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Abstract: This paper proposes a robust control design method using reinforcement learning for
controlling partially-unknown dynamical systems under uncertain conditions. The method extends
the optimal reinforcement learning algorithm with a new learning technique based on the robust
control theory. By learning from the data, the algorithm proposes actions that guarantee the stability
of the closed-loop system within the uncertainties estimated also from the data. Control policies
are calculated by solving a set of linear matrix inequalities. The controller was evaluated using
simulations on a blood glucose model for patients with Type 1 diabetes. Simulation results show that
the proposed methodology is capable of safely regulating the blood glucose within a healthy level
under the influence of measurement and process noises. The controller has also significantly reduced
the post-meal fluctuation of the blood glucose. A comparison between the proposed algorithm
and the existing optimal reinforcement learning algorithm shows the improved robustness of the
closed-loop system using our method.

Keywords: reinforcement learning; robust control; data-driven

1. Introduction

Control of unknown dynamic systems with uncertainties is a challenge because exact
mathematical models are often required. Since many processes are complicated, nonlinear,
and varying with time, a control algorithm that does not depend on a mathematical model
and can adapt to time-varying conditions is required. A popular approach is to develop
a universal approximator for predicting the output of unknown systems [1]. Control
algorithms can then be designed based on the parameters of the approximator. Based on
this approach, many control techniques have been proposed using machine learning models
such as neural networks and fuzzy logic. For example, Goyal et al. [2] proposed a robust
sliding mode controller which can be designed from Chebyshev neural networks. Chadli
and Guerra [3] introduced a robust static output feedback controller for Takagi Sugeno
fuzzy models. Ngo and Shin [4] proposed a method to model unstructured uncertainties
and a new Takagi Sugeno fuzzy controller using type-2 fuzzy neural networks.

However, obtaining a good approximator requires a significant amount of training
data, especially for a complicated model with high-dimensional state spaces or with many
inputs and outputs. The data-driven model must also be updated frequently for time-
varying systems. In addition, many control design techniques assume uncertainties as
functions of system parameters. However, in many cases, the causes of uncertainties are
unknown and unstructured. With the development of data science and machine learning,
model-free approaches such as reinforcement learning (RL) have emerged as an effective
method to control unknown nonlinear systems [5–8]. The principle of RL is based on the
interaction between a decision-making agent and its environment [9], and the actor–critic
method is often used as the RL framework for many control algorithms. In the actor–critic
framework, the critic agent uses current state information of the environment in order to
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update the value or action value function. The actor agent then uses the value or action
value function to calculate the optimal action.

It can be seen that many data-driven algorithms lack stability analysis of the closed-
loop systems. Among recent techniques focusing on the robustness of control algorithms,
Yang et al. [10] presented an off-policy reinforcement learning (RL) solution to solve
robust control problems for a certain class of unknown systems with structured uncer-
tainties. In [11], a robust data-driven controller was proposed based on the frequency
response of multivariable systems and convex optimization. Based on data-driven tun-
ing, Takabe et al. [12] introduced a detection algorithm suitable for massive overloaded
multiple-input multiple-output systems. In more recent works, Na et al. [13] proposed
an approach to address the output-feedback robust control for continuous-time uncertain
systems using online data-driven learning, while Makarem et al. [14] used data-driven
techniques for iterative feedback tuning of a proportional-integral-derivative controller’s
parameters. However, in many cases, stability can only be ensured for specific systems
where uncertainties are structured. In addition, the value function must be estimated
accurately, which is difficult to achieve, especially at the beginning of the control process
when the agent has just started interacting with the environment. Additionally, in many
applications, the state space is either continuous or high-dimensional. In these cases, the
value function approximation is often inaccurate, potentially leading to instability. There-
fore, new RL approaches for which stability can be guaranteed under uncertain conditions
are essential if algorithms are to be used in critical and safety-demanding systems.

Type 1 diabetes is a disease caused by the lack of insulin secretion. The condition
results in uncontrolled increase of blood glucose level if the patients are not provided with
insulin doses. High blood glucose level can lead to both acute and chronic complications,
and eventually result in failure of various organs. One of the major challenges in controlling
the blood glucose is that the biochemical and physiologic kinetics of insulin and glucose
is complicated, nonlinear, and only approximately known [15]. Additionally, the stability
of the control system is essential in this case since unstable control effort will lead to
life-threatening condition for the patients.

