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Abstract

A reinforcement learning algorithm based on Deep Q-Networks (DQN) is used

for the path following and heading control of a ship in calm water and waves.

The rudder action of the ship is selected based on the developed DQN model.

The spatial positions, linear velocities, yaw rate, Heading Error (HE) and Cross

Track Error (CTE) represent the state-space, and a set of rudder angles rep-

resents the action space of the DQN model. The state space variables are in

continuous space and action spaces are in discrete space. The decaying ϵ-greedy

method is used for the exploration. Reward functions are modelled such that

the agent will try to reduce the Cross Track Error and the Heading Error.

Based on the literature available, the L7 model of a KVLCC2 tanker is used

for testing the algorithm. The vessel dynamics are represented using a 3DoF

maneuvering model that includes hydrodynamic, propeller, rudder and wave

forces. The wave disturbances are calculated from the second-order mean drift

forces . The environment is assumed to have the Markov property. The CTE

and HE are calculated based on the Line of Sight (LOS) Algorithm. The effect

of Pre-trained weights on different heading actions is investigated based on the

exploration threshold. The DQN is trained and tested for heading control and

path-following in calm water and different wave headings.
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Summary of Notations

u Surge velocity ψd Desired heading angle

v Sway velocity ye Cross Track Error (CTE)

r Yaw moment ∆h Look ahead distance

x, y Spatial positions δ Rudder angle

ψ Heading angle γ Discount rate parameter

γp Horizontal path

tangential angle

α Step size parameter

β Side slip angle ϵ Probability of taking a

random action in an

ϵ-greedy policy

Kp,i,d PID controller gains U Total speed =
√
u2 + v2

HE Heading error(ψ − ψd) lbp Length between

perpendicular (Lpp)

a An action N Number of episodes

np Propeller speed (rps) yk Waypoint index number

r A reward s state
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At Action at time t Rt Reward at time t

κ Wave encounter angle t St State at time t

r(s, a, s′) expected immediate

reward on transition from

s to s′ under action a

ω Wave frequency

XH ,YH ,NH Surge force, lateral force,

yaw moment around

midship acting on ship

hull except added mass

components XP Surge

force due to propeller

XR,YR,NR Surge force, lateral force,

yaw moment around

midship by rudder

XP Force due to propeller XD,YD,ND Surge force, lateral force,

yaw moment by wave

drift

XS , YS , NS Second order mean drift

force and moment by

waves
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1. Introduction

Model based control techniques have been extensively used for ship naviga-

tion such as heading control and path following. This requires prior knowledge

of the system dynamics. The accurate modelling of the nonlinear dynamics of

the ships can be a complex process. Studies on autopilot systems on model

based control techniques are widely available [1] [2] [3] [4] [5] [6]. Controllers

like PID and LQR are simple to implement. However, they are limited in its

robustness under wave disturbances. Literature are available on the autopilot

design of ships based on PID, linear and Nonlinear Model Predictive Control

(NMPC), etc.,[7][8][9][10] [11] [12]. With the advancement of the modern control

theory, nonlinear control theory like adaptive control [13], backstepping control

[14], robust control [15], sliding mode control [16] [17], fuzzy logic control [18]

[19] etc. have also been widely used in the field of ship steering control. In

fields that require precise motion control like automotive suspension systems,

robotics, servo mechanics etc. state of the art methods have been developed to

take account of the uncertainty in the system dynamics, nonlinear friction and

bounded disturbances [20] [21]. Function approxiamtors like Neural Network

(NN) and Fuzzy Logic System (FLS) are used for the parameter estimation and

are further augmented by advanced nonlinear friction models [22] and novel

adaptive control strategies [23].

However, with the technological leap that gave the tremendous capacity to

store and retrieve data, data driven models are gaining attention among the

ship research community. Reinforcement Learning (RL) is one of the three

branches of the machine learning paradigms in which the agent explores the

environment and takes appropriate decisions. RL helps to find the solution

to an optimal control problem that is stated as Markovian Decision Process

(MDP) [24]. The advantage of the MDP solution procedure is that it can

handle nonlinear stochastic dynamics [25]. Even though the MDP solution

works only for discrete state space, function approximators help to overcome this

limitation. One such approximate RL technique is used in this paper for ship
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steering control problems. In addition to the generality of the MDP solution,

the main advantage of the RL based control is that it’s a model-free control

technique. Therefore, it does not require any prior information on the system

dynamics. The agent learns itself from the stored samples of transitions and

rewards during the exploration and finally solves for the optimal or near-optimal

controller by following the best policy. Therefore, RL can be a strong candidate

for finding the optimal controllers for nonlinear stochastic systems with unknown

dynamics and disturbances. However, training demands computational time

and resources, and the model’s convergence depends on the accurate tuning of

the hyperparameters. Data driven models are popular in the field of self-driving

cars, terrain robots and drones and are also gaining popularity among the ship

navigation community. This paper develops a data-driven model based on the

RL technique for the path following and heading control of a KVLCC2 tanker

in calm water and waves.

