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a b s t r a c t

Major corporations compete over the strengths of their supply chains. Integrating production and
distribution operations helps improve supply chain connectedness and responsiveness beyond the
standalone optimization norms. This study proposes an original Mixed-Integer Linear Programming
(MILP) formulation for the Production scheduling-based Routing Problem with Time Window and Setup
Times (PRP-TWST). For this purpose, the identical parallel machine scheduling is integrated with the
vehicle routing problem. Considering the highly intractable solution spaces of the integrated problem,
hybrid metaheuristics based on the Variable Neighborhood Search (VNS), Particle Swarm Optimization
(PSO), and Cuckoo Search (CS) algorithms are developed to solve the PRP-TWST problem. Extensive
numerical experiments are conducted to evaluate the effectiveness of the developed algorithms
considering the total delay time as the objective function. The results are supportive of the VNS-based
CS algorithm’s effectiveness; the developed metaheuristics can be considered strong benchmarks for
further developments in the field. This study is concluded by suggesting directions for modeling and
managing integrated operations in the supply chain context.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The supply chain concept revolves around the connectedness
f business operations, from the acquisition of raw materials to
roduction and the delivery of goods to the final consumer. In
his process, no entity can operate at its best capacity until all
ther entities are performing well. Disruption propagation across
he supply chain, i.e. the ripple effect [1], is prime evidence
f the extent of interdependencies among supply chain opera-
ions and entities. Supply chain integration not only helps reduce
perational inefficiencies [2] but also improves organizational
erformance, and environmental factors [3], and facilitates Indus-
ry 4.0 adoption [4]. Optimization problems are of high relevance
or establishing supply chain integration [5].

With many application areas from the movement of raw ma-
erial, work-in-progress, and final goods to courier services and
everse logistics, vehicle routing constitutes a major aspect of
upply chain optimization [6]. The scope of routing decisions has
een extended in various ways to facilitate supply chain integra-
ion. Acknowledging the reciprocal influence between some of
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the supply chain operational, tactical, and strategic decisions [7,
8], routing decision has been integrated with inventory man-
agement and location–allocation decisions (see [9] for inventory
routing and [10] for location routing). It is widely recognized that
the simultaneous optimization of these operations results in a sig-
nificant performance improvement [11,12]. Overall, these routing
extensions are suitable for optimizing service supply chains or
when the goods are produced by a third party and sold on
e-commerce platforms.

The Production-scheduling-based Routing Problem, hereafter
denoted by PRP, is another class of integration with the manu-
facturing supply chain being its main application area (i.e., when
production and distribution activities are managed by the same
supply chain entity). PRPs are particularly important in the supply
chain optimization of time-sensitive and perishable products [13]
where timeliness and connectedness are of high relevance. In an
uncoordinated approach, production scheduling takes place first
and the outcomes will be a basis for planning the distribution op-
erations. Isolated and sequential optimization of the production
and distribution operations may result in the following situations.
First, the distribution operations may be planned based on wrong
or infeasible input data, e.g., the delivery may be scheduled for an
order that is yet to be produced. This situation results in infeasible
solutions. The second situation arises when a lack of coordination
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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etween the two major phases of the supply chain process results
n sub-optimal solutions. For example, a customer order with less
rgency may be prioritized in the production stage earlier than a
ore urgent order; this situation results in poor responsiveness,
perational burden, and, in some cases, avoidable costs.
PRP is a relatively new extension to the renowned vehicle

outing problems; the authors of Ref. [14] have recently con-
ucted an exhaustive review and taxonomy analysis of the pub-
ished works. They found that most of the existing problems
onsidered a single-machine production environment, which, of-
en, cannot reflect the real situation. Given that routing decisions
equire optimization tools when the number of delivery tasks
s relatively large, it would be simplistic to assume that a large
uantity of deliverables is produced in a single-machine produc-
ion setting. Besides, considering setup times, i.e., the preparation
asks required before the production process takes place, is an-
ther practical scheduling setting that should be considered;
nly a slight minority of the problems accounted for the setup
ime feature despite its prevalence in production environments
ith general-purpose machinery [15]. From the existing limited
tudies, Ref. [16] is the first to develop a PRP with setup times in a
arallel machine production environment; they considered total
ost minimization as the objective of the problem to investigate a
rade-off between setup cost, transportation cost, and the quality
f the perishable food products. Later, the authors of Ref. [17]
tudied the PRP with setup times for minimizing total cost to
nvestigate lot-sizing versus batching decisions in the supply
hain of perishable goods. Developing a general heuristic, the
otal cost was considered by Ref. [18] as the objective function
or optimizing PRPs with setup times. More recently, Ref. [19]
eveloped an Iterated Greedy algorithm to solve the PRP problem
ith setup times considering the maximum completion time,
nd makespan measure. None of these studies accounted for the
ime window constraints at the distribution end of the operations
hile improving the timeliness of the operations is the main
urpose of the integrated planning of production and distribution
perations.
The only studies that simultaneously account for the time

indow and setup time features are Refs. [20,21] where the
otal cost is minimized in single-machine and unrelated parallel
achine environments, respectively. The former study developed
sequential solution approach with no feedback between the

