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Physics-Guided Loss Functions Improve Deep
Learning Performance in Inverse Scattering

Zicheng Liu, Mayank Roy

Abstract—Solving electromagnetic inverse scattering problems
(ISPs) is challenging due to the intrinsic nonlinearity, ill-posedness,
and expensive computational cost. Recently, deep neural network
(DNN) techniques have been successfully applied on ISPs and
shown potential of superior imaging over conventional methods.
In this paper, we discuss techniques for effective incorporation of
important physical phenomena in the training process. We show the
importance of including near-field priors in the learning process of
DNN:s. To this end, we propose new designs of loss functions which
incorporate multiple-scattering based near-field quantities (such
as scattered fields or induced currents within domain of interest).
Effects of physics-guided loss functions are studied using a variety
of numerical experiments. Pros and cons of the investigated ISP
solvers with different loss functions are summarized.

Index Terms—Inverse scattering problem, deep learning,
electromagnetic imaging, loss function, physics-guided neutral
network, U-net.

I. INTRODUCTION

structures, electromagnetic inverse scattering problems
(ISPs) [1] are widely studied in industrial applications including
remote sensing, biomedical imaging, non-destructive testing
and geophysics. Images are obtained by collecting the fields
scattered by the objects and reconstructing the distribution of
electromagnetic constitutive parameters (relative permittivity
and conductivity) of the objects. The phenomenon of multiple
scattering leads to nonlinear reconstruction problems, which
present additional complexity over the inherent ill-posedness
of the inverse problem.

DUE to the ability of noninvasive imaging of internal
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Fig. 1.  Sketch of the imaging system and deep neural network (DNN) solver
for the concerned inverse scattering problems. Fields scattered by objects in
domain of interest (DOI) are collected by receivers and used to have an initial
estimate of contrast function through back propagation method. The DNN solver
takes the initial estimate as input and generates the final estimate of contrast
function.

The conventional solvers for non-linear inverse scattering
problems include deterministic methods (including distorted
Born iterative method [2], [3], contrast source inversion [4],
and subspace-based optimization method [5], [6]) and stochas-
tic methods such as genetic optimization [7] and differential
evolution [8]. Moreover, diverse regularization approaches and
prior information have been widely applied to overcome the ill-
posedness of ISPs [9]-[12]. Since iterative schemes are usually
followed and a forward modeling problem needs to be solved
at each iteration, the time complexity of such approaches is
prohibitive for real-time applications. For the ease of reference,
we refer to this family of conventional iterative solvers for ISPs
as ‘traditional ISP solvers’.

Deep neural network (DNN) has been successfully applied in
image processing, computer vision, nature language processing,
and electromagnetic computation. Recently, its application on
ISPs [13]-[16] has drawn much attention due to the potential
of superior performances in imaging accuracy and efficiency.
In the learning-by-examples paradigm [17], [18], electric fields
are taken as input and the technique of principal component
analysis can be used to reduce the input dimension and avoid
the problem of curse-of-dimensionality. Convolutional neural
networks (CNNSs) [19] with U-net architecture [20]-[22] have
also been used.

Some incorporation of physics-guided priors have been ex-
plored within the framework of DNN. Taking estimations gen-
erated by fast non-iterative conventional methods (e.g., back
propagation) as input and the ground truth as the response, the
predictor is trained based on simulation results and then used for
real scenarios [14], [22], [23]. See Fig. 1. In contrast with directly
predicting the contrast (or permittivity) function for most DNN
solvers, an induced current learning method (ICLM) [24] has

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-7948-6987
https://orcid.org/0000-0001-6968-578X
mailto:zicheng.liu@nwpu.edu.cn
mailto:krishna.agarwal@uit.no
mailto:krishna.agarwal@uit.no
mailto:mro168@post.uit.no
mailto:dilip.prasad@uit.no

LIU et al.: PHYSICS-GUIDED LOSS FUNCTIONS IMPROVE DEEP LEARNING PERFORMANCE IN INVERSE SCATTERING 237

also been proposed. Based on the estimated induced current den-
sity, the contrast function is computed following a deterministic
approach. In [25], the DNN solver is designed to solve ISPs in
two steps: an initial estimate of contrast is generated by a CNN
which takes scattered fields as input and then the final solution is
obtained further learning the solution residue using a modified
U-Net. The loss function penalizes discrepancies in dielectric
contrast distributions (or analogously scattering contrasts) and
thereby guides the network to have predictions that fit the
patterns of the scattering contrast distributions in the training
set. In other words, the network is actually inclined to learn only
how to regularize the desired scattering contrast function.