In RL, the control terminologies like controller, controlled system and con-

trol signal can be replaced by agent, environment and action. The agent can

generally learn from the experiences according to the corresponding states by ei-

ther value iteration or policy iteration. Policy iteration is guaranteed for faster

convergence when the system has a lower variance bound in the state space

transformation. Recently there has been a surge in the research on the RL

(DRL) based methods for marine vehicle navigation and control. Path planning

and collision avoidance of marine vehicles have been the key areas in which RL

based techniques have been widely used. RL based on Tabular Q-Learning [26],

[27], Deep Deterministic Policy Gradient (DDPG) [28] and Proximal Policy Op-

timization (PPO) [29] [30] have been investigated for path planning. Different

RL techniques based on policy searching methods such as Actor-critic methods

[31] [32],Proximal Policy Optimization (PPO) [33] etc. have been investigated

by researchers on collision avoidance. [34] [35] investigated the straight line and

curved path following of three marine vessels using DDPG methods. Reward

function based on Gaussian distribution was used. They investigated the RL

controller performance during the path following of three vessels under ocean
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currents. However, a single random path was simulated and the cross track

error was analyzed.

Even though policy search based methods are guaranteed for faster conver-

gence, these works are limited in robustness and tend to local convergence [36]

[37]. Meanwhile, Value iterations based RL algorithm relatively takes a longer

time for convergence. However, they are suitable for systems with a signifi-

cant variance during the state space transition [38]. The Agent can learn from

the experiences in two ways. If it stores the previously sampled transitions

and learns from the stored sampled transitions, then this is considered an OFF

policy algorithm. Otherwise, if the agent uses only the currently sampled tran-

sitions for learning, then it is called an ON Policy algorithm. An Off policy

and value iteration based method called Deep Q-Network (DQN) is used in this

paper. The tabular method of Q-learning is popular among RL applications

which have discrete state-action space, and have also been used for path plan-

ning of ships [39]. But, when the number of states is high, larger computational

resources are required. In parallel, DQN offers a robust method that has con-

tinuous state space (S) and discrete action space (A) [40]. Deep Q network

is a value iteration based RL algorithm that provides the contraction mapping

from state to action (S −→ A). In dynamic programming, state values are

generally updated by the Bellman equation where the probability to taking any

action is known. However, in RL, the samples are obtained from the memory

buffer which has information about the transition. The DQN is neuro-dynamic

programming where the network weights are updated by the backpropagation

method by calculating the appropriate gradients. The DQN is generally known

for its robustness when the system has high variance [41].

In this paper, the heading control and path following tasks in calm water

and waves are formulated using an RL algorithm based on DQN. Here, the ship

is considered as an agent and the states in continuous space are obtained from a

vessel dynamics model of a KVLCC2 tanker. The action space consists of a set

of rudder angles. The vessel dynamics return the current states of the ship such

as spatial position, yaw angle, yaw rate, etc. The reward function is represented
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by a step and linearly decrement function based on HE, CTE and the distance to

the goal point. The LOS algorithm is used to estimate the CTE and HE based

on the agent’s current state. Many episodes (in the range of thousands) are

simulated and the Q-values and best policy functions are calculated. The RL

method aims to select optimal rudder angles from the allowed action space to

achieve the required path based on a long-term cumulative discounted reward.

Transfer learning techniques [42] [43] are tried for heading control. This is

achieved by transferring the final weights obtained from training the agent in a

particular heading and testing it for another heading action. The wave forces

for different amplitudes are calculated from the second order mean drift forces.

The capability of the RL method to reject the wave disturbances is analyzed.

Most of the aforementioned studies have focused on the development of RL

algorithms for ship path planning and collision avoidance. A few studies have

been conducted on the heading control and path following, however in the ab-

sence of any wave disturbances. To the best knowledge of the authors, no studies

were conducted on the path following of a large tanker in calm water and waves.

The main contribution of our work is the investigation of the performance of a

DQN based RL controller in wave disturbance rejection during a path following

task. The wave disturbances are represented by second order mean wave loads

and hence give a good approximation to the practical scenario. The develop-

ment of such a RL controller involves the designing of an appropriate reward

function and tuning hyperparameter that can function in different environmen-

tal conditions. In order to ensure that the RL controller works for all scenarios,

different kinds of paths and headings have been studied under different wave

conditions. The main challenge is the building of a RL based controller with ap-

propriate reward function and termination criteria for an under-actuated system

with huge inertia. The ship dynamics is highly nonlinear, therefore designing of

the reward function is a strenuous one. An inappropriate reward function will

lead to local convergence during learning. Appropriate termination criteria will

define the agent’s exploration capacity during the training and result in faster

convergence. In addition, the hyper parameters such as size of the memory
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Figure 1: Ship inertial and body coordinate systems

buffer, neural network’s architecture, loss function and epsilon decay rate,etc.

should be tuned and chosen in such a way that faster convergence and global

stability is achieved during the training period.