onsecutive optimization steps, which reduces the effectiveness
f the integrated problem. The latter study proposed an exact
lgorithm that can only solve small-scale problems. Besides, they
eveloped two separate formulations for the production schedul-
ng and vehicle routing decisions. To the best of the authors’
nowledge, the PRP with identical parallel machines considering
he time window and setup time constraints has not been studied.
esides, timeliness has not been considered as the optimization
riterion despite being the main cause for integrating production
nd distribution planning. A twofold contribution inspired by the
bove research gaps is put forward. As its first contribution, this
tudy proposes an original Mixed-Integer Linear Programming
MILP) formulation to the Production scheduling-based Routing
roblem with Time Window and Setup Times (PRP-TWST) with
otal delay time being the objective function in an identical par-
llel machines production setting. The mathematical model is val-
dated using an exact solver for solving small-size test instances.
econd, two improved metaheuristics are developed to solve the
roposed optimization problem for large-scale instances. In the
irst solution algorithm, the Variable Neighborhood Search (VNS)
s integrated into the Cuckoo Search (CS) algorithm, hereafter
amed VNS-CS. The Particle Swarm Optimization (PSO) algorithm
s also enhanced through VNS integration (VNS-PSO).
2

The remainder of this manuscript begins with a review of the
relevant literature in Section 2. Section 3 presents a new math-
ematical formulation of the problem. An elaboration on the pro-
posed solution algorithms can be found in Section 4. Numerical
results are presented next in Section 5 to evaluate the applicabil-
ity of the model and the effectiveness of the solution algorithms.
Finally, Section 6 provides the concluding remarks and direc-
tions for future research on the integrated scheduling–routing
problems.

2. Relevant literature

This section reviews the most relevant journal articles on
PRP. For this purpose, the production settings, mathematical ex-
tension, objective function, and the solution algorithm are con-
sidered. For a comprehensive review of the PRP literature, the
interested readers are encouraged to follow the recent review
articles by [14,22].

Ref. [23] proposed a non-linear formulation of the PRP in a
single-machine production environment and minimized the max-
imum order delivery time using a Genetic Algorithm. The authors
of Ref. [24] proposed a multi-factory variant of the PRP with
each factory operating in a single-machine production setting;
the authors developed an Imperialist Competitive Algorithm to
solve the problem of minimizing total cost. Ref. [16] proposed
a PRP with setup times considering a parallel machine produc-
tion setting to minimize total cost. They used a math-heuristic
algorithm that first solves the production scheduling part of PRP
using an exact method, and then, uses the generated solution as
input parameters in the metaheuristic algorithm to optimize the
routing part of the problem. Ref. [17] studied the PRP with setup
times for minimizing total cost and used a commercial optimizer
to solve the problem considering small instances. Ref. [25] applied
the PRP with identical parallel machines for a new application
area, i.e. automated guided vehicles; they developed a Lagrangian
Relaxation-based solution algorithm to minimize total weighted
tardiness. The authors of Ref. [18] developed a general heuristic
to minimize the total cost when solving PRP with setup times
considering a production system with an identical parallel ma-
chine. Ref. [19] solved the PRP problem with setup times using an
Iterated Greedy algorithm considering the maximum completion
time, makespan as the optimization measure. Ref. [26] developed
a metaheuristic solution algorithm to minimize total cost in PRP
with flexible departure times and identical parallel machines.

More recent studies considered multi-objective optimization
approaches for solving PRP with conflicting objectives in a single-
machine production environment. Ref. [27] integrated inventory
management decisions into PRP and developed a level-based
multi-objective particle swarm optimization (PSO) for minimizing
total cost and tardiness. Ref. [28] adapted the Non-Dominated
Sorting Genetic Algorithm II to minimize carbon emissions along
with total cost in the PRP within the time window. Ref. [29] devel-
oped a Monte Carlo-based hyper-heuristic algorithm for minimiz-
ing total cost and maximizing customers’ purchasing probability
in the basic PRP. None of these studies simultaneously accounted
for setup time in the production stage and time window in the
distribution stage.

In the most relevant works, the authors of [20] developed a
Branch-Price-and-Cut algorithm for total cost minimization in a
single-machine production setting considering time window and
setup time. Ref. [30] developed a decomposition-based Fix-and-
Optimize approach to solve the PRP with time-window and fam-
ily setup times considering a similar production setting. Ref. [21]
developed a two-phase iterative heuristic algorithm for the se-
quential optimization of the production and distribution opera-
tions; the scheduling formulation accounts for job-splitting while
considering time window and setup time features and total cost



G.-H. Wu, C.-Y. Cheng, P. Pourhejazy et al. Applied Soft Computing 125 (2022) 109191

m
c
t
s
i
c
m
r
w
t
p
o
p
i
s
a
a
m
a
s

3

F
i
o
w
d
o
k
c

p
m
o
c
m
s
p
a
p
d
t
t
s
i
a
a

p

M

S

x

x

C

C

C
inimization; this setting is prevalent in unrelated parallel ma-
hines. The proposed method in the next section is different from
he most relevant works in the following points. (1) Production
cheduling and vehicle routing decisions are included in one
ntegrated formulation. (2) Production environment with identi-
al parallel machines is investigated; scheduling jobs on parallel
achines while considering delivery time window is of practical

elevance in consumer goods industries, like beverage production
here jobs are scheduled on parallel bottling machines and on-
ime delivery is important for the restaurants and pubs to avoid
ossible shortage. The printing and pharmaceutical industries are
ther examples of this type of application area of an identical
arallel machine scheduling problem [31]. (3) Total delay time
s considered as the objective function; this emphasizes respon-
iveness, which is in contrast with the cost-effective nature of the
bove studies. Taking the book publishing industry as a possible
pplication of PRP-TWST; printing tasks from different publishers
ust be completed on parallel printers in the production stage
nd on-time delivery is critical for the publisher to ensure timely
helf availability.

