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Abstract. This article present results from automatic detection of dust impact signals observed by the Solar Orbiter – Radio

and Plasma Waves instrument.

A sharp and characteristic electric field signal is observed by the Radio and Plasma Waves instrument when a dust particle

impact the spacecraft at high velocity. In this way, ∼5–20 dust impacts are daily detected as the Solar Orbiter travels through

the interstellar medium. The dust distribution in the inner solar system is largely uncharted and statistical studies of the detected5

dust impacts will enhance our understanding of the role of dust in the solar system.

It is however challenging to automatically detect and separate dust signals from the plural of other signal shapes for two main

reasons. Firstly, since the spacecraft charging causes variable shapes of the impact signals and secondly because electromag-

netic waves (such as solitary waves) may induce resembling electric field signals.

In this article, we propose a novel machine learning-based framework for detection of dust impacts. We consider two different10

supervised machine learning approaches: the support vector machine classifier and the convolutional neural network classifier.

Furthermore, we compare the performance of the machine learning classifiers to the currently used on-board classification

algorithm and analyze one and a half year of Radio and Plasma Waves instrument data.

Overall, we conclude that classification of dust impact signals is a suitable task for supervised machine learning techniques. In

particular, the convolutional neural network achieves a 96% ± 1% overall classification accuracy and 94% ± 2% dust detec-15

tion precision, a significant improvement to the currently used on-board classifier with 85% overall classification accuracy and

75% dust detection precision. In addition, both the support vector machine and the convolutional neural network detects more

dust particles (on average) than the on-board classification algorithm, with 14% ± 1% and 16% ± 7% detection enhancement

respectively.

The proposed convolutional neural network classifier (or similar tools) should therefore be considered for post-processing of20

the electric field signals observed by the Solar Orbiter.
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1 Introduction

1.1 The Dust Population in the Inner Solar System

The interplanetary dust population in the inner solar system (≤ 1 AU) is formed by collisional fragmentation of asteroids,

comets and meteoroids. The meteoroids and the larger dust particles are in bound orbits around the Sun and their lifetime is25

limited by collisions, while the smaller particles that form through collisional fragmentation are repelled from the Sun by the

radiation pressure force. The sources and sinks of the interplanetary dust particles are well-measured at the orbit of Earth, while

there are few observations inside 1 AU.

Model calculations show that the number density of dust within 1 AU is diminished by collisional destruction (Ishimoto,30

2000). However, there are a number of uncertainties that enter the model calculations since the dust collision rates depend

both on the dust number density distribution and on the relative velocities between the dust particles. These parameters are

generally unknown inside the orbit of the Earth and the estimated sizes of the fragmented dust particles are currently based

on empirical relations, inferred from laboratory measurements of accelerated dust particles (Mann and Czechowski, 2005).

Furthermore, there is an additional dust population with interstellar origin that stream through the solar system. The interstellar35

dust distribution is largely unknown and thus complicates the analysis of the stellar dust population. Remote observations of

the zodiacal light and the Fraunhofer corona (F-corona) provide some information of the dust population dust within 1 AU, but

mainly of the larger (> µm) dust particles (Mann et al., 2004). For all these reasons, in-situ measurements are needed in order

to better understand the role of dust in the inner solar system.

1.2 Exploration of the Inner Solar System40

At present, the inner solar system is explored by the Parker Solar Probe (Szalay et al., 2020), launched August 12, 2018, and the

Solar Orbiter (Müller et al., 2020), launched February 10, 2020. While systematic studies of the dust flux near 1 AU are con-

ducted with the Solar Terrestrial Relations Observatory (STEREO) (Zaslavsky et al., 2012) and Wind (Malaspina et al., 2014).

The first analyses show that a large fraction of the observed dust particles are repelled from the Sun, i.e. the dust particles

are in unbound orbits (Zaslavsky et al., 2021; Szalay et al., 2020; Malaspina et al., 2020). Mann and Czechowski (2021) used45

model calculations to explain the impact rates observed by the Parker Solar Probe with dust particles in unbound orbits with

sizes larger than ∼100 nm. Mann and Czechowski (2021) modeled the dust production by collisional fragmentation near the

Sun and the dust trajectories were calculated with included radiation pressure and Lorentz force terms. Mann and Czechowski

(2021) showed that the observed impacts largely agrees with the model calculations for dust > 100 nm and the differences are

possibly due to the influence of smaller particles, of local and temporal variations and of other dust components, such as dust50

in bound orbits and interstellar dust.

In this work, we analyze data acquired by the Solar Orbiter. The spacecraft orbits the Sun in an elliptic orbit with a period

of approximately 6 months. At perihelion, the Solar Orbiter reaches a minimum solar distance of 0.28 AU, just within the
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perihelion of the Mercury orbit. The expected mission duration is 7 years, with a possible 3 year extension. The Solar Orbiter55

will thus provide long-term, in-situ observations of the environment in the inner solar system with multiple instruments. One

of these instruments is the Radio and Plasma Waves instrument, allowing observations of the cosmic dust flux with typical

diameters ranging from ∼100 nm to ∼500 nm (Zaslavsky et al., 2021).

1.3 Radio and Plasma Waves Instruments for Dust Detection

Radio and plasma waves instruments (i.e. antennas) have been used for studying dust in the solar system since the Voyager60

mission (Gurnett et al., 1983; Aubier et al., 1983). A dust impact is observed by the spacecraft antennas as a sharp and charac-

teristic electric field signal, produced by the impact ionization process.

