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Abstract

Realizing carbon neutral energy generation creates the challenge of accurately

predicting time-series generation data for long-term capacity planning and for short-

term operational decisions. The key challenges for adopting data-driven decision-

making, specifically predictive analytics, can be attributed to data volume and veloc-

ity. Data volume poses challenges for data storage and retrieval. Data velocity poses

challenges for processing the data near real time for operational decisions or for

capacity building. This manuscript proposes a novel prediction method to tackle the

above two challenges by using an event-based prediction in place of traditional time

series prediction methods. The central concept is to extract meaningful information,

denoted by events, from time-series data and use these events for predictive analy-

sis. These extracted events retain the information required for predictive analytics

while significantly reducing the volume of the velocity of data; consequently, a series

of events present the information at a glance, effectively enabling data-driven

decision-making. This method is applied to a data set consisting of six years of histor-

ical wind power capacity factor and temperature measurements. Deploying five deep

learning models, a comparison is drawn between classical time-series predictions and

series of events predictions based on computational time and several error metrics.

The computational analysis results are presented in graphical format and a compara-

tive discussion is drawn on the prediction results. The results indicate that the pro-

posed method obtains the same or better prediction accuracy while significantly

reducing computational time and data volume.
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1 | INTRODUCTION

The total electricity production from wind resources increased by 170 TWh in 2020 with 11% rate of growth from 2019, as reported by Interna-

tional Energy Agency (IEA).1 This pattern of growth can be observed for both onshore and offshore installations with off-shore installations lead-

ing at 29% rate of growth. A considerable growth of large-scale offshore wind farms installation is noticeable in Europe at 18.5 GW, and it is
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projected that the installed capacity will continue to increase, as among others, the capacity factor of the off-shore is higher than onshore wind

turbines. Then, European Union (EU) aims to achieve about 100 GW of offshore wind capacity installation by 2030.2

Wind being an uncertain and variable resource, precise and accurate projection of wind power production is crucial for planning to build new

capacity, operations and maintenance scheduling. Several studies have been conducted exploring analytical tools and improvements to existing

ones in the literature. Following texts lists review of several of such tools to provide an impression of the methods. Predictive analytics of wind

power data is used for operational control of energy storage units.3 A strategy for offshore wind park maintenance is presented in Zhou and Yin.4

In Mujeeb et al,5 deep learning models are used for predictive analytics of wind power production, and in Jamil et al,6 a predictive analytics model

is proposed to facilitate peer to peer energy trading. From the above examples, it is clear that predictive analytics is used at all the various stages

of wind park planning, operations, and maintenance.

As discussed in Lerner et al,7 accurate forecasting of wind energy has important implications, as it reduces imbalance charges and penalties, it

provides a competitive knowledge advantage in real-time “balancing” and in “day ahead” energy markets tradings, and it allows for more efficient

project construction, operations, and maintenance planning. Renewable energy forecasting in general, and wind energy forecasting in particular, is

traditionally performed in the literature in terms of “time-series predictions.”
In the last decade, there is a shift from traditional time-series tools such as auto-regressive moving average (ARIMA) for statistical inference

of patterns in the historical data to machine learning tools as it becomes more efficient and widely available.8 A comprehensive review of intelli-

gent predictors in the field of wind energy forecasting is provided in Liu et al,9 where the authors discuss works that discuss four types of shallow

predictors (artificial neural network, extreme learning machine, support vector machine, and fuzzy logic model) and four types of deep learning-

based predictors (autoencoder, restricted Boltzmann machine, convolutional neural network, and recurrent neural network). Traditional methodol-

ogies implemented in literature can be classified as deterministic forecasting and probabilistic forecasting. While deterministic forecasting gives a

certain predicted value at a specified time, the probabilistic forecasting provides a prediction interval or expected value and a probability density

function. The latter is therefore applicable to predictions with implicit uncertainty and risk control; however, unreasonable assumptions about the

distribution may introduce errors.10 A review of deterministic wind energy forecasting is proposed in Liu et al,9 while a review of probabilistic

forecasting for wind power generation can be found in Zhang et al.11 A very recent work reviewing models, methods and future research of both

deterministic and probabilistic wind power forecasting is proposed in Bazionis and Georgilakis.12