. Mathematical formulation

This section presents a new MILP formulation to PRP-TWST.
or a formal definition of the problem, let assume a manufactur-
ng supply chain that accommodates products for fulfilling orders
f size ui, where i ∈ {1, . . . , n}, and every order is associated
ith a time window, [ai, bi]. Assuming that the production and
istribution operations are both managed internally, the former
perations should be scheduled on identical parallel machines,

∈ {1, . . . ,m}, and the latter operations should be planned
onsidering a fleet of heterogeneous trucks, v ∈ {1, . . . , f }.
Assuming that the raw material is available at time zero, the

roduction process can begin immediately after the commence-
ent of the scheduling period. In the production stage, each
rder can be processed on one machine at a time with the pro-
essing time (pi) being job-dependent; an ongoing process on a
achine cannot be interrupted until the operation is complete. A
etup time, Sij, is defined to account for the sequence-dependent
reparation time required before processing job j after job i. It is
ssumed that the machines’ required maintenance can be com-
leted within the defined setup time. In the distribution stage, a
eterministic travel time is associated with every path connecting
wo consecutive nodes, tij. It is worthwhile mentioning that the
ime gap between the completion of the jobs at the production
tage and the start of delivery is assumed to be negligible. That
s, the products can be assigned to delivery trucks immediately
fter the completion of their production. The indices, parameters,
nd decision variables for this problem are defined in Table 1.
Given these notations, the MILP formulation to the PRP-TWST

roblem is as follows.

inimize z =

n∑
i=1

Ti (1)

ubject to :

m∑
k=1

Ok
i = 1, ∀i ∈ {1, . . . , n} (2)

k
ij ≤ Ok

i ; ∀i, j, k; i ̸= j (3)
k
ij ≤ Ok

j ; ∀i, j, k; j ̸= i (4)

i ≥ S0i · Ok
i + pi · Ok

i ; ∀i ∈ {1, . . . , n} (5)

j − Ci + M ·
(
3 − xkij − Ok

i − Ok
j

)
≥ Sij + pj; ∀i, j ∈ {1, . . . , n} ,

{ }
k ∈ 1, . . . ,m , i ̸= j (6)

3

i − Cj + M ·
(
2 + xkij − Ok

i − Ok
j

)
≥ Sji + pi; ∀i, j ∈ {1, . . . , n} ,

k ∈ {1, . . . ,m} , i ̸= j (7)
f∑

v=1

V v
i = 1; ∀i ∈ {1, . . . , n} (8)

yv
ij ≤ V v

i ; ∀i, j ∈ {1, . . . , n} , v ∈ {1, . . . , f } , i ̸= j (9)

yv
ij ≤ V v

j ; ∀i, j ∈ {1, . . . , n} , v ∈ {1, . . . , f } , i ̸= j (10)

Rv
0i − Cj + M ·

(
2 − V v

i − V v
j

)
≥ 0; ∀i, j ∈ {1, . . . , n} ,

v ∈ {1, . . . , f } (11)

Rv
0i ≤ M · V v

i ; ∀i ∈ {1, . . . , n} , v ∈ {1, . . . , f } (12)
Rv
0i − Rv

0j ≤ M ·
(
2 − V v

i − V v
j

)
; ∀i, j ∈ {1, . . . , n} , v ∈ {1, . . . , f }

(13)

Di ≥ Rv
0i + t0i · V v

i ; ∀i ∈ {1, . . . , n} , v ∈ {1, . . . , f } (14)
Dj − Di + M ·

(
3 − yv

ij − V v
i − V v

j

)
≥ tij; ∀i, j ∈ {1, . . . , n} ,

v ∈ {1, . . . , f } , i ̸= j (15)
Di − Dj + M ·

(
3 − yv

ij − V v
i − V v

j

)
≥ tji; ∀i, j ∈ {1, . . . , n} ,

v ∈ {1, . . . , f } , j ̸= i (16)
n∑

i=1

uiV v
i ≤ capv; v ∈ {1, . . . , f } (17)

Di ≥ ai; ∀i ∈ {1, . . . , n} (18)

Ti ≥ Di − bi; ∀i ∈ {1, . . . , n} (19)
Ti,Di, Ci ≥ 0; ∀i ∈ {1, . . . , n}
Rv
0i ≥ 0; ∀i ∈ {1, . . . , n} , v ∈ {1, . . . , f }

xkij ∈ {0, 1} ; ∀i, j ∈ {1, . . . , n} , ∀k ∈ {1, . . . ,m} (20)
yv
ij ∈ {0, 1} ; ∀i, j ∈ {1, . . . , n} , ∀v ∈ {1, . . . , f }

Ok
i ∈ {0, 1} ; ∀i ∈ {1, . . . , n} , ∀k ∈ {1, . . . ,m}

V v
i ∈ {0, 1} ; ∀i ∈ {1, . . . , n} , ∀v ∈ {1, . . . , f }

The objective function in Eq. (1) aims to minimize the total
delay time for the delivery of the orders to the final customer.
This optimization objective is subject to the following production-
and distribution-related constraints.

