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Abstract 
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Abstract 

The current standard operational strategy within electrical power systems is done following 

deterministic reliability practices. These practices are deemed to be secure under most 

operating situations when considering power system security, but as the deterministic 

practices do not consider the probability and consequences of operation, the operating 

situation may often become either too strict or not strict enough. This can in periods lead to 

inefficient operation when regarding the socio-economic aspects. With the continuous 

integration of renewable energy sources to the electrical power system coupled with the 

increasing demand for electricity, the power systems have been pushed to operating closer to 

their stability limit. This poses a challenge for the operation and planning of the power 

system. Research is therefore being invested into finding more flexible operational strategies 

which operates according to probabilistic reliability criteria, taking the probability of future 

events into consideration while also aiming to minimize the expected cost and defining limits 

for probabilistic reliability indicators. 

To reliably plan and operate the systems according to a probabilistic reliability criterion, 

numerical problems such as the Optimal Power Flow (OPF) and the Power Flow (PF) 

equations are used. These tools are helpful as they are used to determine the optimal way of 

producing and transporting power. These tools are also used in contingency analyses, where 

the effect of occurring contingencies is analyzed and evaluated. Due to the non-linearity of 

the PF equations, the solution is often found through iterative numerical methods such as the 

Gauss-Seidel method or the Newton-Raphson method. These numerical methods are often 

computationally expensive, and convergence to the global minimum is not guaranteed either. 

In recent years, various Machine Learning (ML) models have gathered a lot of attention due 

to their success in different numerical tasks, particularly Graph Convolutional Networks 

(GCNs) due to the model’s ability to utilize the topology and learn localized features. As the 

field of GCN is new, extensive research is being committed to identify the GCNs ability to 

work on applications such as the electrical power system. 

This thesis seeks to conduct preliminary experiments where Graph Convolutional Networks 

(GCN) models are used as a substitution for the numerical DC-OPFs which are used to 

determine values such as the system load shedding due to contingencies. The GCN models 

are trained and tested on multiple datasets on both a system- and a node-level, where the goal 
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is to test the models' ability to generalize across perturbations of different system-parameters, 

such as the system load, the number of induced contingencies and different system topologies.  

The experiments of the thesis show that the GCNs can predict the load-shedding values across 

multiple system-parameter perturbations such as the number of induced contingencies, 

increasing load-variation and a modified system-topology with a high accuracy, without 

having to be retrained for those specific situations. Though, the further the system-parameters 

were perturbated, the less accurate the model's predictions became. This reduction in accuracy 

per system-parameter perturbation was caused by a change in the load-shedding pattern as 

additional parameters were perturbated, which the models were unable to comprehend. Lastly, 

this thesis also shows that the GCN models are substantially faster than the numerical 

methods which they seek to replace.
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Part I / Introduction 

1 Introduction 

1.1 Motivation 

One of the biggest current global topics of debate is the looming climate crisis and the 

possible irreversible and calamitous consequences. Currently there is a global consensus 

among scientist that one of the causing factors for the arising climate crisis is the continuous 

emission of greenhouse gases (GHG) into the atmosphere [1]. The majority of GHG emission 

stems from sources such as industry, the transportation section and from the production of 

electricity and heat. In 2010, electricity generation was the source of 25% [1] of the average 

global carbon emissions.  

In the coming years, the demand for electricity is estimated to increase in countries with 

developing economies [2], while in countries with more developed economies, the immediate 

demand for electricity have stagnated over the past years. However, with the continuous 

electrification of the society, such as within the transportation section [3], this stagnation 

might cease. In addition to the projected increase in energy demand worldwide, there is also a 

major shakeup happening within the energy section. In 2015, 196 parties signed a legally 

binding international treaty called the Paris Agreement, to limit global warming to well below 

2 degrees compared to pre-industrial levels [4]. To reach the goals set in Paris Agreement, a 

drastic reduction of emission within all sectors in the coming decade is imperative. Hence, a 

heavy dismantling of the current energy-sources using carbon related fuel must take place 

within a short span of time, replacing the carbon-related energy sources with more sustainable 

and Renewable Energy Sources (RES).  

This continuous growth of worldwide electricity demand combined with factors such as the 

continuous connection of new intermittent RES to the electrical power system over the last 

decade, has resulted in the current power systems being pushed to operating closer to their 

stability limits [5]. The deployment of intermittent energy sources, replacing the already 

existing energy sources, has led to the power grids being more exposed to disturbances such 

as voltage collapses or complete blackouts [6]. One of the major perks provided by energy- 

sources such as gas and coal, that is not prevalent in sources such as wind and solar, is a 

scalable flow of energy and the use of synchronous generators which provides inertia to the 
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system. The inertia stabilizes the grid-frequency, which is often used as an indicator for 

significant changes in either the supply or demand of power onto the grid. The demand and 

supply of energy is not constant over a longer period, and changes in supply or demand 

occurs frequently. The inertia allows for a quick extraction of stored energy, which in turn 

gives a brief leeway if there is a drop in production. This makes the grid more stable to 

fluctuation of production and consumption, resulting in a more stable power grid [7] thus 

making it easier to plan and schedule production and load according to an operational 

strategy.  

The operation, planning and scheduling of production and transport of energy is performed by 

the Transmission System Operators (TSOs), following set operational strategies. The current 

standard operational strategy that is deployed by the TSOs within electrical power systems is 

done following deterministic reliability practices, such as the N-1 criterion [8]. The N-1 

criterion demands that the system should be able to withstand a failure or an outage of a 

single component in the electrical power system, being a transformer, generator, load, or a 

line, such that the system can accommodate to the new operational situation without violating 

any of the security limits [9]. This deterministic criterion imposes a restriction on the system, 

resulting in the capability of the transmission lines not being fully utilized [10]. This can in 

periods lead to an increase in congestion, which can result in an increase in the socio-

economic cost of operation and consumption. Intermittent RES such as Solar- and Wind parks 

are often located far away from the area of consumption, thus requiring large transmission 

cables to transport the energy from the area of production to the area of consumption. If the 

flow of the transmission cables is constrained due to a restrictive operational strategy, then the 

utilization of the energy produced by the energy sources is limited as well.  

Under stable weather conditions, the N-1 criterion is a good criterion for most operating 

situations when considering power system security. Exceptions can be during periods of 

rough weather, such as a storm, where not even the N-1 criterion is cautious enough. Despite 

the security benefits, the deterministic criterions have a few drawbacks when considering 

socio-economic costs due to its restrictive operation strategy. Research is therefore being 

invested in finding alternative and more flexible Reliability Management strategies which 

operates according to a probabilistic reliability criteria [10] [11] [12]. Such a criteria would 

take the probability of future events into consideration, while also aiming to minimize 

expected societal costs and define limits for the probabilistic reliability indicators. This can 
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however prove to be a daunting task, as the number of possible optimal or semi-optimal 

operating states that exists is vast. Finding the optimal operating state which minimises the 

socio-economic cost can be a difficult and time-consuming process, as a change of a single 

variable can lead to hundreds of new possible operating states.  

In the Operation Planning context of Reliability Management, the scheduling and planning of 

the power production is done on a short timeframe ahead, often on a day-to-day basis. The 

objective is to ensure that the power demand is met without breaching any system violations 

while being resilient towards possible contingencies and while minimizing the socio-

economic cost of operation. Here, a contingency is defined as an unplanned outage of one or 

more primary equipment components, such as a line outage [13]. As such, the operation 

planning is dependent on flexible, quick, and accurate algorithms and simulation tools that 

can find the optimal operating state which optimizes the cost of operation for a given set of 

conditions in a short time frame, while adhering to the reliability indicators.  

There currently exist various methods that are used for reliability assessment, such as 

Contingency Analyses. The Contingency Analyses simulates and analyses the impact 

occurring contingencies have on the electrical power system, using tools such as the Monte 

Carlo (MC) simulation. These tools are mostly used for research purposes but can give a 

decent indication of real-life events. These tools work by simulating the system, either 

sequentially over a time-period, or non-sequentially by provoking the system by inducing 

contingencies, either deterministically or following a probabilistic distribution. This allows 

for stress- and limit testing of the system. At each step in the simulation, the state of the 

system is evaluated, and the consequence of any occurring contingencies is analysed. The 

consequences are often evaluated based on parameters such as the amount of interrupted 

power and the duration of the interruption, the energy not supplied during the period, the shed 

load, or the rescheduling and redispatch of power due to contingencies. 

To find the optimal operating state given a set of conditions and constraints, the simulations 

call on the Optimal Power Flow (OPF) problem to determine the optimal way of generating 

and transporting power while minimizing a set of variables, such as the generation cost etc, 

while subjected to constraints. To determine the optimal way of generating and transporting 

power, a set of Power Flow (PF) equations are used. The PF equations are derived from 

Kirchhoff's current law and are non-linear. Due to the non-linearity of the equations, the 

solution of the PF equations is often found through numerical approximation methods such as 
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the Gauss-Seidel method or the Newton-Raphson method [14]. For smaller networks, these 

iterative methods often converge after a reasonable time, yielding solutions for the PF 

equations. However, for larger networks the iterative methods can be slow, and convergence 

to the global optimum is also not guaranteed if the objective is to find the most optimal state. 

The iterative methods also suffer from high computational complexity when considering 

several contingencies and how they will affect the grid. The high computational complexity 

makes the iterative method slow, rendering them useless for screening methods. 

In recent years, Machine Learning (ML) has become a prominent substitution for many 

numerical problems. Recently, various Artificial Neural Networks (ANNs) has been proposed 

to compute and solve a series of power-flow problems. This includes the Multi-Layered 

Perceptron (MLP) models, and more recently, advanced model such as Graph Convolutional 

Network (GCN) models. GCNs have seen a variety of success within different applications, 

such as document classification [15], a variety of chemistry and biology related tasks [16] 

[17] and various applications within the power system field [18] [19] [20] [21]. Some of the 

work in the mentioned papers is similar to the work being conducted in this thesis, however 

most of the papers use less advanced ANN-models, such as the MLP.  

The disadvantage of using MLP models is that they are strictly data driven, meaning that no 

prior knowledge of the physics of the system nor the topology of the grid has been utilized. 

For electrical power system, the structure of the system is an essential feature which must be 

included in the process. It is therefore more natural to represent the data in a graph-format, 

retaining the information about the topological structure while allowing for the inclusion of 

features.  

1.2 Aim and Objective 

To evaluate the socio-economic cost of multiple operating states and contingency scenarios, 

simulation tools such as the Monte Carlo simulation are often used. The simulation tools 

deploy the use of OPFs at each iteration to evaluate the state of the system and to find the 

optimal operating state given a series of conditions and constraints. To achieve a realistic 

representation of the power flow, the simulations utilize Alternating Current (AC) -PF 

equations which are non-linear and non-convex. For large networks, the OPFs can be slow, 

and a solution is not always guaranteed. To alleviate these issues, the PF equations in the 

OPFs are often simplified by a set of assumptions, leading to the Direct Current (DC) 



Introduction 

Page 5 of 111 

approximation. These simplification makes the PF-equations linear, guaranteeing a solution. 

While the DC-equations are faster to solve compared to the AC-equations, they are often too 

simple to accurately represent the dynamics of the power system. This is problematic, as 

either option comes with a drawback. 

A proposed solution is to use ML-models as a substitution for the numerical estimations in the 

contingency analysis. Optimally, the ML-model should be inductive, meaning that the model 

is useable across a multitude of topologies, load conditions and contingencies. If the ML-

models are non-inductive, scores of models must be trained and tested for every iteration of 

the power system. Models that can adapt to small perturbations of the set-up without having 

to retrain the model are therefore preferable.  

To this end, this thesis aims to explore a simple initial approach, by replacing the DC-OPFs in 

a non-sequential Monte Carlo simulation which calculates the system load shedding values 

due to occurring contingencies, using advanced GCN-models. The GCN-models will be 

trained to estimate the load shedding values across multiple system perturbations, such as 

multiple contingencies, varying- load and -topology, to investigate the model's resilience and 

adaptability towards system-perturbations. The models will be using system-features that 

were prevalent before the last OPF in the simulation tool was called. If the ML-models are 

successful at reproducing the results from the DC-OPFs, the next potential step would be to 

investigate replacing the AC-OPFs with ML-models, or by introducing data drawn from a 

sequential simulation instead.  

To summarize, the goal of this thesis is to construct multiple GCN-models that are to predict 

the load-shedding values across system-parameter perturbations, such as multiple 

contingencies, varying- load and -topology. Some models will also be sequentially trained on 

additional dataset with differing system parameters to investigate if sequential training has 

any effect on the models' predictive capabilities across system-parameter perturbations. The 

thesis will also be exploring a node-level prediction approach and a system-level prediction 

approach to determine if there are any benefits of doing either. Lastly, this thesis also aims to 

test out three prominent GCN-operators to determine the best operator.  

To reach the goals of the thesis, the following experiments will be conducted. For the system-

level, all four experiments are conducted, while only parts of experiment 1 – 3 are conducted 

for the node-level. 
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1) Experiment 1, Contingency Perturbation Analysis 

 Train a model for each operator on a dataset where a single contingency was 

induced at each simulation point. Investigate the models' predictive capabilities on 

datasets where additional contingencies have been induced at each simulation 

point. 

 Determine the best convolutional operator for the problems at hand by comparing 

the speed and accuracy of each operator on the three contingency datasets. Discard 

all but the best performing operator. 

 Investigate how the model's behaviour changes after sequential training on 

datasets with additional contingencies induced at each simulation point. 

2) Experiment 2, Load Perturbation Analysis 

 Train a model on the 1-contingency dataset and then test the trained model on 

datasets where the system load values have been increased by adding a scaling 

factor k = 1.05, 1.10, 1.20 to the load for each of the simulated datasets, 

respectively. Investigate the model's predictive abilities across the load-

perturbation datasets. 

 Investigate how the model's behaviour changes after sequential training on the 

datasets with the highest scaled load. 

3) Experiment 3, Topology Perturbation Analysis 

 Train a model on the 1-contingency dataset with the original topology of the 

system and then test the model's predictive abilities on additional datasets where 

the topology of the test-system has been slightly altered and the number of induced 

contingencies per simulation point increases.  

 Investigate how the model's behaviour changes after sequential training on the 

datasets with the modified topology. 

4) Experiment 4, Case Study 

 Perform a case-study where the speed and accuracy of the best-performing ML-

model is tested against the OPF which the models seek to replace.  

 Investigate the impact the batch-size of the test-set has on the model's run-time. 
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1.3 Thesis Structure 

The thesis is divided into five parts. Part I Background and Motivation, Part II Theoretical 

background, Part III Method and Model set-up, Part IV Results and Discussion, Part V 

Conclusion. 

In Part I, the motivation and background of the problem at hand is introduced.  

Part II gives a brief introduction to the theory behind Power System Reliability Analysis, 

Graph Theory, and various Machine Learning models. 

Part III Introduces the system, its set-up, its features and how the data was generated using a 

non-sequential Monte Carlo simulation. The ML-model, its prediction level, parameters, 

features and how it was constructed is covered. The section also briefly talks about certain 

parameters such as the batch-size. 

Part IV Presents the results of the experiments and discusses the results accordingly. 

Part V Concludes the work done in the thesis and give some insight on possible future 

pathways. 
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Part II / Theoretical Background, 

The theoretical section of the thesis will delve into some preliminary theory about the 

problem at hand and the means to solve it. Section 2 explains the goal and challenges of 

Reliability Management, while Section 3 introduces relevant ML- & Graph theory. The 

theoretical ML-section will not cover all the basic, internal process within the different ML-

models. The reader is however encouraged to read up on the different processes if there are 

unclear points, however this should not strictly be necessary to understand the results of the 

thesis. 

More specific, each sub-section is as following: 

Section 2.1 Introduces the concept of Reliability Management and its context. 

Section 2.2 Introduces the concept of reliability practices and the current deterministic 

approach. 

Section 2.3 Introduces the concept of probabilistic reliability assessment. 

Section 2.4 Introduces the concept of Contingency Analyses.  

Section 2.5 Introduces the Sequential – and Non-Sequential MC simulation and motivates the 

use of non-sequential method. 

Section 2.6 Introduces the Power Flow Analysis, the PF equations, and the AC- and DC-

approach.  

Section 3.1 Introduces the MLP – model. 

Section 3.2 Introduces the Convolutional method and the Convolutional Neural Network 

model. 

Section 3.3 Gives an extensive introduction to Graph theory. 

Section 3.4 Gives a brief motivation for the use of Graph Convolutional Networks, defines 

the taxonomy used in this thesis and introduces the various prediction levels for GCNs.  

Section 3.5 Introduces the Convolutional Graph Convolutional Networks sub-group and the 

Spatial and Spectral approaches.  
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Section 3.6 Introduces three convolutional operators, the GCN, GAT and GraphConv 

operators, all which are based on the Spatial and Spectral approaches.  
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2 Power System Reliability Analysis 

2.1 Reliability Management 

The overarching goal of power system reliability management is to plan, schedule and operate 

the system in a way such that the supply of electricity from the producer to the end-user is on 

a near continuous basis. This is often done in tandem with minimizing certain socio-economic 

cost values of operation, by means such as minimizing the possible interruptions that can 

occur over an extended period [9]. The TSO must often take decision as early as conveniently 

possible, ranging from just a few minutes ahead to decades ahead. To ensure that the decision 

taken are sufficiently reliable, the system is safeguarded through a set of reliability criterions 

which acts as a set of constraints. These criterions give the system an indication if the 

reliability level of the power system is sufficient and allows the operator to plan and schedule 

the supply of electricity accordingly.  

Due to the varying time horizon, the decisions addressed in reliability management can be 

divided into a series of contexts depending on the time-horizon of the planning [21], as shown 

in Figure 1.   