This paper proposes a novel method to capture uncertainty in estimating the value
function in reinforcement learning based on observation data. Using the uncertainty infor-
mation, the paper also presents a new technique to improve the policy while guaranteeing
the stability of the closed-loop system under uncertainty conditions for partially-unknown
dynamical systems. The proposed methodology is applied to a blood glucose model for test-
ing its effectiveness in controlling the blood glucose level in patients with Type 1 diabetes.

Structure of Paper

The content of the paper is organized as follows. Section 2 describes the proposed
robust RL algorithm. Section 3 shows the simulation results of the methodology. The
conclusions are given in Section 4.

2. Materials and Methods

In this section we present the robust RL method and the simulation setup used for
evaluation of the algorithm.

2.1. Robust Control Using Reinforcement Learning

In this paper, a class of dynamical systems is considered, which can be described by
the following linear state-space equation:

ẋ(t) = Ax(t) + Bu(t), (1)

where x ∈ Rn is the vector of n state variables, u ∈ Rm is the vector of m control inputs,
A ∈ Rn×n is the state matrix, and B ∈ Rn×m is the input matrix. It is assumed that matrix
A is a squared n× n unknown matrix and the system (A and B) is stabilized. Our target
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is to derive a control algorithm u(t) that can regulate the state variables contained in x(t)
based on input and output data without knowing matrix A.

As an RL framework, the proposed robust control algorithm consists of an agent that
takes actions and learns the consequences of its actions in an unknown environment. The
environment is defined by a state vector x(t) that describes its states at time t. The action
at time t is represented by u(t). As a consequence of the action, a cost r(t) is incurred and
accumulated. The cost function r(t) is assumed to be known and predefined as a function
of the current state and action. The objective of the learning process is to minimize the total
cost accumulation in the future.

At each decision time point, the agent receives information about the state of the
environment and chooses an action. The environment reacts to this action and transitions to
a new state, which determines whether the agent receives a positive or negative reinforce-
ment. Current RL techniques propose optimal actions by minimizing the predicted cost
accumulation. However, uncertainties due to noises in the data or inaccurate estimation of
the cost accumulation can lead to suboptimal actions and even unstable responses. Our
target is to provide the agent with a robust and safe action that can guarantee the reduction
of the future cost accumulation in the presence of uncertainties. The action calculated by
the proposed algorithm may not be the optimal action that reduces the cost in the fastest
way, but it can always guarantee the stability of the system, which is imperative in many
critical applications.

2.1.1. Estimation of the Value Function by the Critics

In the RL context, the accumulation of cost over time, when starting in the state x(t)
and following policy π, is defined as the value function of policy π, i.e.,

Vπ(x(t)) = Eπ

{∫ ∞

t
γτ−tr(τ)dτ

}
, (2)

where γ is the discount factor. The cost r(t) is assumed to be a quadratic function of
the states:

r(t) = xT(t)Qx(t), (3)

where the positive definite matrix Q ∈ Rn×n is symmetric, positive semidefinite (since the
cost is assumed to be non-negative), and contains the weighting factors of the variables
that are minimized.

In order to facilitate the formulation of the stability condition in the form of linear
matrix inequalities (LMI), the value function V(x(t)) is approximated by a quadratic
function of the states:

Vπ(x(t)) ≈ xT(t)Px(t), (4)

where the kernel matrix P ∈ Rn×n is symmetric and positive semidefinite (since matrix Q
in the cost function is symmetric and positive semidefinite).

By using the Kronecker operation, the approximated value function can be expressed
as a linear combination of the basis function φ(x(t)) = (x(t)⊗ x(t)):

Vπ(x(t)) ≈ xT(t)Px(t) = vec(P)T(x(t)⊗ x(t))

= wT(x(t)⊗ x(t)) = wTφ(x(t)),
(5)

where w is the parameter vector, φ(x(t)) is the vector of basis functions, and ⊗ is the
Kronecker product. The transformation between w and P can be performed as follows:

w = vec(P) = [P11, P21, . . . , Pn1, P12, . . . , P1n, Pnn]
T , (6)
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where Pi,j is the element of matrix P in the ith row and jth column. With T as the interval
time for data sampling, the integral RL Bellman equation can be used to update the value
function [8]:

Vπ(x(t)) =
∫ t+T

t
γτ−tr(τ)dτ + Vπ(x(t + T)). (7)