An underlying insight here is that the scattering contrast is
intrinsic property of the scatterers for a given background and it
therefore does not incorporate the extrinsic manifestation of the
physics of scattering which ultimately results into the measured
scattered field. In this sense, it is useful to consider if loss
function can be designed to utilize the external manifestations
of the physical phenomenon of scattering and thereby fit more
than just the scattering contrast distributions.

Noise adversely affects the prediction accuracy and the ro-
bustness of DNN solvers. In the training process, the network pa-
rameters (weights and biases) are optimized by minimizing the
loss function, which usually measures the discrepancies between
the response and the ground truth. If clean input (i.e., initial
estimation from noise-free scattered fields) is used for training,
the training process has no chance to consider the effects from
noises. Therefore, the obtained solver may behave poorly in real
scenarios. While it is possible to consider the noise effects in the
learning process by generating input images from noisy fields,
further improvements can be achieved by incorporating the noise
effects in the loss function. In the traditional ISP solvers [9],
[11], effect of noise is considered by including the so-called
data-fitting term, which is missing in the DNN loss function.
This data fitting term works against noise by assessing if the
estimated scatterers match the electric far-field distribution as
well. While such data-fitting term may be included in DNN
loss-function as well, we target near-field physics of scattering
for designing the loss functions.

The source of our inspiration lies in the fact that near-field
multiple scattering phenomenon is one of the root causes of
non-linearity of ISPs as well as a significant contributor of
ill-posedness because it cannot be tapped in the far-field mea-
surements. This aspect has been powerfully used in a special
category of algorithms within the iterative solvers. While al-
most all ISP algorithms within this family use data-fitting loss
function, the algorithms referred to here incorporate a loss term
related to the constraint on the near-field quantities within the
domain of interest (DOI), usually through some component of
the near-field state equation related to multiple scattering [1].
The relevant near field quantities may be scattered field, induced
currents or total electric field within the DOI, and it has been
consistently demonstrated that the inclusion of near-field loss
function terms are critical for improvement in the accuracy
of reconstruction [26]. While Wei er al. [24] attempted to
incorporate such information in their DNN approach by first
reconstructing the induced currents in the DOI using a DNN

solver, incorporating such information through loss functions
of DNN and thereby introducing the helpful near-field priors in
learning is still pending.

In this paper, two variations of physics-guided loss func-
tions are proposed. They incorporate multiple scattering through
near-field quantities, namely induced current distribution and
scattered electric field distribution in the DOI. The induced
current distribution is zero in the background, and this infor-
mation incorporates the geometry of the scatterers. The actual
induced current distribution on the scatterer further encodes
multiple scattering if computed using non-linear multiple scat-
tering model, thereby incorporating physical constraints on the
dielectric contrast and refining the solution space to incorporate
only those physically-viable solutions that match both the geom-
etry and the multiple-scattering imposed current distributions.
This corresponds to feature-enhanced learning in the parlance
of deep learning. The design of loss function using scattered
near-field is proposed for the situations of poor signal-to-noise
ratios (SNR). In such situations, small artifacts are likely to
appear in the reconstructed scatter profiles such that the induced
currents from these artifacts compensate for the noise in the
measurements. Here, the scattered near-field provide a better
constraint since the artifacts would contribute scattered electric
field hotspots that contradict with the expected scattered field
profile computed using non-linear multiple scattering model.
Therefore, a loss function that utilizes scattered near-field would
penalize such solutions. Such a loss function corresponds to
improved robustness of the performance of DNN.

This paper is organized as follows. Section II introduces the
general framework employed by the traditional ISPs. We present
the two modified loss functions for use in DNN in Section III
and the network settings are described in Section IV. Numerical
results are given in Section V and conclusions are made in
Section VII. Notations for vectors or matrices are in bold, while
scalar quantities are in italics. Other sub- and superscripts that
abbreviate descriptions are in normal font.