 

Figure 1: The different reliability management contexts and their corresponding time horizon [21]. This 
thesis will be focusing on operation planning. 

Reliability management can further be classified into two brackets, assessment, and control. 

Reliability assessment is used to estimate the potential consequences of a decision over a 

period, such as the potential socio-economic cost and the corresponding reliability indicators 

[21]. Reliability assessment can be seen as a simulation step used to assess possible pathways 

and solutions for the problems at hand. Reliability Control on the other hand is used to 
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compute decisions in line with the reliability criterion over the period. When attempting to 

find the optimal decision, the set of potential candidates can be vast, making the control 

problem much more complex than the assessment problem. This introduces a trade-off, in 

which the time and accuracy must be balanced to reduce the cost of operation while ensuring 

that the reliability criterion is met.  

2.2 Reliability Criteria 

Traditionally, the operating and planning of power systems is done following deterministic 

reliability practices, such as the N-1 criterion. As mentioned in the introduction, the 

deterministic approaches act by a principle which states that the system should be able to 

withstand a failure or an outage of a single component in the electrical power system, being a 

transformer or a line, such that the system can accommodate to the new operational situation 

without violating any of the security limits. While often viewed as a safe reliability practice, 

this form of management has its shortcomings, especially considering the socio-economic 

costs of operation. In recent years there has been a surge of studies which proposes the use of 

a probabilistic reliability criteria as an alternative to the deterministic criteria [22]. The 

probabilistic reliability criteria aim at taking decisions which minimizes the expected cost of 

operation, rather than only minimizing the risk of operation. Such a transition will allow for a 

better balance between reliability and cost, leading to more cost-optimal planning and 

operation of the system.  

One way of approaching the probabilistic reliability criteria is to define a set of preventive- 

and corrective measures which lead to the lowest expected system operational cost [23]. The 

preventive measures are a set of actions that are taken prior to the operation of the system. 

These measures aim to ensure that the system should adhere to a reliability criterion, based on 

the potential threat exposure and the predicted future system state [24]. Corrective measures 

define an action which ensure that the system's compliance with a reliability criterion based 

on both an observed and the estimated present system state, coupled with the threat exposure 

[24]. These actions are taken after contingencies have occurred to stabilize the system. An 

example of a preventive measure can be the restriction of transmission capacity between 

market areas. Such a restriction ensures that the flow is within the bounds set by the operating 

criterion following contingencies. Ample restrictions can result in high congestion costs, as 

the possibility of transporting energy from an area with surplus to an area with a shortage is 



Theory 

Page 13 of 111 

restricted. On the other hand, no restrictions of the flow of energy can lead to a loss of 

security, resulting in potential high cost of interruption.  

2.3 Probabilistic Reliability Assessment 

The probabilistic reliability assessments often base themselves on risk-based reliability 

indicators. These indicators attempt to directly assess the socio-economic- or physical risk for 

consumers, estimating the total cost of operation or the risk of possible contingencies. 

Typically, reliability analyses attempt to answer the following questions [25]. 

1) What can go wrong? 

2) How likely is it to happen? 

3) What are the consequences?  

These questions are asked and analysed to assess how vulnerable the system is to the various 

potential threats, the probability of occurrence and the potential cost if any of the threats 

occurs. Potential threats to the power system can range from natural causes, such as a storm, 

earthquakes, or strong weather, to human errors during planning and/or operation, 

components in the power system wearing down or even terror and/or sabotages. The analysis 

also evaluates the system's susceptibility and coping capacity, checking the likelihood of a 

contingency cascading out of control and how effective the system deals with the cascading 

threats, which can lead to disruptions and high socio-economic costs.  

2.4 Contingency Analysis 

To evaluate the consequences potential contingencies can have on the system, a contingency 

analysis is performed. The contingency analyses can be performed either sequentially over a 

period, or non-sequentially, using simulations tools to analyse the system under varying 

conditions, such as different load- and generation conditions and/or by provoking 

contingencies to occur. At each simulation step, the state of the system is evaluated, and the 

consequences of any occurring contingencies are analysed [26] [27]. The consequences for 

each contingency are often evaluated based on socio-economic factors such as the amount of 

interrupted power and the duration of the interruption, the energy not supplied during the 

period or the rescheduling and redispatch of power due to contingency [28]. The contingency 

analyses allow the operator to stress the system, test out different preventive methods and to 

find the optimal corrective approaches when contingencies occur in the system. The analyses 
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can also reveal if any occurring contingencies led to a system overload, which often results in 

the rescheduling of generated power and the shedding of load to accommodate to the new 

system state. The contingency analyses can be used both for short-term and long-term 

planning. For long-term planning, the simulations will over time reveal what areas are most 

vulnerable to occurring contingencies, by evaluating socio-economic factors such as the shed 

load and the rescheduled power.  

The two main tools used to select the contingencies for the contingency analyses are the 

Monte Carlo Simulation Method and the Analytical Method [29]. In the Analytical Approach, 

the contingencies are selected through a screening technique. The contingencies are then 

based on set failure criteria [30]. The analytical approach allows for handpicking of the most 

severe contingencies. The MC approach selects the contingencies from random samplings 

rather through a manual selection process [31], opening for numerous potential combinations 

of contingencies.  

Both suggested methods have their strengths and weaknesses. Not all potential threats to the 

system are as likely to occur, and not all the contingencies are as potentially dangerous for the 

system. Some contingencies have a larger impact on the cost-of operation compared to other. 

However, using a method such as the Analytical Approach requires expert knowledge within 

the field to determine which contingencies are more important. As the Monte-Carlo 

simulation chooses the contingencies at random, knowledge about the contingencies is 

therefore not necessary. This thesis will therefore be focusing on using the Monte-Carlo 

approach for quicker screening of multiple potential contingencies.  

2.5 Monte Carlo Simulation 

In this thesis, a distinction is draw between two types of MC simulation methods, the 

sequential and non-sequential MC simulation.  

2.5.1 Sequential Monte Carlo Simulation 

In the sequential simulation, select components in the system, such as the generators and 

inter-connecting lines, is modelled with a probability of failure. The simulation then attempts 

to draw the time to failure for each component. One way of doing this is to base the time to 

failure in a set distribution, such as an exponential distribution. The sequential analysis then 

does a time-step simulation, such as every hour, until a contingency occurs in the system. 
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After one or several components in the system have been marked for failure, the system 

disconnects the component(s) to repair them. Similar with the failure-estimation, the repair-

estimation can be estimated by an exponential distribution just with different base parameters. 

After the component(s) have been disconnected, the system is then simulated until the 

component(s) has been repaired. During this time-period in which the component(s) are being 

repaired, other components can fail, resulting in a disconnection of multiple components. This 

form of modelling allows for several contingencies to occur simultaneously and is a more 

natural way of simulating the system. 

The sequential simulation follows a time-step, in which each datapoint in the simulation is 

dependent on the previous time-step and the events that occurred at that time-step. This means 

that each succeeding data point is correlated with the previous data point. If the data were to 

be used for a ML-model, the model would also have to consider the dependency of each data 

point. This would drastically reduce the number of potential models that would be compatible 

with the data.  

2.5.2 Non-Sequential Monte Carlo Simulation 

As opposed to the sequential method, the non-sequential MC simulation does not perform a 

time step simulation. The model therefore does not model the failure-rate of the components 

following a time-to-failure distribution. Instead, the non-sequential simulation 

deterministically induces contingencies and analyses the state of the system based on the 

occurred contingency. The choice of contingencies can either follow a procedural list or be 

chosen at random.  

The non-sequential simulation allows for easier testing of contingencies and for screening of 

multiple contingencies and their effect on the system. As the contingencies can be chosen 

deterministically, it is easier to couple contingencies to explore the effects. As the non-

sequential data is time-independent, each simulation step is independent of each other. This 

opens the number of ML-models that can be used for the problem. 

The difference between the non-sequential and the sequential MC-simulation can be seen in 

Figure 2, where Figure 2 a) depicts the non-sequential procedure, while Figure 2 b) depicts the 

sequential procedure. Each dot represents the status of a line, with a black dot indicating an 

occurring contingency while a white dot represents a normal state. For the sequential figure, 

arrows indicate a change of status.  
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Figure 2: Illustration of a) A non-Sequential and b) Sequential MC simulation. Black dots indicate an 
occurring contingency for the affected line, while a white dot represent a normal state. Arrows indicate a 
change in status. 

2.6 Power Flow Analysis 

At each simulation step, the OPF and the PF equations are used to evaluate the state of the 

system and to analyse the effect of any potential contingencies in the contingency analysis.  

2.6.1 Optimal Power Flow 

The OPF is a power flow optimization problem which attempts to determine the currents, 

voltages, and the real and reactive power flows in a system under a given load condition while 

minimizing a set of variables, such as generation cost, loss, emission etc. [32] [33]. The OPF 

also ensures that the system constraints are not violated when finding the optimal solution, 

being cable current limits, voltage magnitude limits on generator or load nodes etc. A basic 

formulation for the OPF and its constraint is shown below. 
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min 𝑃 ∗ 𝑓 (𝑃 )

 ∈ , ,

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

                  𝐿𝑜𝑎𝑑 𝑓𝑙𝑜𝑤 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

                  𝐵𝑟𝑎𝑛𝑐ℎ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

                  𝐵𝑢𝑠 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

                  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

There exist various variants of the OPF, each with a predefined objective. The goal of the 

OPF used in this thesis was to minimize the socio-economic cost, such as the cost of shedding 

load, while ensuring that the line and production constraints were met.  

2.6.2 Power Flow Equations 

The PF equations are used to find the voltage angle and magnitude for the buses in the 

system, based on the load conditions and the real power and voltage conditions of the 

generators. Once these values are estimated, both the real and reactive power flow for each 

branch and the reactive power output of each generator can be analytically determined. The 

PF-function can also be used to indicate any overloads in the system after a contingency has 

occurred. If an overload occurs, the OPF is called to optimize the generation and flow of the 

power based on the new system state.  

As the OPF is called multiple times per iteration of the Monte Carlo simulation, it must be 

quick to solve, accurate and guarantee a solution for the system state. As the OPF relies on the 

PF equations, the same holds true for the PF-equations. The most realistic representation of 

the PF equations are the Alternating Current (AC) equations, while the Direct Current (DC) 

equations are a more simplified representation. The DC-representation uses various 

estimations and assumptions to simplify the equations and to reduce the complexity and 

computation time. As the OPF relies directly on the PF, the simplifications from AC to DC 

are made to reduce the complexity, such that the calculation is faster and that the system 

guarantees a solution, thus making it solvable.  

2.6.2.1 AC Power Flow Equations 

The AC power flow equations assumes that the electrical power system is in 'steady state' and 

attempts to find the system state in which power equilibrium is achieved for a given load and 

the amount of power generation in the system. The power system is not technically in a steady 
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state as there are always external factors such as changes in the load, switching actions and 

weather conditions etc. which makes the system non-static. However, as these variations often 

are small in a short time frame, the not-time varying model of the power system can be 

justified. By assuming steady state, the oscillation of the voltage is not accounted for, nor any 

transition between states. This simplification therefore rules out any possible violations of the 

voltage oscillating past the operation criterion. As such, the ability to model a potential fault 

in the system due to voltage oscillations is lost.  

For a simple Power Flow model, the active and reactive powers flowing from bus i to j can be 

defined as shown in Equation (1) [34]. Here, 𝑝  and 𝑞  is the active- and reactive flow from 

bus i to j, respectively, 𝑟  is the resistance of the line connecting bus i and j, 𝑣  is the bus 

voltage and 𝛿  is the voltage angle difference between the buses. 

 
𝑝 =

1

𝑟 + 𝑥
[𝑟 𝑣 − 𝑣 𝑣 cos 𝛿 + 𝑥 𝑣 𝑣 sin 𝛿 ] 

(1) 
 

𝑞 =
1

𝑟 + 𝑥
[𝑥 𝑣 − 𝑣 𝑣 cos 𝛿 + 𝑟 𝑣 𝑣 sin 𝛿 ] 

As can be observed from Equation (1), the AC power flow equations are non-linear and non-

convex. Because of the non-linearity of the power flow problem, the power balance equations 

cannot be solved analytically. Instead, iterative solutions such as the Gauss-Seidel iterative 

method and the Newton-Raphson method are used. Out of these two methods, the Newton-

Raphson method is the most common. However, none of these iterative methods can 

guarantee convergence. As the number of buses and branches in the network increases, the 

AC-power flow equations become increasingly computationally expensive and time 

consuming. Further simplifications are therefore preferred, leading to the DC-power flow 

estimation. 
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2.6.2.2 DC Power Flow Equations 

For the DC power flow equation, the equations have been linearized through the following 

assumption [35]. 

1) The line-resistance is negligible, thus making 𝑟 ≈ 0. If we apply this to Equation (1), 

we get Equation (2). 

 
𝑝 =

1

𝑥
𝑣 𝑣 sin 𝛿  

(2) 
 

𝑞 =
1

𝑥
𝑣 − 𝑣 𝑣 cos 𝛿  

2) The bus voltage magnitudes 𝑉  to be approximated to 1 per unit (p.u). If we apply this 

to Equation (2), we get Equation (3). 

 

𝑝 =
sin 𝛿

𝑥
 

(3) 
 

𝑞 =
1 − cos 𝛿

𝑥
 

 

3) During certain conditions, such as light load conditions, the difference in voltage 

phasor angle between two buses connected by a line is assumed to be small. This 

assumption makes the voltage phasor angle to be estimated as sin 𝛿 ≈ 𝛿  and 

cos(𝛿 )  ≈ 1. By applying these assumptions to Equation (3), we get Equation (4). 

 
𝑝 =

𝛿

𝑥
 

(4) 
 𝑞 ≈ 0 

 
The linearization of the system allows for an analytical solution of the problem, guaranteeing 

that the system converges, allowing for much faster estimations. The drawbacks of the 

linearization are heavy simplifications of the power flow, resulting in the DC approximation 

being inaccurate as information about the reactive flow and the voltage is lost. As such, there 

is no feasible way to check if the voltage in the system violates the system operational 

requirements. Despite these shortcomings, the DC PF-equations are preferred over the AC 

PF-equations due to the improved calculation speed.  
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3 Machine Learning 

The following section will cover some preliminary theory behind the most popular Artificial 

Neural Networks (ANN) and graph theory.  

Section 3.1 introduces the most basic form of ANNs, being the Multilayer Perceptron (MLP).  

Section 3.2 introduces the Convolutional Neural Networks (CNN) and the convolutional 

process.  

Section 3.3 Introduces Graph Theory and important concepts. 

Section 3.4 introduces Graph Convolutional Networks and the taxonomy used for this thesis. 

Section 3.5 Introduces the Convolutional Graph Neural Networks (ConvGNN) and its 

subgroups, the spatial- and spectral approaches. 

Section 3.6 Introduces three popular operators based on the ConvGNN approaches. 
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3.1 Multilayer Perceptron 

Within the field of ML, there exist a broad variety of different types of ANNs useable for 

numerous classification and regression tasks. The most basic ANN model is the MLP model, 

which has shown profound strength as a predictive tool for various tasks, both regressive and 

classification.  

Integral for the structure of all MLP models, are pre-defined set of connected layers, each 

containing a set of neurons which represent the feature space at each specific layer. The 

structure of MLPs can be generalized into three main layers: an input layer, a set of inner 

layers often called hidden layers, and an output layer, as shown in Figure 3. The neurons in 

each layer are the computational units of the MLP model which estimates an output based on 

the sum of the weighted input signal from previous neurons and a bias. A standard design for 

MLP-models is to have each neuron in layer l being connected to every neuron in the 

proceeding layer l + 1. This type of MLP-model often goes under the name of a Fully 

Connected Layer model (FCL). For each connection between the neurons, there is a trainable 

weight-value attached. This weight-value determines the strength of the connection and allow 

the model to recognize patterns. MLP models are flexible in its way as it can be designed and 

specified layer-wise.  

 

Figure 3: A general architectural structure for an MLP-model [36]. Depending on the task of 
the model, the output layer can be designed to have one or several neurons. 

Except for the input layer, each neuron often has a non-linear activation function tied to it, 

allowing the MLP-model to separate and classify non-linearly separable data. The activation 
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function is a mapping of the weighted input to the neurons and is responsible for telling the 

neuron whether to send a signal to its connected neurons or not. The core machinery of an 

MLP-model is governed by a process called feedforward. The mathematical formulation of 

the feedforward process [37] is given in Equation (5). 

                                      𝒉( ) = 𝒙  

 𝒉( ) = 𝜎( ) 𝑊( )𝒉( ) + 𝒃( ) ,   𝑙 = 1,2, … 𝐿  (5) 

 𝒚 =  𝜎( ) 𝑊( )𝒉( ) + 𝒃( )   

   

Here, 𝒙 ∈ ℝ ×  is the feature input to the MLP-model, 𝒉( ) ∈ ℝ ×  is the hidden-state 

feature vector at the l-th layer, 𝑾( ) ∈ ℝ ×  is the weight-matrix at the l-layer, 

𝒃( ) ∈ ℝ ×  is the bias-vector at the l-th layer, σ( ) is the activation function at the l-th layer 

and 𝒚 ∈ ℝ ×  is the output-vector from the output layer. The dimension 𝐹  of the various 

vectors are equal to the number of neurons in each layer.  

3.2 Convolutional networks 

While the MLP-models can be used on a broad number of tasks, the MLP-models have no 

information about the local structure or the geometry connecting the features, which may 

contain essential information. For some problems at hand, local information is cardinal as the 

information it provides can be decisive for the success of the ML-model. It can therefore be 

advantageous to utilize ML-models that can learn and utilize both the geometry of the data 

and the feature values of the input data. Convolutional Neural Networks (CNNs) are networks 

designed to work on data with a Euclidian grid-like structure and local parameters [38]. Due 

to the structure of the input, where classification must be invariant to the translation (or other 

geometric transformation) of important patterns, the CNNs are often used in more advanced 

computer visions tasks such as image classification [39], speech recognition [40] and object 

detection [41]. 