By using the quadratic cost function (Equation (3)) and the approximated value
function (Equation (5)), the integral RL Bellman equation can be written as follows:

xT(t)Px(t) =
∫ t+T

t
x(τ)TQx(τ)dτ + xT(t + T)Px(t + T) (8)

or

wTφ(x(t)) =
∫ t+T

t
x(τ)TQx(τ)dτ + wTφ(x(t + T)). (9)

At each iteration, n samples along the state trajectory are collected (x(1)(t), x(2)(t),
. . . , x(n)(t)). The mean value of w can be obtained by using least-square technique:

ŵ = (XXT)XY, (10)

where
X = [φ1

∆ φ2
∆ . . . φN

∆ ]T , (11)

φi
∆ = φ(xi(t))− φ(xi(t + T)), (12)

Y = [d(x1(t)) d(x2(t)) . . . d(xn(t))]T (13)

and

d(xi(t)) =
∫ t+T

t
xi(τ)TQxi(τ)dτ (14)

with i = 1, 2, . . . , N.
The confidence interval for the coefficient w(j) is given by

w(j) ∈ [ŵ(j) − q1− θ
2

√
τjσ̂2, ŵ(j) + q1− θ

2

√
τjσ̂2], (15)

where 1− θ is the confidence level, q1− θ
2

is the quantile function of standard normal distri-

bution, τj is the jth element on the diagonal of (XXT)−1, and σ̂2 = ε̂T ε̂
n−p , with ε = Y− ŵX.

From that, the uncertainty ∆w is defined as the deviation interval around the nominal value:

∆w =
[
−q1− θ

2

√
τjσ̂2, −q1− θ

2

√
τjσ̂2

]
. (16)

Matrices P̂ and ∆P can be obtained by placing elements of ŵ and ∆w into columns.

2.1.2. Policy Improvement by the Actor

Linear feedback controllers have been widely used as a stabilization tool for nonlinear
systems where dynamic behavior is considered approximately linear around the operating
condition [16–18]. Hence, in this paper, we use linear functions of the states with gain Ki as
the control policy at iteration i:

u(t) = π(x(t)) = −Kix(t), (17)

and the level of uncertainty is constant during the controlling process. The task of the actor
is to robustly improve the current policy such that the value function is guaranteed to be
reduced during the next policy implementation. If the following differential inequality
is satisfied:

V̇i(x(t)) + αVi(x(t)) ≤ 0 (18)
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with some positive constant α, then by using the comparison lemma (Lemma 3.4 in [19]),
the derivative of function V̇i(x(t)) can be bounded by

V̇i(x(t)) ≤ Vi(x(t0))e−α(t−t0). (19)

Therefore, maximizing the rate α will ensure a maximum exponential decrease in the
value of V̇i(x(t)).

The following part shows the main results of the paper, which describe how the policy
gain can be improved during the learning process. Derivations of the results are provided
in the stability analysis (Section 2.1.3).

Definition 1. Assume A is a square matrix with dimension n× n and x is a vector with dimension
n× 1. The maximize operation on matrix A and vector x is defined as follows:

maximize(A, x) = C, (20)

where

Cij =

{
max(Aij) if xixj ≥ 0
min(Aij) if xixj < 0

with i, j = 1 . . . n. (21)

Assuming that the sign of all state variables cannot be changed between each policy
update interval, the improved policy Ki+1 can be obtained by minimizing α subject to[

V KT
i+1BT

BKi+1 −γI

]
≤ 0 (22)

and [
ζ Ki+1

KT
i+1 −I

]
≤ 0, (23)

where:

V = M + ∆PT
i,max∆Pi,maxγ− P̂iBKi+1 − KT

i+1BT P̂i + α(P̂i +
1
2

∆PT
i,max∆Pi,max + I) (24)

and
M =−Q− KT

i RKi + P̂iBKi + KT
i BT P̂i + Hi (25)

with ∆Pi,max = maximize(∆Pi, x) and Hi = maximize(∆PiBKi + KT
i BT∆Pi, x), utilizing the

maximize operation defined in Definition 1. Inequality (22) provides the stable condition
and its derivation is provided in Section 2.1.3. Inequality (23) provides the upper bound for
the updated gain Ki+1 through the user-defined parameter ζ. The value of −ζ limits the
maximum L2 gain of Ki+1 since inequality (23) is equivalent to Ki+1KT

i+1 ≤ −ζ.

