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Abstract

IMPORTANCE Early identification of cerebral palsy (CP) is important for early intervention, yet
expert-based assessments do not permit widespread use, and conventional machine learning
alternatives lack validity.

OBJECTIVE To develop and assess the external validity of a novel deep learning–based method to
predict CP based on videos of infants’ spontaneous movements at 9 to 18 weeks’ corrected age.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study of a deep learning–based method to
predict CP at a corrected age of 12 to 89 months involved 557 infants with a high risk of perinatal
brain injury who were enrolled in previous studies conducted at 13 hospitals in Belgium, India,
Norway, and the US between September 10, 2001, and October 25, 2018. Analysis was performed
between February 11, 2020, and September 23, 2021. Included infants had available video recorded
during the fidgety movement period from 9 to 18 weeks’ corrected age, available classifications of
fidgety movements ascertained by the general movement assessment (GMA) tool, and available data
on CP status at 12 months’ corrected age or older. A total of 418 infants (75.0%) were randomly
assigned to the model development (training and internal validation) sample, and 139 (25.0%) were
randomly assigned to the external validation sample (1 test set).

EXPOSURE Video recording of spontaneous movements.

MAIN OUTCOMES AND MEASURES The primary outcome was prediction of CP. Deep learning–
based prediction of CP was performed automatically from a single video. Secondary outcomes
included prediction of associated functional level and CP subtype. Sensitivity, specificity, positive and
negative predictive values, and accuracy were assessed.

RESULTS Among 557 infants (310 [55.7%] male), the median (IQR) corrected age was 12 (11-13)
weeks at assessment, and 84 infants (15.1%) were diagnosed with CP at a mean (SD) age of 3.4 (1.7)
years. Data on race and ethnicity were not reported because previous studies (from which the infant
samples were derived) used different study protocols with inconsistent collection of these data. On
external validation, the deep learning–based CP prediction method had sensitivity of 71.4% (95% CI,
47.8%-88.7%), specificity of 94.1% (95% CI, 88.2%-97.6%), positive predictive value of 68.2% (95%
CI, 45.1%-86.1%), and negative predictive value of 94.9% (95% CI, 89.2%-98.1%). In comparison,
the GMA tool had sensitivity of 70.0% (95% CI, 45.7%-88.1%), specificity of 88.7% (95% CI,
81.5%-93.8%), positive predictive value of 51.9% (95% CI, 32.0%-71.3%), and negative predictive
value of 94.4% (95% CI, 88.3%-97.9%). The deep learning method achieved higher accuracy than
the conventional machine learning method (90.6% [95% CI, 84.5%-94.9%] vs 72.7% [95% CI,

(continued)

Key Points
Question What is the external validity

of a deep learning–based method to

predict cerebral palsy (CP) based on

infants’ spontaneous movements at 9 to

18 weeks’ corrected age?

Findings In this prognostic study of 557

infants with a high risk of perinatal brain

injury, a deep learning–based method

for early prediction of CP had sensitivity

of 71%, specificity of 94%, positive

predictive value of 68%, and negative

predictive value of 95%. Prognosis of CP

based on the deep learning–based

method was associated with later

functional level and CP subtype in

children with CP.

Meaning This study’s findings suggest

that deep learning–based assessments

could support early detection of CP in

infants at high risk.

+ Invited Commentary

+ Supplemental content

Author affiliations and article information are
listed at the end of this article.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

JAMA Network Open. 2022;5(7):e2221325. doi:10.1001/jamanetworkopen.2022.21325 (Reprinted) July 11, 2022 1/14

Downloaded From: https://jamanetwork.com/ by a UiT The Arctic University of Norway User  on 08/09/2022

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2022.21343&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2022.21325
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2022.21325&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2022.21325


Abstract (continued)

64.5%-79.9%]; P < .001), but no significant improvement in accuracy was observed compared with
the GMA tool (85.9%; 95% CI, 78.9%-91.3%; P = .11). The deep learning prediction model had higher
sensitivity among infants with nonambulatory CP (100%; 95% CI, 63.1%-100%) vs ambulatory CP
(58.3%; 95% CI, 27.7%-84.8%; P = .02) and spastic bilateral CP (92.3%; 95% CI, 64.0%-99.8%) vs
spastic unilateral CP (42.9%; 95% CI, 9.9%-81.6%; P < .001).

CONCLUSIONS AND RELEVANCE In this prognostic study, a deep learning–based method for
predicting CP at 9 to 18 weeks’ corrected age had predictive accuracy on external validation, which
suggests possible avenues for using deep learning–based software to provide objective early
detection of CP in clinical settings.