3.2.1 Feature Learning  

To estimate and obtain the local feature-information, the CNN models utilize an operation 

called convolution in its feature learning process. The convolutional method is a form of 

linear operation which takes a tensor, a multidimensional array of data as an input, and 

performs a convolution with a multi-dimensional weight matrix called a kernel or a filter. To 

obtain the local feature-information, the kernel or the filter in the CNN models is often made 
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to be smaller in dimensional size compared to the input. The convolutional method takes two 

functions as input and produces a third function. This third function explains how the shape of 

one function affects the shape of the other. Equation (6) displays the convolutional process 

between two arbitrary functions f and w.  

 
(𝒇 ∗ 𝒘)(𝒕) = 𝑓(𝜏)𝑤(𝑡 − 𝜏)𝑑𝜏 

 

(6) 

The result of this convolutional process is a trainable feature map containing the summarized 

information of the feature presence in the input. This process can be thought of the network 

reusing local filters with learnable parameters, by applying the filters to all input positions 

[42]. This can also be viewed as a 'sliding' filter, where the kernel is sliding across the input, 

calculating the convolution at each step. In the MLP models, each neuron in a layer is 

connected to every neuron in the succeeding layer. This is not the case for CNN models, 

where only a fraction of the neurons (the neighbours in the geometrical structure) in the 

current layer connects to the neuron in the succeeding layer. This method allows for local 

connectivity, making it easier to find patterns despite its location in the data.  

3.2.2 Pooling Layers 

After the feature map is created from the convolutional step, a pooling method, such as Min-, 

Max- or Average pooling, is often used to produce new and more condensed feature maps 

from the convolutional layer. This reduces the spatial dimension and the computational cost 

by lowering the number of parameters. The pooling layers also has the effect of reducing the 

chance of the model overfitting to the training data [43]. This process can then be repeated by 

adding additional layers to the model.  

3.2.3 Classification 

Depending on the desired outcome, the final process of the CNN model can be classification 

by SoftMax or a numerical output. This is done by adding one or several flatting fully 

connected MLP-layers at the end of the network. This process flattens the input from a higher 

dimension to 1D. Figure 4 display a general architecture of a CNN model that takes an image 

as an input and classifies the image accordingly. 
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Figure 4: An example of a general architectural structure for an image classification CNN model [44]. 
The model takes an image as an input, performs feature learning, and then classifies the image 
accordingly by flatting the feature map and by using a SoftMax function. 
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3.3 Graph Theory 

In some cases, it is preferable to preserve the geometric structure of the data, as the structure 

itself retain essential information. For electrical power systems, the structure of the system is 

essential, and disregarding it would remove an important feature. This is problematic as it is 

not possible to construct a valid Euclidean input of the topology without the loss of the 

geometric structure. Hence, a more natural way of modelling the system instead would be as a 

mathematical graph. This representation would preserve the geometric structure of the 

system, while also allowing for the inclusions of features. To better understand how the 

convolutional method on a graph structure works, some preliminary within Graph theory is 

necessary. In this section, the standard graph structure and the different methods of 

representation is presented.  

 A graph is a mathematical structure used to model pairwise relations between objects. A 

graph is made of a set of nodes (V), connected by edges (E) as seen in Equation (7) 

 𝑮 = (𝑽, 𝑬, 𝝓) 

 

(7) 

Where 𝝓: 𝑬 → {(𝑥, 𝑦)|(𝑥, 𝑦) ∈ 𝑉  𝑎𝑛𝑑 𝑥 ≠ 𝑦} is the incidence function mapping every edge 

to an ordered pair of vertices. Graphs can be either undirected graphs, where edges link two 

nodes symmetrically, or directed graphs, where edges link two nodes unsymmetrically [45]. 

Figure 5 illustrates the difference between an undirected graph vs a directed graph. Each node 

in a graph can have multiple edges, representing several connections between a single node or 

multiple nodes. This often goes under the general term of directed multigraph or 

undirected multigraph.  
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a)  

 

b)  

Figure 5: a) Example of an undirected graph.  b) Example of a directed graph with an asymmetric 
adjacency matrix. 

A graph can also be fully represented in a more convenient and mathematical form by its 

adjacency matrix A and the degree matrix D. The adjacency matrix A is a 𝑛 × 𝑛 square 

matrix, where 𝑨𝒊𝒋 specifies the number of connections from node I to node j. For the graphs in 

Figure 5, the adjacency matrixes are as following 

 

𝑎) 𝐴 =  

⎣
⎢
⎢
⎢
⎡
0 0 1 0 0
0 0 1 0 0
1 1 0 1 1
0 0 1 0 0
0 0 1 0 0⎦

⎥
⎥
⎥
⎤

                            𝑏) 𝐴 =  

⎣
⎢
⎢
⎢
⎡
0 0 1 0 0
0 0 0 0 0
1 1 0 1 0
0 0 1 0 0
0 0 1 0 0⎦

⎥
⎥
⎥
⎤

 

 

As can observe from the adjacency matrixes, the adjacency matrix for the directed graph is 

non-symmetrical as some of the nodes only have edges pointing a single direction, while the 

adjacency matrix for the undirected graph is symmetrical.  

The adjacency matrix A can be further modified by adding a connection from node I to node 

I, defined as a self-loop, giving the matrix 𝑨 = 𝑨 + 𝑰. Here, I is the identity matrix. This 

alteration of the adjacency matrix allows a node to pass information to itself.  
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The degree matrix D is a 𝑛 × 𝑛 diagonal matrix which describes the degree of each node, 

giving information about the number of edges connected to each node. The corresponding 

degree matrix to the self-looped adjacency matrix is shown in Equation (8). 

 𝐃𝐢𝐢 =  ∑ 𝐀
𝐢𝐣
  (8) 

 

The degree-matrixes for the graphs in Figure 5 are the following.  

 

𝑎) 𝐷 =  

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0 0 0
0 0 4 0 0
0 0 0 1 0
0 0 0 0 1⎦

⎥
⎥
⎥
⎤

                            𝑏) 𝐷 =  

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 1 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

 

 

An important note for the degree matrix for the directed graph is that the direction of the 

degree must be specified beforehand, as the degree can symbolize an edge going either out of 

the node or in to the node. The correct notation would be to label the undirected degree-

matrix as 𝐷, the directed degree-matrix of outgoing edges as 𝐷  and the directed degree-

matrix of ingoing edges as 𝐷 . 

When working with graphs it can be of interest in knowing the neighbouring nodes to a 

specific node, I.E., the connected nodes for each node. For a node v, the connected nodes are 

often defined as 'The Neighbourhood' of the node. In an undirected graph, the neighbourhood 

is denoted as 𝒩 , and is defined as a subgraph of the set of nodes which have connecting 

edges to node v. The mathematical formulation is 𝒩 = {𝑧 |{𝑣, 𝑧} ∈ 𝐸}.  The neighbourhood 

for each node can be determined directly from the adjacency matrix. For two connected 

nodes, such as v & z, if 𝐴 = 𝐴 = 1, the two nodes are defined as being in a 

neighbourhood. If the neighbourhood does not include the node v itself (self-loop), it is 

defined as an open neighbourhood. Otherwise, if the neighbourhood does include the node v, 

it is defined as a closed neighbourhood. Like with the degree-matrix, one can also distinguish 

between the in-going neighbours and the out-going neighbours of a node. The neighbourhood 

for node 3 in the undirected graph in Figure 5 is 𝒩 = {1, 2, 4, 5}, while for the directed 

graph the in- and out neighbourhoods are 𝒩 = {1, 4, 5}, 𝒩 = {1, 2, 4}.  
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The graph can be further extended by defining a feature-vector k to each node in the graph. 

These feature vectors can describe the current state or the properties of the node.  

Similarly, each edge in the graph can have a corresponding feature-vector 𝒆, describing the 

state/properties of the edges. These features can either be weights describing the strength of 

the connection, or a feature describing the state of the connection (active / disabled). 

Weighted graphs are used when pairwise connections have different weights, giving each 

connection a magnitude of importance. The node-wise formulation for the edge-weight degree 

is given in Equation (9).  

 d =  e ,

∈𝒩( )∪{ }

 (9)  

Where 𝑒 ,  denotes the edge weight from source node j to target node I [15]. A weighted graph 

will be reflected in the adjacency matrix, where each '1' value is replaced with the corresponding 

edge weight.
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3.4 Graph Convolutional Networks 

As the graph-setup is non-Euclidean and has a varying structure, the traditional convolutional 

method introduced the CNN section is not compatible. Furthermore, ML-models that do not 

utilize graph-inputs assume that instances are independent on each other [46]. This is not 

valid when working with graphs, as a connection between nodes directly correlates with 

dependency. Hence, a modified version of the convolutional method is required to work with 

graphs. The terminology for a model which work strictly on non-Euclidean graph-input rather 

than traditional Euclidean input values is a Graph Convolutional Network (GCN). Similar as 

with CNN models, GCN models have Feature Learning steps, Pooling Layers, and linear 

output layers.  

3.4.1 Prediction Level 

The success of the GCN models stems from the added complexity gained from adding the 

topological structure, and the GCN models being highly modifiable, allowing them to work at 

various levels of classification and regression, such as Node-level, Edge-level, and Graph-

level.  

 At Node-level, the analytic task is to predict and determine the node value for 

classification or regression by neighbourhood representation. This can either be 

classification to determine what the node represent, or regression for a set of 

feature-value(s).  

 At Edge-level, the goal is to predict or classify the strength of an edge between 

two nodes in a graph. The edge-level prediction can also be used to check if an 

edge should exist.  

 At Graph-level, the tasks include graph-classification, graph clustering or graph 

embedding. 

For graph-clustering, the goal is to divide the graph into a set of clusters, like other 

clustering methods such as K-means. The division can be based on the edge-

weights, the edge distance between nodes or the neighbourhoods.  

For graph classification, the goal is to classify the graphs based on its current setup 

and features.  
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For graph embedding, the models map and compress the graph input into a vector 

while preserving the information of the graph. The size of the vector can be chosen 

by the user.  

 

3.4.2 GCN Taxonomy 

Within the field of GCN, there is no defined unanimous taxonomy. As the field is rapidly 

evolving due to extensive research being done, methods may quickly become outdated, and 

general terms may change based on new discoveries. This lack of a universal taxonomy can 

therefore lead to confusion, as similar convolutional methods and techniques can be presented 

with different names. As such, this thesis will be following the presented taxonomy in [46], 

which categorizes the GCN models into 4 main groups: Recurrent Graph Neural Networks 

(RecGNNs), Convolutional Graph Neural Networks (ConvGNNs), Graph Autoencoders 

(GAEs) and Spatial-temporal Graph Neural Networks (STGNNs). Within some of the 

presented main groups there are also subgroup divisions.  

3.5 Convolutional Graph Neural Networks (ConvGNN) 

In this thesis, the scope has been on the ConvGNN group. The ConvGNN group has two main 

approaches, the Spatial- and the Spectral approach [47]. The spectral approach bases its 

approach on techniques found in the signal-processing field, while the spatial approach bases 

its approach on a form of message passing between the nodes in the graph. In the following 

two subsections, both approaches are introduced. 

3.5.1 Spectral Approaches 

The Spectral approaches of the ConvGNNs work by defining a spectral representation of the 

graph. This form of representation has seen extensive use within the field of Signal 

Processing, where the graph-convolution utilizes various filters to remove noise from graph 

signals. A general assumption is also that the graph is undirected, resulting in the Adjacency 

matrix being symmetric. When going from a standard domain to the Fourier domain, a 

convolutional operation becomes a multiplication operation, which is often easier to compute. 

Spectral Approaches utilize this through graph Fourier transforms, which are the eigenvectors 

of the graph Laplacian  [48]. Here, the graph Laplacian matrix is estimated by  
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L = D – A 

 where L is the Laplacian matrix, D is the degree matrix and A is the adjacency matrix, both 

introduced in the Graph Theory chapter. This form of representation is heavily simplified and 

has a few limitations. Whenever the convolutional process is performed, the information for a 

node v is estimated by summing up the feature vectors for all neighbouring nodes. However, 

this excludes the information of the node v. To fix this, the adjacency matrix is modified by 

adding the identity matrix, allowing for self-loops. Additionally, the Laplacian is also 

normalized as to prevent the scale of features to change substantially when performing several 

multiplications of the matrixes. These changes can be seen in Equation (10) The modification 

of the Laplacian matrix result in the following normalized Laplacian matrix, which is real 

symmetric positive and semidefinite [46]. 

 
𝐋 = 𝐈𝐧 − 𝐃 𝐀𝐃   

 

(10)  

This form of representation allows the Laplacian matrix to be factored as seen in Equation 

(11) 

 𝐋 = 𝐔𝜦𝐔  

 

(11)  

Here, 𝑼 = [𝒖𝟎, 𝒖𝟏,∙∙∙, 𝒖𝒏 𝟏]  ∈ 𝑹 ×   is the matrix of eigenvectors of the normalized 

Laplacian matrix L, ordered by the eigenvalues and 𝚲 is the diagonal matrix of eigenvalues 

i.e., 𝚲 =  𝜆 .  

In signal processing, a graph signal 𝒙 ∈  𝑹𝒏 is defined as a feature-vector of all nodes in a 

graph, where 𝑥  is the value for node i. The graph Fourier Transform to a signal x is defined 

as 𝓕(𝒙) = 𝑼 𝒙, while the inverse- graph Fourier transform is defined as 𝓕 (𝒙) = 𝑼𝒙  

where 𝒙 =  𝓕(𝒙). The idea of the graph Fourier transform is to project the graph-signal input 

to an orthonormal space where the basis is formed by the eigenvectors of the normalized 

graph Laplacian found in Equation (10). Based on this, the graph convolutional for an input 

signal x with a filter 𝒈 ∈ 𝑹  can be defined as shown in Equation (12). 

 𝐱 ∗ 𝐠 =  𝓕 (𝐱) ℱ(𝐱) ⨀ ℱ(𝐠)  

              = 𝐔(𝐔 𝐱 ⨀ 𝐔 𝐠) 

(12)  
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Here, ⨀ denotes the element-wise product and ∗  denotes the graph-convolutional operator. 

The spectral graph convolution can be further simplified by changing the denotation for the 

filter as 𝑔 = 𝑑𝑖𝑎𝑔(𝑼 𝒈), as shown in Equation (13). 

 𝐱 ∗ 𝐠𝜽  = 𝐔𝐠 𝐔 𝐱 

 

(13)  

The definition for the spectral graph convolution in Equation (13) is baseline for most, if not 

all the popular Spectral-based ConvGNN methods. The methods differ in their choices for the 

filter 𝑔 . Later work has improved the spectral graph convolutional method by improving the 

filter to yield more non-spatially localized filters. This was achieved by approximating the 

filters by a Chebyshev expansion of the graph Laplacian [49]. This approximation also 

removed the necessity of estimating the eigenvectors of the Laplacian, thus drastically 

reducing the run-time of the model as the process of estimating the eigenvectors is high 

computation-wise.  

What has been thought of as one of the major disadvantages of the spectral-approaches and 

the popular convolutional method using a spectral approach, is that the filters directly depend 

on the Laplacian Eigenbasis. As the Eigenbasis are found directly from the Adjacency matrix, 

any perturbations to the graph will lead to a change in the Eigenbasis [46]. Furthermore, as 

the spectral filters are domain-dependent, it is thought that the models are unapplicable on 

graphs with differing structures. The models using the spectral approach were thought to be 

unable to generalize to graphs with a graph-structure differing from that of the trained graph. 

However, there are studies that show that spectral graph convolutional models are 

transferrable (inductive), and that they are usable across graphs with varying topologies [50].  

3.5.2 Spatial Approaches 

While the spectral models base their convolutional methods on the Fourier transform and by 

using different forms of filters in their convolutional methods, spatial methods work through 

the aggregation of neighbourhood information. A common approach for the Spatial 

ConvGNN can be thought of the models utilizing the graph structure alongside an aggregative 

and propagating node information process with a convolutional method [47]. An example of 

how the message-passing process work can be seen in Figure 6. 
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Figure 6: Illustrative figure [51] of how the propagation steps in a GCN allows for information passing 
between nodes not directly connected to each other. From step 0 to step 1, the features of node j are 
updated by aggregating the feature-information of its neighbouring nodes. From step 1 to step 2, the 
features of node i are updated by utilizing the information from the connected node j, which in turn 
contain information from all neighbouring nodes, including those of node i itself.  

 

As with the spectral approach, there are numerous ways of performing the spatial 

convolutional method. A general methodology can be thought of as each node in the graph 

having a corresponding feature-state vector 𝑯(𝒍) which represent the state of the node after l 

iterative steps. At initialization, this feature-state vector is 𝑯(𝟎) = 𝑿, where X is the feature-

input vector. These feature-state vectors are then updated by iteratively passing node-state 

information with its closest neighbours. At each iterative step, the feature-vector for each 

node can be updated by using the nodes current feature-vector alongside the information from 

its closest neighbours and the features of the edges connecting the nodes.  

One of the challenges the spatial approach faces is maintaining a weight sharing property 

when nodes in the graph have a varying degree of neighbouring nodes. One solution is to 

utilize a trainable weight matrix for each node degree [52]. The various spatial convolutional 

methods having different approaches in which they define the weight of the message passing 

between nodes [53]. A general, albeit simple approach, is to apply the same weight to each 

node. Other convolutional methods modify this by using edge attributes, node weights [15] or 

trainable attention weights [42] for each set of weights in the network. This makes the model 

more localized and can increase the performance of the network. 