II. FORMULATION OF THE INVERSE SCATTERING PROBLEM

Two-dimensional scattering problem is considered with the
imaging system sketched in Fig. 1. Transverse-magnetic (TM)
waves illuminate scatterers whose longitudinal direction is per-
pendicular to the plane of paper. Thus, the scope of the current
paper is the scalar electromagnetic scattering problem. The scat-
tering behavior can be modeled using the Lippmann-Schwinger
equation [1]:

ESH,(r) = B8, () + k2 / o(r, )3 ('), ¥ € DOL,
DOI
(1)

where EiS5; and ES; denote the total and incident electric fields
at an observation point r. The background medium is assumed
to be air and g is the two-dimensional dyadic Green’s function
in free space. J is the induced current density. ko stands for
the wave number of background medium. Eq (1) describing the
multiple scattering behavior inside DOl is also referred to as the
state equation [1].
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The induced current density has a nonlinear relation with
contrast x,

J(r') = x(r")Epgy (r'), 2)

where x =€, — 1, €, denotes the relative permittivity. The
non-linearity comes from the presence of the induced current
distribution in the state equation (1), which is due to the phe-
nomenon of multiple scattering. Then, the far fields generated
by the induced currents are computed using the so-called data
equation

B (r) = k2 / o, ¥)I(x)dr', 3)
DOI

where EX% denotes scattered field measured by receivers. Mul-
tiple input multiple output measurement scenario is assumed so
that the DOI is illuminated by different transmitters, and multiple
receivers collect the scattered electric far-fields.

Inverse scattering problems aim at retrieving the distribution
of the relative permittivity within DOI based on the collected
Ex3, and the knowledge of Green’s function g. Regulariza-
tion [9] is often used to reduce the ill-posedness by imposing
prior information on the desired solution of contrast function,
e.g., sparse representation in the space supported by specific
basis. Together with the constraints on data discrepancies, x is
obtained by solving the following optimization problem

min L(X) = By — BRa (ol + SR0O0, @)

where E;ﬁ;‘a is the computed scattered field assuming a candi-
date contrast distribution x. R(X) is the regularization term
to impose the prior information on x and 3 is the regular-
ization parameter trading off the contribution from data-fitting
error and regularization cost. The solution to (4) is obtained
following iterative algorithms. Two challenges exist to solve
the optimization solver, the optimal selection of regularizer and
the value of 3. Both are still open questions. While we refrain
from detailing the different solutions explored in the past, we do
mention that popular solutions include using the state equation
((1), [5]), induced currents ((2), [4]), contrast modification for
non-linearity reduction [2], [27], sparsity prior [9], etc. Also,
regularizations through alternate bases, such as eigenbases [27],
Fourier bases [28] and level sets [29], have been explored. We
refer to all of them collectively as ‘traditional methods’.

III. DEEP NEURAL NETWORK SOLVERS

While applying DNNs to solve the ISPs, the Euclidean loss
of the solution error is often taken as the loss function during the
training process. However, one finds that the physical informa-
tion of the imaging system is missing in the loss function. The
role of physical information through the use of data equation
ends in providing the initial estimate and DNN itself does not
use either the data equation or the near field priors. In order to
rectify this blindness of the DNN to the scattering physics, two
physics-guided loss functions are proposed.

The DNN solvers sketched in Fig. 1 actually treats the input
and the response as images. DNN solvers of ISPs conventionally
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use the following as the loss function

Lt (x) = lIx — xl3. )

with which the trained network can effectively learn patterns
of the scattering contrast distributions in the training database
so that the response fits the learned patterns. However, in the
traditional ISPs, the scattering contrast discrepancy functions as
a regularizer. For example, applying this regularizer in (4), the
optimization problem becomes

1 ) )
X(p) = argmin 3| [BR — G xlls + Bllx - Xl ©)

It is worth considering if the minimization function above
can be used as a physics-guided loss function for DNNs. In
the noiseless cases, the data-fitting term may not contribute
much since the initial estimate provided as input to the DNN
is already close to the ground truth and the data-fitting error is
small to begin with. However, when the SNR is poor, consid-
ering data-fitting errors in the loss function may be helpful for
improving the prediction robustness. However, since receivers
are positioned far from the DOI, contributions from evanescent
waves that encode multiple scattering cannot be collected. The
missing information leads to ill-conditioned matrix G ). Here,
the state equation, instead of data equation, is used to constrain
the data-fitting error. Since the field solution of DOI can be

computed based on x and EI% . we have

: 1 sca & ~
X(p) = argmin o B, — Giigx|3 + Bl - x| ()

where Ef$3, = EiL, — B¢ GggI indicates multiple scattering
effects in DOI and is less ill-conditioned due to small dis-
tances between observation points and scatterers. Remark that
to simulate noisy measurements, EJg; is artificially corrupted
by Gaussian noise. By incorporating the scattered near-field in
the loss function, both physical information and noise effects
are therefore considered in the training process, improving the
robustness of DNN.