2. Ship Dynamics and Wave Modeling

The 3DoF ship dynamics represented in the body coordinate system is shown

in Fig.1. The ship dynamics are modelled based on the Manoeuvring Modeling

Group (MMG) model [44] [8].

(m+mx)u̇− (m+my)vr − xGmr
2 = XH +XR +XP +XS

(m+my)v̇ − (m+mx)ur + xGmṙ = YH + YR + YS

(IzG+ x2Gm+ Jz)ṙ + xGm(v̇ + ur) = NH +NR +NS

(1)
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The governing equations for the coupled surge, sway and yaw are repre-

sented by Eqn.1. The numerical simulations are carried out for a L7 model of

a KVLCC2 tanker (model scale 1:45.7). The main particulars of the ship are

given in the table 2. The hydrodynamic (H ), propeller (P) and rudder (R)

forces/moments are calculated based on [44]. Fig.2 compares the numerical and

experimental open loop turning circle trajectory in calm water for a ±35◦ rud-

der angle. There is a good agreement between the numerical trajectory and the

experimental trajectory obtained from [44].

Particular Full scale L7-Model

Length between perpendiculars (m) 320 7

Breadth (m) 58 1.27

Draft (m) 20.8 0.46

Displacement ∆(m3) 312600 3270

mass (kg) 3.12× 108 3351.75

Longitudinal centre of gravity XG(m) 11.2 0.25

Block coefficient Cb 0.810 0.810

Propeller dia. Dp(m) 9.86 0.216

Rudder height HR (m) 15.80 0.345

Rudder Area AR(m
2) 112.5 0.0539

The second order mean drift forces are calculated based on [45]. They affect

the surge, sway and yaw motions. The second order longitudinal and lateral

drift forces and yaw moments are pre-calculated in the range of −180 to 180

deg wave heading and for a range of frequency between 0 and 13 rad/sec in the

model scale. During the numerical simulation, the wave incident angle with re-

spect to the body frame is calculated and the corresponding mean second order

force/moment is interpolated accordingly. The experimental open loop trajec-

tory [46] is compared with the numerical trajectory in waves. The simulations

are conducted in a wave steepness (H/λ) of 0.02 and 0.038, and the wave length

is equal to the ship. The numerical and the experimental open loop trajectory
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Figure 2: Comparison of the numerical and experimental open loop turning circle trajectory

in a regular wave of 0.02 steepness is shown in Fig.3. A detailed comparison

between the numerical and experimental open loop trajectory in waves of dif-

ferent characteristics and the validation of the wave modelling can be observed

in [11].

3. Line of Sight (LOS) Algorithm

The LoS algorithm is developed based on [47] [8]. Based on the current states

of the vessel and its distance from the desired trajectory, the LOS algorithm

returns the HE and CTE. Waypoints are kept at an equal distance of 2 times

the lbp. The tracked way points are updated in the history cell. The agent

switches between the way points when the distance to the next target point is

less than the distance to the already traced point. The MMG model provides

the yaw angle (ψ) in the range of -360 to 360 deg. Therefore, the yaw angle is

clipped in the LOS algorithm between -180 and 180 deg.
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Figure 3: Comparison of open loop trajectory in waves

4. Deep Q Networks (DQN)

DQN is a neural network based Q-learning method. The mathematical

model given in Eqn.1 is used to obtain the state space of the agent for each

time instant. In calm water, the same equation without mean second order

drift force and moment is used to obtain the state space. Initially, the ship

is starting at the origin (0, 0) with 1.2 m/s surge velocity and 12 rps . The

objective of the DQN is to approximate the state-action value function through

training a policy network which will return the maximum cumulative discounted

reward (Rt0 = ΣT
t=t0γ

t−t0rt). γ is the discount factor and rt is a reward at a

particular time t. The agent chooses an optimal action (a∗) through the trained

optimal policy π∗(s), Eqn.2. The decaying ϵ-greedy algorithm with a threshold

ϵ-value is used for exploration, Eqn.3. Many episodes are simulated and the

Q-values are approximated.

π∗(s) = argmax
a

Q∗ (s, a) (2)
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ϵ(i) = 0.2 + (0.99− 0.2) ∗ exp
(
−0.5× i

600

)
(3)

Training episodes are bounded by a set of termination criteria. When HE

is more than 180 degree and the cross track error is more than 9 times lbp, the

episode will terminate. A negative reward below −0.5 will also result in episode

termination. In addition, when the number of steps reaches the horizon or when

the ship traced the final waypoint in the trajectory sequence, an episode will

terminate. The fixed size horizon steps to terminate the episodes resemble the

Monte Carlo Policy Evaluation in DQN learning. However, a proper approxi-

mation is required for estimating the horizon steps. The horizon is fixed based

on an approximate time that the agent takes to track the points, which depends

on the ship velocity and trajectory length. Depending on the initial heading

error, tolerance will be added while calculating the horizon.