The terminology "steps" or "hops" are often used when talking about spatial convolutional 

methods. A step or hop indicate a passing of message from a node to its connected 

neighbours. For ConvGNN models, additional steps can be added by introducing more layers 



Theory 

Page 35 of 111 

to the network. Each additional layer will add another set of message-passing. With enough 

steps, information from a single node v can be passed over the whole graph, depending on the 

graph's connectivity. Such a construction is not necessarily preferable, as too many steps can 

result in the dilution of the local node-specific information. 

3.6 Convolutional Methods 

3.6.1 GCN 

The Graph Convolutional Network operator (GCN), which is not to be confused with the 

general term of Graph Convolutional Networks, is a layer-wise propagation rule operator 

introduced by Kipf & Welling [15]. The GCN-operator takes root in the spectral approach, 

however the operator includes several simplifications introduced in the spectral chapter, such 

as restricting the filters to operate in a 1-step neighbourhood around each node. 

In its simplest form, the layer-wise propagation rule can be defined as shown in Equation (14) 

 𝐇(𝐥 𝟏) = 𝐟 𝐇(𝐥), 𝐀 ,   𝐟 𝐇(𝐥), 𝐀 = 𝛔(𝐀𝐇(𝐥)𝐖(𝐥))   (14) 

   

Where 𝝈 is the activation function, A is a mathematical description of the graph topology in 

matrix form, like the adjacency matrix, 𝑾( ) is the weight matrix for the l-th layer of the 

neural network, 𝑯(𝒍) is the feature state vector for the l-th layer and 𝒇(∙) is an arbitrary 

transformation function. As with the spectral approach, this simple representation comes with 

its limitation. The method does now allow for self-passing of information. This is easily fixed 

by adding the identity matrix to the adjacency matrix, giving us the 𝑨 matrix. Additionally, as 

the graph gets bigger, the scale of the adjacency matrix will increase unevenly. As the nodes 

in the graph have a varying amount of connected neighbouring nodes, it can lead to 

significance difference between the values in the adjacency matrix. This can cause the 

gradients to become unstable, either vanishing or exploding. It is therefore preferred to 

normalize the adjacency matrix 𝑨, by multiplying it with the inverse of the degree matrix 𝑫. 

These changes yield the following layer-wise propagation rule introduced by Kipf and 

Welling, as seen in equation (15).  

 
𝐟(𝐇(𝐥), 𝐀) = 𝛔(𝐃

𝟏

𝟐𝐀𝐃
𝟏

𝟐𝐇(𝐥)𝐖(𝐥))   
(15) 
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The GCN-operator is a quick and powerful operator which combines local graph structure and 

node-level features. The operator however is limited by the usage of the adjacency matrix in 

its propagation rule, hindering a single operator to be used on multiple topologies. This makes 

the operator useless in inductive problems, where the operator must work on unseen graph 

structures.  

3.6.2 Graph Attention Network 

The Graph Attention Network (GAT) is a spatial convolutional operator. The GATs leverage 

a mechanism called self-attention layers to specify the weights to different nodes in a set 

neighbourhood, instead of generalizing this as the GCN-method does. In general, the spatial 

operators aggregate features node-wise across neighbourhoods as shown in equation (16) 

  �⃗�𝐢 =  𝛔(∑ 𝛂𝐢𝐣𝐠⃗𝐣∈𝓝𝐢
)  (16) 

Where 𝜎 is an activation function and 𝛼  is the weighting factor between node i and j. In the 

GATs, this weighting factor is defined by using the self-attention mechanism over the 

features. To transform the input features to higher-level features, the operator requires at least 

one learnable linear transformation. To achieve this, the GAT operator introduces a shared 

linear transformation parametrized by a weight matrix W at the initial step. The operator then 

performs self-attention on the nodes by a shared attentional mechanism a which computes a 

set of attention coefficients e, as shown in equation (17). These coefficients indicate how 

important the features of a node i is to node j.   

 e = a(𝐖h⃗ , 𝐖h )⃗ (17) 

The operator also disregards the topological structure of the system by a process called 

masked attention. In this process, the graph structure is injected by computing 𝑒  for nodes 

𝑗 ∈  𝒩 , where 𝒩  is the neighbour for any node i in the graph. Furthermore, to make the 

coefficients more easily comparable across nodes, the attention coefficients are normalized 

for all choices of j by using the SoftMax function as shown in equation (18).  

 
α = softmax e =

𝑒𝑥𝑝 (e )

∑ 𝑒𝑥𝑝 (e )∈𝒩
 

(18) 

 



Theory 

Page 37 of 111 

The GAT operator's attention mechanism a is a single-layer MLP network. The network is 

parametrized by a weight vector a and uses the LeakyReLU activation function. This gives 

the following equation for the weighting factor, as shown in equation(19). 

 

α =
𝑒𝑥𝑝 (LeakyReLU 𝐚 𝐖h 𝐖h

∑ 𝑒𝑥𝑝 (LeakyReLU(𝐚 [𝐖h ||𝐖h ]))∈𝒩
 

(19) 

Where the . is the transposing operator and || is the concatenation operation [42]. 

The GAT operator has several interesting perks. The operator can be applied to graph nodes 

with varying degree by simply specifying arbitrary weights to the neighbours. Furthermore, 

the GAT operator does not utilize any form of matrix operators, nor does it require any 

knowledge about the global topology of the system [42]. This allows the operator to be used 

on inductive problems, where the model must adapt to unseen graphs. The biggest drawback 

of the GAT operator is the intensive computations needed to compute the weighting factors. 

3.6.3 GraphConv 

This thesis also utilized an operator named GraphConv, a spatial ConvGNN operator [54]. 

The GraphConv operator, while not as popular as the two previously mentioned operators nor 

as complex as the GAT operator, displayed profound strength in solving the problems faced 

in this thesis. The GraphConv operator work similarly as other spatial operators through 

message-passing. The operator estimates the node-features by aggregating the nodes features 

𝑥  with the neighbouring features 𝑥 . The operator does a nodewise screening, where each 

nodes' features are multiplied with a weight factor 𝜽𝟏, while the neighbouring node's features 

are scaled with a weight factor 𝜽𝟐 and with the connecting edge weight 𝑒 , , as shown in 

Equation (20). These weight factors are learnt through training of the model. 

  𝐱𝐢 = 𝛉𝟏𝐱𝐢 + 𝛉𝟐 ∑ 𝐞𝐣,𝐢 ∙ 𝐱𝐣𝐣∈𝓝(𝐢)   (20) 

   

As the operator does not utilize the graph-structure in the estimation of the node-features, the 

operator is usable on inductive problems. Because of the low complexity of the operator, the 

speed of calculation is significantly lower than that of the GAT-operator.  
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Part III / Methodology 

In the following section, the methodological procedure used to create the datasets and the 

ML-models are presented. In the first chapter, the test-system and the general methodology 

used to produce the datasets is covered. Information about the test-system, such as the 

topology and relevant features is catalogued and discussed, and the non-sequential MC 

simulation procedure that was used to perform the contingency analyses is described in detail. 

The section also describes how parts of the MC-simulation was altered to tailor the simulation 

tool for each experiment conducted in this thesis. 

The methodology part also describes how the ML-models used for this thesis were 

constructed, the system parameters and the prevalent hyperparameters. The model-section 

also gives a brief introduction of the concept of batch-sizes. The model's prediction-level and 

how the model's output was changed for each prediction level to accurately represent the 

model's performance is covered. Lastly, the section presents the prevalent model-features and 

how the features were pre-processed before they were used in the ML-models.  

In summary, the following will be covered in the methodology chapter: 

Section 4.1 Introduces the IEEE-24 Bus System, its topology, and the essential information 

about the system. 

Section 4.2 Introduces the Non-Sequential Monte Carlo simulation process and how the 

simulation process was tailored to create datasets for each experiment conducted in this thesis.  

Section 5.1 Introduces the ML-model, how it was constructed and the relevant packages. The 

section also covers a few important system parameters, such as the loss-function and the 

learning-rate scheduler. 

Section 5.2 Introduces the two prediction levels of the model used in this thesis, and how the 

output was tailored to give a proper representation of the model's performance for each 

prediction level. 

Section 5.3 Gives a thorough overview of the model's parameters and hyperparameters and 

display the chosen hyperparameters for all models. 
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Section 5.4 Introduces the features of the model, derived from both the test-system and from 

the data-generation process.  

Section 5.5 Covers the Training- and test-data split, introduces the concept of batch-size and 

introduces the concept of data-pre-processing, various ways of performing pre-processing and 

which method used for this thesis. 
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4 Test System and Data Generation 

The following section introduces the test-system, its features and the procedural used to 

generate the dataset that was used for the ML-models. Section 4.1 introduces the test-system, 

its topology, and the features of the system. Section 4.2 introduces the data-generation 

process of the non-sequential Monte Carlo simulation, the simulation procedure and how the 

data was stored. The subsequential subchapters explains how the simulation procedure was 

tailored to each experiment.  

4.1 IEEE-24 Bus System 

The datasets in this thesis are based on the IEEE 24 bus-system. The IEEE-24 bus-system is 

one of many reliability test systems developed by IEEE, and is a fictional system used for 

testing of various reliability analysis methods [55]. The topology for the test-system can be 

found in Figure 7. 

 

Figure 7: One Line Diagram showing the topology for the IEEE-24 bus test system [56] 
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The system consists of 24 buses, in which there are 10 PV buses, 13 PQ buses and one Slack 

bus. The bus-type indicate what variables are known at each bus. In the PQ busses, the real 

(P) and reactive power (Q) are specified, while the bus voltage and angle are unknown. In the 

PV-bus, the real power (P) and the voltage magnitude (V) is specified, while the phase angle 

and the reactive power is unknown. The slack bus, also known as the reference bus, is used to 

balance the active and reactive power flow in the system. The slack bus also defines the 

system's reference angle. The buses in this case represent an area which can have both a 

production and a load, though this is not guaranteed as some of the buses have a production of 

power but no load, while some buses have a load but no production. Further information 

about the buses and their affiliated values can be found in Table 15 and Table 16 in 

Appendix A. 

The test-system has 38 interconnecting lines and 34 generators. The generators in the system 

consist of a mix of different energy sources, such as coal, gas and nuclear, with a varying 

production potential and a specific cost-value specified in $/MWh. The cheapest generators 

produce energy at $5/MWh, while the most expensive generator produce energy at 25$/MWh. 

At average for all the generators in the system, the cost for producing energy is at 

$15.4/MWh. The cost of rescheduling the power of any generators will be equal to the normal 

operating cost the specific generator. Further information about the generators can be found in 

Appendix A in Table 17 and Table 18. 

In the system, each load-bus also have an affiliated cost-value for shedding the load. These 

cost-values represent the severity for the loss of load in that area. The higher the cost, the 

more significant the loss of load is. Industrial areas, farms and hospitals are typically areas 

where load-shedding can be highly expensive, while the loss of load in residential areas are 

not as severe. In the test-system, the area where it is cheapest to shed load, the cost is at 

3662.3$/MWh (Load 9), while the most expensive area for load shedding is at 9599.2$/MWh 

(Load 4). Figure 8 shows the cost of shedding load for all load-buses.  

The shedding of load is around 427 times more expensive compared to running the regular 

generators or to reschedule any power. Any potential outages in the system where the system 

cannot accommodate will therefore lead to substantial socio-economic costs. The system 

therefore prioritizes cutting the load in areas where the cost of doing so is the cheapest. This 

will be heavily reflected in the predictions of the model. 
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Figure 8: The Load Shed Cost given in $/MWh for each load-bus. 

4.2 Data Generation 

As this thesis sought to test out multiple various system-perturbations, it became convenient 

to create a new data-generation simulation tool that was specialized for the experiments 

conducted in this thesis. The simulation tool was made in such a way that it was easy to 

change the system-parameters. The datasets used for the experiments of this thesis were 

created through a contingency analysis, inducing k-number of contingencies at each 

simulation step using a non-sequential Monte Carlo simulation and the IEEE-24 bus system. 

The non-sequential method was chosen as occurrences of contingencies in a power system are 

rare, especially cascading contingencies. If the contingencies were to be drawn from an 

exponential distribution, only a few select datapoints would include cases where a 

contingency occurred, and the occurring contingencies would not always have a profound 

effect on the state of the system either. Some contingencies can occur in areas where the 

system is resilient to outages, while other contingencies might occur in less resilient areas. By 

inducing a contingency at each simulation step, the probability of the occurrences of load-
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shed would increase, making for more interesting analyses. For this thesis, the type of 

contingency was narrowed to only consisting of line disconnections. However, the type of 

contingency can be anything from failing generators, defect components, a disconnected or 

overloaded line etc.  

4.2.1 Data Generation Process 

The implementation of the contingency analysis and the Monte Carlo simulation was done 

using the python package pandapower [57], a powerful power system analysis toolbox. 

Pandapower also has a vast library of integrated power systems, including the IEEE-24 bus 

system, making the implementation of all the system's variables much easier. The toolbox of 

pandapower also included all the necessary functions to perform the Contingency Analysis of 

the system, such as the OPF and PF.  

The general data-generation procedure is show below: 

1) Define load condition. 

2) Solve DC-OPF with the set load conditions. 

 If the system does not converge, discard the load conditions, and proceed to the 

next. 

3) Store set-point values for the generators, loads and lines. 

4) Produce k contingencies by disconnecting k different components at random.  

5) Check if any of the induced contingencies lead to a system overload by estimating the 

DC-PF equations. 

6) If the system was overloaded, solve a DC-OPF with the new system state induced by 

the contingencies. If not, continue. 

 If the system does not converge during the OPF, discard the load conditions and 

contingencies, and proceed to the next set of load conditions. 

7) Reconnect the disconnected component(s). 

8) Estimate any potential load-shedding values by taking the difference between the set-

point load values for all buses before and after the OPF in (6) took place.  

9) Repeat. 

In both cases where the OPF had to be solved, a safeguard was introduced to ensure that the 

system had a solution. The integrated Pandapower OPF algorithm tended to not converge 
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despite the solution existing. The occurrence of this incident increased as the load-demand of 

the system increased, and the cases where it occurred were dropped.  

When the OPFs did converge, the state of the system and its values such as the system load, 

the generated power, the line-flow, the shed-load values, and the rescheduled generator values 

were stored in data-frames, which was later used to construct the feature data to the ML-

model. As the ML-model was thought to replace the last OPF in the contingency analysis 

(part 6), the model had to be trained with features that were prevalent before the last OPF 

estimation. Hence values such as the line-flow were stored before the last OPF was initialized. 

This meant that the line-values which the ML-model received did not reflect the state of the 

system after the contingency had occurred, and the model had no information about the 

occurrence of the contingency in the system. To include this information for the ML-model, 

the status of all lines after the contingencies had occurred were stored. This would allow the 

inclusion of the line-status to the affected nodes of the system.  

4.2.2 Datasets 

The purpose of the thesis was to investigate the model's predictive abilities across multiple 

system-perturbations to investigate the model's resilience to changes. The performance of the 

model would dictate whether the model would become a useful tool for contingency analyses. 

As an initial step, the induced perturbations were small to investigate if the models were 

generalizable across minor system perturbations.  

To realize the objectives of the thesis, multiple datasets for each system-perturbation had to 

be created, where each dataset further perturbated the system parameter. As the scope of the 

thesis were on the contingency-, load- and topology parameters, three sets of datasets were 

made, one for each system parameter. For each set, the system-parameters were increasingly 

perturbated. This was achieved by increasing the number of induced contingencies per 

simulation step for the contingency-objective, or by increasing the system load for each 

dataset for the load-objective. By making multiple dataset with different system perturbations, 

it opened the possibility of evaluating the model across multiple parameter perturbations. By 

changing only one parameter at the time, it became easier to determine which perturbated 

system-parameter the model was and was not resilient against. This also opened for the 

possibility of sequentially training the model on additional datasets with further system 

perturbations.  
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4.2.2.1 Experiment 1, Contingency Perturbation Simulation 

The first objective of the thesis was to explore the model's predictive ability across multiple 

contingencies. The thesis sought to explore the model's ability to predict the load-shedding 

values for cases with varying number of contingencies without being trained specifically for 

those cases. The objective was also to explore how the behaviour of the model changed after 

sequentially training on the dataset with the highest number of induced contingencies per 

simulation point. As such, three datasets were created with each dataset having an increased 

number of induced contingencies at each simulation step in the MC simulation. The load of 

the system was kept identical across all three datasets, and the topology was held static. The 

first dataset induced a single line-contingency at each simulation step, the second dataset two 

line-contingencies and the third dataset induced three line-contingencies at each simulation 

step. Each simulation, independent of the number of contingencies, followed the same 

simulation-procedure and the contingency points was chosen at random.  

4.2.2.2 Experiment 2, Load Perturbation Simulation with Contingencies 

The second objective of the thesis was to explore the model's predictive ability across system-

load perturbations. To this end, the topology of the system was held static, and a single 

contingency was induced at each simulation step. The set-values for the load were initially 

equal across the dataset, but the values were increased by adding a scaling factor k = 1.05, 

1.10, 1.20 to the load for each of the simulated datasets, respectively. In total, three additional 

datasets were made with the scaling load factor, increasing the system load with 5%, 10% and 

20%.  