JAMA Network Open. 2022;5(7):e2221325. doi:10.1001/jamanetworkopen.2022.21325

Introduction

Cerebral palsy (CP) is the most common physical disability in children, producing functional limitation
and co-occurring impairments1 (eg, pain, musculoskeletal deformities, seizures, and communication
and sleep disorders) because of injury to the developing brain.2 Cerebral palsy is typically diagnosed
between ages 12 and 24 months, and milder forms of CP may be diagnosed even later in childhood.3,4

Early identification of infants with a high risk of CP is important to provide targeted follow-up and
interventions during infancy when neuroplasticity is high,5,6 improve access to community services
to minimize complications,7 and reassure parents of infants at high risk if their children are unlikely to
develop CP.8

Prechtl et al9-11 introduced the general movement assessment (GMA) tool 25 years ago as a
method to predict CP. From birth until 2 months’ corrected age, general movements (ie, spontaneous
movements involving the whole body) have a writhing character and later occur as fidgety
movements.12 The GMA is recommended as the most accurate clinical test for CP prognosis among
infants younger than 5 months4,13 based on the absence of the fidgety type of general
movements.14,15 The GMA is based on clinical experts’ observation of infants’ general movements in
video recordings. The method requires training,16 and rater experience may alter GMA reliability.17

These factors hamper widespread clinical use.18

With advancements in the field of artificial intelligence, machine learning techniques have been
developed as objective low-cost alternatives to the GMA.18-22 Former machine learning techniques
for tracking and classification of infants’ spontaneous movements generally aimed to predict CP by
proposing restricted sets of manually selected movement features used in combination with
conventional statistical methods (eg, logistic regression analysis and support vector machines).23-27

A recent study28 found that the predictive values of these conventional machine learning–based CP
prediction models were similar to the predictive values of the GMA. Despite this progress, there are
fundamental challenges yet to be addressed. The restricted set of manually selected movement
features has an unknown association with the observational GMA tool, which calls into question the
construct validity of conventional machine learning techniques. External validation is consequently
lacking because of small samples and short follow-up duration.18,21 As a result, validation is
performed using less conservative methods (including leave-one-out cross-validation) and the
absence of fidgety movements as a surrogate predictor for CP.18,29

A new field within machine learning, called deep learning, has enabled automatic detection of
discriminative movement features through representation learning.30 This process involves
dynamically selecting features relevant to the task at hand without any human expert involvement.
The accuracy of deep learning improves with increasing amounts of data (eg, videos), and deep
learning has the capacity to detect features representing intricate associations in the data, such as
complex full-body general movements.
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Our primary objective was to develop a deep learning–based early prediction model of CP based
on infants’ spontaneous movements during the fidgety movement period from 9 to 18 weeks’
corrected age and to perform external validation using a multicenter sample of infants with a high risk
of perinatal brain injury. Our secondary objective was to compare the predictive accuracy of the deep
learning–based prediction method with the accuracy of the clinically recommended GMA tool and
the conventional machine learning method and to evaluate the ability of the deep learning method to
predict functional level and CP subtype.

Methods

Participants
This prognostic study of patients at 13 hospitals was approved by the regional Committee for Medical
and Health Research Ethics in Norway and local institutional review boards in Belgium, India, and the
US. Written informed consent was obtained from parents before study inclusion (including written
parental consent for publication of an infant image). This study followed the Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting
guideline.

The sample comprised 557 infants with a high risk of perinatal brain injury who were
prospectively enrolled in previous studies27,31-33 of CP risk prediction between September 10, 2001,
and October 25, 2018. Statistical analysis was performed between February 11, 2020, and September
23, 2021. A description of these previous studies is available in eAppendix 1 in the Supplement. All
studies included infants with an increased risk of abnormal neurodevelopment, which was identified
before discharge from the neonatal intensive care unit (eAppendix 2 and eTable 1 in the Supplement).
Infants were included based on the following criteria: (1) available video following the standards of
the Prechtl GMA tool34 recorded during the fidgety movement period from 9 to 18 weeks’ corrected
age, (2) available GMA classifications of fidgety movements, and (3) available data on CP status at 12
months’ corrected age or older. Two infants with videos recorded at 7 weeks’ and 8 weeks’ corrected
age were included. Both were correctly classified by the GMA; 1 infant had intermittent fidgety
movements and did not develop CP, and 1 infant had absent fidgety movements and was diagnosed
with CP. Data on infants excluded because of missing video recordings, GMA classification, or CP
status are reported elsewhere.27,31-33 The sample size was determined by the number of infants from
the previous studies27,31-33 who had available data.