Based on the reviews proposed in the listed literature, it is evident that deterministic forecasting models have been widely used over the last

few decades for wind power predictions. Among these, the most popular are conventional time series based models, such as autoregressive mov-

ing average,13 autoregressive integrated moving average,14 and Grey method,15 as well as artificial intelligence-based models,16 like artificial neu-

ral networks17 and support vector machine.18 Continuous technological development has also led to new methodologies being considered for

wind power forecasting, like deep learning for example.19 The challenges related to the uncertainty of predictions in wind power forecasting have

gained great interest in the recent literature. For this purpose, various models have been proposed, like kernel density estimation,20 quantile

regression,21 lower upper bound estimation,22 bootstrap,23 and ensemble-based methods.24 As shown in the literature, probabilistic forecasting

models are more difficult to evaluate as compared to deterministic models; however, specific metrics (namely, reliability, sharpness, resolution,

and the overall skill score) have been developed in order to improve the implementation and validation of probabilistic forecasting approaches.

1.1 | Main methodological challenges in wind power forecasting

Based on the available literature, two main challenges can be identified when it comes to wind power predictions: accuracy and computational

resources.

In terms of accuracy, one common conclusion in the literature is that wind power generation is a non-linear and non-stable process, and

therefore more research should be done to handle the wind power uncertainty within forecasting methodologies. Li et al25 propose a short-term

wind power forecasting method where the prediction accuracy approaches 90%; however, the authors conclude that while the proposed model

can improve the accuracy of prediction, there are still some limitations, especially when it comes to long-term forecasting. A novel decomposition

approach, which takes the chaotic nature of wind power time series into account and improves the prediction accuracy, is proposed in Safari

et al.26 Here, the chaotic components become more predictable by eliminating high-frequency variations that are small in amplitude. With this

approach the model accuracy is improved when compared with other state of the art models. A review of hybrid empirical mode decomposition

models for wind speed and wind power prediction is proposed in Bokde et al.27 According to this review, wind speed and wind power prediction

techniques can be classified into three different groups: the physical, the statistical, and the intelligent approach. It should be noted, however, that

many researchers hypothesize hybrid methods constitute a fourth approach and have observed that these hybrid methods demonstrates a better

performance when it comes to predictions accuracy. It is nonetheless difficult to quantify the overall improvement in prediction accuracy with

hybridized methods, but the review confirms the popularity and penetration of hybrid neural network and support vector machine based models

in wind speed and power predictions.
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In essence, improving the accuracy of existing deterministic forecasting models as well as developing more advanced probabilistic forecasting

models are understood as the most promising research directions for the scientific community. Then, new forecasting products are required to

more effectively handle probabilistic information.28

In terms of computational resources, traditional wind power predictions based on time-series data-set are characterized by high volume

(many years of historical data with low resolution), velocity (factoring in the real-time component), variety (associated with highly variable weather

and highly unstructured measurements gathered through the sensors), and veracity (although not all the points in the time-series may be meaning-

ful and there is a need for pre-processing before predictions). These characteristics place these predictions within the recent domain of big energy

data.29

The challenge of execution time due to data volume and real-time machine learning applications has gained attention in literature, especially

in recent years, due to an increased availability of historical and real time data. Execution time improvements have been achieved, for example, in

Naik et al30 by using hybrid empirical mode decomposition and kernel ridge regression, in Naik et al30 by using hybrid variational mode decompo-

sition and multi-kernel regularized pseudo inverse neural network, or in Saroha and Aggarwal31 by using wavelet transforms and neural networks

with tapped delay.