4.2.2.3 Experiment 3, Contingency Perturbation Simulation with modified 

topology 

The third objective of the thesis was to explore the model's predictive ability across slight 

perturbation of the system topology and induced contingencies. To this end, the test-system 

was altered by adding two additional lines in the system. The addition of the extra lines was 

not chosen at random, but rather through a selective process in which the buses that were 

most vulnerable to line outages were chosen. The first line was added between bus 7 and bus 

8, and the added line adopted the same features as the already existing line. The placement of 

the first line was chosen as bus 7 was the only bus that only had a single connecting line 

between itself and the rest of the system. By adding another line, the bus would be better 
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protected against any possible contingencies. The second line that was added to the system 

was laid between bus 1 and bus 3. This line also adopted the same features as the already 

existing line between the two buses. The altered topology can be seen in Figure 9. 

 

Figure 9: Altered One Line Diagram showing the topology for the IEEE-24 bus test system. 

 

With the modified topology, a total of three datasets were made following the processes in 

experiment 1 (section 4.2.2.1), where each dataset was simulated with an increasing number 

of induced contingencies per simulation step (1-, 2- and 3-contingencies). 

4.2.2.4 Experiment 4, Case Study 

The last experiment of the thesis conducted a case study to investigate multiple sub-

objectives. The first sub-objective was to compare the run-time between the ML-model and 

OPF the model sought to replace. The second sub-objective was to compare the load-

shedding values between the OPF and the predicted values of ML-model. The last sub-

objective was to investigate the impact the batch-size of the model's test-dataset had on the 

run-time of the model. 
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To this end, a single dataset was simulated using the original topology of the system and a 

single contingency per simulation step. In total, 5000 datapoints were simulated, each point 

containing information about the adjacency matrix, the node-features, and the edge-weights.  

As the dataset was simulated, the run-time of the last OPF in the data-generation procedure 

was estimated per simulation step and added up. As the last OPF was only called when an 

overload occurred in the system, the run-time could be zero if no overload occurred. To 

determine the run-time of the model, the run-time was only estimated when the model was 

making the predictions and did not include the process of creating the input-dataset. After the 

model had made its prediction, the predicted values were then compared against the load-

shedding values estimated by the OPF. To determine the impact the batch-size of the training-

set of the ML-model could have on the predictions, two ML-models were trained with the 

training-sets having two different batch-sizes. 
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5 Model  

In this section, the construction and the key parameters of the ML-models is introduced. 

Section 5.1 introduces the packages used to construct the model, and the model's internal 

functions. Section 5.2 explains the prediction level of the model, and how the output of the 

model was tailored for each prediction level. Section 5.3 introduces the key parameters of the 

model, the concept of hyperparameters and the chosen hyperparameters for the models used 

to produce the results. Section 5.4 introduces the features of the system and the key 

differences between the features of standard ANN models and a ConvGNN-model. Section 

5.5 discusses the split between training- and test data, the concept of batch-size and briefly 

discusses the pre-processing steps taken to prepare the features.  

5.1 Model Construction 

To construct the ConvGNN-models used in this thesis, the python libraries PyTorch and 

PyTorch Geometric [58] were used. The libraries offer well defined convolutional methods 

from published papers in its calculations, such as the ones introduced in chapter 3. The library 

also includes a range of in-built functions, such as the optimizing function of the model, loss-

function, learning-rate scheduler etc. The built-in functions allow for a more precise and 

quicker construction of each model and easier tuning of the many parameters.  

5.1.1 Optimizer Function 

The objective of the optimizing function in the model is to adjust the parameters of the model 

such that the error in each training step is reduced. PyTorch’s library offers a vast number of 

optimizers, with the standard method being the Adam-optimizer, a first-order gradient-based 

stochastic optimization function [59]. This was also the chosen optimizer for all ConvGNN-

models used in this thesis. 

5.1.2 Learning Rate Scheduler 

The learning-rate scheduler is a tuneable function that decreases the learning rate by an 

amount per epoch to reduce fluctuation of error. The rate at which the learning rate is reduced 

per epoch can be tuned before training by changing the gamma-parameter of the scheduler. A 

decent choice of the gamma parameter can assist the model to converge. 
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5.1.3 Loss Function 

The ML-models used in this thesis fall under the category of supervised learning, which learn 

by estimating a loss function which is then used to optimize the weights of the model. The 

loss function work as an evaluation tool for the model, describing how well the model works 

on the given data. The loss value is estimated by comparing the predicted output value 𝑦 with 

the target value y. This can be done in several ways, depending on the goal of the model, such 

as regression or classification. For regression, which was the prediction goal of the models 

used in thesis, the more popular loss-functions are the Mean Square Error (MSE) and the 

Root Mean Square Error (RMSE). The difference between these two methods is how the loss 

function penalizes outlying and deviating values, with the MSE-function penalizing outlying 

values much more as compared to the RMSE-function. For this thesis, the RMSE-loss 

function was used. The mathematical formulation for the loss-function is given in equation 

(21). 

 

 
𝑹𝑴𝑺𝑬 =

∑ (𝒚𝒊 − 𝒚𝒊)𝟐𝒏
𝒊 𝟏

𝒏
 

(21) 

   

5.2 Prediction Level 

As mentioned in Section 3.4.1, ConvGNN-models can work at different prediction levels, 

such as Node-level, Edge-level, and Graph-Level. Each prediction level specializes in 

extracting certain information about the features or the graph. The scope of the thesis has been 

to design and construct models on both a system-level, meaning that the models output a 

single value for the whole system, and on a partial node-level. For the system-level, the 

predicted output value would be the sum of shed load in the system. On a partial node-level, 

the number of outputs is equal to the number of buses in the system which has a 

corresponding load. For the IEEE-24 RTS system, the system has 24 buses, but only 17 of 

them has a load. The prediction level has been dubbed ‘partial’, as it is not beneficial to 

include the nodes which does not have any form of load-shedding. Thus, the number of 

outputs for partial node-level would be 17. 

5.2.1 Estimation of the Load Shedding values 

The target value for the ML-models of this thesis was the estimated load shedding values 

from the MC simulation. The shed load values were the values of lost load to end-points that 
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was deliberately cut to prevent system-failures when the system's capacity was under strain. 

The load-shedding values were estimated by taking the difference of the load values in the 

load-buses before and after the last OPF in point (6) was run. As not all contingencies led to a 

system overload, the value for the shed load was sometimes zero. 

As the scope of the thesis included both a system-level prediction and a node-wise prediction 

for the ML-models, the load-shedding values were estimated on a different basis for each 

prediction level to properly display the model's performance. It is important to distinguish the 

difference between the estimated output values per simulation point, which is used to 

visualize the model's performance per simulation point, and the total error for the dataset.  

For the system-level prediction, the load-shedding values were estimated as a total sum of 

shed load per simulation point, as shown below. This representation would allow for a 

comparison of the model's predicted value vs the target value for each simulation point. 

𝐋𝐨𝐚𝐝𝐬𝐲𝐬𝐭𝐞𝐦 = (𝐋𝐨𝐚𝐝𝟏𝐬𝐡𝐞𝐝 + 𝐋𝐨𝐚𝐝𝟐𝐬𝐡𝐞𝐝 +  … +  𝐋𝐨𝐚𝐝𝟏𝟕𝐬𝐡𝐞𝐝) 

The prediction-error at the system level was estimated as an average of the prediction error 

for each simulation point, as shown below. 

𝑬𝒓𝒓𝒐𝒓𝒔𝒚𝒔𝒕𝒆𝒎 =
𝑬𝒓𝒓𝒐𝒓𝟏 + 𝑬𝒓𝒓𝒐𝒓𝟐+ . . +𝑬𝒓𝒓𝒐𝒓𝑵

𝑵
 

For the node-level prediction, the load-shedding value was not estimated as a sum, rather each 

load-bus value was presented separately. For the node-level, the results were not given per 

simulation point, rather, the mean over all values for each node was estimated, as shown in 

the following equation. 

𝐋𝐨𝐚𝐝𝐧𝐨𝐝𝐞 = [
∑ 𝐒𝐡𝐞𝐝𝐋𝐨𝐚𝐝𝟏𝐢

𝒏
𝒊 𝟏

𝒏
,
∑ 𝐒𝐡𝐞𝐝𝐋𝐨𝐚𝐝𝟐𝐢

𝒏
𝒊 𝟏

𝒏
, … ,

∑ 𝐒𝐡𝐞𝐝𝐋𝐨𝐚𝐝𝟏𝟕𝐢
𝒏
𝒊 𝟏

𝒏
] 

This allowed for a per-node representation, displaying how well the model's prediction were 

on a per node basis. 

 Another way of representation would be to aggregate all the values into a single value for 

each simulation point. One way of achieving this is to estimate the mean of all load-buses per 

simulation point as shown in the following equation. This enabled the possibility of plotting 
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the predicted-value vs the target value for each simulation point, though this was not utilized 

in this thesis. 

𝐋𝐨𝐚𝐝𝐧𝐨𝐝𝐞 =
(𝐒𝐡𝐞𝐝𝐋𝐨𝐚𝐝𝟏 + 𝐋𝐨𝐚𝐝𝟐𝐬𝐡𝐞𝐝 +  … +  𝐋𝐨𝐚𝐝𝟏𝟕𝐬𝐡𝐞𝐝)

Nr. of load buses
 

When estimating the error at the node-level, it was imperative that the error was estimated on 

a node level at first, before averaging over the RMSE for each node.  

5.3 Model Parameters 

Common for all ML-models are pre-tuneable parameters called hyperparameters. 

Hyperparameters are not to be mistaken for standard parameters, which are internal 

configuration variables for the model, often estimated based on the input data to the model. 

The standard parameters are used by the model to make predictions and define how well a 

model is performing. The parameters are values such as the internal learning weights of the 

ML-model, or the loss function used to define how well the model is performing, and these 

are not manually defined. 

The hyperparameters on the other hand are defined by the user before a model is trained and 

are decisive factors for the performance of a model. The importance of each hyperparameter 

varies depending on the model, but the most significant values are the Learning Rate, the 

Dropout Rate, the number of layers and some specific parameters for models, such as the 

number of heads, a specific parameter for the GAT model. Table 1 includes the parameters 

and hyperparameters prevalent in the model and a brief description of each parameter.  

Table 1: The parameters and hyperparameters of the ConvGNN-models. 

Parameter  Description  

Layers Number of hidden layers in the network 

Hidden Channels Number of neurons in each hidden layer 

Loss Loss function used during training 

Epoch Number of iterative steps that a model is trained on a dataset 

Learning Rate The step size during the backpropagation process during training 

Decay of Learning Rate The reduction of learning rate per epoch during training 

Dropout Rate The rate of dropout between each propagation 

Batch Size The batch dimension of the dataset 
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As the hyperparameters are decisive for the outcome of the models, choosing the correct 

values for the hyperparameters are essential to optimize the models. Within the field of ML, 

there are multiple ways of going by this. Common approaches include methods such as grid 

search or random search, where the hyperparameters are defined within a range, and the 

hyperparameters are systematically or randomly chosen from that range. The best performing 

combination of parameters are then stored. While this can allow the model to be tested on a 

wider range of possible hyperparameters, the process is often long and tedious. Training a 

model with a set of hyperparameters for 100 epochs, which guarantees at least a degree of 

convergence, can sometimes take hours.  

As this thesis intended to perform several experiences with multiple operators, the manual 

tuning of the parameters was preferable over the random approach due to the short amount of 

time available. The manual search used personal knowledge and experience to identify the 

most relevant hyperparameters and the optimal range for each parameter. While the manual 

search method may not necessarily grant the most optimal values for the hyperparameters, the 

process is significantly faster. The difference in error from the manual choice of 

hyperparameters and the optimal choice of hyperparameters is often not detrimental for the 

result of the model, and the results given by the manually chosen hyperparameters should 

give a good indication about the model's ability. Table 2 introduces the chosen parameters 

used by the models to produce the results displayed in the thesis. 

Table 2: The hyperparameters for the models used in this thesis. 

Parameter  GAT  GraphConv GCN 

Layers 3 
  
3 

 
3 

Hidden Channels 64 
 

64 
 

64 

Dropout Rate 0.2 
 

0.2 
 

0.2 

Epoch 100 
 

100 
 

100 

Learning Rate 0.0001 
 

0.0005 
 

0.0001 

Decay of Learning Rate 0.95 
 

0.95 
 

0.95 

Batch Size 15 
 

15 
 

15 

Heads 4 
 
- 

 
- 
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5.4 Features 

When training ML-models, the models depend on associated features which describes the 

characteristic of the data. These features allow the ML-models to extract the information of 

the dataset, which is subsequently used to enhance the model's predictive abilities. The quality 

of the features therefore has a major impact on the performance of the models. Choosing 

features that are informative, discriminating, and independent of each other is crucial for the 

model to understand the nuances of the data. For the ConvGNN-models, the prevalent type of 

features differs slightly compared to other ANN-models. The features of a ConvGNN model 

can be separated into three groups, being the topology of the system, the edge-weights, and 

the node-features.  

The topology describes the system set-up and is used to construct the neighbourhood-matrix 

which the models use for message-passing between nodes. As the topology is not a traditional 

feature, it does not require any form of pre-processing. Rather, the topology is used to 

construct the neighbour-matrix which was introduced in section 3.3. The edge-weights in 

ConvGNN-models defines the strength of the connection between nodes in the graph. The 

edge-weights, albeit different from the normal features, are pre-processed in the same way as 

to normalize the connection strength between nodes. The regular features of a ConvGNN-

model are managed in the same way as for other ANNs. A distinction is made between 

features describing a certain value and features describing a state. The features describing a 

state are often one-hot encoded, meaning that the values are given either as 0's or 1's. This can 

be interpreted as an active state (1) or an inactive state (0), though this varies depending on 

the feature. The features describing a state are not pre-processed either. 

The features describing a value do not typically have a predisposed range, but the values are 

often normalized or standardized through pre-processing methods. Table 3 includes a list of 

the features of the models. The content of the table describes what the features represent and 

where they can be found in the graph-system. The Load Flow the Power load and the 

Generated Power are dynamic values, either predisposed or generated in the Monte Carlo 

simulation. These values differ for each simulated scenario. The Active Power Demand and 

active Power Generation are static values given by the creators of the test system and can be 

found at [60].  
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Table 3: Descriptive table of all the features of the graph. All values are given in a per unit scaled on the 
system's MVA. 

Feature Description Location 

Topology Description of the setup of the 

system. 

 Edge Index 

Load Flow The flow of power between the 

nodes in the graph. 

Edges 

Power Load The load demand at each bus. Nodes 

Generated Power The amount of generated power at 

each node with a generator. 

Nodes 

Active Power Demand The Active Power Demand at each 

node with a load. 

Nodes 

Active Power Generation 

Potential 

The Active Power Generation 

Potential at nodes with generators 

Nodes 

Line Status  Status of the node, used to check if 

a node has a connecting line which 

has been disconnected. 

Nodes 

 

5.5 Training- and Test Data 

Within the field of ML, one typically distinguishes between three types of datasets: training, 

validation, and test datasets. The training datasets' sole purpose is to train the ML-model, 

improving its prediction by updating the internal parameters. Most of the available data is 

often used for training purposes. The validation set is often used to give an unbiased 

evaluation of the model's hyperparameters as the model is being trained and is often small 

compared to the other sets. The model never learns anything directly from the validation set, 

but the model becomes increasingly more biased towards the validation set the more changes 

that are done on the hyperparameters based on the performance of the validation set. Lastly, 

the test-set is used to evaluate the model's performance after training has concluded. For ML-

models to provide an unbiased prediction of any dataset, the datasets used for testing purposes 

must be independent of the dataset used to train the ML-models. It is therefore essential that 
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the datasets are split before any form of pre-processing is done on the datasets. For this thesis, 

no validation sets were used due to limited time and this thesis only being an exploration 

study. As such, the data was split solely into training and test-sets instead. All datasets were 

split following the 80/20 distribution, in which 80% of the data was given to the training-set 

and 20% of the data was given to the test-set.  

5.5.1 Data Preparation 

Because the range of the features in the system varied significantly, the features had to be pre-

processed to bring all values in the same range. This was done to ensure that none of the 

features were more dominant than other features simply because of the natural range of 

values. Most values that were simulated from the Monte-Carlo Simulation was given in a per-

unit value, where most of the values ranged from -1 to 1. Other features, such as the active 

power generation per generator was not given in a per-unit range and therefore had a much 

broader range. A pre-processing step was executed to bring all the feature-values in the same 

scale. In ML, there exist many different tools to transform the data, the most popular being 

the standardization method and the normalization method. For this thesis, the normalization 

method was used on every feature, bringing all values in the range from [-1, 1]. The pre-

processing method is given in equation (22). 

 

 

 
𝒚 =

𝒚 − 𝒎𝒊𝒏(𝒚)

𝒎𝒂𝒙(𝒚) − 𝒎𝒊𝒏(𝒚)
 

(22) 

 

The pre-processing was performed using functions provided by scikit-learn, a powerful ML- 

package. The package allows the user to call for two methods, being the fit-transform and the 

transform method. The fit-transform method uses the dataset to estimate the scaling 

parameter, while the transform method only uses the already estimated scaling parameters to 

process the data. When pre-processing the data, it is vital that the training set and the test-set 

is completely separated and independent of each other. As such, when pre-processing, the fit-

transform function should only be called on the training data, ensuring that the scaling 

parameters are only estimated by the training-set. The test-set should then be processed by 

only calling the transform method, using the parameters from the training set.  
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5.5.2 Batch Size 

To speed up the training-process of the ConvGNN-models, the datasets is occasionally given 

in batches instead of feeding the whole dataset to the model at once. By feeding the dataset in 

batches, the model does not have to store an error-value for each datapoint in the dataset, only 

for each batch. The model also updates its parameters for each batch-point based on the 

estimated error. By using a large batch-size, the models' parameters are updated based on the 

average error of the batch-size, rather than for each value. This saves a lot of memory making 

the model run substantially faster, as each sample of the batch are processed in parallel with 

each other.  
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Part IV / Results & Discussion 

This section covers the experiments conducted in the thesis and assesses the results of each 

experiment. The result-section is split into two parts, the first part presenting the system-level 

prediction results and the second part presenting the partial node-level results. The system- 

level has four sub-sections, where each section presents the results of an experiment. The 

node-level has three sub-sections, where each section presents the results of an experiment. 