The impact ionization process occur when dust particles hit a target in space with impact speeds on the order of ∼km/s or

larger, impact speeds which are typical for space missions in the interplanetary medium. The kinetic energy of the impact is65

transferred into deformation, shattering, melting and vaporization of the dust projectile– and target material, producing a cloud

of free electrons and ions on the spacecraft surface. Laboratory measurements (Collette et al., 2014) and model calculations

(Hornung et al., 2000) indicate that the free-charge yield depends on multiple parameters, where the most important are the

dust impact velocity, the dust mass and the material of both the dust projectile and the target (the spacecraft surface) (Mann

et al., 2019). The forming cloud of charged particles is partly expanding into the ambient solar wind and is partly recollected70

by the spacecraft. This induces the characteristic electric field signal, hereafter called a dust impact signal/waveform.

Radio and plasma waves instruments allow for the the entire spacecraft body to serve as a dust detector, providing a large

collection area in comparison to dedicated dust instruments. Thus, radio and plasma waves instrument can provide dust distri-

bution estimates based on thousands of dust impacts each year, statistical products that are difficult to acquire by dedicated dust75

instruments. Still, the radio and plasma waves instruments have lower sensitivities than dedicated dust detectors (Zaslavsky,

2015) and the shape of the dust impact waveform is highly dependent on the potential difference between the spacecraft and the

ambient plasma (Vaverka et al., 2017). This complicates the analysis of the dust distribution in the solar system since statistical

studies rely on automatic dust impact detection software with high accuracy.

1.4 Machine Learning Classification of Time Series Data80

In this article, we present a machine learning-based framework as a novel method for detecting dust impact signals in radio

and plasma waves instrument data. Machine learning methods, in particular neural networks in the recent decade, have been

extensively used for challenging time series classification problems, such as: speech recognition (Trosten et al., 2019), heart

rate monitoring (Wickstrøm et al., 2022) and human activity classification (Villar et al., 2016).

85

A neural network has previously been used for selecting the signals of interest observed by the WAVES instrument on board

the Wind spacecraft (Bougeret et al., 1995). While an unsupervised method (self-organizing maps) was used for identifying and
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categorizing plasma waves in the magnetic field data observed by the MMS1 spacecraft (Vech and Malaspina, 2021). Still, no

machine learning tools have been developed for classifying dust impacts in radio and plasma waves instrument data, although

the characteristic signal produced by the impact ionization process is distinctive and could therefore be suitable for machine90

learning detection.

1.5 Motivation and Article Structure

The main purpose of this work was to develop a dedicated dust detection tool that can be used to automatically process the

large amount of data acquired by the Radio and Plasma Waves instrument on board the Solar Orbiter. The aim was to develop a

classifier with a high overall classification accuracy on a balanced data set that would make statistical studies more reliable and95

easier to conduct. For this project, we defined high accuracy to be (≳ 95%) after some initial testing. We considered (≳ 95%)

accuracy to be satisfactory for statistical studies and a significant improvement to the currently used classification system. In

order to achieve this objective we used supervised machine learning techniques to develop the dust classifiers, trained and

tested on a set of 3000 manually labeled observations.

100

The remaining of this article is structured as follows. Section 2 explains the Solar Orbiter – Radio and Plasma Waves

observations and the on-board algorithm that is currently used for dust impact detection. Section 3 describes the procedure

that was used for developing the machine learning classifiers; from the downloaded data to the training– and testing of the

classifiers. Section 4 investigate the performance of the classifiers and includes the resulting dust impact rates, calculated by

analyzing one and a half year of automatically classified Solar Orbiter data. Finally, Section 5 presents the overall conclusions105

of this project.

2 Observations and Data Acquisition

2.1 The Radio and Plasma Waves (RPW) Instrument and the Time Domain Sampler (TDS) Receiver

This work focuses on electric field signals (i.e. waveforms) observed by the Radio and Plasma Waves (RPW) instrument on-

board the Solar Orbiter (Maksimovic et al., 2020). The RPW instrument consist of 3 antennas operating synchronously and the110

measured electric potential is recorded by the Time Domain Sampler (TDS) receiver unit (Soucek et al., 2021).

The TDS receiver is designed to capture plasma waves (such as ion-acoustic and Langmuir waves) in the frequency range

200 Hz – 100 kHz, in addition to the dust impact signals (Soucek et al., 2021). The antenna voltages are converted to elec-

tric field values using the antenna effective lengths, but are otherwise uncalibrated. We consider only signals sampled with a115

sampling rate of 262.1 kHz in snapshots of 16384 time steps, acquired when the TDS receiver was operating in the XLD1 mode.
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The XLD1 mode is the most commonly used observational mode of the RPW-TDS system (Soucek et al., 2021). XLD1

is a hybrid mode, where channel 3 (CH3) is operating in monopole mode while channel 1 (CH1) and channel 2 (CH2) are

operating in dipole mode:120
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where Vi−VSC denotes the potential difference between antenna i and the spacecraft body along the antenna boom with unit

vector L̂i and effective length Li. For this work however, the 3 RPW antenna signals are all converted to monopole electric125

field signals (Ē1, Ē2, Ē3) by the following conversion:
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2.2 The Triggered Snapshot WaveForms (TSWF) data product and the TDS Classifier

For this project, we use the Triggered Snapshot WaveForms (TSWF) data product, processed with software version 2.1.1 and

acquired over a one and a half year period, spanning between June 15, 2020, to December 16, 2021. The TSWF data product

consists of signal packets (63 ms snapshots) that are downlinked only if the classification algorithm on-board the Solar Orbiter

is triggered. The accuracy of the on-board classification algorithm is therefore important in order to optimize the data transfer135

and provide reliable data products for statistical analysis.