Eq. (2) restricts order i from being assigned to more than
one machine for processing in the production stage. Constraints
(3)–(4) associate the sequence planning and assignment decision
variables, making sure that orders i, j are consecutively processed
on production machine k. According to Constraints (5), the com-
pletion time of order i on production machine k should be larger
than or equal to the summation of the setup and processing times.
Given ‘M ’ as a very large positive number, Constraints (6)–(7) are
used to determine the completion time of the production process
of an order considering that of the earlier order on the same
machine. These constraints also associate the binary assignment
variables with the respective completion time variables.

Eq. (8) ensures that every order is assigned to one and only
one vehicle. Constraints (9)–(10) determine the sequence of or-
ders and associate the time and assignment decision variables.
Establishing a link between the production and distribution tasks,
Constraints (11) ensures that the delivery process of a certain
order begins only after the production of the same item is com-
pleted. Besides, it ensures that orders i and j are assigned to
the same vehicle. Constraints (12) associate two binary variables,
where there cannot be a departure time for order i on vehicle v if
it is not assigned to the vehicle. Constraints (13) determine that
consecutive orders are delivered using the same vehicle. Given
orders assigned to vehicle k on a tour, Constraints (14) calculates
the delivery time for every delivery. Constraints (15)–(16) are
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Table 1
Mathematical notations.
Type Symbol Description

Index
i, j Order indices where i, j ∈ {1, . . . , n}
k Machine tag where k ∈ {1, . . . ,m}

v Vehicle number where v ∈ {1, . . . , f }

Parameter

pi Production (processing) time of order i ∈ {1, . . . , n}
Sij Setup time of order j ∈ {1, . . . , n} when it is processed after i ∈ {1, . . . , n};for

index ‘0’ indicates the dummy job that is assigned to every machine before
processing the first order. The dummy job has a processing time and latest
time equal to zero

tij Transportation time from the location at which order i is delivered to the
designated delivery location of order j; index ‘0’ indicates the factory location

ui Demand size of order i ∈ {1, . . . , n}
ai Earliest time for delivering order i ∈ {1, . . . , n}
bi Latest time for delivering order i ∈ {1, . . . , n}

Decision variable

Ci Completion time of order i in the production stage.
Di Delivery time of order i in the distribution stage.
xkij The sequence of processing orders in the production stage; = 1 if order j is

processed after order i on machine k; = 0, otherwise
yv
ij The sequence of delivering orders at the distribution stage; = 1 if order j is

delivered after order i using vehicle v; = 0, otherwise
Ok
i Machine assignment variable: Ok

i = 1 if order i is assigned to machine k;
Ok
i = 0, otherwise

V v
i Vehicle assignment variable: V v

i = 1 if order i is assigned to vehicle v; V v
i = 0,

otherwise
Rv
0i Departure time from the factory for delivering order i using vehicle v

Ti Delaying time of delivering order i
o

F
L

n

t

defined to enforce the sequence of deliveries and associate it
with the respective delivery times. Constraints (17) ensured that
the capacity of the vehicle is not violated. Constraints (18)–(19)
ensure the timeliness of the deliveries. On this basis, Constraints
(18) restrict the driver from early visits while Constraints (19)
determine the total delay time, which is sought to be minimized
in the objective function. Finally, the last constraints determine
whether a decision variable accepts integer or binary values.

4. Solution algorithms

Unlike the exact solution methods that solve the optimization
roblem through exploring its gradient, metaheuristic algorithms
o not require the problem to be differentiable. This approach
s particularly useful when integrated problems, like the one
tudied in this study are investigated. This study proposes two
ybrid metaheuristics based on the VNS, CS, and PSO algorithms,
hich are widely used in the production scheduling and vehicle
outing literature. This section begins with briefing the CS and
SO algorithms to present the structure of the main loop. We then
elve deeper into the initialization, encoding, and neighborhood
earch methods. Finally, the proposed hybridization schemes are
resented.

.1. Cuckoo search

The CS algorithm [32] is a population-based metaheuristic
nspired by the brood parasite of cuckoo species and the Levy
light of birds. The algorithm has gained recent popularity due
o its simplicity and ease of implementation, requiring few pa-
ameter settings, as well as its effectiveness in solving a variety
f engineering optimization problems, like vehicle routing and
roduction scheduling problems [33]. In this method, a set of N

nests (solutions) are randomly distributed in the search space.
The cuckoo bird (new solution) is substantiated using Levi flight.
The cuckoo bird randomly selects a nest and locates the egg.
The host may or may not recognize an alien egg. This proce-
dure relates to the new solution evaluation in the optimization
algorithm. If the host recognizes the alien egg, two scenarios

will take place; (1) the host will throw away the egg, or (2) the

4

host will abandon the nest. The former situation is equivalent
to comparing a new solution against the current solution and
discarding the new solution if it is not strictly better. Discarding
a fraction (Fra ∈ (0, 1)) of the worst nests at the end of every
iteration is in direct association with case (2). The computational
steps of the CS algorithm are summarized below.