Feed Forward Neural Network (FFNN), has an architecture of two hidden

layers of 128 nodes with sigmoidal activation function, and linear input-output

layers are used as Q-network and is shown in Fig.4. The Q-values are ap-

proximated for every step action during the training phase based on Bellman

Equation [48]. The trained Q-network provides the contraction mapping for ev-

ery possible state to optimal action. The temporal difference error (∆) between

the policy net and the target net is used to calculate the loss function, Eqn.4.

∆ = Q(s, a)− (r + γ argmax
a′

Q(s′, a)) (4)

where s, s,, a, and π are state, next state, action and policy at a time t. The

Mean Square Error (MSE) is calcualted from ∆ based on Eqn.5. Q(s, a) values

are calculated from the policy net and Qπ(s,, π(s,)) are calculated from the

target net.

Mean Square Error =
1

2
∆2 (5)

DQN is an offline policy algorithm, and it tries to minimize the error between

the target and policy net. This is achieved by batch mode training in which
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Figure 4: Architecture of Neural Network and Control Structure Diagram
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samples are taken from the reply memory buffer. Batch mode training is used for

gradient calculation and the calculated gradient weights are updated by Adam’s

optimizer gradient descent method [49] [50] [51]. The size of the memory buffer

has a significant role in the training process. Since, the problem is modeled as a

finite horizon MDP, memory size is selected as 10 times the event horizon size.

For eg., if the desired trajectory length is 300m and the ship moves with an

initial surge speed of 1m/s and the numerical integration time step is 1s, the

horizon size will be approx. 300 steps with an additional tolerance. In this case,

the memory size will be approx. 3000.

Table 3. DQN Hyper Parameters

Shape of the NN 8-128-128-5

Activation function linear-sigmoid-sigmoid-linear

Step size parameter 0.98

Target Update Interval 10 episodes

Optimizer Adam’s Method

Learning Rate 0.001

β1,β2 0.9,0.999

Batch size 128

Exploration threshold 0.2

Memory Buffer Size 10 × horizon

5. Reward Function

The reward function is a performance measure for the contraction mapping

(Q∗ : State × Action −→ R) and designed based on the HE, the CTE and

distance to the goal. Two functions from Eqn.6 and Eqn.7 are stepwise linear

decremented and used in reward Algorithm.1. Eqn.6 defines the CTE based

reward distribution. When the CTE is within the range of a ±0.3 × lbp, it

yields high reward. Similarly Eqn.7 defines the HE based reward distribution.

When the heading error is higher than 90◦, the algorithm will only focus on
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minimising the HE. Eventually, the algorithm focuses on minimizing the CTE

and HE to zero value.

R1(ye) =


100 if 0 < abs(ye) < 2.

20 elif 2 < abs(ye) < 3.5

(1− abs(ye)
7×lbp )× 20 otherwise

(6)

R2(HE) =

1− (HE
90 ) HE ≤ 90°

2− (HE
90 ) otherwise

(7)

Algorithm 1: Reward Function

Data: HE, CTE, Current state, Previous state, Goal

Result: Numerical value of the reward (range from -0.5 to 101)

1 if current state is closer to goal than previous state then

2 Flag = True

3 else

4 Flag = False

5 if Flag = True then

6 Reward = 1 + (R2(HE)×R1(CTE));

7 else

8 Reward = R2(HE);

6. Results

The DQN algorithm is tested for the heading control and path following of a

tanker in calm water and waves. The cumulative discounted reward, the length

of episodes (i.e. no of time step) and the heading error during the training

phase are plotted against the corresponding episode numbers and discussed.

The rudder deflection for the final episode (i.e. the test case) against each

time step is also plotted. A time step of 1s is used in the simulation. This

section is divided into the following subsections 1) Heading control in calm
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water 2) Path following in calm water 3) Heading control through the transfer

of pre-trained network weights. 4) Heading control in different wave headings

5) Path following in different wave headings 6) A senstivity study on the effect

of different hyperparameters on the convergence of the reward function.

6.1. Calm Water Condition

Initially, the agent is at the origin of the global frame with 1.2 m/s surge

velocity and 12 rps. Waypoints are used to represent the desired trajectory.

The waypoints are kept at an interval of 2 × lbp. The transition formations

(st, at, r, s(t+1)) are stored in the memory buffer. Once the memory buffer is

filled, the learning will take place for each step by mini-batch gradient back

propagation. During the training, the old information is eradicated and re-

stored by the new transition information in the memory buffer. Mini-batch for

the network’s error back propagation is sampled from the memory buffer using

random call.