The literature implies that the nature of big data that rests behind the wind power predictions raise computational challenges. Indeed, when

predictions are based on time-series data, a high availability of historical data is key for improving accuracy, albeit the computational resources

required increase accordingly. Balancing prediction accuracy and computational resources is certainly a key challenge in current energy research.32

Moreover, as the amount of data increases over time, the available methods tend to predict energy consumption with lower accuracy and/or with

much higher completion times.33

1.2 | Virtual power plants, a challenging application for wind forecasting

Virtual power plants (VPP), which form a local energy markets, contain a very high share of variable and uncertain renewable energy resources

(such as wind) as well as responsive energy demand. Real-time data processing and accessibility would provide information that could empower

VPP owners, stakeholders, and decision makers alike.34 The existing processing methods currently in use are computationally resource intensive

and take longer processing time. In addition to problems with energy data, the communication infrastructure is operating at over capacity, and so

it is lagging behind in the ability to enable services such as demand response.35,36 The decision-makers are keen on identifying trends and patterns

(information) from historical time-series data in order to perform predictive analytics of future scenarios (insight). For instance, identifying the

timing and duration of peak demand is of significance to the decision-maker who is looking at a time-series data and must make decisions in a

short time window, thereby making near-real time or real time decision a key issue. The models also influence policy making in terms of frequency,

level of details, and target setting.37 Models can also enable and support ambitious targets such as CO2 reduction. In addition, transparency in

operation and a simplification of the results would lead to inclusive policy design. Simplifying the whole time series into a set of events might also

lead to clarity in decision-making. Therefore, data volume and velocity are among the key bottle necks for VPP applications.

1.3 | Overcoming forecasting challenges: extracting more out of the data

One key pathway for improving wind power forecasting has been identified in “extracting more out of the data.”38 The ability to identify key fea-

tures intrinsic to the data set can indeed lead to improved and more accurate predictions. Features extracted from wind ramp events from a vir-

tual wind park have been discussed in Mishra et al39 where the authors present a novel ramping behavior analysis (RBA) method that identifies

and quantifies variations in a time-varying data set. Two types of events are identified: significant and stationary events. Significant events refer

to significant variations beyond a set threshold range, and stationary events refer to variations that mostly happen within the threshold limits. The

authors associate the following features with each event: start time, end time, peak value, change in magnitude, the persistence of an event, the

angle at which the event took place, and frequency of occurrences of the features. Once significant events are identified within a time-series data

set, the next step is to utilize them to perform predictions.

While there are many works in the literature performing predictions based on traditional time-series data (which we will refer to as “tradi-
tional time series prediction”), to the authors' knowledge, there are currently no works in literature that perform predictions based on significant

events extracted from time-series data. Such types of predictions would be beneficial to generate a better dataset that can be used as input to

mathematical optimization models for smart energy and power systems.40 Indeed, mathematical optimization has been widely used for decision-

making within both electrical and thermal energy systems.41 However, the traditional approach is to input a dataset in the form of time series,

with hourly or finer resolution, that negatively affects the solution time. In addition, most of these models involve a high number of binary vari-

ables, as well as uncertainty. Many models are technology-oriented and they include details of specific technologies, often leading to non linear

formulations (see, for instance, Ibrahim et al.42). When combined with multihorizon decision making such as Bordin et al43 and Bordin and

MISHRA ET AL. 3



Tomasgard,44 they can easily become intractable. For these types of optimization models, the computational time of solving big instances is usu-

ally a challenge. An event-based dataset, that extracts only relevant events from the full dataset, would contribute to a faster solution time, com-

pared to the traditional time-series dataset that is normally utilized.

The importance and the value of coupling predictions with decision support systems tools based on mathematical optimization have been dis-

cussed in Bordin et al.45 It is the fundamental concept of the modern applications of prescriptive analytics, that is at the top of the analytics value

escalator. However, predictions must be performed in ways suitable for inclusion within mathematical optimization models such that the gener-

ated dataset does not negatively impact the solution time. This is where predictive analytics based on events extracted from time-series data can

greatly contribute to the next more advanced level of prescriptive analytics where the final decisions are taken utilizing the core subject of mathe-

matical optimization.