Step 1. Initialize (locate) a population of N solutions (host
nests) in random locations and calculate their fitness values, fi.
Solution encoding is detailed in Section 4.4.

Step 2. Generate a new solution (cuckoo; i) using Levi flights
and calculate its fitness, fi.

Step 3. Select a random nest, j, from the nest population for
locating the cuckoo egg; let j be the solution if fj is better than fi,
therwise, replace it with the new solution, i.
Step 4. Save the best solutions (nests) and replace a fraction

ra of the worst solutions with new ones in new locations using
evi flight.
Step 5. Return to Step 2 if the maximum computation time is

ot reached.
Levi flight consists of perturbing the current solution, xcurrent ,

o generate a new solution, xnew . This procedure is done us-
ing Eq. (21).

xnew = xcurrent + rnd · c (21)

In this equation, rnd is a random number generated by a normal
distribution and c indicates the extent of change/perturbation
in the current solution, which is calculated by c = 0.01 · s ·

(xcurrent − xnbest), where xnbest represents the best solution in the
nest and s indicates the step size generated using symmetric Levy
Distribution.

4.2. Particle swarm optimization

The PSO algorithm [34] is also a population-based metaheuris-
tic inspired by the social interaction and experience-sharing be-
havior of the members of a society, the so-called swarm intel-
ligence. PSO has a successful track record in solving logistics
and workflow scheduling problems [35]. Considering a set of N
particles (solutions) that are randomly distributed in the search
space, each of the particles moves with a certain velocity search-
ing for the global best. Therefore, their starting position and
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Fig. 1. Illustration of the solution initialization/encoding procedure.
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elocity should be initialized in the first iteration and get updated
ver the next iterations. To update the velocity and direction of
ovement, it is assumed that a particle accelerates its movement
onsidering its personal best positional experience (cognitive;
ndividual best), and that of the group (social; global best). This
oncept can be expressed by Eqs. (22)–(23), based on which the
osition and velocity of the particles, respectively, are updated.

ositiont+1
i = Positiont

i + Velocityt+1
i (22)

elocityt+1
i = ωVelocityti + c1r1

(
Positiont

pbest(i) − Positiont
i

)
+ c2r2

(
Positiont

gbest∗ − Positiont
i

)
(23)

The first component of Eq. (23) refers to the inertia of the
article; ω presents the inertia weight that governs the particles’
bility to change the movement direction. A small value of ω
elps exploit the best solution while a large ω improves the
xploration around the best solutions. The second and third parts
f Eq. (23) specify the personal and group experience with c1, c2

being the cognitive and social coefficients, respectively, and r1, r2
are random values between zero and two, which are unique to
particle/iteration. Overall, the best solution by particle i, denoted
by pbest (i), and the global best found by the particles swarm
up to a certain iteration (gbest∗) and the velocity in the current
iteration (t) determine the new velocity in the new iteration, t+1.
The computational steps of the PSO algorithm are summarized
5

below. It is worthwhile noting that the control parameters of
the PSO are N, ω, c1, c2, which, together, regulate the exploration
and exploitation levels of the search procedure. These parameters
should be initialized before starting the algorithm procedure.

Step 1. Initialize the population and calculate the fitness value
of every particle. The encoding procedure is explained in Sec-
tion 4.4.

Step 2. Find the personal best for every particle.
Step 3. Find the global best for the population.
Step 4. Update the velocity and position of every particle.
Step 5. Check for the stopping criterion, i.e., the maximum

computational time; return to Step 2 if the condition is not met.

4.3. Initialization and encoding methods

Real, cycle, and float methods are used for the solution encod-
ing in the developed algorithms. For initializing solutions, ran-
dom solutions are generated using Uniform distribution in four
vectors: the production sequence (order_seq1) with U[0, j), the
orresponding processing machine (m_number) with U[1,m+1),
he distribution sequence (order_seq2) with U[0, j), and the cor-
esponding delivery vehicle (v_number) with U[1, v+1). Fig. 1(a)
hows the encoded initial solution for an example with 6 jobs that
ust be processed on 3 machines and delivered using 2 vehicles.
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Fig. 2. Visual representation of the neighborhood search and perturbation mechanisms.
nce the random numbers are generated, the order_seq1 and or-
er_seq2 should be arranged in descending order based on which,

the m_number and v_number vectors should be reorganized. In
his example, Jobs 3, and 6 are arranged on machine 1, Jobs 1,
nd 5 are arranged on machine 2, and Jobs 2, and 4 are arranged
n machine 3, as shown in Fig. 1(b). The same procedure applies
o the distribution vector, as shown in Fig. 1(c).