Each of the experiments conducted in this thesis sought to test the models in different 

conditions to examine the flexibility of the models by perturbating key-parameters of the 

system, such as the number of contingencies that had occurred, the system load and the 

topology of the system.  

The contingency-perturbation was achieved by adding additional contingencies in each 

simulation step of the system in MC-simulation. This was done to check if the models were 

able to predict the load-shedding values across multiple contingencies without being trained 

for those situations. The load-perturbation was achieved by adding a percentage of additional 

load to the base-values in the system. The goal of the load-perturbation was to determine how 

resilient the models were to future load-perturbations, to check if the models must be 

retrained every year, every 5th year etc. because of load variations. The last parameter was the 

change of topology. As the power system evolves, the addition of extra loads, generators and 

connecting lines are inevitable. Having a flexible model that can easily implement these small 

perturbations of the system set-up is preferrable, as the model does not have to be retrained 

for each addition.  

In this thesis, each dataset originally simulated 20 000 datapoints. However, as some points 

are discarded due to a lack of convergence, the number of simulated datapoints may vary 

between datasets. 
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Dataset Taxonomy 

In the following sections some confusion regarding the difference between the datasets can 

occur. As the model is to experiment by perturbating system-parameters between each 

experiment, it is essential to understand which parameter that was perturbated, and which was 

kept static.  

 The 1-Contingency dataset refers to the datasets being simulated with 1 

contingency being induced at each simulation step in the Monte Carlo simulation. 

The contingency point is randomly chosen. 

 The 2- and 3-Contingency dataset refers to the datasets created with test-system 

being simulated with 2 and 3 contingencies induced at each data point, 

respectively. All contingencies are chosen at random, and they cannot be the same.  

 The 5%, 10% and 20% load-perturbation datasets, referred to as the low-, 

medium- and high-load datasets, was created by increasing the load in the system 

by a flat percentage from the original values, as indicated with the %. The 

topology and number of contingencies that was simulated per datapoint was kept 

static.  

 Some experiments also include multiple scenarios in which a model is first trained 

solely on a single dataset until convergence, and then sequentially trained on a 

percentage of a second dataset until convergence. Scenario 1 indicates the model 

being trained on 20% of the second dataset of the respective experiment, while 

Scenario 2 indicates the model being trained on 80% of the second dataset. 
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6 System-level Predictions 

This section of the thesis presents the system-level predictions of the load-shedding values, 

achieved by setting the output of the ConvGNN-models to be a singular value. As each 

experiment sought to display the evolution of the RMSE for each test-set as the models were 

being trained, the model's had to be retrained for each experiment which explains any 

potential deviation for the base-models predictive results.  

Section 6.1 display the Contingency-perturbation experiment, testing the model's ability to 

predict across contingencies. 

Section 6.2 display the load-perturbation experiment, testing the model's ability to predict 

across varying load. 

Section 6.3 displays the topology-perturbation experiment, testing the model's ability to 

predict across contingencies and topologies.  

Section 6.4 introduces a case-study to compare the model's run-time and estimation against 

the run-time and results of the MC-simulations. 
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6.1 Experiment 1, Contingency Perturbation 

The objective of the first experiment was to investigate if the ConvGNN-models could predict 

the sum of load-shedding in the system across datasets with a varying number of induced 

contingencies per simulation point. For this purpose, three datasets were simulated and 

constructed using the Monte Carlo Simulation tool. The topology and the load of the 

simulated system was held static across the datasets, but the number of contingencies per 

simulated step increased for each dataset. The first simulated dataset included a single 

contingency, the second simulation two contingencies and the third dataset had three 

contingencies per simulation step. The only difference in the graph-features between the 

induced contingency datasets was the node-feature list which stored information about line-

outages. The first experiment also sought to test three different ConvGNN-operators to assess 

the accuracy and speed of the operators. The operator that showed the most prominent results 

in the first experiment was henceforth used as the baseline model for the remaining 

experiments, while the other operators were discarded. 

Briefly summarized, the objectives of the first experiment are to: 

1) Construct models with different ConvGNN-operators, check if the models can predict 

the load-shedding values for the dataset with a single contingency.  

2) Compare runtime and accuracy between the ConvGNN-operators.  

3) Investigate the model's capability of predicting the load-shedding values for the cases 

with two- and three-line contingencies while only being trained on the case with a 

single line contingency. 

4) Investigate the change of behaviour and accuracy of the best performing model after 

being trained on multiple datasets with a differing number of induced contingencies. 

6.1.1 Experiment 1.1, Comparative Test of ConvGNN Operators 

In this first subsection, the results of the three models using the GAT, GCN and GraphConv 

operator are displayed. To establish a ground of comparison between the operators, each 

model was trained and tested solely on the 1-contingency dataset set for 100 epochs. For each 

model, the time-to-train was estimated. To compare the accuracy of operators, the RMSE 

value for each model tested on the test-sets of the 1, 2 and 3-contingency dataset was stored 

alongside the average run-time of the test-sets. These values can be found in Table 4. The 

table is presented to give the reader an insight into the average test-error of the operators and 
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the time it took to train and test each operator. As some of the operators converged before the 

100-epoch mark, the time-to-train has been estimated to a 100-epoch mark based on the 

converged epoch number and the time it took before convergence.  

Table 4: The RMSE Error for all operators on the test-sets of the three-contingency dataset. The table 
also includes the train- and test time for all models on the 1-contingency dataset after 100 epochs of 
training with a batch size of 15.  

Model Error (RMSE)  

1-Contingency 

Error (RMSE)  

2-Contingency 

Error (RMSE)  

3-Contingency 

Train 

Time (s) 

Test Time 

(s) 

GraphConv 0.1470 0.4445 1.0712 1340 3.031  

GAT 0.2405 0.3462 0.9157 3882 8.728 

GCN 0.2806 0.4407 1.0669 1858 3.935  

 

As seen in the table, the two most outstanding operators were the GraphConv and the GAT 

operator. Overall, the GAT operator’s predictive results were better than that of the GCN and 

GraphConv operator. This was especially apparent for the 2- and 3- contingency dataset, 

though the GraphConv operator performed best on the 1-contingency dataset. Despite the 

GAT operator being superior on the 2- and 3-contingency dataset, the GraphConv operator 

was faster at both training and testing compared to the other operators. The GAT-operator 

performance was formidable, but the operator used almost three times as long to train and test 

compared to the other operators, rendering the model obsolete. Based on both the error across 

the contingency-datasets and the time-to-train of the models, the GraphConv-operator was 

deemed to be the better operator for the remaining experiments of this thesis. The explanation 

behind the speed and accuracy of the GraphConv operator could how it made use of the local 

and global feature information combined with the edge-weights. While all the operators used 

this information, the simple approach of the GraphConv’s operator to the learned weight for 

both nodal and local feature-information may have been decisive for both its speed and 

accuracy in this case.  

Figure 10 displays the evolution of the RMSE-error for all three datasets as the GraphConv 

operator model was trained. After each epoch of training, the parameters of the model were 

updated based on the training-error. Each test-set was then fed to model to determine the 
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model's accuracy and did not affect the training of the model in any way. From the figure it is 

observable that the error of the 1- and 2-contingency dataset was initially unstable with the 

error fluctuating in the initial epochs before stabilizing. The model did not fully converge to 

what is probable a local minimum after 100 epochs, but with additional training the model 

would most likely have converged in the same error range. A notable observation is that some 

of the spikes in error as the model was being trained occurred in all test-sets simultaneously, 

indicating a form of correlation between all three contingency-datasets. The magnitude of the 

spikes decreases with each contingency, indicating a stronger correlation between the 1- and 

2-contingency dataset compared to the 1- and 3 contingency dataset. 

 

 

Figure 11 displays the target- vs the predicted-value scatter plot for the GraphConv operator. 

Similar plots for the GAT- and GCN operator can be found in Appendix B. The plotted red 

line indicates where the predicted value 𝑦 is equal to the target value y. A large deviation 

from red line indicates a poor prediction, while points close to the red line indicate good 

predictions. As is observable from the plots in Figure 11, the deviation from the red line 

increases with the number of contingencies, though the magnitude of deviation for the 

majority of the scenarios is small. For the 2-contingency dataset, the model is consistently 

underpredict most load-shedding values. As for the 3-contingency dataset, the model had a 

tendency of overpredicting many of the values in the range of [0, 20]. As the shed system-

load passed the 20-value mark, the model began to consistently underpredict the values 

instead. A possible explanation for the increase in deviation from the target value could be 

Figure 10: The evolution of the RMSE per epoch for all three contingency datasets for the GraphConv. 
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that the model was unable to comprehend that additional contingencies would lead to an 

increase in the shedding of system load. Despite this, there is a good overlap of points on the 

prediction line across all datasets, and the Graph- conv model is capable to a high degree of 

predicting both small and large load-shedding values across contingencies.  

 

 

 

Figure 11: Scatter plots for the target value vs the predicted value for the GraphConv model. The plots 
are shown in an ascending order of contingencies, with the results of the 1-contingency dataset displayed 
at the top. 
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In the following experiments, the number of ConvGNN-operators have been reduced from 

three to one. The GraphConv operator was chosen as the baseline operator for the following 

experiments as it was the fastest operator, while having decent predictive qualities.  

6.1.2 Experiment 1.2, GraphConv model trained on multiple datasets. 

This section displays the results where the GraphConv model was sequentially trained on two 

datasets, the 1-contingency and 3-contingency dataset. The model was first trained solely on 

the 1-contingency training-dataset for 100 epochs. The model was then trained on 20% 

(Scenario 1) and 80% (Scenario 2) of the 3-contingency dataset for another 100 epochs. 

While the models are set to train for a pre-defined number of epochs, an early stop 

mechanism has been added to cease training if the model show no sign of improving with 

sequential training.  

Table 5 displays the summed RMSE of the model after being trained on the 1-contingency 

(pre-RMSE) and the RMSE after being trained on the 3-contingency dataset (post-RMSE). 

The table also shows the percentage of the 3-contingency dataset the model was trained on, 

indicated with their corresponding scenario. The summed post- and pre-RMSE value for this 

experiment was calculated by adding up the model's RMSE value on all three test-datasets 

after training had concluded, as shown in equation (23). 

 

 

RMSE = RMSE  +  RMSE  +  RMSE   (23) 

The total RMSE value was calculated to check if training the model on subsequential datasets 

would yield a lower total error. The difference in RMSE is estimated based on the difference 

between the post-RMSE and the pre-RMSE.  

The results shown in the table indicates that both scenario 1 and scenario 2 gave a negative 

difference between the post- and pre-𝑅𝑀𝑆𝐸 , meaning that subsequentially training the 

model on the 3-contingency dataset improved the model's ability to predict the load-shedding 

values across contingencies, with scenario 2 being the superior approach to reduce the overall 

RMSE.  
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Table 5: Table displaying the Pre, Post and RMSE difference between the two scenarios, indicated with 
the percentage of training data of the 3-contingency dataset. A negative RMSE difference indicate a 
reduction of total RMSE. 

Scenario Pre-𝐑𝐌𝐒𝐄𝐭𝐨𝐭 Post-𝐑𝐌𝐒𝐄𝐭𝐨𝐭 𝐑𝐌𝐒𝐄𝐭𝐨𝐭 

difference 

Percentage 

trained 

1 1.6627 1.3316 -0.3311 20% 

2 1.6627 1.2717 -0.3910 80% 

 

The evolution of the RMSE after being trained on both datasets can be observed in Figure 12 

and Figure 13, respectively. The dashed line marks the transition from the model being 

trained on one training-set to the other. The position of the dashed line can change from 

experiment to experiment due to the implementation of the early stop mechanism. From both 

Figure 12 and Figure 13, one can observe that after the change in training-data, the error for 

both the 2- and 3-contingency test-set dropped instantaneously while the error for the 1-

contingency increased slightly.  

 

 
Figure 12: The evolution of the RMSE per epoch for all three contingency datasets before and after the model was 
trained on 20% of the 3-contingecy dataset. The purple dashed line indicates the change in training data. 
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6.2 Experiment 2, Load Perturbation, 1-Contingecy. 

In the second experiment, the load of the system was gradually increased by a percentage for 

each simulated dataset to investigate the GraphConv model's resilience against load-

perturbations. In the experiment, the topology was kept static, and a single contingency was 

induced at each simulation step. The set-values for the load were initially equal across the 

dataset, but the values were increased by adding a scaling factor k = 1.05, 1.10, 1.20 for each 

of the simulated datasets, respectively. In total, three additional datasets were made with the 

scaling load factor, increasing the system load with 5%, 10% and 20%. To avoid any 

confusions, the datasets are renamed to low-load (5%), medium-load (10%) and high-load 

(20%), respectively.   

The objectives of the second experiment were to: 

1) Investigate the model's capability of predicting the load-shedding values for the cases 

with 5%, 10% and 20% extra load while only being trained on the case with the 

standard load condition. 

2) Investigate the change of behaviour and accuracy of the model after being trained on 

multiple datasets with a differing load. Scenario 1 is the model trained on 20% of the 

high-load data, while Scenario 2 is the model trained on 80% of the high-load data. 

In both scenarios, the model was first trained on the normal load-condition dataset. 

Figure 13: The evolution of the RMSE per epoch for all three contingency datasets before and after the model was 
trained on 80% of the 3-contingecy dataset. The purple dashed line indicates the change in training data. 
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6.2.1 Experiment 2.1, Prediction Across Varying Load Without Additional 

Training 

The first sub-section of experiment 2 displays the results of the GraphConv-model trained 

solely on the 1-contingency dataset with the standard load-condition. After training had 

concluded, the model was subsequentially tested on the test sets of all the load-condition 

datasets. Table 6 shows the error of the trained model on said test-sets. As with the 

contingency-perturbation experiment, the error of the model increased slightly as the system 

load was further perturbated, although the discrepancy of error between the lowest and 

highest error is lower for the load-perturbation experiment compared to the contingency-

perturbation experiment.  

Table 6: Table displaying the RMSE error of experiment 2.1 for the GraphConv operator on the test-set 
for all four load-condition datasets after being trained solely on the normal load-condition dataset. 

Dataset Error (RMSE) 

Normal Load Condition 0.1765 

5% Additional Load 0.1813 

10% Additional Load 0.1865 

20% Additional Load 0.2047 

 

Figure 14 displays the evolution of the RMSE per epoch for the test-set of all four load-

condition datasets as the model was being trained. From the figure it is observable that the 

RMSE of each load-dataset decreases sharply in the initial epochs with some initial 

fluctuation. As the model was further trained, the error began to stabilize though the model 

did not fully converge after 100 epochs. Additional training would most likely cause the 

model to converge with roughly equal error.  

A notable observation from Figure 14 is that the spikes in error as the model is being trained 

occurs in all test-sets simultaneously. This indicates a strong correlation between the load-

datasets, which may explain why the error-discrepancy is much lower for the load-

perturbation datasets compared to the contingency-perturbation datasets. Because of the 

strong correlation between the error-fluctuation of the datasets, it can mean that further load-
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perturbation does not change the load-shedding pattern in the system. Rather, only the 

magnitude of shed load changes. This is a stark contrast compared to Figure 10, where there 

is a slight correlation between the spikes in the error, but the spikes are not equally large 

across all three datasets.  

 

Figure 14: The evolution of the RMSE per epoch for the four load-datasets using the GraphConv 
operator. 

Figure 15 and Figure 16 displays the target-value vs the predicted value scatter plot for the 

Normal-load condition and the High-load condition, respectively. As can be observed from 

both figures, there is a great overlap on the red line for both the normal- and the high-load 

datasets. As the load in the system increased, the mean for the load-shedding value increased 

as well. For the Normal-load dataset, the mean was situated around the 20-22.5 MW mark, 

while for the High-load dataset the mean was situated slightly higher, around the 25-30 MW 

mark. For the High-load dataset, there was also a few additional datapoints which exceeded 

beyond the 50 MW-mark which the model was able to predict with a high accuracy. This 

shows that the model can predict the load-shedding values in higher load-conditions. 
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Figure 15: Scatter plots for the normal load-condition datasets displaying the target value vs the predicted 
value. 

  

 

 

 

Figure 16: Scatter plots for the high-load datasets displaying the target value vs the predicted value.  
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6.2.2 Experiment 2.2, Prediction Across Varying Load With Additional 

Training 

This section displays the results where the GraphConv model was sequentially trained on two 

datasets, the normal-load, and the High-load dataset. This section includes two scenarios, 

Scenario 1 where the model is trained on 20% of the high-load data, while Scenario 2 is the 

model trained on 80% of the high-load data. In both scenarios, the same model trained on the 

normal load-condition dataset was used. Table 7 displays the total RMSE of the models 

before (pre-RMSE) and after (post-RMSE) being trained on the second dataset for each 

corresponding scenario. The RMSE was calculated following equation (23), although slightly 

altered as the experiment includes all four load conditions. This alteration is reflected in 

Equation (24).  

 

 

RMSE = RMSE % +  RMSE % +  RMSE % +  RMSE %  

 

(24) 

Table 7: Table displaying the Pre, Post and RMSE difference between the two scenarios, indicated with 
the percentage of training data of the High-load dataset. A negative RMSE difference indicate a reduction 
of total RMSE. 