The input to the on-board classification algorithm, hereafter named the TDS classifier or the TDS classification algorithm,

is the 63 ms signal packet, while the output is categorized into one out of three labels: dust, wave or other. The TDS classifier

assigns the label based on 3 extracted features.140

1. The snapshot peak amplitude

2. The ratio of the peak amplitude to the median of the signal

3. The bandwidth of the main spectral peak identified in the Fourier spectrum

The signal label is then determined by comparing the extracted feature values against configurable thresholds. For more detailed

descriptions of the TDS classifier, see Maksimovic et al. (2020) and Soucek et al. (2021). Figure 1 presents a few examples of145
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recorded snapshots with included labels, as classified by the TDS classification algorithm.
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Figure 1. Waveforms recorded by the TDS receiver and measured by one of the RPW antennas. The signal label, classified by the TDS

classification algorithm, is included for each snapshot in the subplot titles. The top row presents dust waveforms: a) is a clean dust impact

waveform, b) shows a dust impact that saturates the receiver unit (or reaches the non-linearity limit), c) presents a weak dust impact signal

that is strongly affected by noise. The middle row presents ambiguous waveforms: d) might be a dust impact, but information is limited by

the signal framing, e) is likely a dust impact, but the signal shape resembles solitary waves and is strongly affected by noise, f) might be a dust

impact, but noise and possible electromagnetic waves makes the signal difficult to interpret. The bottom row presents waveforms without

dust: g) shows Langmuir waves, characterized by the high-frequency E-field oscillations with a lower-frequency amplitude modulation,

h) presents solitary waves, which sometimes resemble dust impact waveforms, i) shows a signal dominated by noise, without any clear

features. Note that the full (63 ms) snapshots are zoomed to 15 ms intervals around the interesting features and that the signal amplitudes are

normalized to ±1 and centered around zero for illustrative purposes.
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Figure 1 illustrates that it is challenging to detect and separate dust signals from the plural of other signal shapes. In particular,

the dust waveform in Sub-figure c) is classified as other, while the Langmuir wave and solitary wave snapshots in Sub-figures

g) and h) are erroneously classified as dust by the TDS classification algorithm.150

3 Machine Learning-Based Framework for Automatic Dust Impact Detection

The goal of the machine learning classifier is to take a monopole RPW snapshot as an input and automatically output if the

signal contains a dust impact or not. For this purpose, we use a supervised classifier. A supervised classifier relies on manually

labeled data to learn (i.e. train) the function that maps the input observation (the electric field signal) to the output label. For this

work, we focus on detecting dust impact signals, we therefore use a binary label: dust or no dust. Additional labels, such as:155

ion-acoustic waves, Langmuir waves and solitary waves, could however be implemented in a similar machine learning-based

framework.

3.1 Data Pre-Processing for Machine Learning Classification

In order to construct a balanced data set, we selected ∼ 1500 waveforms classified as dust and ∼ 1500 waveforms classified

as wave/other by the TDS classification algorithm. The signals were randomly drawn from the TDS data archive and acquired160

between 15 June 2020 to 16 December 2021. The TDS signals were then pre-processed in order to standardize the input to

the classifier and speed up the training. Standardized data further reduces bias effects and makes the manual labeling of the

signals easier to conduct. For this work, a 4-step pre-processing procedure was used independently on each antenna signal, the

pre-processing procedure applied on a sample signal is illustrated in Figure 2.

1. Remove the signal offset The electric field offset is removed by subtracting the raw signal with the median of a heavily165

filtered version of the raw data. A sliding median filter over 21 time steps was selected by visual inspection of the noise

characteristics. The removal of the electric field offset centers the signal around zero and reduces bias effects from offset

waveforms.

2. Filter the data The signal is filtered using a sliding median filter over 7 time steps in order to reduce the high-frequency

noise. The 7 time step filter was selected by inspecting the power spectrum of impact signals and by noticing that most170

information above (fN = 35 kHz) is buried in noise, although the TDS sampling frequency is higher (fs = 262.1 kHz),

thus making a filter length (< fs/fN ≈ 7.5) appropriate without significant loss of information.

3. Compress the data The signal is re-sampled with a compression factor of 4 using linear 1-dimensional interpolation.

The compression is done to speed up the training of the classifier, resulting in a re-sampling from 16384 to 4096 time

steps.175

4. Normalize the signal The data is normalized to be between -1 and 1 by dividing all data samples with the maximum

absolute value of the signal. The normalization makes the machine learning classifier more robust to variations in the

signal strength and eases the parameter optimization.
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Figure 2. A dust waveform observed by antenna 2 on September 8, 2021. The sub-figures illustrate the different stages of the pre-processing

procedure. a) The electric field offset is removed and the signal is centered around 0 mV/m. b) The signal is filtered by a median filter over

7 time steps to reduce the high-frequency noise. c) The signal is compressed by a factor of 4 to reduce the data size. d) The waveform is

normalized by the maximum absolute value of the signal in order to ease the parameter optimization of the machine learning classifier. Note

the waveform is zoomed to a 15 ms time period around the dust impact in order to better visualize the impact shape modification by the

pre-processing procedure.