In the above encoding procedure, a real number variant is used
or generating random numbers, where a new value should be
enerated if the initial random value exceeds the allowed range.
s an alternative, the cycle value encoding can be used for dealing
ith the mentioned situation. Let us assume that the number of
rders is 20, that is, the allowed range for order1_seq is between
and 20. In the real encoding method, if the initial value is 25.17
6

(falls outside of the allowed range), a new random value is gener-
ated using U[0, 20). In the cycle encoding method, the new value
is computed by (initial value−max value+min value), if the code
value is greater than the max value of the range. Otherwise, the
new value is computed by (initial value+max value−min value).
That is, 25.17 is over the range, hence, the new value is 25.17 −

20 + 0 = 5.17.
In the real and cycle methods, four numbers were used to

represent each solution. In the float encoding method, however,
only two numbers are required. That is, a single numerical code
includes both the task and the assignment values; the integer part
shows the machine/vehicle number while the decimal point value
corresponds to the sequencing value (production/distribution).
For example, the float value of 1.74 shows that the job processing
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Fig. 3. Pseudocode of the variable neighborhood search algorithm.
equence value is 0.74 and the corresponding machine is machine
. In dealing with the random values that fall outside of the
llowed interval, a similar method to the cycle value coding is
pplied. Assuming that the value becomes 8.64 after applying
he Levy flight in the CS or the Position Movement in the PSO
lgorithm, the integer value 8 is over the number of machines 5.
ence, the value should be adjusted to 8 − 5 + 1 = 4.

4.4. Neighborhood search and perturbation methods

The VNS algorithm [36] operates based on the systematic
change of neighborhood applying local search moves bearing
in mind the following facts [37]. First, a local optimum, which
is found within one neighborhood structure, is not essentially
optimal for another neighborhood structure. Second, a global
optimum can be considered a local optimum for all conceivable
neighborhood structures. Third, local optima of one or several
neighborhood structures are usually close to each other. These
characteristics together have made VNS a popular local search in
combinatorial and global optimization [37], more particularly for
solving PRPs [38].

The VNS method works with a given set of neighborhood
structures hereafter denoted by Nk (x). In this definition, N1 (x) is
the set of solutions in the first neighborhood of x. It is also known
that every solution can have a maximum number of kmax neigh-
borhood solutions. Given this information, the VNS procedure
applies Swap and Insertion moves to the neighborhoods of every
input solution to find better alternatives. The Swap method se-
lects two random positions in the solution vector and exchanges
their corresponding numbers. The Insertion method selects two
random positions in the solution vector, removes the number
in the first position, and inserts it next to the second position.
The Swap and Insertion moves can be applied randomly either on
the job and/or delivery orders in the production and distribution
stages, respectively. Besides, Swap and Revision moves are applied
for modifying machine and vehicle vectors. The neighborhood
search moves shown in Fig. 2(a–d) are applied separately for dis-
placing orders in the production stage and the distribution stage.
To avoid local optimality traps, a perturbation mechanism, named
7

Probability Change (Fig. 2e) is further considered at the end of the
VNS procedure. Every element of the vectors is associated with a
probability, p; in the perturbation mechanism, the original value
is randomly changed to another new value.

The features of VNS make it an effective local search algo-
rithm, which can be coupled with a global search metaheuristic
to improve its exploitation capability. The pseudocode of this
procedure is provided in Fig. 3.

4.5. Proposed hybridizations

CS and PSO are well-known global-search algorithms with
solid exploration power [39,40]. However, they are both prone to
getting trapped in local optima. Incorporating a local search mod-
ule within the global search procedure enhances the exploitation
power of the solution algorithm and is expected to result in better
optimization outcomes. Two hybridization schemes are proposed
to alleviate the early convergence and local optima issues.

The first proposed scheme incorporates the VNS module into
the CS algorithm. In the VNS-CS algorithm, every iteration begins
with assigning the solutions (birds) to unique positions. The so-
lutions are then fed into the neighborhood search module to seek
better alternatives considering the maximum number of itera-
tions, Max_It . The best alternative from the VNS module is then
sent [back] to the main CS loop where the global search procedure
continues using Levi’s flying procedure. This procedure continues
until the stopping condition is met. The maximum CPU time is
considered as the stopping condition of the solution algorithms.
Fig. 4 presents the pseudocode of the VNS-CS algorithm.

The second hybridization scheme integrates the VNS module
into the PSO algorithm. In the VNS-PSO algorithm, a group of
solutions (particles) are used as inputs to the VNS module for
the neighborhood search procedure that applies for Max_It iter-
ations. The speed and position of the particles are then updated
after every iteration. Next, the solutions (particles) with updated
speed and position are sent to the main loop where the PSO
algorithm directs the search into more promising search spaces
using Eqs. (22)–(23). This procedure will be completed when
the maximum computation time is reached. The pseudocode of
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Fig. 4. Pseudocode of the VNS-CS algorithm.
he VNS-PSO algorithm is provided in Fig. 5. It is worthwhile
oting that the VNS-PSO algorithm considers the best individual
olution(s) over the past iterations in addition to the current
opulation’s best solution; this is in contrast with the VNS-CS
lgorithm which only considers the population’s best solution in
very iteration.