Following similar arguments about incorporating near-field
priors, feature-enhanced imaging is obtained by designing the
constraint about the induced current, i.e.,

1 . .
X(p) = argmin 3||J — By © X[l + Allx - xll3,~ ®)

where ® denotes the operator of element-wise product. Since
the positions of nonzero elements of J imply the geometry of
X, the constraint about J could enhance the feature learning.

IV. NETWORK SETTINGS

U-net [20] is a DNN that has been widely applied in deep-
learning-based image translation algorithms. It has shown ad-
vantages in prediction accuracy compared with traditional ISP
solvers. Here, we apply the U-net architecture adapted from [22]
and described in Fig. 2. The network is composed of two parts,
contraction path (encoder in the parlance of deep learning) and
expansive path (decoder). Both paths include repeated convo-
lution layers comprising of kernels of size 3 x 3 pixels, batch
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Fig. 2.

U-net architecture used to train a inverse scattering problem solver. The input has two channels for real part and imaginary part of initial estimation of

contrast. BN is short for batch normalization. Details can be found in [20] and [21].

normalizations, and rectified linear unit (ReLLU). At each down-
sampling step in the contraction path, the spatial dimension is
halved through a 2 x 2 max pooling operation and the number
of channels is doubled by doubling the number of kernels
in the next convolution layer. The up-sampling steps follows
the contrary procedures except that after doubling the spatial
dimension using 3 x 3 up-convolutions, batch normalization
and ReL.U activation are performed. In the U-net architecture,
the down-sampling path encodes the input information and the
up-sampling path decodes the information to reconstruct the
contrast profile. Skip connections in U-Net support the learning
of the residual between the input contrast function and the
ground truth.

The input to U-net is an initial estimate of contrast function
generated by the fast conventional ISP solver back propagation
(BP) [22]. In addition, the architecture, the loss function, and the
conditions of [22] are replicated as the relevant state-of-the-art
for comparison of the performance of our approaches. Since
scatterers in detection could be lossy, complex inputs have
been considered by treating the real part and the imaginary
part as two independent input channels such that this complex-
valued problem can be solved using the real-valued neutral
network.

A. Loss Functions

We compare three candidate loss functions for learning the
network presented below, of which the first one L™ has been
used in [22] and the other two L™ and L are the proposed
physics-guided loss functions.

LM (x) = [Ix — xl13, (9a)
ul o 1 ~ ~

L (x) = §||J*E§61®X||§+ﬂ\|xfx||§, (9b)
eld /o 1 sca o ~

L(x) = §||EDOI_GDOIX||§+B||X_X||§' 9¢)

Benefiting from the available true solution of all involved quan-
tities, the regularization parameter 3 is set as 2[|J||3/||x||3
for Levment and 2||Ess3;||3/]|x||3 for LA, respectively. The
physical quantities in S make the two terms comparable in

terms of units and scale. The factor 2 gives more weight to the
scattering contrast discrepancies and the additional near-field
constraints about induced current and scattered fields provide
supplementary information to refine the estimation. We note that
the normalization parameter 3 in the proposed loss functions is
computed for one batch of images for which the loss is computed
collectively by the deep learning training algorithm.

As mentioned in Section III, noisy scenarios are simulated by
adding 5 dB Gaussian noise (except studies in Section V-D and
V-E) to Ey§;. Same SNR is applied to Ei2, when noisy input
is considered. To make fair comparisons, both noisy input and
clean input with the loss function L' are analyzed here. In
the following analysis, notations L&t and LMt are used to

clean noisy
distinguish the corresponding results.

B. Training, Testing, and Performance Evaluation

The deep learning toolbox in MATLAB 2020a is used to
implement the training method. The same configurations for
training have been used for the different loss functions. Stochas-
tic gradient descent with momentum 0.99 is used to optimize
weights and biases of the network. Learning rate is set at
5 x 1075 in the beginning and is halved every 20 epochs. The
learning process is stopped when the max of epochs 150 is
reached. The performance of the trained network is evaluated by
computing mean square error (MSE) and structural similarity in-
dex measure (SSIM) between the predicted and the ground truth
contrast profiles. In the following, the results on test datasets are
presented.