1.4 | Hypothesis and contributions

This research work hypothesizes that an event based prediction method can reattain or be more effective than the time-series based methods

while using deep learning models. Systematic computational experiments are conducted to test and validate the hypothesis. The primary contribu-

tion of this work is to introduce an event based prediction method using events extracted from time-series data. The secondary contribution of

this paper is to present a comparative investigation between predictions using time-series and events from time-series as inputs. Then discuss the

proposed novel predictive analytics product that is being developed as an extension of the research works in Mishra et al.39,46 The first research

work introduces RBA method with an application to wind power production that identifies and extracts events (significant and stationary) from

the time-series data (wind power generation). The second proposes a comparison of a selection of established deep learning models for short and

long term predictions of time series wind power generation and temperature data-set. Essentially, this paper investigates how events using RBA

method can be utilized and measures the efficiency on time-series data (wind power production).

The main reasons why it is worthwhile to predict events instead of time-series can be summarized as follows. Not all the data points of a

time-series data set may be relevant for the specific purpose of a certain predictions. Indeed, new forecast products should include probabilistic

information, but should deliver it in a way that is tailored to the end user and their specific decision making problems.28 From this point of view,

identifying and predicting significant events is more meaningful for delivering predictions that matter for the specific needs of the final users. The

accuracy of predictions is therefore higher when the focus is on significant events (which matter for a specific end user application), rather than

on a full time-series data set that contains many data points that might be not relevant for the end user application. Moreover, the size of a data

set containing significant events is notably smaller than the size of a full time-series data set, having immediate positive implications for reduced

complexity and faster computations.

Descriptive statistics explains the underlying distribution of a data set; however, descriptive statistics is restricted by a set number of features

that describe the statistical properties of a specific time-series. The proposed method extracts events from a time-series that depends on a thresh-

old and cut-off frequency.39 For instance, if the threshold is changed, the same data set is then represented by an alternative set of events. This

implies that the user can define what counts as a significant and stationary event for the specific application. Thereby the proposed RBA method

is a fast and flexible measure for extracting information from time-series data, and it is especially useful for application to a chaotic time-series, as

this proposed method can reduce the complexity in events.

A highlight of key contributions are summarized as follows:

• Propose a novel predictive analytics method that is based on predicting events extracted from time series data.

• Perform a comparative analysis between predicting series of events extracted from time-series versus raw time-series data while using deep

learning models.

• Demonstrate that predicting series of events maintain and at times excel in accuracy and precision matrices in comparison with predicting

time-series.

• Demonstrate that predicting series of events is computationally faster and less resource intensive (memory requirements and computations),

therefore more efficient than predicting time-series (faster computation due to reduction in size and complexity).

• Quantify the amount of energy consumed in predicting series of events and time-series data.

• Contribute to the domains of green computing47 and green artificial intelligence48 by proposing more efficient forecasting method and tools

that enhance the sustainability within the domain of computer science.

Based on the contributions outlined above, the five deep learning models developed in Mishra et al46 are applied to predict both conventional

time-series and more innovative series of events. The five models used in this investigation are deep feed forward (DFF),49,50 deep convolutional

network (DCN),51,52 recurrent neural network (RNN),53,54 attention mechanism (Attention),55,56 and long short-term memory networks
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(LSTM).57,58 These models are classified as deep learning models which are in turn a part of the machine learning field and therefore tightly con-

nected to artificial Intelligence based forecasting. For comparison purposes, four established error metrics are used.

2 | PREDICTION OF EVENTS

2.1 | Extraction of events from time series wind power production

Wind ramp events are extracted using the RBAθ methodology proposed in Mishra et al.39 A ramp event can be stated as a swing across the refer-

ence axis. RBAθ classifies the ramp events into significant and stationary events. Significant events are those with sudden and substantial swings,

while stationary events have relatively smaller magnitude swings and are persistent over time. This study focuses on the significant events that

exist in time series wind power production data. The features describing an event, classified as a significant event, are graphically drawn in

Figure 1. Each significant event is described through five features. wsðtÞ measures the peak value of a ramp event, which is the peak value of

capacity factor at the time of vertex. t denotes the time when the ramp event occurred. Δws measures the magnitude of a ramp event, which is

value change between the set threshold and current value of wind capacity factor. Δt measures the length of time a ramp event has persisted.