3.2 Manual Waveform Labeling

Manually labeled data is used both to train the machine learning classifiers and to test the performance of the trained models.180

Thus, great care is needed in order to construct a high-quality labeled data set, without significant contamination of corrupted

data files, biases and mislabeled signals.

We manually labeled the data into either dust or no dust. Each signal was displayed without indications of the previously

assigned label by the TDS classifier in order to reduce bias effects. Furthermore, a zoom function was used to investigate the185

areas of interest and options were included both to correct labeling mistakes by the user and to indicate ambiguous signals that

do not clearly fit into any label (dust or no dust). Appendix A presents the Graphical User Interface (GUI) that was used to

label the 3000 observations.
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It should be noted that 134 signals (i.e. 4.5%), out of 3000 manually labeled waveforms, were marked as ambiguous and did190

not clearly fit into either the dust or no dust label, see Figure 1 for ambiguous examples. Furthermore, the manual waveform

labeling was done by one scientist, although with consultations with other experts. Thus, it is to be expected that different

scientists will disagree on a proportion (around 5%) of the the manual labels. The disagreement level could possibly be reduced

if several experts labeled the same data set and the labeling consensus was used as the effective waveform label.

3.3 Developing the Machine Learning Classifiers195

The manually labeled data was split into a training set (containing 80% of the data) and a testing set (with the remaining 20%).

The training data is used to optimize the free parameters of the machine learning classifier with respect to the assigned labels,

while the testing data is used as an independent set to test the performance of the trained classifiers. The performance of a

machine learning classifier is quantified by comparing the outputs of the trained model to the labels of the testing data. Figure

3 illustrates the data flow; from the TDS data sets to the machine learning performance metrics.200

 Waveforms

Classi�ed as

Dust by TDS

 

[NDx3x16384]

Random Draw

3000 Waveforms

Randomly Selected 

and Shuffeled

 

[3000x3x16384]

Figure 3. Data flow: from the TDS data sets to the machine learning performance metrics. The diagram illustrates the data flow by the

black arrows and the applied process by the arrow label. The cylinders indicate the signal waveforms and the cylinder color indicate the

associated label. The gray circles mark data transformation processes. The random draw of the TDS data and the pre-processing is explained

in Sub-section 3.1, while the manual labeling is described in Sub-section 3.2. The randomization and splitting of the manually labeled data

into a training and a testing set is described in Sub-section 3.3 and the training and testing of the machine learning classifiers is explained in

Sub-sections 3.4 and 3.5. Finally, the performance of the machine learning classifiers are compared and evaluated in Sub-section 4.1.

There are numerous machine learning techniques that are suitable for time series classification. In this work, we focus on

two well-known techniques: the Support Vector Machine (SVM) and the Convolutional Neural Network (CNN).

9

https://doi.org/10.5194/egusphere-2022-725
Preprint. Discussion started: 11 August 2022
c© Author(s) 2022. CC BY 4.0 License.



3.4 The Support Vector Machine (SVM)

The support vector machine (Boser et al., 1992; Cortes and Vapnik, 1995) is a robust and versatile classification algorithm,205

considered to be one of the most influential approaches in supervised learning (Goodfellow et al., 2016). SVMs learn the

decision hyperplane that maximizes the discriminative power between the observations categorized into two classes (in this

case: dust or no dust). However, SVMs are highly dependent on the representation of the data and often achieve sub-optimal

performance on high-dimensional data (when used directly). In this case, the observation from 3 antenna measurements, each

with 4096 time steps, is both high dimensional and noisy (each time step contain little information). It is therefore common to210

extract important characteristics (i.e. features) from the data to provide the SVM with compactly represented information with

less noise and redundancies.

3.4.1 Feature Extraction

In order to develop a baseline machine learning classifier, comparable to the on-board TDS classification algorithm, a 2-215

dimensional SVM classifier was considered. Thus, every observation with dimension (3x4096) is represented by a 2-dimensional

feature vector (1x2). After some initial testing, we selected two features that had a high discriminative power between the dust

and no dust observations.

1. The standard deviation The mean standard deviation is calculated over the 3 antenna channels, each with 4096 time220

steps. The standard deviation is appropriate since normalized dust signals typically have a lower mean standard deviation

than normalized no dust signals.

2. The convolution ratio The log10 value of the convolution ratio (|conv|max/|conv|median) is calculated, where |conv| is

the absolute values of the convolution of the antenna signals with a normalized Gaussian of width 0.5 ms. |conv|max is

the maximum value of |conv|, while |conv|median is the median. The convolution ratio was selected as a feature since225

the dust signals typically have a larger convolution ratio than the no dust signals. The Gaussian width of 0.5 ms was

experimentally found to give high correlations with dust impact signals.

3.4.2 Training the Support Vector Machine

The 2 features (standard deviation and convolution ratio) were extracted from all observations in the training data. The decision

hyperplane, in this 2-dimensional case a decision line, is defined by a polynomial of degree 2 that is optimized by minimizing230

the non-separable SVM cost function, see e.g. Theodoridis and Koutroumbas (2009) for details. The SVM classifier was trained

with a slack variable factor of 1 and equal weighting between the dust and no dust observations. Figure 4 illustrates the training

of the SVM classifier.
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Figure 4. a) The (1x2) feature vectors extracted from all (2400) observations in the training data, the associated labels are indicated in green

(dust) and red (no dust). b) The SVM decision line, the optimal second order polynomial, obtained by minimizing the non-separable SVM

cost function. The SVM decision line appears to be reasonable and most observations are separable.