2.1.3. Stability Analysis

With the control policy as described in Equation (17), the equation for the closed-loop
system can be derived as follows:

ẋ(t) = Ax(t)− BKx(t) = (A− BK)x(t). (26)

Lemma 1. Assuming that the closed-loop system described by Equation (26) is stable, solving for
P in Equation (8) is equivalent to finding the solution of the underlying Lyapunov equation [8]:

P(A− BK) + (A− BK)T P = −Q. (27)
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Proof of Lemma 1. We start with Equation (27) and try to prove that matrix P is also
the solution of Equation (8). Consider V(x(t)) = xT(t)Px(t), where P is the solution of
Equation (27):

V̇(x(t)) =
d(xT(t)Px(t))

dt
= ẋT(t)Px(t) + xT(t)Pẋ(t)

= xT(t)
[
(A− BK)T P + P(A− BK)

]
x(t)

= −xT(t)Qx(t) (using Equation (27)).

(28)

Since the closed-loop system is stable, the Lyapunov Equation (27) has a unique
solution, Pi > 0. From (28), this solution will satisfy

d(xT(t)Pix(t))
dt

= −xT(t)Qx(t), (29)

which is equivalent to

xT(t + T)Px(t + T)− xT(t)Px(t) =
∫ t+T

t
−xT(τ)Qx(τ)dτ. (30)

Therefore, P is also the solution of Equation (8).

Lemma 2. Given matrices E and F with appropriate dimensions, the following LMI can be obtained:

EFT + FET ≤ EET + FFT . (31)

Proof of Lemma 2. From the properties of matrix norm, we have

(E− F)(E− F)T ≥ 0, (32)

which is equivalent to
EET + FFT − EFT − FET ≥ 0 (33)

or
EFT + FET ≤ EET + FFT . (34)

Lemma 3. Given A as a square matrix with dimension n× n and x as a vector with dimension
n× 1, the following LMI can be obtained:

xT Ax ≤ xTCx, (35)

where C = maximize(A, x) as in Definition 1.

Proof of Lemma 3. We have

xT Ax = ∑
i,j=1,2...n

aijxixj ≤ ∑
i,j=1,2...n

|aijxixj|

= ∑
i,j=1,2...n

cijxixj = xTCx,
(36)

where cij =

{
max(aij) if xixj ≥ 0
min(aij) if xixj < 0

with i, j = 1 . . . n.

Theorem 1. Consider a dynamic system that can be represented by Equation (1) with the state
matrix A unknown. Assume that the sign of all state variables cannot be changed between each
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policy update interval and the estimated value function at iteration i is Vi(x(t)) = xT(t)Pix(t)
with Pi = P̂i + ∆Pi. If

• The current control policy u(t) = πi(x(t)) = −Kix(t) is stabilizing;
• The LMI given in (22) is satisfied with some positive constant γ;

then the closed-loop system with the control policy u(t) = −Ki+1x(t) is quadratic stable with
convergence rate α.

Proof of Theorem 1. Since the current control policy is stable, the estimated parameter
matrix Pi is positive definite. Hence, Vi(x(t)) = xT

t Pixt > 0. Here, Vi(x(t)) is used as the
Lyapunov function for the updated control policy u(t) = πi+1(x(t)) = −Ki+1x(t). For
notation convenience, the state vector x(t) and input vector u(t) are denoted as xt and ut,
respectively. By using Equation (27) in Lemma 1 and the representation Pi = P̂i + ∆Pi, we
can calculate the left side of Equation (18) as follows:

V̇i(x(t)) + αVi(x(t))

=ẋT
t Pixt + xtPi ẋT

t + αxT
t Pixt

=(Axt + But)
T Pixt + xtPi(Axt + But)

T + αxT
t Pixt

=xT
t [Pi(A− BKi+1) + (A− BKi+1)

T Pi + αPi]xt

=xT
t [Pi(A− BKi) + (A− BKi)

T Pi + αPi]xt + xT
t [PiB(Ki − Ki+1) + (Ki − Ki+1)

T BT Pi + αPi]xt

=− xT
t [Q + KT

i RKi]xt + xT
t [(P̄i + ∆Pi)B(Ki − Ki+1) + (Ki − Ki+1)

T BT(P̄i + ∆Pi) + αP̄i + α∆Pi]xt

=xT
t [−Q− KT

i RKi + P̄iBKi + KT
i BT P̄i + αP̄i + ∆PiBKi + KT

i BT∆Pi − ∆PiBKi+1

−KT
i+1BT∆Pi − P̄iBKi+1 − KT

i+1BT P̄i + α∆Pi]xt.