Imaging performances of DNN solvers with different loss
functions are studied considering two different values of SNRs.
To make comparisons with conventional methods, Born iterative
method (BIM) [30] is used. The input to the neural network
solvers, i.e. the results of back propagation (BP) are also pre-
sented. For the ease of reference, we call each trained network
a ‘solver,’ in the same vein as BIM and BP solvers. We refer to
each solver by either its acronym (BIM, BP) or the loss function.
DNN solvers are obtained with the three loss functions in (9),
while the subscripts of L&t and Leomast geand for clean and

clean noisy
noisy input, respectively.
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Testing results on digit-like scatterers when measured scattered fields are corrupted by Gaussian noises with SNR = 20 dB and 5 dB. Born iterative

method (BIM), back propagation (BP) and DNN ISP solvers trained based on MNIST database are applied. Results corresponding to LM are with clean input

clean

and the loss function only penalizing the contrast discrepancies, while Lﬁg‘i‘s‘?s‘ denotes results with noisy input. By additionally imposing constraints about induced

current and scattered fields with DOI, the results are labeled by L™ and Lfield

V. NUMERICAL RESULTS

A. Training and Test Datasets

The imaging performances with different loss functions are
studied based on simulation results. With wave illuminations at
a single frequency, the scattered electric far-field solutions of
digit-like and polygon-like scatterers are obtained using method
of moments with the pulse basis function and the delta test
function to discretize the DOl of size 5.61¢ X 5.6A¢into 64 x 64
pixels, o = 7.5 cm. Noisy measurement are obtained by adding
Gaussian noise to the scattered fields with a specific signal-to-
noise ratio. The measurement scenario is described next. 36 line
sources sequentially emit waves and the same number of line
receivers are used to collect the scattered fields. The sources
and receivers are uniformly placed on the circle, which shares
the center with DOI and has a radius 10A¢.

The training set is computed based on the MNIST
database [31], which is composed of images of handwritten
digits. The training set includes 1000 images and an independent
set of 2000 images is used for testing. The virtual scatterers are
generated by setting pixels with values below the one third of the
maximum as air background and the remaining part as a homo-
geneous dielectric scatterer with a constant relative permittivity.
The relative permittivity is assigned a random value in the range
[1,5]in order to include scatterers of varying challenges in terms
of the non-linearity arising from high contrast [27]. To test the
generalizability, we also designed a different dataset, which con-
sists of polygonal shapes that are quite different from the shapes
of digits. 2000 virtual polygon-like scatterers are designed by
randomly positioning regular polygons and setting the relative
permittivity in the range [1, 5]. The number of sides varies from
3 to 7 and the distance between vertices to the geometric center
ranges from 0.1Ag to 1.61y. Overlapping between polygons is
allowed.

B. Results for Digit-Like Scatterers Similar to Training Set

For digit-like scatterers, five representative examples are
given in Fig. 3. Images from different solvers are shown with
the same color range for easier visual comparisons. With 20 dB
SNR of measured scattered fields E.% , the results are in the left
panel. While the shape of the scatterers are well reconstructed
with all the given methods, BIM and BP underestimate the
relative permittivities of scatterers. Since the SNR is high, when
only penalizing contrast discrepancies, the network trained from
clean input, i.e., with LMt fits the testing scenarios more

clean
than the cases with LMWt the results of which suffer from the

nois
shadow-like or halo-like effects. On the other hand, the result of
Lepnast guffers from small background debris artifacts especially
notable in the third and the fourth example, which are seen also
in BIM and are present in extremely low contrast in BP too.
The halo and debris artifacts are suppressed by additionally
considering data-fitting errors from near scattered fields, i.e.,
with L€ However, the DNN solver with Lt jg obviously
more capable of obtaining high-quality imaging results.

When the SNR is reduced to 5 dB, although the shape in-
formation of digits is well reconstructed by all the solvers,
but the obtained images are imperfect in different ways. For
BIM and BP, relative permittivities are still underestimated and
artifacts are uniformly distributed in the whole image. Among
Laast and Loiiest, Looweet has smaller Euclidean cost with
the ground truth. As a result, the estimation of the relative
permittivity of scatterers is less biased than the results of BIM,
BP and LAt and the artifacts are more sparsely distributed.