3.4.3 Testing the Support Vector Machine235

The performance of the trained SVM classifier is evaluated using the independent testing data, i.e. the remaining manually

labeled data (20 %) that was not used for training the classifier. Figure 5 presents the SVM classification performance on the

testing data.

Overall, the SVM classifier achieves a classification accuracy of 94% on the testing data using the 2-dimensional feature240

vectors. Note that the inclusion of more extracted features could possibly enhance the SVM performance. Several additional

features could be considered, such as; the mean amplitude of the signal, the range between the signal maximum and minimum

values and the cross-correlation length (the time lag to the first zero crossing).

3.4.4 Explainability of the Support Vector Machine

Ideally, we want to develop a machine learning classifier that not only has a high accuracy, but also make decisions that are245

understandable for a human expert (Holzinger et al., 2019). In other words, we want to be able to explain why the machine

learning classifier selected the predicted class for a given observation. In machine learning, this is often referred to as the

explainability of the trained classifier. Figure 5 presents the testing data in the 2–D feature vector space, but this plot gives no
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Figure 5. a) The (1x2) feature vectors extracted from the testing data (600 observations with hidden labels). b) The testing data is classified

using the trained SVM decision line, where all observation within the polynomial line is classified as dust while all observations outside

are classified as no dust. c) The “true” labels (from the manual labeling) are revealed. It is clear that some observations are confused,

predominantly near the decision line. Still, the SVM classifier achieves an overall classification accuracy of 94%, calculated by comparing

the outputs from the SVM classification (Sub-figure b) to the “true” labels (Sub-figure c).

clear indications of how different signal shapes are distributed and which signatures are confused by the SVM classifier. In

order to better understand the decisions made by the SVM classifier, the signal examples in Figure 1 are studied in detail. The250

analysis is presented in Figure 6.

It should be noted that the signal examples in Figure 6 are not representative for the general distribution of observations

in the 2–D feature vector space, since most observations are clustered in distinct dust and no dust regions, as can be seen

in Figure 5. Figure 6 focuses mostly signal examples that are challenging to classify. Still, Figure 6 indicates that the SVM255

classifier provides mostly comprehensible outputs, but might have difficulties classifying signals with important signatures

located at the edge of the snapshot frame.
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Figure 6. The signal examples are presented in Sub-figures (a-i), the manual labels are indicated along the y-axis and the predicted label,

classified by the SVM decision line, are presented in the sub-plot titles. Sub-Figure j) presents the associated signal examples in the 2–D

feature vector space along with the SVM decision line. The dust signals are illustrated in green, the ambiguous signals are marked in yellow

and the no dust signals are indicated in red. The SVM classifier provides mostly explainable outputs. The clear dust signals (a-b) are located

well within the SVM decision line, the ambiguous signals (e-f) are located near the decision line while the no dust signals (g-i) are clearly

located outside. However, dust signal c) is erroneously located just outside the decision line, this can possibly be explained a weak signal-to-

noise ratio. In addition, signal d) is located well within the decision line, although this signal is labeled ambiguous-no dust due to the signal

framing, this indicates that the SVM might have difficulties classifying signatures located at the edge of the snapshot frame.
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3.5 The Convolutional Neural Network (CNN)

Convolutional Neural Networks are algorithms designed for processing grid-like data and have achieved premium performance

on a number of different tasks in the recent decade, such as image (He et al., 2016; Kvammen et al., 2020), video (Karpathy260

et al., 2014), and time series (Wang et al., 2017; Wickstrøm et al., 2021) classification.

3.5.1 Feature Extraction

Unlike the SVM, the CNN do not require pre-defined feature extraction routines. Instead, the CNN extracts the features based

on a chain of convolution operations and automatically optimizes the convolution filters based on the training data and the

associated labels.265

For this work, we employed the 3-layer fully convolutional network architecture presented in Wang et al. (2017) and sug-

gested for time series classification after extensive testing (Wickstrøm et al., 2022; Fawaz et al., 2020; Karim et al., 2019). The

Rectified Linear Unit (ReLU) function (Glorot et al., 2011) was used as the activation function and Batch Normalization (BN)

(Ioffe and Szegedy, 2015) was used at each convolutional layer in order to regularize the network and accelerate the training270

process. Figure 7 presents the employed CNN architecture.
R
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R
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Figure 7. The 3-layer fully convolutional network used for dust impact classification. The input to the network is the (3x4096) waveform.

The function that maps the input waveform to the output label: dust or no dust is defined by 3 convolutional layers, consisting of 128, 256

and 128 independent filters with kernel lengths of 8, 5 and 3 weights, respectively. Batch normalization (BN) is used at each convolutional

layer to regularize the the inputs and the Rectified Linear Unit (ReLU) function was used as the activation function. Finally, the output of the

convolutional layers (with dimension 128x4096) is averaged in the global pooling layer to a vector with dimension (128x1). The class score

is then determined in a Fully Connected (FC) network layer and the output label probabilities (Pdust, Pno dust) are calculated using the softmax

function. The Figure is adopted from Wickstrøm et al. (2021).