. Numerical experiments

This section elaborates on the analysis of the experimental
esults. The test instances and performance measures are first
xplained. The parameters of the metaheuristic algorithms are
hen calibrated to ensure the best computational performance.
ext, the Gurobi optimizer is used to solve and validate the
8

PRP-TWST problem considering small test instances. The final
analysis of the results then follows to conclude the experiments.
VNS-CS and VNS-PSO algorithms are both coded and compiled
on Microsoft Visual Studio C++ using a personal computer with
the following specifications: Intel (R) Core (TM) i7-6700 (3.4 GHz)
processor, 32 GB of RAM, and a Windows 10/64 bit operating
system.

5.1. Test instances and performance measure

The dataset consists of small test instances, which are sought
for model validation, and large test instances for the final exper-
iments. The small test instances are configured by n = {5, 8, 10}
jobs with the production being processed onm = {2, 3} machines
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Fig. 5. Pseudocode of the VNS-PSO algorithm.
nd distribution being performed using v = {2, 3} vehicles. The
arge-scale instances are generated considering n = {20, 40, 50}
obs, m = {5, 10, 15} machines, and v = {5, 10, 15} vehicles.
he vehicle capacity is set at 20 weight units. The remainder
f the operational parameters is generated randomly using a
niform distribution with the following specifications; that is,
etup and processing time U (10, 50), delivery time U (50, 100),
uffer capacity U (2, 4), and order (job) weight U (1, 10). Differ-
nt seed values are used to generate ten distinct instances for
very configuration.
The solution algorithms are compared considering the Relative

erformance Difference (RPD; Eq. (15)), where a smaller RPD
9

indicates that the associated solution is of better quality.

RPD =
Fitness(π ′) − Fitness(π )

Fitness(π )
× 100 (24)

5.2. Results analysis

The performance of VNS-CS and VNS-PSO algorithms is signif-
icantly influenced by the computational parameters. For this pur-
pose, random instances with the size of the largest problem are
considered to determine the best value for the algorithm parame-
ters. In the VNS-CS algorithm, the step size (s) is calibrated man-
ually. Considering s ∈ {0.01, 0.1, 1.0}, N ∈ {0.2, 0.4, 0.6}, and
t
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Fig. 6. Calibration test results of the VNS-CS algorithm considering (a) maximum
terations, (b) step size, and disturbance ratio.

ax_It ∈ {5, 10, 15, 20}, the calibration results are summarized
n Fig. 6.

Given the dimensionality of the VNS-PSO algorithm param-
ters, a dynamic parameter setting approach is used to find
he optimum value of the disturbance ratio (Nt ), the maximum
teration for the neighborhood search (Max_It), inertia weight (ω),
he cognitive (c1) and social coefficients (c2). The pseudocode of
he calibration algorithm is provided in Fig. 7.

On this basis, the final experiments will be conducted con-
idering the following parameter values. (1) VNS-CS: s = 0.01,
Nt = 0.02, and Max_It = 5. (2) VNS-PSO: ω = 0.9, c1 = 0.1, c2 =

0.1, Nt = 0.2, Max_It = 20. Besides, the performance of every
algorithm is benchmarked considering three encoding methods,
i.e., real, cycle, and float, throughout the experiments. Finally, a
CPU time of 300 s is considered to compare the performance of
the algorithms fairly.

The small test instances are first solved using an exact method,
MILP, to validate the formulation and compare the results with
those of the VNS-CS and VNS-PSO algorithms. Table 2 summarizes
the resulting fitness values and computational time. It is observed
that there is no meaningful difference in the computational time
of the metaheuristics, which are both outperforming the ex-
act optimizer in terms of computational efficiency. Notably, the
Gurobi optimizer could not find an exact solution to the problem
of 10 jobs/3 machines/3 cars within 3600 s; the near-optimum
value returned by the optimizer for experienced a 13.7 percent
error. On the other hand, the solutions obtained by the VNS-
CS algorithm present an equal fitness value but the results of
the VNS-PSO algorithm are slightly larger while minimizing the
fitness value is desirable.
10
Table 3 summarizes the best-found solutions to the large-size
instances. The vast majority of the best solutions in the first two
configurations, (20, 5, 5) and (40, 10, 10), are yielded by the VNS-
CS algorithms while all the best solutions in the largest problem,
(50, 15, 15) are found by the VNS-PSO algorithms. Notably, the
real number encoding is best suited for solving the PRP-TWST
problem. Considering the overall outcomes, however, VSN-CSC
shows a better performance.

Figs. 8–10 visually compare the performance of the algo-
rithm considering the RPD value. The first observation is that the
VNS-CS algorithm performs better when real and cycle encoding
approaches are applied while the float encoding approach seems
to result in better outcomes in the VNS-PSO when the problem of
20 jobs and 5 machines/vehicles is considered. It is also observed
that the difference between the performance of the VNS-CS and
VNS-PSO becomes smaller with an increase in the problem size
with VNS-CS performing slightly better in the problem of 40
jobs and 10 machines/vehicles. In the largest instance, however,
VNS-PSO with real encoding outperforms with a 0.83 percent
margin.