By using Lemma 3, we have the following inequality:

∆PiBKi + KT
i BT∆Pi ≤ Hi, (37)

and the following inequality can be obtained by Lemma 2:

−∆PiBKi+1 − KT
i+1BT∆Pi ≤ γ∆Pi∆PT

i +
1
γ
(BKi+1)

T(BKi+1)

≤ γ∆Pi,max∆PT
i,max +

1
γ

KT
i+1BT BKi+1

(38)

Additionally,

α∆Pi ≤ α

(
1
2

∆Pi∆PT
i + I

)
≤ α

(
1
2

∆Pi,max∆PT
i,max + I

)
, (39)

where Hi = maximize(∆PiBKi + KT
i BT∆Pi, x), and ∆Pi,max = maximize(∆Pi, x), utilizing

the maximize operator defined in Definition 1.
Hence, V̇i(x(t)) + αVi(x(t)) can be bounded by

V̇i(x(t)) + αVi(x(t)) ≤ xT
t [−Q− KT

i RKi + P̄iBKi + KT
i BT P̄i + α

(
P̄i +

1
2

∆Pi,max∆PT
i,max

)
− P̄iBKi+1 − KT

i+1BT P̄i + γ∆Pi,max∆PT
i,max +

1
γ

KT
i+1BT BKi+1]xt.

(40)

Using the Lyapunov theory, the system will be quadratic stable with the convergent rate α
if V̇i(x(t)) ≤ −αVi(x(t)). This condition is satisfied if
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xT
t [−Q− KT

i RKi + P̄iBKi + KT
i BT P̄i + α

(
P̄i +

1
2

∆Pi,max∆PT
i,max

)
− P̄iBKi+1 − KT

i+1BT P̄i

+ γ∆Pi,max∆PT
i,max +

1
γ

KT
i+1BT BKi+1]xt ≤ 0.

The above condition can be written in the matrix form, as shown in Theorem 1.

By using Theorem 1, it can be seen that with the proposed improved policy, the closed-
loop system will be asymptotically stable. It is also noted that Theorem 1 is also applicable
for unknown nonlinear systems if they can be approximated by a linear state-space equation
(Equation (1)) and if their nonlinearity is within the uncertainty bound ∆P calculated from
∆w in Equation (16).

2.1.4. Robust Reinforcement Learning Algorithm

The robust RL algorithm for controlling partially unknown dynamically systems
includes the following steps:

Initialization

(Step i = 0)

• Select an initial policy u(t) = −K0x(t).

Estimation of the Value Function

(Step i = 1, 2, . . .)

• Apply the control action u(t) based on the current policy u(t) = −Kix(t).
• At time t + T, collect and compute the dataset (X, Y), which are defined in

Equations (11) and (13).
• Update vector w by using the batch least-square method (Equation (10)).

Control Policy Update

• Transform vector w into the kernel matrix P using the Kronecker transformation.
• Update the policy by solving the LMI in Theorem 1.

Figure 1 shows the simplified diagram of the above algorithm. It is noted that the
estimation of the value function is an on-policy learning since it updates Vπ(x(t)) using
the V-value of the next state and the current policy’s action.

Figure 1. Data-driven robust reinforcement learning diagram.
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2.1.5. Simulation Setup

A simulation study of the proposed robust RL controller was conducted on a glucose
kinetics model, which can be described by [20–23]:

dD1(t)
dt

= AGD(t)− D1(t)
τD

, (41)

dD2(t)
dt

=
D1(t)

τD
− D2(t)

τD
, (42)

dg(t)
dt

= −p1g(t)− χ(t)g(t) +
D2(t)

τD
+ w(t) (43)

and
dχ(t)

dt
= −p2χ(t) + p3V(i(t)− ib(t)). (44)

In this model, parameter and variable descriptions can be found in Table 1 and Table 2,
respectively. The values of the parameters are selected based on [20,21]. Variable w(t)
in Equation (43) is the process noise. The measured blood glucose value is affected by a
random noise v(t):

ĝ(t) = g(t) + v(t). (45)

The inputs of the model are the amount of carbohydrate intake D and the insulin
concentration i. The value of i(t)− ib(t) must be non-negative:

i(t)− ib(t) ≥ 0. (46)

Table 1. Glucose kinetics model parameters.

Parameter Description Unit

p1 Glucose effectiveness min−1

p2 Insulin sensitivity min−1

p3 Insulin rate of clearance min−1

AG Carbohydrate bioavailability min−1

τD Glucose absorption constant min
V Plasma volume mL

ib(t) Initial basal rate µIU/(mL·min)

Table 2. Variables of the glucose kinetics model.