θΔWs is the angle from the first departure point in contact with the threshold to the peak point wsðtÞ.
The RBAθ algorithm is applied to the wind power production data with hourly resolution for 5 years (2011–2016) to extract a series of

events. The wind power production data is localized to Estonia and comes from the previous studies.59 The statistical properties of the features

explaining the events are depicted in Table 1.

There are 6131 significant events extracted from 52,500 time-series data points. The peak capacity factor is 0.97, and there is an 88% reduc-

tion in the amount of data points. The last event occurred at the 52,500 h or on the 6th year. The highest shift in wind capacity factor was 0.83,

and the longest event lasted for 56 h (2.3 days). The highest angle was 45.62. Note that all the events are significant events, as stationary events

are not considered for this analysis. More details related to the two types of events are presented here.39

F IGURE 1 Concept diagram of RBAθ features describing a significant event

TABLE 1 Statistical attributes of the significant ramp event features

Statistical properties ws t Δws Δt θΔWs

count 6131 6131 6131 6131 6131

mean 0.25 26326.4 0 9.53 0.37

std 0.2 15242.5 0.22 6.6 10.72

min 0 0 -0.95 1 -36.37

0.25 0.09 13124 -0.1 5 -7.36

0.5 0.2 26469 -0.02 8 -1.58

0.75 0.37 39550 0.11 13 8.05

max 0.97 52500 0.83 56 45.62
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2.2 | Statistical analysis of the event features

Hourly time series data about wind power capacity factors and temperature in year 2016 is predicted using historical data from 2011 to 2015.

Then the predictions are tested by matching with the statistical properties of the original records.

The wind power and temperature input data are localized59,60 for Tallinn, Estonia. The data contains global re-analysis models and satellite

observations. The wind power capacity factor (WF) and temperature (TEMP) data are retrieved for five years from 2011 to 2016. The data are

segregated into training set 2011–2015 and testing set 2016, for model validations. Table 2 presents the statistical information of the wind power

capacity factor from years 2011 to 2016. The table contains annual- number of data count, mean, standard deviation (std), minimum (min), 0.25

percentile, 0.50 percentile, and 0.75 percentile values from the numeric data.

Figure 2 shows a heat-map on the left and 3-d plot on right for the mean value of persistence Δt. It can be observed that the Δt of the Ramp

behavior is higher in December–January during every year, similar to the capacity factors. The recorded maximum value is 12.265 in 2014. Con-

versely, the value is generally lower in June and August. From the 3-d plot, Δt, the persistence of a ramp event increases in proportion to the

increase of the wind power capacity factor from November to December. Note that the value of Δt has generally decreased from 2011 to 2016.

The mean value of the peak events (Ws) are extracted and plotted in Figure 3. On the left hand, there is a heat map and on the right there is a

3-d plot. The trends indicate that the maximum value in each year is recorded during December. It can also be noted that the value has risen nota-

bly from September to October except in 2012 and in 2015. In the 3-d plot, Ws has risen in January–February 2015–2016. The value of Ws has

been decreasing in October–November period since 2013.

Figure 4 shows the heat map and 3-d plot of the amplitude of ramp events (ΔWs). There was not a significant difference in each year and

month. The values for December are lower for all years. From this point, ΔWs becomes smaller in December when wind power production rises.

Figure 5 shows the heat map and 3-d plot of angle at which an event occurs (θΔWs ). The significant angle changes mostly occur in winter sea-

sons over the years.