Scenario Pre-𝐑𝐌𝐒𝐄𝐭𝐨𝐭  Post-𝐑𝐌𝐒𝐄𝐭𝐨𝐭 RMSE 

difference 

Percentage 

trained 

1 1.6203 1.6291 0.0088 20% 

2 1.6203 1.5999 -0.0548 80% 

 

Although the difference between the post-RMSE and the pre-RMSE for both scenarios is 

small, the model saw a slight reduction in the total RMSE in scenario 2. The evolution of the 

RMSE after being trained on both datasets can be observed in Figure 17 and Figure 18, 

respectively. The dashed line marks the transition from the model being trained on one 

training-set to the other. As can be observed from the figures, the convergence point is vastly 

different between the two scenarios. The model in scenario 2 converged after only 6 epochs, 

while the model in scenario-1 needed 89 epochs to converge. Despite the extra training time, 

the model in scenario 1 saw no improvement in accuracy.  



Results & Discussion 

Page 73 of 111 

 

Figure 17: The evolution of the RMSE per epoch for all four datasets before and after the model was 
trained on 20% of the High-load dataset. The purple dashed line indicates the change in training data. 

 

 

Figure 18: The evolution of the RMSE per epoch for all four datasets before and after the model was 
trained on 80% of the High-load dataset. The purple dashed line indicates the change in training data. 
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6.3 Experiment 3, Topology and Contingency Perturbation 

In the third experiment of the thesis, the topology of the system was altered by adding two 

additional lines to the system. With the modified topology, three datasets were simulated with 

a varying number of contingencies (1, 2 and 3-contingencies), similar as in Experiment 1. The 

model was first trained solely on the 1-contingency dataset with the original topology of the 

system, and then subsequentially tested on all test-sets to investigate the model's ability to 

predict across topologies. In the last experiment, the model was then subsequentially trained 

on 20% (Scenario 1) and 80% (Scenario 2) of the dataset for the 3-contingency with the 

modified topology.  

In a more condensed form, the objectives of the second experiment were to: 

1) Investigate the model's capability of predicting the rescheduling values across two 

topologies while only being trained on one topology. 

2) Investigate the change in behaviour and accuracy of the model after being trained on 

multiple datasets with different topologies. Scenario 1 is the model trained on 20% of 

the 3-contingency data with the modified topology, while Scenario 2 is the model 

trained on 80% of the 3-contingency data with the modified topology. In both 

scenarios, the model was first trained on the 1-contingency dataset with the original 

topology. 
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6.3.1 Experiment 3.1, Prediction Across Topologies Without Additional 

Training 

The first sub-section of experiment 3 displays the results of the GraphConv-model trained 

solely on the 1-contingency dataset with the original topology. After training had concluded, 

the model was then subsequentially tested on the datasets with the modified topology and 

increasing number of induced contingencies. Table 8 shows the error of the prediction of the 

model on all test-sets. A notable observation from said table is that the prediction-error on the 

1- and 2-contingency dataset with the modified topology is higher as compared to the dataset 

with the original topology and the same number of contingencies (Experiment 1). A possible 

explanation for this phenomenon could be that the inclusion of additional lines to the most 

vulnerable areas in the system made them more robust to contingencies. The model expected 

the most vulnerable areas to shed load due to the occurred contingencies, but the new 

connections made it so that the load was shed in different places instead. This change of 

pattern confused the model, which led to the high prediction error.  

Table 8: Table displaying the RMSE error of experiment 3.1 for the GraphConv operator on the test-set 
for the 1 to 3-contingency dataset with both the original and the modified topology 

Dataset Error (RMSE)  

1-Contingency, original topology 0.1730 

1-Contingency, modified topology 0.5222 

2- Contingency, modified topology 0.6214 

3- Contingency, modified topology 1.0141 

 

Figure 19 displays the evolution of the RMSE for all four datasets over 100 epochs as the 

model is being trained on the 1-contingency training set with the original topology. The 

RMSE of each dataset decreases in parallel with training, with the error stabilizing as the 

model is being trained. For all test-sets, the fluctuation in the error as the model is being 

trained occurs simultaneously at some points. Though, the magnitude of the fluctuation varies 

heavily between the test-sets. While the simultaneous fluctuation indicates a correlation 

between the datasets, the correlation is not as strong in this experiment as with the load-
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perturbation experiment. This further indicates that a change occurred in the load-shedding 

pattern after the topology of the system was modified. 

 

Figure 19: The evolution of the RMSE per epoch for the four contingency datasets using the GraphConv 
operator. 

 

Figure 20 displays the target-value vs the predicted load-shedding value scatter plot for the 

datasets used in this experiment. As with the previous plots, the red line indicates where the 

predicted value 𝑦 is equal to the target value y. As is apparent from studying the figures, the 

error of the 1- and 2-contingency set is now higher compared to the same contingency-cases 

in Figure 11. From Figure 20, the suspicion that there has been a change in the load-

shedding pattern for some of the simulated scenarios is further validated. Though, from the 

figures one can observe that the load-shedding pattern did not completely change for all the 

simulated scenarios. This can be observed by the parallel dots above the red line for the 1- and 

2-contingency datasets, which shows that there are now two patterns for shedding load. The 

model is only capable of predicting one of the load-shedding pattern. As for the error for the 

3-contingency dataset, the overall prediction is decent, but there are now quite a few 

situations in which the model predicts the load shed to be substantially lower than the actual 

values.  
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Figure 20: Scatter plots for the 1-,2- and 3-contingency datasets with modified topology displaying the 
target value vs the predicted value. The red line indicates where the target value equals the predicted 
value. 
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6.3.2 Experiment 3.2, Prediction Across Topologies with Additional 

Training 

In this section, the trained model from Experiment 3.1 is sequentially trained on two portions 

of the 3-contingency dataset with the modified topology, indicated by their respective 

scenario. Scenario 1 is the model trained on 20% of the 3-contingency data with the 

modified topology, while Scenario 2 is the model trained on 80% of the 3-contingency data 

with the modified topology. In both scenarios, the exact same model trained on the 1-

contingency dataset with the original topology was used. 

 

Table 9 displays the total RMSE of the model before (pre-RMSE) and after (post-RMSE) 

being trained on the 3-contingency dataset with the modified topology for each corresponding 

scenario. The RMSE was calculated following equation (23).  

Table 9: Table displaying the Pre, Post and RMSE difference between the two scenarios, indicated with 
the percentage of training data of the 20% load dataset. A negative RMSE difference indicate a reduction 
of total RMSE. 

Scenario Pre-𝐑𝐌𝐒𝐄𝐭𝐨𝐭 Post-𝐑𝐌𝐒𝐄𝒕𝒐𝒕 𝐑𝐌𝐒𝐄𝐭𝐨𝐭 

difference 

Percentage 

trained 

1 2.3307 2.0925 -0.2382 20% 

2 2.3307 2.0606 -0.2701 80% 

 

As can be seen from the table, both scenarios gave a reduction in the total RMSE, with 

scenario 2 giving the largest decrease in the total error. This meant that subsequential training 

of the model led to an improvement of the model’s predictions. Figure 21 and Figure 22 

displays the evolution of the RMSE as the model was being trained for both Scenario 1 and 

Scenario 2, respectively. While the model was trained on the 3-contingency dataset in both 

scenarios, indicated with the blue line, the error of the test-set of the specific dataset did not 

change substantially with additional training. A normal assumption would be that the model’s 

prediction-error on a specific case would decrease as the model was trained for that case. 

However, this was seemingly not the case. As for the 1- and 2-contingency dataset with the 

modified topology, both saw a sharp decrease in their error, resulting in a reduction of the 
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total error for all datasets. For both scenarios, the error of the 1-contingency dataset with the 

original topology saw an increase in error after the change of training data. 

 

Figure 21: The evolution of the RMSE per epoch for all 4 datasets before and after the model was trained 
on 20% of the 3-contingency dataset. The purple dashed line indicates the change in training data. 

 

 

Figure 22: The evolution of the RMSE per epoch for all 4 datasets before and after the model was trained 
on 80% of the 3-contingency dataset. The purple dashed line indicates the change in training data. 
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6.4 Experiment 4, Case Study 

In the fourth and last experiment, the best performing model from experiment 1 was used in a 

side-by-side case study with the OPF in the Monte Carlo simulation. The goal of the case-

study was to compare both the accuracy and the run-time of both the MC-simulation and the 

best-performing ML-model. The case-study also wanted to investigate the difference in run-

time between different batch-size of the input dataset to the ML-model. To this end, two 

different batch-sizes were used for the input dataset.  

In the experiment, 5000 datapoints were simulated using the Monte Carlo Simulation. 

Additionally, a new set of load values were used to create a different load-situation to test the 

model. These values did not differ substantially from the load-values used in the previous 

experiments. For each simulation point, the resulting load-shedding values, and the features of 

the system, such as the generated power, line flow, line status etc were stored and used to 

create the new dataset for the trained ML- model. The run-time for the MC simulation was 

only estimated for the last OPF in the simulation, which was only called when an overload 

occurred in the system due to the contingencies. Thus, the run-time would often be zero due 

to some scenarios not leading to system overloads. The run-time for the ML-model was 

estimated based on the time it took for the model to return the predicted values and did not 

include the run-time for creating and pre-processing the dataset. 

As with the previous simulated dataset, some of the load-scenarios led to a non-converged 

state for the OPFs, and these scenarios were discarded. However, to get the correct estimated 

speed-time for both the model and the OPF, it was imperative that the estimated run-time was 

based only on the cases in which the OPF did converge. Therefore, the estimated time for 

both the OPF and model was based only on the number of cases in which the OPF did 

converge. As for the model, the run-time is dependent on the batch-size of the dataset fed to 

the model. The larger the batch-size, the faster the model is.  

Table 10 displays the run-time of both the OPF and the ConvGNN-model and the RMSE 

prediction-error of the model. The training-set of the model used a batch-size of 15, while the 

test-set used a batch-size of 5. The RMSE error was calculated based on the predictions of the 

model and the actual target value produced by the MC simulation.  
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Table 10: The run-time for the OPF and ConvGNN-model, and the prediction error of the model using a 
batch-size of 15.  

Model Run time (s) Prediction Error (RMSE) 

OPF 236.51 

0.162 

GraphConv 0.8042 

 

Based on the results of the case-study, the model is around 294 times faster than the OPF at 

calculating the load-shedding values. As for the accuracy, the predicted value vs the target 

value is displayed in Figure 23. From the figure one can observe that the ML-model's 

predictions are almost equivalent to that of the OPF.  

 

Figure 23: Scatter plots for the predicted load-shedding value made by the ML-model and the target-
value estimated by the MC-simulation using a batch-size of 15. The red line indicates where the target 
value equals the predicted value. 

 

To investigate the difference in prediction-speed with differing batch-sizes, the input dataset 

was recreated using a batch-size of 1 instead of 5. The same trained model was used, the only 

difference was the batch-size of the input dataset. The new run-time of the model can be 

found in Table 11. With the batch-size of 1, the model was now only around 80 times faster 

than the OPF, making it around 3.675 times slower than with the batch-size of 5. As can also 

be observed from the table, the estimation-error did not change with the batch-size.   
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Table 11: The run-time for the OPF and ConvGNN-model, and the prediction error of the model using a 
batch-size of 2. 

Model Run time (s) Prediction Error (RMSE) 

OPF 236.51 

0.162 

GraphConv 2.94 

 

The reason for the conducted experiment with differing batch-sizes is to display the difference 

when screening multiple contingency-cases versus a single-contingency case. If the model is 

to only predict single scenarios, the gained speed of replacing the OPF with the ML-model is 

much lower than if the model was to be used for predicting multiple scenarios at once. This 

means that the optimal use of the model is not in real-time operational use, but rather to 

investigate multiple scenarios simultaneously in a Contingency Analysis.  

As a disclaimer, the speed of the ML-model is highly dependent on the python script used to 

estimate the model's prediction values. Further optimization of the Python code can thus lead 

to an improved run-time, which can further increase the discrepancy between the run-times of 

the OPF and the ML-model.  
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7 Node-level Predictions 

This part of the thesis presents the results of the partial node-level predictions of the models. 

The purpose of this section is to display that the model works on both a node-level and 

system-level, showing the flexibility of the model. One major flaw with the system-level 

prediction is that no information is given regarding which bus that shed load based on the 

system-state. Rather, only information that load was shed in the system is given, which is not 

particularly useful in most cases except if the goal is to investigate the total system cost of 

different long-term investments. Through node-level predictions it can become easier to 

understand why the prediction-error increases as the key-parameters of the system is 

increasingly perturbated, by investigating the node-wise error rather than the system error. 

To this extent, the same datasets were used in these experiments as with the previous section. 

Additionally, due to time-constraints, the node-level section will not explore the use of 

different operators as the previous section did, nor will it be conducting the experiments in 

which the model was trained sequentially on different datasets.   

7.1 Experiment 1, Contingency Perturbation 

As with Experiment 1 for the system-level, the model using the GraphConv operator was 

trained on the 1-contingency dataset and then subsequentially tested on all the three-

contingency datasets. The result of the model is shown in Figure 24, where the result is 

shown on a per-node basis rather than as a single value, and the mean error for each 

contingency dataset is shown in Table 12.  

Both the predicted and target value was estimated by taking the mean of each nodes' values, 

averaging over the predictions and target-values, following the equations given in Section 

5.2.1. The RMSE was estimated by averaging over each node's prediction-error. As is 

apparent from Figure 24, The model was able to predict the correct load-shedding value per 

node to a high degree, especially for the 1- and 2-contingency dataset. The model's prediction 

started to waver for the 3-contingency dataset, where the overlap between the predicted- 

values and target-values became slightly worse.  

As the number of induced contingencies increased, the load-buses 3-7 began to shed more 

load for each induced contingency, while bus 15 shed less. A potential explanation for this 

occurrence is that the system prioritized shedding load in the cheapest areas, but it is only able 
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to shed a finite amount before all the load in the area has been shed. As the number of 

contingencies increased, the system had to shed additional load to compensate for the 

contingencies. As the cheapest areas were unable to shed more load, the system had to begin 

shedding load in additional areas which it previously did not shed in. This changed the load-

shedding pattern, which the model was unable to pick up.  

Table 12: The prediction error for the node-level model using the GraphConv operator for all three 
contingency datasets. 

Dataset Error (RMSE) 

1-Contingecy 0.1412 

2-Contingencies 0.2552 

3-Contingencies 0.3831 
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Figure 24: The predicted load-shedding value vs the target value per load-bus in the system for all three 
contingency datasets.   
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7.2 Experiment 2, Load Perturbation 

For the varying load-prediction experiment, a model using the GraphConv operator was 

trained on the normal load dataset that induced a single contingency per simulated datapoint 

and then subsequentially tested on the three additional load datasets, similar as with 

Experiment 2 on the system-level. The result of the model is shown in Figure 25, where the 

result is shown on a per-node basis, and the error per dataset is given in Table 13.  

As with the system-level model, the node-level model predicted the load-shedding values 

across load-perturbations with a high accuracy. As the load in the system gradually increased, 

the error of the model increased accordingly, though the increase was fractional. This was 

further validated in Figure 25, which displays a great overlap between the predicted values 

and the target values for all three datasets.  

From the figure, one can observe that there are no clear changes in the load-shedding pattern 

as the load in the system increases. The only visible change as the load in the system 

increased, is an increase in the difference between the predicted vs target-value for load-bus 2 

and 13.  As the load in the system increases, the system sheds additional load at these two 

buses which the model is unable to pick up.  

 

Table 13: The prediction error for the node-level model using the GraphConv operator for all four load-
condition datasets. 

Dataset Error (RMSE) 

Normal Load Condition 0.1412 

5% Additional Load 0.1484 

10% Additional Load 0.1596 

20% Additional Load 0.1740 
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Figure 25: The predicted load-shedding value vs the target value per load-bus in the system for the three 
datasets with additional load.   
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7.3 Experiment 3, Topology and Contingency Perturbation 

As with Experiment 3 for the system-level, the model using the GraphConv operator was 

trained on the 1-contingency dataset and then subsequentially tested on all three-contingency 

datasets with the modified topology. The result of the model’s predictions is shown in Figure 

26, where the predictions are displayed on a per-node basis rather than as a single value. The 

mean error for each contingency dataset is shown in Table 14 

As can be observed when comparing Figure 24 and Figure 26, the modification of the 

topology had a slight impact on the model’s load-shedding pattern. The most notable change 

was that load-buses 7 and 8 shed less load for each contingency induced. This occurred as an 

additional line was connected between the two buses, making the two buses more robust to 

contingencies which led to a reduction of the average shed load in the two buses. Buses 2 and 

6 also shed less load after the topology of the system was modified, although none of the two 

buses had an additional line connected to them. This meant that the modification of the 

system had an indirect effect on bus 2 & 6, making them shed less load. For the other buses, 

the pattern was similar as with the contingency-experiment with the original topology, shown 

in Section 7.1. 

Based on the observed changes in pattern in both Experiment 1 and 3, the increase in system-

parameter perturbation, such as the induced contingencies per simulation step and the 

topology, influences the load shedding pattern. Though, the effect varies. 

Table 14: The prediction error for the node-level model using the GraphConv operator for all four 
contingency-dataset with both the original and the modified topology. 

Dataset Error (RMSE) 

1-Contingency, original topology 0.1412 

1-Contingency, modified topology 0.2602 

2- Contingency, modified topology 0.3614 

3- Contingency, modified topology 0.4899 
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Figure 26: The predicted load-shedding value vs the target value per load-bus in the system for all three 
contingency datasets with the modified topology.   
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8 Discussion 

8.1 Model Results 

In the result-section it was found that the constructed ConvGNN-models were able to predict 

the load-shedding values across minor system-perturbations such as the number of induced 

contingencies per simulation point, load-perturbations, and slight changes in the topology of 

the system with a high accuracy for both the system- and node-level. As the perturbation of 

the system-parameters increased, the model’s accuracy decreased with a varying degree 

depending on the parameter.  