6. Conclusions

Production and distribution decisions at the operational level
of supply chain management are interrelated and should be
planned simultaneously to ensure the feasibility of the solutions
and the effectiveness of the optimization approach. This study in-
vestigated a relatively new extension to the integrated production
scheduling and vehicle routing problems. Given the impact of the
setup operations and time window on the responsiveness of the
operations, a mathematical formulation is proposed to account
for these operational aspects in PRP, considering total delay time
as the optimization objective. Two improved metaheuristics were
developed to solve this highly dimensional optimization problem.
Comparing these metaheuristics, the experiments showed that
they can obtain the optimum solution to the small-scale problems
in a slight fraction of the time required by the exact optimizer.
Besides, the numerical results suggest that the VNS-CS algorithm
is relatively more effective for solving large-size instances.

This study is limited in that it assumes a static and determinis-
tic operational environment. Addressing these shortcomings will
allow for a deeper analysis of the system behavior in particular
circumstances. For example, one can include the possibility of
rejecting or partially accepting an order taking into account the
status of both production and distribution resources. As a second
suggestion, the pickup and delivery considering dynamic capacity
adjustment can be featured in a way that forward and reverse
operations can be planned simultaneously. Third, the present
study only considered outbound logistics operations. The next
suggestion, therefore, comes from integrating inbound logistics
decisions into PRP-TWST to further improve the connectedness
of the supply chains, i.e., by considering the availability of sup-
plies. Fourth, other variants of routing problems, like the General
Routing Problems and Arc Routing Problems are not integrated
with the production scheduling problems; disassembly opera-
tions could be coupled with reverse logistics operations using
an integrated general routing-based disassembly line-balancing
problem. As the final suggestion, other state-of-the-art optimiza-
tion algorithms, like the chaos-enhanced simulated annealing,
Meta-Lamarckian-based iterated greedy, and the hyperbolic gray
wolf optimizer should be developed for the benchmark against
our proposed methods. For this purpose, introducing a standard
testbed for PRPs helps the development of this understudied
optimization problem. On this basis, more constructive heuristics
and metaheuristic algorithms should be developed to provide
better solutions to the PRPs.
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Fig. 7. Pseudocode of the calibration algorithm.

Fig. 8. Benchmark results for the problem of 20 jobs, 5 production machines, and 5 delivery vehicles.

Fig. 9. Benchmark results for the problem of 40 jobs, 10 production machines, and 10 delivery vehicles.

11
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Fig. 10. Benchmark results for the problem of 50 jobs, 15 production machines, and 15 delivery vehicles.
Table 2
Solutions to the small-size instances obtained by the exact method and the metaheuristics (best in
bold).
(m, n, v) _seed MILP VNS-CS VNS-PSO

(5, 2, 2) _10 2448.50 2448.50 2448.50
(5, 2, 2) _20 3336.20 3336.20 3336.20
(5, 2, 2) _30 2053.63 2053.63 2053.63
Average CPU time (s) 0.437 0.014 0.008
(8, 2, 2) _10 4876.30 4876.30 4876.30
(8, 2, 2) _20 4725.48 4725.48 4725.48
(8, 2, 2) _30 6571.26 6571.26 6571.26
Average CPU time (s) 191.420 0.015 0.017

(10, 3, 3) _1 5303.18 5303.18 5723.98
(10, 3, 3) _2 5141.90 5141.90 5662.81
(10, 3, 3) _3 4745.82 4745.82 5841.33
Average CPU time (s) >3600 0.051 0.046
Table 3
Best-found solutions to the large-scale instances (best in bold).
Configuration (n,m, v) Instance VNS-CS-R1 VNS-CS-C2 VNS-CS-F3 VNS-PSO-R VNS-PSO-C VNS-PSO-F

(20, 5, 5)

1 12170.75 12122.43 12432.59 12303.47 12383.55 12385.4
2 12057.82 12024.35 12057.82 12288.48 12057.82 12063.1
3 11887.82 11887.82 12284.08 11973.8 11887.82 11887.82
4 9470.76 9470.76 9742.4 9577.64 9642.91 9562.27
5 11949.03 11949.03 11949.03 12355.27 12234.1 11949.03

(40, 10, 10)

1 23616.37 23641.81 25295.01 23854.72 23857.85 24143.41
2 22871.96 22631.42 23865.73 22642.04 22202.21 23586.62
3 20307.24 20587.45 22971.63 20483.15 20329.2 21235.16
4 21987.13 22255.3 24010.11 22258.84 23119.12 23204.12
5 24986.39 25048.55 26569.59 24993.82 26123.52 26337.88

(50, 15, 15)

1 24984.91 24492.53 25695.12 24382.24 24598.96 24812.68
2 23532.23 23108.15 23900.95 23072.91 24572.02 25595.1
3 23196.75 22851.72 23945.67 22423.77 22533.04 23465.42
4 22478.23 22249.74 23774.28 22201.71 23565.13 23844.94
5 23944.93 24088.43 24928.13 23745.82 23895.49 24854.17

Average 19296.15 19227.30 20228.14 19237.18 19533.52 19928.47

R: real, C: cycle, F: float.
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