

Halselva 143 Snowmelt -6 -24         -6 -24 

Målselva 5815 Snowmelt             

  at Lunderg  Snowmelt +33 -100         33 -100 

  at Lille Rostavatn  Snowmelt  -100          -100 

  at Høgskarhus  Snowmelt  -100          -100 

  at Skogly  Snowmelt             

  at Målselvfossen  Snowmelt             

Marsvikelva 32 Rainfall    +100        100 

Strandvassotn 26 Rainfall     +25 +50     25 50 

Lakselva 297 Mixed             
i Probable future flood events exceed the extreme floods quantiles (estimated from discharges of the reference period (1976-2005)) 68 
j Probable future flood events exceed the extreme floods quantiles (estimated from discharges of the future period (2041-2070)) 69 
“+”: increase of exceeding events 70 
“-“: decrease of exceeding events 71 
 72 

 73 

Table S12 74 

Median changes in the probable future flood events exceeding the 1000-year flood.  75 

Catchments 
Area 

(km2) 

Flood 

regimes 

Probable exceeding events (%) 

GCM_RCM1 GCM_RCM2 GCM_RCM3 GCM_RCM4 GCM_RCM5 Average 

1k 2l 1 2 1 2 1 2 1 2 1 2 

Karpelva 129 Snowmelt +36 +164         36 164 

Halselva 143 Snowmelt +36 -18         36 -18 

Målselva 5815 Snowmelt             

  at Lunderg  Snowmelt +50 -100         50 -100 

  at Lille Rostavatn  Snowmelt -100 -100         -100 -100 

  at Høgskarhus  Snowmelt             

  at Skogly  Snowmelt             

  at Målselvfossen  Snowmelt             

Marsvikelva 32 Rainfall    +100        100 

Strandvassotn 26 Rainfall     -25 -25     -25 -25 

Lakselva 297 Mixed             
k Probable future flood events exceed the extreme floods quantiles (estimated from discharges of the reference period (1976-2005)) 76 
l Probable future flood events exceed the extreme floods quantiles (estimated from discharges of the future period (2041-2070)) 77 
“+”: increase of exceeding events 78 
“-“: decrease of exceeding events 79 
 80 



Supplementary Figure for 1 

 2 
 3 

Projections of future floods in Norwegian Arctic 4 

catchments under climate change context 5 

 6 

Minh Tuan Bui 1,*, Jinmei Lu 1, Linmei Nie 2 7 

 8 
 9 
1 Department of Technology and Safety, Faculty of Science and Technology, UiT The Arctic University of Norway, 9037 10 

Tromsø, Norway; jinmei.lu@uit.no 11 
2 Centre for Sustainable Development and Innovation of Water Technology, Foundation CSDI WaterTech, 0373 Oslo, 12 

Norway; linmei.nie@csdi.no 13 
 14 

 15 
*  Corresponding author: Minh Tuan Bui 16 
 E-mail address: minh.t.bui@uit.no 17 
  18 

mailto:jinmei.lu@uit.no
mailto:linmei.nie@csdi.no
mailto:minh.t.bui@uit.no


 19 

Fig. S1. Model performance during the calibration period (1998-2007) in the small-scale Norwegian Arctic 20 
catchments: Lakselva, Strandvassbotn, Marsvikelva, Halselva and Karpelva. 21 

 22 
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 29 
Fig. S2. Model performance during the calibration period (1998-2007) in the large-scale Norwegian Arctic catchment 30 

Målselva (Målselv). 31 
 32 



 33 

Fig. S3. Model performance during the validation period (1980s-2005) in the small-scale Norwegian Arctic 34 
catchments: Lakselva, Strandvassbotn, Marsvikelva, Halselva and Karpelva. 35 
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 43 

Fig. S4. Model performance during the validation period (1980s-2005) in the large-scale Norwegian Arctic 44 
catchment Målselva (Målselv). 45 

  46 



 47 

Fig. S5. The estimated number of future maximum annual peak flows (at three levels, i.e., upper limited-48 
U95PPU (at 97.5%), median-M95PPU, and lower limited-L95PPU (at 2.5%) of the discharge data) exceeding 49 

the extreme flood quantiles (estimated by discharge of the reference period (1976-2005)), by using five 50 
different ensemble Global and Regional Climate Models inputs (GCM_RCM1-5), in the small-scale 51 

Norwegian Arctic catchments: Lakselva, Strandvassbotn, Marsvikelva, Halselva and Karpelva.  52 

 53 



 54 

Fig. S6. The changes in estimated magnitudes of extreme flood quantiles, and number of maximum annual 55 
peak flows (at three levels i.e. upper limited-U95PPU (at 97.5%), median-M95PPU, and lower limited-56 

L95PPU (at 2.5%) of the discharge data) exceeding those floods, from the reference period (1976-2005) to the 57 
near future (2041-2070), by using five different ensemble Global and Regional Climate Models inputs 58 

(GCM_RCM1-5), under high emission scenario (RCP8.5), in the small-scale Norwegian Arctic catchments: 59 
Lakselva, Strandvassbotn, Marsvikelva, Halselva and Karpelva. 60 



 61 

 62 

Fig. S7. The estimated number of future maximum annual peak flows (at three levels i.e. upper limited-63 
U95PPU (at 97.5%), median-M95PPU, and lower limited-L95PPU (at 2.5%) of the discharge data) exceeding 64 

the extreme flood quantiles (estimated by discharge of the reference period (1976-2005)), by using five 65 
different ensemble Global and Regional Climate Models inputs (GCM_RCM1-5), in the large-scale 66 

Norwegian Arctic catchment Målselva (Målselv). 67 



 68 
Fig. S8. The changes in estimated magnitudes of extreme flood quantiles, and number of maximum annual 69 

peak flows (at three levels i.e. upper limited-U95PPU (at 97.5%), median-M95PPU, and lower limited-70 
L95PPU (at 2.5%) of the discharge data) exceeding those floods, from the reference period (1976-2005) to the 71 

near future (2041-2070), by using five different ensemble Global and Regional Climate Models inputs 72 
(GCM_RCM1-5), under high emission scenario (RCP8.5), in the large-scale Norwegian Arctic catchment 73 

Målselva (Målselv). 74 



 



 

 

 

 

 



 

 

 