3.5.2 Training the Convolutional Neural Network

The 3-layer fully convolutional network consists of 267010 free parameters (weights and biases) that need to be optimized

to solve the dust impact classification task. The free parameters are randomly initialized and thereafter optimized using the

ADAM gradient descent optimizer (Kingma and Ba, 2014). The CNN was trained for 225 epochs with a cross-entropy loss275

function using the 2400 labeled observations in the training data. For more details on neural network training and optimization,

see for example (Montavon et al., 2012).
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3.5.3 Testing the Convolutional Neural Network

In order to visualize the features extracted by the CNN, we employ the t-distributed Stochastic Neighbor Embedding (t-SNE)

method (Van der Maaten and Hinton, 2008). The t-SNE method is used for visualizing high-dimension data by assigning each280

observation a location in a 2–D space such that similar observations are modeled by nearby points while dissimilar observations

are modeled by distant points with high probability. The (128x1) testing feature vectors, extracted in the global pooling layer,

are presented in a 2–D t-SNE map in Figure 8, along with a visualization of the CNN classification performance.
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Figure 8. a) The testing data visualized by a dimension-reduced t-SNE map where similar feature vectors are modeled by nearby points while

dissimilar observations are modeled by distant points with high probability. b) The testing data classified by the trained CNN. c) The “true”

manual labels are presented. Only a few observations, predominantly in the transition region between the dust and no dust observations are

confused. An overall classification accuracy of 96% is calculated by comparing the labels predicted by the CNN to the manual labels.

Overall, the CNN obtains a high (≳ 95%) classification accuracy and might therefore be suitable for automatic processing285

of electric field signals observed by the RPW instrument on board the Solar Orbiter.

3.5.4 Explainability of the Convolutional Neural Network

Neural networks have traditionally been regarded as black boxes (Shwartz-Ziv and Tishby, 2017; Alain and Bengio, 2016),

where the network carries out the desired task, but the network decisions are difficult to interpret. However, progress have

been made in recent years for making the neural network decisions more accessible and easier to interpret (i.e. explainable) for290

human users (Samek et al., 2021). In this section, we analyze the CNN decisions by employing Class Activation Maps and the
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previously described t-SNE method.

Class Activation Maps (CAMs) (Zhou et al., 2016) highlights the regions of the data that are important for a considered

label (c) by analyzing the features extracted in the global pooling layer and the weights in the FC layer that are associated with295

label (c), see e.g. (Wang et al., 2017) for a detailed description. The outcome of the CAM analysis is that we can visualize

the sections of the signal that are influential for the CNN classification decision. Figure 9 presents the CAM analysis of the

signal examples in Figure 1 along with an illustration of the signal features in a dimension-reduced t-SNE space. Note that the

t-SNE mapping in Figure 9 is different from the t-SNE mapping in Figure 8, since Figure 9 considers a different CNN where

the signal examples are excluded from the training data.300

The CAM values in Figure 9 illustrate that the CNN make classification decisions that are comprehensible (in most cases).

It is however interesting to note that signal c), manually labeled as dust, is erroneously classified as no dust by the CNN, and

that this decision is largely based on the tail (the relaxation period) of the impact signal. It should however be noted that it is

more difficult to explain the no dust predictions than the dust predictions since the no dust CNN decisions are based on the lack305

of a signature (dust impact), rather than on the presence of signature. In addition, signal d), manually labeled as ambiguous-

no dust, is classified as dust by the CNN, and this decision is based on a wide region of the signal with emphasis on the tail

of the (ambiguous) dust impact signal, this section might not have been highlighted as particularly important by a human expert.

In general however, the CNN achieves a high accuracy (>95%) and make decisions that are mostly in-line with human310

interpretation. It is therefore reasonable to infer that the CNN will have a performance comparable to the agreement level

between human experts, where disagreement predominantly occurs for ambiguous and noisy signals, while clear dust and clear

no dust signals are classified correctly.
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Figure 9. The signal examples and the CAM analysis are presented in Sub-figures (a-i), the manual labels are indicated along the y-axis

and the predicted label, classified by the CNN, is presented in the sub-plot titles. Sub-figure j) presents the associated signal examples in

the t-SNE space along with the training data signals as transparent points. The dust signals are illustrated by the green dots, the ambiguous

signal examples are marked in yellow and the no dust signals are indicated in red. The CAM analysis show that the CNN emphasise the dust

impact sections similarly to human experts, where the highlighted green regions indicate positive CAM values. Also the no dust CAM values

(highlighted in red) are mostly understandable, although it is difficult to interpret the CNN decisions that are based on the lack of a signature

(dust impact), rather than on the presence of signature. The t-SNE map show that the clear dust signals (a-b) are distinctly located in a green

(dust) region whereas the clear no dust signal i) is distinctly located in a red (no dust) region. The remaining signals are located in more

mixed regions. It should however be noted that the observations are represented by a 128 dimensional feature vector in the CNN and that the

(2–D) t-SNE representation diminishes a lot of information, meaning that even the signals located in a mixed region of the t-SNE plot might

be separable in the 128 dimensional feature vector space.
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4 Results and Discussions

4.1 The Average Classification Performance Metrics315

The average classification performance is obtained by training and testing the machine learning classifiers on 10 runs, each

run with different training and testing sets. The classifiers are initialized from scratch and the testing and training sets are

selected independently 10 times by randomization and splitting of the manually labeled data, as indicated by the gray circles

in Figure 3. The average class-wise performance of the on-board TDS classifier and the machine learning SVM and CNN

classifiers are summarized as confusion matrices in Figure 10. Overall, the CNN has the highest performance for both dust and320

no dust classification. In addition, both the SVM and the CNN obtain stable performance with only small variations for each

run.
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Figure 10. a) The confusion matrix entries are described by the true (correctly classified) and false (erroneously classified) values, as

compared to the manual labels, positive indicate dust predictions and negative indicate no dust predictions. b) The TDS classifier confuses

dust and no dust observations, where a large proportion (> 0.20) of dust predictions are manually labeled as no dust. c) The SVM classifier

predicts both dust and no dust observations with a high (> 0.90) accuracy. d) The CNN classifier predicts a very large (> 0.95) proportion

of both dust and no dust observations correctly.