TABLE 2 Statistical properties of wind power capacity factor and temperature data

Year 2011 2012 2013 2014 2015

Parameter WF TEMP WF TEMP WF TEMP WF TEMP WF TEMP

count 8760 8760 8760 8760 8760 8760 8760 8760 8760 8760

mean 0.26 6.27 0.248 4.57 0.228 6.31 0.266 6.87 0.232 6.09

std 0.21 10.19 0.183 10.47 0.196 9.48 0.216 7.64 0.192 9.3

min 0 �29.69 0 �30.11 0.001 �19.1 0.001 �16.83 0 �18.08

0.25 0.09 �0.22 0.101 �1.8 0.072 �0.38 0.098 0.93 0.079 �0.47

0.5 0.2 6.06 0.207 5.43 0.165 5.5 0.202 5.77 0.179 4.36

0.75 0.39 14.51 0.358 13.09 0.34 13.72 0.384 13.2 0.335 14.42

max 0.97 28.2 0.892 27.97 0.971 29.47 0.962 27.27 0.908 26.73

F IGURE 2 Heat map and surface plot of Δt
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In this section the statistical properties of the extracted features of the significant wind ramp events are discussed. The features' persistence

(Δt) andpeak event (Ws) are decreasing over the year in the data set for wind capacity factors, while, amplitude (ΔWs) and angle of an event (θΔWs )

has trivial changes over the six years time period. However there is a seasonal effect in the angle of an event wherein the changes intensify during

F IGURE 3 Heat map and surface plot of Ws

F IGURE 4 Heat map and surface plot of ΔWs

F IGURE 5 Heat map and surface plot of θΔWs
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the winter. The original time series data and the extracted events are then used for prediction using five deep learning models as in the following

section.

3 | COMPUTATIONAL EXPERIMENTS

3.1 | Experimental setup

This investigation builds upon and utilizes the comparative analysis drawn between five deep learning models: Attention mechanism, deep con-

volutional neural network (DCN), deep feed forward (DFF), long short-term memory (LSTM), and independently recurrent neural network

(indRNN).46 These deep learning techniques are implemented using Tensorflow 2.0 package from Google61 in Python programming language

(3.6.4) in windows environment. In the previous work,46 time series data are predicted over four time horizons, ranging from a month to a year

long period, with hourly resolution. In this paper, significant events are extracted from 6 years of wind power production data. The features

describing a significant event include persistence (Δt), the magnitude of power swing (Δws), time at which an event took place (t), time at which

the power swing took place (wsðtÞ) and the angle of the swing (θΔws ). The input data are processed in three formats: original, fast Fourier transfor-

mation (FFT), and discrete wavelet transformation (WT). Through the five deep learning techniques mentioned above, the features are predicted

for a time period of 1 year. The model parameters are kept the same as in the previous work on time-series prediction.

3.2 | Results—Predictions of event features

Figures 6 and 7 depict the accuracy of the prediction. The models with accuracies better than the average gap of the attention model are

highlighted in red. Among the five models, the Attention mechanism performs the best in all round tests.

Regarding prediction of Δt, the most accurate result is registered using the original data with Attention model. Pre-processing the data

through time to signal domain using FFT has deteriorated the prediction through DFF, indRNN, and LSTM models. Meanwhile, the wavelet trans-

formation for input data has declined the prediction accuracy using Attention mechanism and DCN.

In terms of computational times of execution for event prediction, the DFF with original event data is the fastest, but not the most accurate,

while wavelet pre-processing with LSTM has the longest execution time. The same tendency as Δt was observed also for Δws, with the reason

being that each feature, together with other features, describe a single event. In terms of model accuracy, the Attention model performs the best

with original data. For prediction of t, the model accuracy using FFT transformation is the lowest. The Attention model so far has been most accu-

rate for time series data and event series, however for prediction of t DCN it also performs better. For wsðtÞ prediction accuracy, the same ten-

dency as Δt,Δws was observed. The difference is that in case of the indRNN, the result of the original data was erroneous, and the result of the

WT was accurate. In case of θΔws , the DCN had larger gaps in all the input data compared with the Attention model; however, wavelet filters in

other models have improved the accuracy by about 5–15% with the Attention models. In brief, the attention mechanism with original data per-

forms the best for all five features, while for individual features the specific model and particular pre-processing performs better than the Atten-

tion mechanism.