Predictions across system-load perturbations were the easiest task for the models, while the 

addition of extra induced contingencies per simulation step was the hardest for the model, 

both with and without the modified topology. An interesting found is that additional system-

parameter perturbations did not alter the prediction-pattern of the models. The models’ 

prediction patterns were mostly consistent across all datasets, however the load-shedding 

pattern of some of the datasets changed as the system-parameters were perturbated. This 

meant that the bigger the perturbation was, the larger the predicted values deviated from the 

ground-truth values.  

8.1.1 System Level 

From the experiments conducted on a system-level, it was found that the GraphConv operator 

was the best performing operator compared to the GCN and GAT operator. This conclusion 

was based on an evaluation of the operators’ predictive abilities and the time-to-train and 

time-to-test run time. While the GAT-operator performed slightly better on the 2- and 3-

contingency datasets in Experiment 1, the GraphConv operator was superior in both terms of 

overall speed and prediction accuracy on the 1-contingency dataset. The large discrepancy in 

speed between the GraphConv and GAT operator was the main motivator as for why the 

GraphConv operator was chosen as the baseline model for the remaining experiments of the 

thesis. 

The difference in prediction speed between the operators was most likely caused by the 

complexity of each operators' message-passing method. Both the GCN- and the GraphConv 

operators has a much simpler method of message-passing compared to the GAT-operator. 

While it is hard to pinpoint the exact cause for success, a plausible explanation as for why the 
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GraphConv’s operator prediction were so successful for the 1-contingency dataset could be in 

the how the operator made use of the local and global feature information combined with the 

edge-weights. While all the operators utilized this information, the approach of the 

GraphConv to the learned weight for both nodal and local feature-information may have been 

decisive for its success on the 1-contingency dataset. Though, the GAT operator showed signs 

of generalizing better to the datasets with additional contingencies induced. 

For the GraphConv model, prediction across load-perturbations was the easiest task for the 

GraphConv model, while the contingency-perturbation experiment was the most difficult. The 

addition of extra contingencies in the system saw the accuracy of the model decrease sharply 

per contingency added.  

On the system-level, it was not always apparent as to what caused the increase of prediction-

error as the system-perturbations increased. The models’ predictions tended to deviate both 

higher and lower compared to the actual value between experiments. For both the 

contingency-perturbation experiment (Experiment 1, section 6.1) and the topology 

contingency-perturbation experiment (Experiment 3, section 6.3), the models consistently 

underpredicted the load-shedding values as the number of induced contingencies increased. 

For the load-perturbation, there were no visible changes in the prediction pattern as the 

system load increased.  

An explanation of this phenomenon could be that the models are trained on data that follows a 

set pattern based on the number of induced contingencies in the system. The system shed load 

according to the number of occurring contingencies, and the load-shedding patterns changes 

with the number of induced contingencies. As the models were only trained on a single-

contingency dataset, the models were only equipped to deal with the single-contingency 

patterns. For the load-perturbation case, the load-shedding pattern did not change as the load 

increased, which could explain the superb performance of the models.  

For the contingency-perturbation experiment and the modified-topology experiments, 

sequential training on both the 1- and 3-contingency dataset led to a reduction in the total 

prediction-error across all relevant datasets for the models in both experiments. The 

sequential training on the 3-contingency dataset led to an increase in the prediction-error on 

the 1-contingency dataset, however both models saw an instantaneous decrease in the 

prediction-error on the 2- and 3-contingency datasets. The additional training on the 3-
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contingency dataset gave the models insight into the load-shedding pattern with multiple 

induced contingencies. This made the models more generalizable, thus making it more robust 

to any potential perturbation in the system. As for the load-perturbation experiment, 

additional training saw a tiny increase in the overall prediction accuracy.  

In the conducted case-study, it was found that the ConvGNN-model was significantly faster 

than the opposing OPF. Depending on the batch-size of the test-set fed to the model, the 

model was around 80-290 times faster. The model was also able to predict the load-shedding 

values with a superb accuracy, while being much faster than the OPF. 

The case-study also found that the batch-size of the training-set had a significant impact on 

the model’s run-time. The initial model used in the case-study was trained using a batch-size 

of 15 on the training-set, and the test-set created during the case-study used a batch-size of 5. 

As the batch-size of the model was reduced, the run-time of the model increased accordingly. 

The difference in the run-time for the model makes for an interesting question as to how one 

should approach the testing of the model with regards to the batch-size. A larger batch-size 

would allow for faster screening of more test-cases. However, if the model is to be used for 

real-time prediction where only singular cases are evaluated, the gained speed would be much 

smaller. This means that the optimal use of the model is not in real-time operational use, but 

rather to investigate multiple scenarios simultaneously in a Contingency Analysis. 

8.1.2 Node-level 

As with the models on the system-level, the node-level models were able to predict the load-

shedding values across all experiments with a high accuracy. Similar as with the system-level, 

the prediction across varying load was the easiest task, while the contingency-perturbation 

prediction was the hardest. As with the System-level, additional system parameter 

perturbations led to an increase in the prediction-error for all three experiments on the node-

level. 

By evaluating the results at the node-level, it became easier to observe why the model’s 

prediction error increased in par with the system-perturbation. As was stated in the system-

level discussion, it was assumed that the model's increase in prediction error with further 

parameter-perturbations was caused by the load-shedding pattern of the system changing with 

further perturbations. This assumption was validated by the node-level results.  
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At node-level, the ML-models predicted that the load-shedding pattern it had been trained on 

would continue with further system-perturbation. As an example, as the number of 

contingencies for each simulation step increased, the model predicted that the system would 

continue to shed load in the buses which already had were shedding load, as this is what the 

ML-model was trained to do. However, the ML-model did not account for the saturation of 

the load-shed. The load-buses are only able to shed a finite amount of load. As the number of 

contingencies in the system increased, some buses maxed out the possible shedding of load, 

which lead to other load-buses having to shed load. This change in the load-shedding pattern 

was not something the model was able to pick up, which led to a higher prediction error.  
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9 Conclusion 

This thesis has examined the possibility of using advanced ConvGNN-models to partially 

replace the slow and cumbersome numerical OPFs used in Contingency Analyses and Power 

System Reliability analyses. Within the Contingency Analyses, the OPFs have multiple areas 

of usage such as evaluating the impact that occurring contingencies have on the system. This 

is often done by estimating values such as the load-shedding and the generator rescheduling 

after occurring contingencies using a set of Power Flow equations. This allows for the 

estimation of the socio-economic cost of operation and to access the most optimal way of 

dealing with any occurring contingencies. As the PF equations are often non-linear, numerical 

approximations are used to solve them. The numerical approaches are often slow and tedious, 

and convergence is not guaranteed either. This is the motivating factor behind the introduction 

of ML and the ConvGNN models. However, as the Electrical Power System evolves, changes 

to system-parameters such as the topology or the system load is inevitable. The thesis 

therefore sought to explore the ML-models resilience towards small system-parameter 

perturbations, and if any sequential training on multiple dataset would enhance the models' 

predictive capabilities.  

To this end, multiple ConvGNN-models were made utilizing the system’s topology alongside 

features such as the power flow, load consumption, generated power, line status etc. to learn 

the patterns that were prevalent to estimate the load-shedding values after a set of 

contingencies occurred. The thesis sought to explore the model's predictive capabilities at 

both a node-level and at a system-level. Thereupon, multiple datasets were made with each 

dataset perturbating a system-parameter, such as the induced contingencies per simulation 

step or the system load. The results of this thesis showed that ConvGNN-models were able to 

predict the system load-shedding to a high degree across multiple system-perturbations, such 

as the number of induced contingencies per simulation point, load-perturbation, and small 

topology perturbations. For both prediction-levels, increasing perturbation of the system-

parameter led to a decrease in the model's predictive accuracy, which was expected. Through 

a case-study, it was found that the ML-models were up to 290 times faster than the OPF at 

calculating the load-shedding values. It was also confirmed that the batch-size of the model 

has a noticeable impact on the run-time of the model, which was expected.  
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In the first experiments of the thesis, several ConvGNN-operators were tested and compared 

on the same dataset to determine the best performing operator that was to be used for the 

remaining experiments. In total, three ConvGNN-operators were tested, being the GCN, GAT 

and GraphConv operator. Out of these three operators, the GraphConv operator was the 

deemed the best operator for the problems in this thesis based on both its speed and predictive 

accuracy, and ultimately became the baseline operator for the other experiments conducted in 

the thesis. The GAT-operator showed great strength in its ability to generalize across the 

contingency-datasets, however the operator was far slower than that off the GraphConv, 

which rendered the operator useless.  

The easiest conducted experiment for the ConvGNN-models were the prediction of load-

shedding values across system-load perturbations, while the most challenging task was the 

prediction across multiple induced contingencies. In the discussion section of the thesis, it 

was concluded that a possible explanation for this varying performance was thought to be a 

change in the load-shedding pattern in the data as multiple contingencies were induced. The 

model assumed that the load-shedding trend it had been trained on would continue, which was 

not the case as revealed by the node-level predictions. Due to limited time, the thesis did not 

seek to explore sequential training on dataset with increased system-parameter perturbation 

on a node-level. This would be beneficial as it would explore if said training would give the 

model insight into the new load-shedding pattern with additional induced contingencies. 

To conclude, this thesis sought to explore the usage of ML-models as a substitution for the 

numerical DC-OPFs used in Contingency Analyses which was used to estimate the shed 

system load due to deterministically induced contingencies. The thesis explored the models' 

resilience towards system-parameter perturbations. The constructed ConvGNN-models of the 

thesis were equally capable of predicting the load-shedding values across multiple system-

parameter perturbations both at a system prediction-level and at a node prediction-level. The 

prediction-accuracy between system-parameters perturbations varied, with the system-load 

being an easier task, while the contingency-perturbations being more difficult.  
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9.1  Future Work 

In this thesis, the ConvGNN-models showed prominent results at predicting the load-

shedding values in the test-system. However, for the ConvGNN-models to fully replace the 

OPFs as a tool in the analytical processes, the models must also be able to predict additional 

values such as the rescheduled power of generators. Over the course of the thesis, several 

attempts were made to get the models to predict said values, though with no success. A 

plausible cause could be a fault in the way the values were stored in the MC-simulation. Other 

potential faults could be that the occurrences of cases where the system had to reschedule 

production were rare, and when it did occur, the values were too small.  

Future work should initially include getting the model to predict the rescheduling generator 

values. This would make the model a step closer to being able to replace the OPF in the 

analytical tools. Future work should also be building upon the node-level, performing similar 

experiments as was done on the system-level. By studying the node-level, it can be easier to 

observe if sequential training on datasets with additional system-parameter perturbations will 

influence the model’s prediction pattern, which was at fault for the high error in some cases. 

Other steps could be to test the model on vastly different topologies to explore how the model 

fare. The perturbation of topology in this thesis was small, and there is no guarantee that the 

models are usable across topologies which differ by a large amount.  

Future work could also include an instance system development for planning, either long-term 

or short-term. This could be done by performing a case-study in which the system-load is 

incrementally increased over a period. The model could then be used to evaluate different 

investment alternative, by checking if the model is able to correctly depict which investment 

alternative would be cheapest if the system load is estimated to increase in the future, or if the 

probability of contingencies increases with the coming years. 

To this end, the ConvGNN-models must be more complex than the one used in this thesis. 

The models used in this thesis were trained on non-sequential data. This meant that the 

models were not capable of simulating how the state of the system evolved over time, nor 

accounting for evolving contingencies etc. For the models to see use in a real-life scenario, 

additional work must be made to make the models more realistic and complex. This can be 

achieved by making the model work on data created using the AC PF-equations rather than 

the DC-equations. An interesting approach would be to test if a model trained with DC-data is 
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able to work on cases with AC-data. Other approaches could be to make the models work on 

sequential time-data. As the input of the models' become more complex, additional relevant 

features are necessary for the models. By including additional features to the models, the 

models could become more flexible, thus increasing the area of usage. Additional features 

could include relevant bus-values, line-values, external factors such as wind, air temperature 

around the lines etc.  
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Appendix A  

Table 15: Bus Data [61] 

Name Description 

BUS_i Bus number 

BUS type Bus type (1= PQ, 2=PV, 3=ref) 

PD Real Power Demand 

QD Reactive Power Demand 

GS Shunt Conductance (MW demanded at V = 1.0 p.u.) 

BS Shunt Susceptance (MW demanded at V = 1.0 p.u.) 

Bus_area Area Number 

Zone Loss Zone (positive Integer) 

VM Voltage Magnitude (p.u.) 

VA Voltage Angle (p.u.) 

VMAX Maximum Voltage Magnitude (p.u) 

Vmin Minimum Voltage Magnitude 
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Table 16: Bus information for the IEEE-24 bus test system.  

Bus Type Pd Qd Gs Bs Area Vm Va BaseKV Zone Vmax Vmin 

1 2 108 22 0 0 1 1 0 138 1 1.05 0.95 

2 2 97 20 0 0 1 1 0 138 1 1.05 0.95 

3 1 180 37 0 0 1 1 0 138 1 1.05 0.95 

4 1 74 15 0 0 1 1 0 138 1 1.05 0.95 

5 1 71 14 0 0 1 1 0 138 1 1.05 0.95 

6 1 136 28 0 0 1 1 0 138 1 1.05 0.95 

7 2 125 25 0 0 2 1 0 138 1 1.05 0.95 

8 1 171 35 0 0 2 1 0 138 1 1.05 0.95 

9 1 175 36 0 0 2 1 0 138 1 1.05 0.95 

10 1 195 40 0 0 1 1 0 138 1 1.05 0.95 

11 1 0 0 0 0 2 1 0 230 1 1.05 0.95 

12 1 0 0 0 0 3 1 0 230 1 1.05 0.95 

13 3 265 54 0 0 3 1 0 230 1 1.05 0.95 

14 2 194 39 0 0 3 1 0 230 1 1.05 0.95 

15 2 317 64 0 0 3 1 0 230 1 1.05 0.95 

16 2 100 20 0 0 4 1 0 230 1 1.05 0.95 

17 1 0 0 0 0 4 1 0 230 1 1.05 0.95 

18 2 333 68 0 0 4 1 0 230 1 1.05 0.95 

19 1 181 37 0 0 4 1 0 230 1 1.05 0.95 

20 1 128 26 0 0 3 1 0 230 1 1.05 0.95 

21 2 0 0 0 0 3 1 0 230 1 1.05 0.95 

22 2 0 0 0 0 4 1 0 230 1 1.05 0.95 

23 2 0 0 0 0 4 1 0 230 1 1.05 0.95 

24 1 0 0 0 0 3 1 0 230 1 1.05 0.95 
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Table 17: Generator Data Description 

Name Description 

Gen_bus Bus number 

Pg Real Power Output (MW) 

Qg Reactive Power Output (MVar) 

QMax Maximum reactive power output (MVar) 

qmin Minimum reactive power output (MVar) 

vg Voltage Magnitude Setpoint (p.u.) 

Mbase Total MVA base of machine, default to baseMVA 

status Machine status, > 0 in service, <= 0 out of service 

Pmax Maximum Active Power Output (MW) 

Pmin Minimum Active Power Output (MW) 
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Table 18: Generator Information for the IEEE-24 Bus Test System 

Bus Pg Qg QMax QMin Vg mBase Status Pmax Pmin 

1 10 0 10 0 1.035 100 1 20 0 

1 10 0 10 0 1.035 100 1 20 0 

1 76 0 30 -25 1.035 100 1 76 0 

1 76 0 30 0 1.035 100 1 76 0 

2 10 0 10 0 1.035 100 1 20 0 

2 10 0 10 -25 1.035 100 1 20 0 

2 76 0 30 -25 1.035 100 1 76 0 

2 76 0 30 -100 1.035 100 1 76 0 

6 0 0 0 0 1.025 100 1 1 0 

7 80 0 60 0 1.025 100 1 100 0 

7 80 0 60 0 1.025 100 1 100 0 

7 80 0 60 0 1.025 100 1 100 0 

13 95.1 0 80 0 1.02 100 1 197 0 

13 95.1 35.3 80 0 1.02 100 1 197 0 

13 95.1 0 80 0 1.02 100 1 197 0 

14 0 0 200 -50 0.98 100 1 0 0 

15 12 0 6 0 1.014 100 1 12 0 

15 12 0 6 0 1.014 100 1 12 0 

15 12 0 6 0 1.014 100 1 12 0 

15 12 0 6 0 1.014 100 1 12 0 

15 12 0 6 0 1.014 100 1 12 0 

15 155 0 80 -50 1.014 100 1 155 0 

16 155 0 80 -50 1.017 100 1 155 0 

18 400 0 200 -50 1.05 100 1 400 0 

21 400 0 200 -50 1.05 100 1 400 0 

22 50 0 16 -10 1.05 100 1 50 0 

22 50 0 16 -10 1.05 100 1 50 0 

22 50 0 16 -10 1.05 100 1 50 0 

22 50 0 16 -10 1.05 100 1 50 0 

22 50 0 16 -10 1.05 100 1 50 0 

22 50 0 16 -10 1.05 100 1 50 0 

23 155 0 80 -50 1.05 100 1 155 0 

23 155 0 80 -50 1.05 100 1 155 0 
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23 350 0 150 -25 1.05 100 1 350 0 
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Appendix B 

 

 

 

 
Figure 27: The following figures shows the predicted value vs the target value for the GCN model tested on the test-
set of the 1-line, 2-line, and 3-line contingency datasets, respectively. 
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Figure 28: The following figures shows the predicted value vs the target value for the GAT model 
tested on the test-set of the 1-line, 2-line, and 3-line contingency datasets, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 

 