6.1.1. Heading Control

The Heading control of the ship in all directions is achieved by proper DQN

training. The heading actions such as -45◦, -90◦, -135◦ and -180◦ are simulated

and are shown in Fig.5. The given vessel headings are negative based on Fig.1.

8 state variables as shown in Fig.4 are used as input. However, the heading

control can also be achieved by various combinations of input such as using 2

states (HE and CTE), six state (u, v, r, x, y, ψ), 5 states (x, y, ψ, HE, CTE) and

3 states (x, y, ψ). For heading control, since the agent always tries to reduce

the heading error, the yaw angle is an important input and hence common in

all the combinations of input. 8 input model facilitates faster convergence and

is used in this paper.

A running average of the cumulative discounted reward, length of episodes

and the heading error for 100 episodes for -90◦ heading control are plotted in

the Fig.6. The given cumulative reward is the average of the sum of all the

rewards for a particular episode. A high cumulative reward is achieved after
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Figure 5: Heading Control in Calm Water

approximately 500 episodes, and the episode duration also increases. The major

part of the learning happens during the first 500 episodes. By 500 episodes, the

ϵ value, i.e exploration, reaches 0.72. The cumulative reward converges even

though the agent explores it in subsequent episodes . The agent performs the

task within 300 steps (i.e. 300s). Rudder deflections for the final test case

are also plotted in Fig.6. Unlike the model based control techniques, the DQN

employs a discrete action space. Even though the number of allowed rudder

angles is limited to 5 for this study, the DQN algorithm is able to perform

heading control with the allowed rudder actions.

6.1.2. Path Following in Calm Water

Path following is performed for a S-shaped and an elliptical trajectory. The

S-shaped curve is defined by the Eqn.8

y =
250

1 + e−0.03(x−200)
(8)
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Figure 6: -90 Degree heading case- Cumulative reward, Episode duration, and Heading error

vs. Episode number, Final rudder deflection for the test case vs. time step
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Similarly, an elliptical trajectory (a = 110m, b = 55m) is also considered for the

path following task. After sufficient training, the RL algorithm is able to track

both paths as shown in Fig.7. Unlike the heading control case, HE and CTE

are inevitable input to the NN for the path following task. The initial heading

angle of the agent is zero and the initial surge speed is tangent to the X-axis

(ie. along advance direction). Therefore, the agent is able to track the S-curve

smoothly. While tracking the elliptical path, even though the agent takes the

rudder action at the start of the simulation, the hull responds slowly due to the

agent’s huge inertia. Additionally, because of the waypoint switching strategy

adopted in the LOS algorithm, the agent skips the first two points and joints

the third one. The running average of 100 episodes for the cumulative reward,

length of the episodes and the heading error for the S-shaped path are plotted

in Fig.8. Like the heading control, a high reward (≈80) is achieved after 500

seconds and the length of the episode converges to ≈500 steps. The running

average of HE converges. The final rudder deflection during the test phase is

shown.

6.2. Effect of Pre-trained Weights

The neural network weights are randomly initialized at the start of the train-

ing. Based on the back propagation, the final converged weights are obtained

by the end of training. To reduce the training time, the training can be started

with the pre-trained weights with a limited range of exploration. This facilitates

faster convergence in a few episodes. The heading control in 90,-55 and -105 deg

is performed using the weights obtained from 45, -45 and -90 deg as shown in

Fig.9. For example, the trained weights of -45 deg heading action are used for

training the -55 deg heading. It has converged within 300 episodes, where the

exploration rates are set between 35 % to 20 %. The gradual decrements in the

exploration rate follow the eqn.3. Similarly, the DQN algorithm is trained for

-105 deg heading control using the pre-trained weight from -90 deg. Here the

exploration rate is kept between 40 % and 20 %. It takes approx. 300 episodes

for convergence. The transfer of 45◦ trained weights for 90 deg heading action
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Figure 7: Trajectory Comparison of S-shaped and Elliptical Path Following in Calm Water

requires further training of episodes with a higher exploration rate of 60 % to

20 %. Fig.10 shows average running reward for the three heading actions using

the pre-trained weights.

Therefore, the heading actions with a smaller deviation from the originally

trained simulations require only a smaller number of training episodes. However,

larger deviations from the trained path require a higher rate of exploration.

6.3. Heading control and path following in waves

During ship maneuvering in waves, the first order wave force effects on the

yaw motion are filtered using a low pass filter. The second order drift force

effects are counteracted by the rudder forces. Therefore, only the second or-

der mean drift forces are considered in the following simulations. Prior to the

RL simulation, the second order mean drift forces are calculated based on [45]

for a range wave heading and frequency. The wave forces corresponding to

the instantaneous ship heading are interpolated from the drift force data. The

wavelength is kept the same as the ship length. To build a robust DQN model,
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Figure 8: S-shaped Curve - Cumulative reward, Episode duration, and Heading error vs.