For prediction of Δt, the Attention model is most accurate in terms of performance.

Comparing the short and long time horizons, short-term prediction was more accurate with the original data, while for other data types, the

long time horizon prediction was more accurate. IndRNN is second to the attention model in terms of model accuracy. In this model, prediction

period did not make a difference in the results for any data type. At Δws, the DCN results were improved. The values were almost the same as

with the original data using the Attention model, and the short-period prediction was relatively better. Looking at indRNN and LSTM, with original

data, long period prediction had a smaller gap. For t, it is clear that the preprocessing using the FFT filter did not improve the short and long period

predictions. As for the tendency, similar to Δt,Δws, t described above, the results of short-term period prediction were most accurate in the case

of Attention model. The results for long period prediction were better for DFF, indRNN, LSTM. For wsðtÞ and for θΔws , the same tendency as Δt

and Δws was observed. The difference is that in case of indRNN, the result of the original data was erroneous, and the result for the WT is better.

3.3 | Results—Predictions of time series data

In Figure 8, the prediction accuracy of deep learning models with time-series input data is presented. The root mean square error (RMSE) is uti-

lized as the metric to compare the models. The Attention mechanism performs best in comparison with the other four models for long-term pre-

diction; therefore, the prediction errors in the Attention mechanism was selected as the the base case highlighted in red. As the errors increase,

the red color is retained and if the error decreases, the color is changed to black. For instance, the error in predicting original WF using DFF is
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0.21 in black in comparison with the Attention mechanism. The reader is invited to refer to the work in Mishra et al46 for a more comprehensive

discussion on the results and for the algorithms' performance for time series predictions.

3.4 | Discussion—Time series predictions versus event predictions

A comparison of computational times between prediction of time series and prediction of series of events is performed in Figure 9. It is evident

that prediction of events is significantly faster than predicting the original time-series data. The intuitive reasoning is that the absolute number of

data points are reduced in several folds when events are extracted from data. For the proposed hypothesis to hold, prediction of events should

also fare well in model accuracy. Thereby it can be established that prediction of events is accurate and computationally faster than predicting

time-series data with and without preprocessing. This is because the the number of data points is reduced when events are extracted from the

original time series.

A comparison of energy consumption between time series predictions and predicting a series of events is performed in Figure 10. A typical

laptop consumes 100 W/h while in use. Taking it as a base case, the total energy consumption can be calculated through the following relation-

ship: energy consumed (in Watt) = (100 W / 3600 s) ∗ computing time (in seconds). The results of the comparison between the two types of

F IGURE 6 Comparison of model accuracy for prediction of event features
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F IGURE 7 Comparison of model predictions over the prediction period

F IGURE 8 Time series prediction performance

10 MISHRA ET AL.



predictions using the deep learning models are presented in Figure 10. It is evident that prediction of events is significantly more efficient in terms

of energy consumption than that of predicting the original time-series data.

A comparison is drawn between prediction performance using series of events in Figures 6 and 7 and using time series in Figure 8. Taking a

closer look at the model performances for the event features and four different time horizons (1, 3, 6, and 12 months), the model error in the

LSTM, for the most part, is better than the base case (the Attention model). The indRNN stands in close second place in performance, where it

fares well across all features except θðΔWsÞ. This is followed by DFF closely and by DCN loosely in terms of performance. It was also observed

that, for most part, the original data reduced the model prediction errors. Summing up the results of the four models, LSTM, indRNN, DFF, and

DCN, have performed better than the base case of the Attention model in predicting the series of events. While the same pattern can be

observed in model performances with time-series input, the degree of accuracy is higher in cases where a series of events are used as the input.

Evidently, since the the total number of events extracted from the time-series is significantly less than the number of data points in the time-

series, the input data size and the computational resources are significantly reduced. In summary, predicting a series of events is clearly computa-

tionally efficient, reduces the data volume and partially improves the model performance over that of time-series as an input. This means event

based prediction might be better suited for real-time real-world machine learning applications for prediction. Having said that, more investigation

is required to investigate how the performance variation in predicting event features can be improved. Expanding on the previous research, if

LSTM performs well within the error threshold in predicting four out of five features, then perhaps the fifth feature can be adjusted. Finally, a per-

tinent question to be investigated in the future was introduced in Mishra et al,39 and this is to research reconstruction of the original or near origi-

nal time-series from the extracted events.