Compared with LEILs, the DNN solver trained with Lgyniest
learns to compensate for noise, which results in scarcer artifacts
in the background present mainly around the scatterers. After
applying the constraint related with induced current, i.e. training

using L™ the accuracy of estimated relative permittivity of
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TABLE I
STATISTICAL PARAMETERS FOR TEST RESULTS OF DIGIT-LIKE AND POLYGON-LIKE SCATTERERS

(a) Mean square error (MSE)

| Mean | Median | Standard deviation
SNR Dataset ‘ Léig;:‘ ast L;g:n;)t]r ast [ current Lﬁeld ‘ Lzﬁ:r;imst L‘c‘g?:;msl [ current Lﬁe]d ‘ Léﬁ)ﬂ;ﬁmsl L;g?ss;ru%( [ current Lﬁeld
20 dB  Digit 0.0715 0.0817 0.0404  0.0701 0.0538 0.0610 0.0277  0.0460 0.0530 0.0614 0.0382  0.0625
Polygon 0.1147 0.0917 0.0716  0.0625 0.0352 0.0382 0.0249  0.0333 0.2848 0.1874 0.1577  0.1010
5dB Digit 0.1475 0.1015 0.1156  0.0888 0.0963 0.0727 0.0699  0.0601 0.1496 0.0849 0.1434  0.0815
Polygon 0.2088 0.1167 0.1674  0.0836 0.0469 0.0428 0.0545  0.0399 0.4609 0.2480 0.3515  0.1428

(b) Structural similarity index (SSIM)

| Mean | Median | Standard deviation
SNR Dataset ‘ Lé;g;:x ast L;(O)T;;/r ast [ current Lﬁeld ‘ L;()cr;:mst L;g::;r ast [ current Lﬁe]d ‘ Lé;g;}msl L;g:n;;r ast [ current Lﬁeld
20 dB  Digit 0.6252 0.6066 0.8071  0.6694 0.6222 0.6015 0.8373  0.6807 0.0828 0.0563 0.0849  0.0800
Polygon 0.6627 0.6315 0.6742  0.6378 0.7255 0.6813 0.6956  0.6368 0.1578 0.1302 0.1634  0.0906
5 dB Digit 0.4696 0.5298 0.5025  0.5703 0.4595 0.5160 0.4844  0.5748 0.1523 0.0857 0.1392  0.0662
Polygon 0.5335 0.5541 0.3961  0.5497 0.6361 0.6253 0.3281  0.5578 0.2449 0.1876 0.2190  0.1555

Legend: Best, second Best.
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Testing results on polygon-like scatterers when measured scattered fields are corrupted by Gaussian noises with SNR = 20 dB and 5 dB. Five representative

examples and statistical evaluation results based on 2000 testing samples are presented.

scatterers is significantly improved but at the cost of increased
background artifacts, which on the other hand are successfully
suppressed using L1,

Statistical analysis of performances of the DNN solvers are
performed based on 2000 digit-like test examples. MSE and
SSIM are used for this comparison, where accurate solution has
MSE equal to zero and SSIM equal to 1. Their mean, median
and standard deviation are presented in Table I. The superiority
of the DNN solver with L™ in high SNR scenarios is
observed. In terms of MSE, L™ is shown as the best option
from the comparison of mean, median and standard deviation.
When quantified by SSIM, although the standard deviation is
slightly larger than the other solvers, the significant advantage
of the mean value still support the superiority of the DNN solver
with L™ Tn low SNR scenarios, however, L™ only has
advantages to LSt and the prediction performance degrades
heavily. Since noise effects are considered in input and the loss
function, the solver with L€ is superior to the other solvers
in the noise robustness. Moreover, the comparison of imaging

performances between 20 dB and 5 dB reveals that the solver
with LU js much more sensitive to the variation of noise
level than Lfeld,

C. Results on Polygon-Like Structures Not Used in Training

With the same DNN solvers, which are trained using the
MNIST database, test results on polygon-like scatterers are
shown in Fig. 4. The conclusions made from the observations
with digit-like scatterers are also applicable here in addition to
the new finding that scatterers with small contrast are poorly
predicted by all the DNN solvers.

As seen from the fourth example, both of them fail when
the contrast is small. Improvements are observed with Ll
although BIM and feature-enhanced DNN solver with Leuren
perform better in this case. Comparisons of MSE and SSIM
between digit- and polygon-like scatterers reveal that the addi-
tional constraint about induced current could make the imaging
performance of DNN solvers more dependent on the training
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set. Scatterers similar with samples in the training set are more
accurately imaged. Moreover, they fail in imaging low contrast
scatterers when only penalizing contrast discrepancies. We also
noted the dependence of the performance of DNN solver with
L™ on the training dataset.