Episode number, Final rudder deflection for the test case vs. time step
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Figure 9: The effect of pre-trained weights on the ship heading control

Figure 10: Convergence of average reward for three ship heading using pre-trained weights

from the other headings
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waves in multi-directions i.e. (-180,...-90,..0,..90,...,180 deg) are added as dis-

turbances during each episode. A random call to select the wave direction for

each episode is used, which results in a uniform distribution of the disturbance

to the model during training. In this section, the agent is trained and tested to

perform heading control and path following in waves.

6.3.1. Heading Control in waves

The heading control in waves has been performed for a range of wave head-

ings. The ability of the RL algorithm to achieve −45, −90,−135, and −180

deg ship heading control is tested. For each course heading, the ship is tested

for (0, π/4, π/2, 3π/4, π, −π/4, −π/2, 3 − π/4, −π rad) wave headings. In

this manner, we can assure that the ship is able to achieve a particular course

heading irrespective of the wave direction. In addition, the ship is also tested

for a wave steepness of 0.02 and 0.038. In the head and bow quartering waves,

the surge speed reduces because of the added resistance in waves [8]. The pro-

peller rotates at 12.1 rps in the smaller amplitude wave, and 20 rps in the larger

amplitude wave so that it maintains the same surge speed for both cases. The

ship always starts at the origin (0,0) in the global frame. The horizon steps

for training in waves are two times the calm water ones. During the training, a

particular wave direction in an episode is chosen based on a random call. In this

manner, the agent is trained in all wave directions, and the final weights help

the agent to achieve the heading control irrespective of the wave directions.

The DQN algorithm with the final weights are tested in regular waves of 0.07

and 0.13m wave amplitude and for eight different wave headings (0, π/4, π/2,

3π/4, π, −π/4, −π/2, 3 − π/4, −π rad) . Fig.11 shows the heading control in

0.07m wave, and Fig.12 and 13 show the heading control in 0.13m wave. For all

the cases, the ship starts at 0◦ heading. The trajectory is made of waypoints and

the guidance principle is based on the LOS algorithm. Due to its huge inertia

and being an under actuated system, the agent traverses the lower quadrants

to achieve the -135 and -180 deg heading. The agent is able to achieve the

headings irrespective of the wave directions. The agent switches between the
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Figure 11: Heading Control in 0.07 meter waves

way points when the distance to the next target point is less than the distance to

the already traced point. In this manner, the agent’s path smoothly converges

to the desired trajectory. The agent experiences large drifting force/moment in

0.13m wave as observed in Fig.13. Among the four tested ship heading scenario,

-180 deg heading can be considered as the difficult maneuvering since the ship

has to make a U-turn for achieving the heading control. In this case, the agent

experiences the largest drift in -90 deg wave heading i.e. when the wave is

coming from top to down in the Fig.13. Because of the vessel dynamics and

the LoS algorithm, the vessel skips the first two way points. However, when

the agent experiences low drift forces while performing the desired maneuvering

(for e.g. in 90 deg wave heading), it tracks all the way points. It shows the

capability of the DQN algorithm to capture the dynamics of the vessel.

The wave forces affect the ship velocity. Therefore, the number of steps

required to trace the waypoints in a particular wave direction is different from

the other wave cases. However, this does not pose any problem during learn-
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Figure 12: Trajectory Comparison of -45 and -90 degree Heading Control in 0.13 meter am-

plitude wave
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Figure 13: Trajectory Comparison of -135 and -180 degree Heading Control in 0.13 meter

amplitude wave
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Figure 14: -135deg ship Heading in 0.07m amplitude wave- Cumulative reward, Episode

duration, and Heading error vs. Episode number, Final rudder deflection for the test case vs.

time step
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ing. Fig. 14 shows the the running average of the cumulative reward, episode

duration and the heading error plotted against the episode number during -135

deg heading control training. The reward plot shows the running average of 100

episodes and the cumulative discounted reward for each episode. The reward

converges to 50 by approx. 500 episodes. However, at approx. 1000 episodes,

it suddenly drops. It may be due the exploration that the agent performs at

this stage. This is not observed for the calm water case. At 1000 episodes,

the agent has an exploration rate, ϵ, of 50% (Eqn.3). The plot of the length

of the episodes vs. episode number shows that the agent is able to track the

given way points within 300 time steps (i.e. 300s). The heading error converges

by 2800 episodes. The slight fluctuations is due to the exploration rate at this

episode ( 28%). The rudder angle during the test phase is shown in Fig.14. Here

the weights from the finally trained weights obtained from the last episode is

used for testing the heading control in different wave headings. Since the action

space is discrete, the rudder is allowed to take only 5 actions (-35,-20,0,20, and

35 deg). However, within the limited action space, the agent is able to track

the way points and achieve heading control. A larger action space will facilitate

a smoother rudder action however at the expense of higher computational time

for the training. The DQN based control algorithm is able to reject the wave

disturbances for both 0.07 and 0.13m amplitude waves.