The classification performance is further evaluated by the accuracy, precision, recall and F1 score. The definitions for the

performance metrics are included in Appendix B. The average performance metrics, calculated over 10 runs, are summarized325

in Table 1. Again, the CNN has the highest performance across all metrics. Furthermore, the CNN obtain a significant improve-

ment in the classification performance with a statistical significance at a level of 0.01, computed using a t-test. The t-test was
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computed in a pairwise manner between both the CNN and the SVM, and the CNN and the TDS. In all cases, the enhanced

performance of the CNN classifier was significant.

Table 1. The TDS, SVM and CNN classification performance metrics: accuracy, precision, recall and F1-score. The SVM and CNN scores

and error values are the mean and the standard deviation across 10 training runs. The bold numbers indicate statistically enhanced perfor-

mance with a significance level of 0.01, computed using a t-test.

Classifier Accuracy Precision Recall F1 Score

TDS 0.850 0.746 0.944 0.833

SVM 0.936 ± 0.012 0.903 ± 0.027 0.941 ± 0.017 0.921 ± 0.015

CNN 0.964 ± 0.006 0.939 ± 0.020 0.972 ± 0.008 0.955 ± 0.008

330

The results from both the confusion matrices and the performance metrics strongly suggest that the SVM and CNN classifiers

provide binary classification results with a higher reliability than the TDS classifier. We therefore propose that the CNN

classifier (or similar tools) should be considered for post-processing of the TDS data product in statistical studies of dust

impacts observed by the Solar Orbiter RPW instrument. Finally, it should be noted that 134 signals (i.e. 4.5%), out of 3000

manually labeled waveforms, were marked as ambiguous, illustrated by the yellow cylinder Figure 3, and did not clearly fit into335

either the dust or no dust label, see Figure 1 for label examples. It is therefore improbable to achieve a classification accuracy

exceeding∼98%, and an accuracy approaching∼99% should be considered suspicious and can be an indication of over-fitting.

4.2 The Dust Impact Rate

The trained classifiers can be used to automatically process large data sets. Figure 11 presents the TDS, SVM and CNN daily

impact rates, calculated by classifying all (∼82 000) monopole triggered waveforms acquired over a one and a half year period,340

spanning between June 15, 2020, to December 16, 2021. The impact rate function curve is obtained by fitting the dust flux

model from Zaslavsky et al. (2021) (Equation 10) with an included offset:

R = F1AUScol

( r

1AU

)−2 νimpact

νβ

(
νimpact

νimpact(1AU)

)αδ

+ C (7)

Where F1AU is the unknown cumulative flux of particles above the detection threshold at 1 AU and Scol = 8m2 is the Solar

Orbiter collection area, as defined in Zaslavsky et al. (2021). Furthermore, r is the radial distance from the sun, νimpact is the345

relative velocity between the spacecraft and the dust particles, assuming a constant radial and azimuthal velocity vector: νβ =

[50 km/s, 0 km/s], and the product αδ = 1.3, as suggested in Zaslavsky et al. (2021). The assumed constant radial velocity is a

good approximation for dust in hyperbolic orbits originating near the Sun that are deflected outward by the radiation pressure

force. Finally, we included a constant impact rate offset: C, in order to obtain an improved fit. The description of the dust flux

in Equation 7 is based on the assumption that the dust– and spacecraft orbits are in the same orbital plane.350
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Figure 11. a) The daily dust impact rates according to the TDS classifier. The full vertical lines indicate times where the Solar Orbiter is at

aphelion while the dashed lines indicate times at perihelion. b) The median of the daily impact rates classified by 10 trained SVM classifiers.

c) The median of the daily impact rates from the 10 CNN classifiers. The impact rate function curves are obtained by fitting the dust flux

model from Zaslavsky et al. (2021), Equation 7. d) The impact rate function cures are compared. The SVM and CNN dust impact rates are

very similar, whereas the TDS provide notably smaller impact rates at aphelion and higher impact rates at perihelion. The daily impact rates

are calculated from the daily dust impact number and the time dependent RPW duty cycle by assuming a constant impact probability for each

day. The accumulated dust impact count for the TDS classification algorithm and the the mean and standard deviation of the accumulated

dust impact count for the 10 CNN and SVM classifiers are presented in the sub-plot titles.
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Figure 11 shows that the machine learning classifiers detected significantly more dust particles than the TDS classifier. The

SVMs obtained a dust impact detection enhancement of 14% ± 1% while the CNNs had a 16% ± 7% increase. Both the SVM

and the CNN classifiers obtain impact rates that are notably higher around the aphelion and distinctly lower in the vicinity of

the perihelion, as compared to the dynamic range in the TDS dust impact rates.355

Furthermore, Figure 11 illustrates that the fitted SVM and CNN impact rate function cures are in very good agreement. It

is promising that two entirely different machine learning approaches provide comparable impact rates after classifying a large

data set (consisting of ∼82 000 observations) when trained– and tested on a limited data set consisting of 3000 observations.