F IGURE 9 Comparison of computational times between time series and a series of events

F IGURE 10 Comparison of energy consumption between time series and a series of events
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4 | CONCLUSIONS AND IMPLICATIONS

This paper explores a comparative investigation on multi-variate forecasting using five deep learning models for four time horizons. Predicting

large time-series data consumes a lot of memory and is computationally expensive, thereby resulting in slower operational time. This paper pro-

poses an alternative to address these bottlenecks, specifically predicting a series of events where each event is described by four features. The

hypothesis is that if the trends and patterns are the information expected from a time-series, then the events carrying the relevant information

could be extracted from the time series and a series of such events can encapsulate the actionable information in the time series. If predicting a

series of events yields equal or improved prediction accuracy then the hypothesis is proved. A selection of five deep learning models, namely,

Attention mechanism, deep convolutional neural network (DCN), deep feed foward (DFF), long short-term memory (LSTM), and independently

recurrent neural network (indRNN) are used for the prediction. Two data pre-processing techniques, fast Fourier transformation (FFT) and dis-

crete wavelet, are used. For comparison purposes, all the hyper parameters of the selected models are kept the same for all the tests. For testing

and validation, 6 years of historical data of wind power production and temperature localized to Estonia are selected.

From the tests conducted, it is evident that event-based prediction reduces the total data volume by nearly 50% with the specific dataset and

parameters selection, requires less computational resources, and performs at a similar or higher degree of efficiency than that of the prediction

using time-series data as input. The investigation indicates that Attention models performs well in all the tests with DNN as a close second. Pre-

processing while increases the computational time not necessarily improve the efficiency of predictions. In addition to that, the energy consump-

tion in computation has decreased in one to two-folds when using event based prediction.

The proposed method is especially useful for the large volume and velocity of time-series data. In domains such as predictive analytics, it

could be specially advantageous. Event-based prediction could accelerate real-time applications in various domains. The reduction in memory size

and computational resources could result in cost saving. The domains of green computing and embedded systems require energy-efficient predic-

tive analytics approaches. Embedded systems are widespread as they power the modern technology economy. There are over 28 billion micro-

controllers in use each year. Embedded systems typically operate in resource-constrained environments such that they need to run on battery;

hence, energy efficiency, limited memory, or extremely slow clock rates are key challenges. The proposed RBA method that focuses on predicting

events extracted from time-series data could be relevant to program embedded systems. As sensor data arrives at a high frequency-potentially

many thousands of times per second, an embedded device running event-based predictions can operate in a limited duty cycle comprising of the

stages of data collection, processing, and providing inference on the results.

The event identification algorithm used in the work is generalized because the algorithm identifies variations in any data set; however, thresh-

old and cut-off frequency parameters are required to execute the algorithm. These parameters can regulate the number and type of events

extracted from a single data set. The threshold sets a limit, while cut-off frequency sets a range within which the variations are captured. This is

location specific, therefore different thresholds and cut-off frequencies must be set when extracting events from different locations. Further

research on the effect of threshold, cutt-off frequency to find an optimal values is a good direction for future investigation. Other directions for

investigations include determining whether the features should be predicted separately and reconstructed at a later stage as a single event. Then,

research will need to be done on how to reduce the losses in reconstructing a time-series from the extracted events. Also more investigation

could be performed for addressing uncertainty that comes from assigning probability to features rather than to a single time-series data point. For

instance, it might be known when t occurs, but not the magnitude ΔWs of change or the rate of change θðΔWsÞ. In this case a hyper parameter

tuning can also be conducted to improve the model results. Finally, since the accuracy of the models in this work is compared through the RMSE

error metrics, a more in-depth analysis can be performed focused on the error metrics.
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