Variable Description Unit

D Amount of carbohydrate intake mmol/min
D1 Glucose in compartment 1 mmol
D2 Glucose in compartment 2 mmol

g(t) Plasma glucose concentration mmol/L
χ(t) Interstitial insulin activity min−1

i(t) Plasma insulin concentration µIU/mL

3. Results and Discussion

In order to evaluate the performance of the robust RL controller, we implemented
the controller on the glucose kinetics model as described in the previous section under
a daily scenario of patients with Type 1 diabetes. In order to make the scenario realistic,
three different levels of uncertainties were used in the model. Uncertainties include process
noise (w(t)) and measurement noise (v(t)). It is assumed that the noises are Gaussian
distributions with standard deviations for each case as shown in Table 3.
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Table 3. Standard deviations of process and measurement noises.

Uncertainty Case Process Noise (w(t)) Measurement Noise (v(t))

1 0 0
2 0 0.002
3 0.1 0.1
4 0.1 1

3.1. Without Meal Intake

This part describes the simulation results during the fasting period (without meal
intake). The purpose of the simulation is to compare the performances of the robust
RL algorithm with the conventional optimal RL algorithm [24] in the nominal condition
(uncertainty case 1). The initial blood glucose for both scenario was set at 290 mg/dL and
the target blood glucose is 90 mg/dL. The initial policy at the beginning of the simulation
was chosen as follows:

u(t) = −K0x(t) = −0.27g(t) + 266.00χ(t). (47)

Figure 2 shows the comparison in blood glucose level between the robust RL and
the optimal RL algorithm in the nominal condition. From the results, it can be seen that
the robust RL successfully reduces the blood glucose level while the optimal RL becomes
unstable when the blood glucose approaches the desired value. The instablity of the optimal
RL in this case can be explained by the nonlinearity of the system (due to the coupling term
χ(t)g(t) in Equation (43)), the saturation of the insulin concentration (Equation (46)), and
the lack of perturbed data when the blood glucose approaches the steady-state value. The
insulin concentration during the simulation can be found in Figure 3. In this figure, the
dotted blue line indicates the unstable insulin profile.

Figure 2. Comparison of blood glucose responses in nominal case without meal intake.

Figure 3. Comparison of insulin concentration in nominal case without meal intake.
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Figure 4 shows the blood glucose responses from the robust RL in different uncertain
conditions without meal intake. The results show similar and stable responses in all the
uncertain conditions with settling time to the desired blood glucose level of approximately
45 min. The insulin concentration and the update of controller gains can be found in
Figures 5 and 6.

Figure 4. Comparison of blood glucose responses in uncertain cases without meal intake.

Figure 5. Insulin concentration in uncertain cases without meal intake.

Figure 6. Update of controller gains during the learning process (K1 and K2 represent the first and
second element of the controller gain vector K).
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3.2. With Meal Intake

In this part, the performance of the robust RL controller was tested under conditions
for which the system is subjected to meal intakes with the carbohydrate profile as shown in
Figure 7.

Figure 7. Carbohydrate intake per meal.

During the simulation period with meal intakes, blood glucose responses throughout
the day of the robust RL control systems under four uncertain cases are shown in Figure 8.
The insulin concentration during the process can also be found in Figure 9. The results
show that the controller provides the most aggressive action under case 1 (no uncertainty)
and the least aggressive action under case 4 (with highest level of measurement and process
noises). This leads to the largest and smallest reduction of postprandial blood glucose in
case 1 and case 4, respectively. Most importantly, the robust RL algorithm kept the system
in stable condition and there is no hypoglycemia event during the simulation for all four
cases under different level of uncertainties.

Figure 8. Blood glucose responses in simulation with meals.
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Figure 9. Insulin concentration in simulation with meals.

4. Conclusions

The paper proposes a robust RL algorithm for dynamical systems with uncertainties.
The uncertainties can be approximated by the critic and represented in the value function.
LMI techniques were used to improve the controller gain. The algorithm was simulated on
a blood glucose model for patients with Type 1 diabetes. The objective of the simulation
is to control and maintain a healthy blood glucose level. The comparison between the
robust RL algorithm and the optimal RL algorithm shows a significant improvement in
the robustness of the proposed algorithm. Simulation results show that the algorithm
successfully regulated the blood glucose and kept the system stable under different levels
of uncertainty.
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