D. SNR of Training Data Versus SNR of Test Data

The accurate value of SNR is unknown in real scenarios.
Therefore, it is of interest to study the effect of mismatch in
the SNR of the simulated training dataset and the SNR of test
samples. Since the input for the DNN solvers with Lot
and L™ does not consider noise, only example results of
Lot and LA are given in Fig. 5. As seen, when the network
is trained based on the dataset with 20 dB SNR, background
artifacts appear with the 5 dB test example. However, the trained
network is robust to the SNR mismatching when the applied
SNR values of the training dataset and the test example are
reversed. Moreover, the DNN solver with L€ seems more
capable to deal with the SNR mismatching problem than the
solver with Lyoicet

E. Austria Profile and a Study in the Contrast of Scatterers

The effect of variations of contrast on the performance of
the proposed physics-guided loss functions are studied based
on testing results on the representative and challenging “Austria
profile”. The profile is made of two circular disks, which are with
the same radius 0.56A¢ and centered at [+0.7A¢, 1.41¢], and an
annulus with interior radius 0.7A¢ and exterior radius 1.4\,
respectively. All are made of homogeneous materials and the
background is air. Three sets of variations are considered: (a) the
relative permittivity of the entire profile is varied, (b) the relative
permittivity of the annulus (i.e. the biggest scatterer) is varied
while the relative permittivity of the other scatterers is fixed at
2, and (c) the relative permittivity of one disk is varied while the
relative permittivity of the other scatterers is fixed at 2. For the
scatterers whose relative permittivities are varied, the following
candidates for relative permittivity values are considered 1.1,
1.2, 2,3, to 5. Here, 1.1 and 1.2 correspond to low contrast, 3
is high contrast, while 5 is considered very high contrast. The
SNR of both the training set and the test samples is 20 dB SNR.

The results are shown in Fig. 6. The set (a) simply studies the
performance variation when the contrast of all the scatterers is
the same but varies between low to high. It is seen that the loss
functions are more effective for higher contrast. Further, the
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TABLE II
QUALITATIVE EVALUATION OF DEEP NEURAL NETWORK SOLVERS WITH
DIFFERENT LOSS FUNCTIONS

‘ Best Worst

Jcontrast 1 contrast

current field
clean  *> “noisy L L

Training time

Lﬁcld (5dB)
Lcurrem (20 dB)

] contrast (5 dB)

clean

Lconlrasl (20 dB)

noisy
Lenst (5 4B, digit)
Levrrent (5 dB, polygon)
L;g?:‘y““ (20dB)

[ contrast T current
clean >

Accuracy (MSE)

Lfeld (5dB)

Accuracy (SSIM) L (20 qB)

Noise robustness [ field

Training dataset
dependence

Lﬁcld ] contrast

[ current
noisy

largest scatterer has more accurate reconstruction in general.
The set (b) considers the variation of relative permittivity of
the largest scatterer, i.e. the annulus. The scatterer(s) with high
contrast are better reconstructed. However, the larger scatterer
has a better shape reconstruction even when it has low contrast.
On the other hand, the reconstruction of the shape of small
scatterers is poorer than the large structure even when they have
the same relative permittivity. The set (c) helps in comparing
two scatterers of similar size when one has a different rela-
tive permittivity than the rest. Even in this situation, we find
consistency in observation that the reconstruction is accurate
in the order of higher contrast and larger size. We present our
hypothesis about the superior performance of our method for
high contrast scatterers, which are generally considered more
challenging than low contrast scatterers. We first note that the
input to our DNN is an initial estimate, which is generated using
a solver that uses far-field data equation. Therefore, the DNN
has largely to learn the near-field information, which is further
assisted by loss functions based on near-field priors. Since the
near-field information is of higher consequence to high contrast
scatterers and the near-field interaction in low contrast scatterers
is weaker, the DNN likely learns to reconstruct the high contrast
scatterers better. Second, we note that none of the near-field
priors used in this article incorporate some form of normalization
for the contrast of the real scatterers. Therefore, the loss function
for high contrast structures, even for a small relative mismatch, is
higher because of both the contrast related loss term and the high
mismatch in the near-field conditions. Therefore, loss function
minimization is prioritized for such scatterers over the ones in
lower contrast ones. In the future works, contrast-associated
normalizations may be designed for reducing the bias against
low contrast scatterers.