6.3.2. Path Following in Waves

A S-shaped and a cardioid curve are designed for the path following problem

in waves. The S-shaped curve which is already used in the calm water case

represents an open end trajectory (Eqn.8). The cardioid curve generated based

on the Eqn.9 represents a closed end trajectory. The variable ’a’ in Eqn.9 is

chosen as 25.

x(ϕ) = 2a(1− cosϕ). cosϕ

y(ϕ) = 2a(1− cosϕ). sinϕ
(9)

The path following in 0.07m amplitude wave is shown in Fig. 15 and 16, and

the path following in 0.13m amplitude wave is shown in Fig. 17 and Fig.18. The
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Figure 15: Trajectory Comparison of S-shaped Path Following 0.07 meter Waves

Figure 16: Trajectory Comparison of Cardioid Path Following 0.07 meter Waves
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Figure 17: Trajectory Comparison of S-shaped Path Following in 0.13m Waves

Figure 18: Trajectory Comparison of Cardioid Path Following in 0.13m Waves
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Figure 19: Cardioid path following in 0.07m amplitude wave- Cumulative reward, Episode

duration, and Heading error vs. Episode number, Final rudder deflection for the test case vs.

time step
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ship is tested for 8 wave headings as mentioned in the previous sections. The

trajectories in the wave headings are plotted in Fig.15 to Fig.18. The ship starts

with a zero heading angle. For S-shaped curves, the surge speed is tangent to the

curve at the starting of the simulation. Therefore, the ship is able to track all

the way points for both wave amplitudes. However while tracking the cardioid

curve, the surge speed is not tangent to the curve at the initial position . The

waypoints are uniformly distributed along the length of the curves at an interval

of 2lbp. Because of the vessel dynamics and the LoS algorithm as mentioned in

the previous section for -180 deg heading control, the vessel skips the first two

way points and smoothly tracks the rest of the way points as shown in Fig.16.

The vessel experiences larger drifting in 0.13m wave as shown in Fig.18. The

cumulative and average rewards, length of episodes and the heading error during

the training of the agent for the cardioid path following in waves are shown in

Fig.19. The reward converges after 600s and the agent take approx. 500-600

steps (i.e. 500-600s) to complete the mission. The episode duration in waves

increases than the calm water case for the convergence.The cumulative heading

error for each episode represents the summed up value of the instantaneous

heading error that the vessel experiences during a particular episode. Initially,

the cumulative heading error is very high and it slowly converges later on.

Since there will always be a heading error as the vessel follows the curved path,

the cumulative error will never be zero. The DQN model is able to learn the

dynamics of the vessel and is able to keep this error close to a minimum. The

rudder deflection for the test case is shown Fig.19. DQN model can follow the

path even with a limited rudder action. Even though the maximum rudder rate

may be clipped in a practical scenario, a larger rudder action space in the DQN

model will help to overcome the issue.

7. Performance of a PID Controller in waves

The RL based controller is able to achieve the heading control and path

following in waves of different wave steepness. It will be interesting to see
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whether the same can be achieved using a simple PID controller. The KVLLC2

model performance in calm water and waves using a simple PID controller was

investigated by [52]. The controller gains were estimated based on the pole

placement method for a damping factor of 0.7 and closed loop natural period

of 100s. The performance of the controller was tested for heading control in

low amplitude waves of wave steepness H
λ = 0.02 i.e. wave amplitude of 0.07m

in model scale. The same controller is further tested here for a larger wave

amplitude of wave steepness H
λ = 0.037 i.e. 0.13m wave amplitude in the model

scale and as given in the previous sections. Fig.20 shows the performance of the

PID controller in waves of 0.13m wave amplitude. The PID controller is not

able to achieve the desired heading and path following in larger wave amplitudes.

Therefore, further tuning of the gains is required in order to obtain the optimal

performance in waves of larger amplitudes. However, such a scenario is not

observed for the RL based controller. The RL based controller is able to reject

the disturbances due to larger waves as shown in Fig.12-18.

8. Sensitivity study on the hyper parameters

The DQN algorithm involves many hyper parameters. In this section, a

sensitivity study on some important parameters such as node size and batch

size, discount rate (γ), memory size and the selection of optimizer is conducted

to understand its performance on an efficient learning of the agent.