This suggest that both the SVM and CNN classifiers have obtained stable performances and can be used to classify observations360

outside the domain of the training and testing data.

5 Conclusions

5.1 Summary and Scientific Implications

We have presented a machine learning-based framework for fully automated detection of dust impacts observed by the Solar

Orbiter – Radio and Plasma Waves (RPW) instrument. Two different supervised machine learning approaches were consid-365

ered: the Support Vector Machine (SVM) and the Convolutional Neural Network (CNN). The CNN classifier obtained the

highest performance across all evaluation metrics and achieved 96% ± 1% overall classification accuracy and 94% ± 2% dust

detection precision, a significant improvement to the currently used on-board TDS classification algorithm with 85% over-

all classification accuracy and 75% dust detection precision. We therefore conclude that the CNN classifier (or similar tools)

should be considered for post-processing of the TDS data product for statistical studies of dust impacts observed by the Solar370

Orbiter.

The labeled data and the trained SVM and CNN classifiers are available online with included user instructions. The proposed

method and the presented classifiers can thus provide the stellar dust community with thoroughly tested and more reliable data

products than currently in use. It should also be noted that machine learning-based frameworks, similar to the SVM and CNN375

classifiers proposed in this article, can be developed for automatic processing of data acquired by radio and plasma waves in-

struments on-board other spacecrafts, such as: the Solar Terrestrial Relations Observatory (STEREO) (Zaslavsky et al., 2012),

WIND (Malaspina et al., 2014), and the Parker Solar Probe (Szalay et al., 2020).

The SVM and CNN classifiers were used to process (∼82 000) uncalibrated monopole electric field signals acquired over a380

one and a half year period, spanning between June 15, 2020, to December 16, 2021. On average, the machine learning classifiers

detected more dust particles than the currently used TDS algorithm, the SVMs had a 14% ± 1% detection enhancement and

the CNNs had a 16% ± 7% increase. Furthermore, the SVM and CNN classifiers were in very good agreement and both

classifiers obtained a notably higher dust impact rate in the vicinity of aphelion and a distinctly lower impact rate at perihelion,
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as compared to the dynamic range of the TDS impact rates. This indicates a higher ambient dust distribution and/or a higher385

radial dust velocity than previously observed. This result is significant since it implies the presence of other dust populations

in the data. Possible other populations are interstellar dust and interplanetary dust in bound orbits.

5.2 Outlook

The presented machine learning classifiers may be considered for on-board processing of the observed electric field signals.

However, the trained SVM and CNN classifiers presented in this article are trained on Triggered Snapshot WaveForms (TSWF)390

data, and should not be used for processing ‘untriggered” signals without additional training and testing on ‘untriggered” data.

It should also be noted that the classifiers presented in this work are trained and tested on data labeled by one scientist,

although with consultations with other experts. Labeled data from several experts could provide machine learning classifiers

that are more in-line with the labeling consensus in the stellar dust community. Additional labeling can also be use to extended

the machine leaning classifiers to include automatic detection other characteristic signatures, such as: ion-acoustic, Langmuir395

and solitary waves.

Code and data availability. The code used for this work, the trained classifiers and the training and testing data is available at: https://

github.com/AndreasKvammen/ML_dust_detection. The Triggered Snapshot WaveForms (TSWF) data files can be downloaded at: https:

//rpw.lesia.obspm.fr/roc/data/pub/solo/rpw/data/L2/tds_wf_e/

Appendix A: Graphical User Interface for Manual Labeling400

Figure A1 presents the Graphical User Interface (GUI) that was used to manually label all considered (3000) signals into either

dust or no dust. In addition, efforts were made to use a similar setup (with the same monitor and figure resolution) throughout

the manual labeling in order to reduce bias effects.

Appendix B: The Classification Performance Metrics

The classification performance metrics are calculated using the True Positive (TP), True Negative (TN), False Positive (FP)405

and False Negative (FN) values, defined by comparing the predicted classes and the manually labeled classes, illustrated in

Figure 10.

The overall accuracy of the classifier is the proportion of observations that were correctly predicted by the classifier. The

accuracy is mathematically defined as:410

Accuracy =
TP +TN

TP +TN + FP+ FN
(B1)
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Figure A1. The manual labeling user interface showing a signal observed December 19, 2020. The left column displays the full snapshot

(from 0 to ∼63 ms) at all antennas. An area of interest is selected by adjusting the red vertical lines. The right column displays the signal

within the area of interest. The signal can be labeled as dust by pressing the [d] key on the keyboard and no dust by pressing the [r] key.

The signal is indicated to be ambiguous if the waveform do not fit clearly into either of the two labels, note however that signals indicated

to be ambiguous were also labeled into either dust or no dust using the [a] and [w] keys. There is also an option to correct [c] the previously

labeled signal (in case of an error), repeat [t] the area of interest selection and quit [q] the manual labeling user interface.

Precision (in this case) is defined as the proportion of data points predicted by the classifier as dust, whose “true” label is

indeed dust. Precision is therefore calculated as:

Precision =
TP

TP +FP
(B2)

Recall (in this case) is the proportion of observations manually labeled as dust, that were correctly predicted as dust by the415

classifier. Recall is defined as:

Recall =
TP

TP +FN
(B3)

The F1 score acts as a weighted average of precision and recall and is calculated as:

F1 = 2
(

Precision ·Recall
Precision +Recall

)
(B4)
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