In conclusion for this study, despite the arguments for con-
cluding the superiority of L™ to Lfeld in high SNR sce-
narios, this serial study reveals that reconstructing low-contrast
scatterers (relative to adjacent scatterers) is challenging for the
two DNN solvers. When the entire profile is with the same
permittivity, the position and the shape information of cylinders
are well reconstructed. Otherwise, the parts with lower contrast
can be poorly imaged and the cylinder geometry could be
indistinguishable. This phenomenon is more evident for small
scatterers.
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TABLE III
SUMMARY OF IMAGING PERFORMANCES OF CONCERNED INVERSE-SCATTERING-PROBLEM SOLVERS

Disadvantage Suitable scenario

Section / Equation | Advantage
Born iterative method | [30] Broad applicability
Lgpnast Eq. (9a) Less training time
L;‘(’;‘:;‘“ Eq. (9a) Less training time
Lcurrent Eq. (9b) High accuracy
Lfied Eq. (9¢) Strong robustness

Biased estimation Low requirement on accuracy
High SNR

High contrast

Weak robustness

Fail with weak scatterers
High SNR & scatterers similar
with training set

High contrast

High dependency on training set

Long training time

F. Notes on Computation Time

With the workstation computer (CPU: 2.9 GHz Intel Xeon
6226R, GPU: Nvidia GeForce RTX 3090, and 64 GB memory),
it takes about 1 h 40 min for training with L and Lfild and
8 min with LG and Lol We note that all DNN solvers
in the manuscript take the same input and estimate the result
using back propagation. Thus, the inputs for all the concerned
DNN solvers are with same size and their computational costs
for convolution operator are also the same. The DNN solvers
only differ in the applied loss function. The higher time cost for
training with L™ and Lfi€'d is due to the expensive computa-
tion of data-fitting errors and the corresponding gradients in the
regression layer since the size of induced current and scattered
field in DOI is much larger than the size of contrast. Note that
the time cost for training also depends on the performance of the
used computation hardware and parallel computational methods
generally can boost the training efficiency.

VI. SUMMARY OF RESULTS AND FUTURE OUTLOOK

According to the above studies, the evaluation results of the
DNN solvers are summarized in qualitative terms in Table II. The
imaging performances of the concerned ISP solvers are briefly

described in Table III, where suitable scenarios are suggested
according to the pros and cons of each ISP solver. The traditional
method BIM has weakness in reconstruction accuracy and fits
scenarios having low requirement on accuracy. Otherwise, the
DNN solvers are better options. When SNR is sufficiently high,
DNN solvers trained with LNt and L™ should be used.
The L™ is especially preferred in favor of higher accuracy
and lesser artifacts when the detected scatterers are similar with
the training set. If SNR is a concern, the DNN solvers with
Lot and L' are better options but maybe unsuitable for
scatterers with low contrast.

VII. CONCLUSION

In this paper, two physics-guided loss functions are proposed
to improve the noise robustness and the reconstruction accuracy
of deep learning approach for reconstructing scatterers from
electric far-field measurement. By incorporating a loss term
related to scattered fields in domain of interests (DOI), noise
effects are suppressed and superior imaging performances are
obtained when the signal-to-noise is low (5 dB in the paper).
Feature-enhanced imaging is achieved when the contrast func-
tion is constrained by induced currents in DOL.
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Comparisons of the physics-guided DNNs with conventional
methods, which include Born iteration method and back prop-
agation, has been performed. It reveals that the physics-guided
DNNs improve the accuracy of reconstructed scatterer profiles,
but the performance depends on the test sample being similar
to the samples in the training dataset. Since the concept and the
techniques used in this work are generalizable to a wide variety
of practical applications, including the method of moments to
simulate realistic complex scenarios [32], we believe that the
work can be easily extended to real applications. Examples of
such applications are enountered in microwave imaging [22] and
microscopy [33].

However, we note that the new designs of loss functions are
not perfect, and may contribute degradations in some imaging
performances. For instance, while features of real scatterers are
enhanced by introducing the constraint about induced current,
the energy of noise artifacts is also increased. Additionally
considering the scattered near-field as a constraint improves ro-
bustness against noise, but reduces performance for low-contrast
scatterers. More efforts to develop loss functions which can
balance the imaging performances and incorporate physical
model of scattering in a balanced manner in DNNs are of the
present authors’ interests.
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