8.1. Hidden Layer Nodes and Batch Size

The NN model has two hidden layers. Its node size and the mini batch

size affect the learning. A sensitivity study of these variables on the average

cumulative reward of the agent is carried out. The contour plot, fig. 21, shows

the average of the average cumulative reward during 500-1000 episodes plotted

against the number of nodes and the batch size.. The sensitivity test is con-

ducted for a 45◦ heading action in calm water. The average reward increases

with an increase in the number of nodes and batch sizes. Any value of the
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Figure 20: PID performance in 6m waves
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Figure 21: Node- Batch Size Comparison Against the Average of the Average Cumulative

Reward

node or the batch size above 200 results in a very high reward. In this paper,

the node and the batch size is kept at 128. Even though this yields a lower

reward, the required computational time is only half of a 256-256 node-batch

size combination.

8.2. Discount rate parameter and memory buffer

The discount rate parameter (γ) plays an important role in learning. A very

high (0.99) and low (0.5) values of discount rate results in poor convergence of

the reward function. The γ value between 0.7-0.95 is found to be optimal for

the current problem since it facilitates faster learning as observed in Fig.22,.

Batch mode of training samples the data from the memory buffers which

stores the current state, next state, reward and action. Various studies have

been conducted on the effect of memory size[51]. For the current problem, it is
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Figure 22: Effect of Discount Rate and the Length of Memory Buffer on the Average Reward
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Figure 23: Comparison of Different Optimizer Performance

optimal to use a memory size of 8-16 times of the horizon as shown in Fig. 22.

8.3. Stochastic Optimizer Comparison

The optimizer plays an important role in minimizing the loss function. The

performance of different optimizer in the convergence of the average reward

value is plotted in fig.22. The average of the cumulative reward for each episode

is plotted against the number of episodes in Fig.22 . The case study is carried

out for a 45-degree heading action in calm water. The other hyperparameters

remain the same as given in table 3. The performance of the optimizers such

Ada delta [53], Ada Grad [54], Adam [50], ASGD [55], RMSProb [56], RProb

[57] and SGD [58] are compared. The Adam optimizer results in the largest

reward and ASGD and RMSprob show good results. The adaptive learning

rate methods like AdaDelta and AdaGrad give better results than one step

gradient update method[58].
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9. Conclusion and future work

In this work, we have successfully implemented a DQN algorithm for the

heading control and path following of a tanker in calm water and waves. It

shows the capability of the data driven model to steer an under-actuated sys-

tem with huge inertia. A 3DoF mathematical model is used for simulating the

ship dynamics. LoS algorithm is used for calculating the heading error and cross

track error. 8 continuous space states are considered for the input and the dis-

crete action space consists of 5 rudder angles. Appropriate reward function and

the hyper-parameters are chosen so that the convergence of the results happens

within 500-1000 episodes. The DQN algorithm is tested for course heading and

path following problems in calm water, and in waves of steepness 0.02 and 0.038.

A finite horizon model is followed in the DQN formulation. Transfer learning

for different heading actions is performed based on the exploration threshold.

A detailed sensitivity study on the effect of DQN hyperparameters on the con-

vergence of the reward function has been conducted. Good performances are

attained for both the heading control and path following problems.

The paths are discretized using waypoints. The waypoints are uniformly

distributed along the path and are kept at an interval of 2× lbp. The agent

is tested for vessel headings of -45,-90,-135 and -180 deg in calm water and

waves. The average reward, episode duration and the heading error converge

after 500s. Within the allowed limited rudder actions, the agent is able to

achieve the heading control. The pre-trained weights from a particular heading

is tested for other vessel headings. This resulted in a lesser training period

and shorter episode duration for convergence. An S-shaped and an elliptical

path are used for the path following in calm water and the agent follows both

the paths smoothly. Similarly, the heading control and path following tasks

are simulated in regular waves. The DQN based control is able to reject the

disturbances and achieve the vessel heading irrespective of the wave directions

by assuming that the vessel has adequate propeller and rudder actuation power

to overcome the wave forces. The path following in waves are tested for a S-
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shaped curve and a cardioid curve, which lies in four quadrants. The agent’s

ability to track the waypoints in all the four quadrants are demonstrated. A

sensitivity study on the hyperparameters such as node size, batch size, discount

rate and memory size are conducted. Larger values of the node and batch size

result in larger reward function. The discount parameter value between 0.7-

0.95 is found to be optimal for the problem. A memory size of 8-16 time the

size of the horizon yields larger reward and faster convergence. Among the

different types of optimizers, the Adam optimizer gives the best performance

and SGD resulted in poor performance. Thus, a data driven control based on

DQN algorithm is successfully implemented in the numerical simulations for the

autonomous navigation of a tanker in calm water and in waves.

This work can be further extended to Lyapunov stability based learning

to ensure system stability. In addition to this, the scope can be extended to

collision avoidance and cooperative control between multiple vehicles. Since it’s

been shown in paper that the RL controller can execute any path following tasks

effectively, a proper reward function for collision avoidance may be added on the

existing algorithm for safe autonomous ship navigation. The proposed method

is an off-policy learning algorithm, which could be converted to an on-policy

learning algorithms.
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