Videos and Classification of General Movements
Infants were recorded in the supine position during active wakefulness for a median of 5 minutes
(range, 1-9 minutes) following GMA standards.34 A conventional video camera (Sanyo VPC-HD2000
Xacti dual camera [Funai Corporation] or Sony Handycam DCR-PC100E [Sony Electronics Inc]) at a
median recording rate of 30 frames per second (range, 24-60 frames per second) and a median
video resolution of 720 × 1280 pixels (range, 576 × 720 to 1080 × 1920 pixels) was used in a
standardized setup comprising a mattress and a stationary overhead camera. If more than 1 recording
was available, the recording made between 12 weeks’ and 13 weeks’ corrected age was used.

Two certified observers (L.A. and T.F.) who were blinded to the medical history of the infants
performed classification of fidgety movements for all infants. Fidgety movements were classified as
normal (sporadically, intermittently, or continuously present) or abnormal (absent). Classification of
sporadic fidgety movements as normal was based on a previous study that found a low risk of CP
among infants with sporadic fidgety movements.31 Infants classified with exaggerated fidgety
movements that were excessive in amplitude and speed were excluded a priori from the analysis
because of unpredictable outcomes among infants in this category. In cases of disagreement
between observers, videos were reassessed by the same 2 observers, and consensus was reached.
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Cerebral Palsy Status, Subtype, and Functional Level
The primary outcome of CP was diagnosed by a pediatrician who was unaware of GMA classifications
and followed the CP decision tree of the Surveillance of Cerebral Palsy in Europe.35 This diagnosis
included classification of CP subtypes into spastic unilateral, spastic bilateral, dyskinetic, and ataxic.
Follow-up times differed between studies, ranging from ages 18 months to 5 years.27,31-33 The Gross
Motor Function Classification System (GMFCS; levels I-V, with level I indicating the ability to walk
without limitations; level II, the ability to walk with limitations; level III, the ability to walk using a
handheld mobility device; level IV, the ability for self-mobility with limitations [may need to use
powered mobility]; and V, the need to be transported in a manual wheelchair)3 was used to classify
functional levels into ambulatory CP (levels I, II, and III) and nonambulatory CP (levels IV and V).

Method Development and External Validation
To achieve representative samples for method development (ie, training and internal validation) and
external validation, all infants at high risk were stratified into classes based on the study in which they
were originally enrolled,27,31-33 the country of the center in which the study was conducted (Belgium,
India, Norway, or the US) (step 1 in Figure 1), and their CP subtype (spastic bilateral CP, spastic
unilateral CP, or no CP) (step 2 in Figure 1). Data on race and ethnicity were not reported because the
previous studies (from which the infant samples were derived) used different study protocols with
inconsistent collection of these data.

A total of 75.0% of infants of each class (orange path in step 3 of Figure 1) were randomly
assigned to the method development (training and internal validation) sample, and the remaining
25.0% were randomly assigned (blue path in step 3 of Figure 1) to the external validation sample (1
test set). Infants assigned to the method development sample were further divided into 7 internal
validation samples (ie, folds), each comprising 9 infants with CP and 50 or 51 infants without CP. This
additional division enabled 7-fold cross-validation for evaluating internal validity. The internal
validation samples were constructed using a similar procedure for stratification based on study
center and CP subtype (as performed with the external validation test set shown in Figure 1).

Deep Learning Method
The overall concept of the deep learning method for CP prediction is presented in Figure 2. The
method comprised 4 steps: (1) motion tracking, (2) creation of a skeleton sequence, (3) development
of a deep learning–based prediction model, and (4) prediction of CP.

Figure 1. Data Sets for Development and External Validation

Heterogeneous high-risk infants

248 United States
190 Norway

Follow-up of 12-89 mo; CA

383 NO CP 17 UL CP 38 BL CP

Infants with perinatal stroke

37 Belgium
Follow-up of 15-38 mo; CA

24 NO CP 10 UL CP 3 BL CP 66 NO CP 2 UL CP 14 BL CP

Infants with neonatal encephalopathy

82 India
Follow-up of 16-48 mo; CA

418 Training and validation (internal validity)
63 With CP

355 Without CP

139 Test (external validity)
21 With CP

118 Without CP

1. Centers

2. Classes

3. Data sets

Infants diagnosed with cerebral palsy (CP) for whom subtype was not available were
classified as having spastic unilateral CP (UL CP) if they had a Gross Motor Function
Classification System level of I or II and classified as having spastic bilateral CP (BL CP) if
they had a Gross Motor Function Classification System level of III, IV, or V. Infants with
dyskinetic CP and ataxic CP were classified as having BL CP. A total of 75.0% of infants of

each class (orange path in step 3) were randomly assigned to the method development
(training and internal validation) sample, and the remaining 25.0% were randomly
assigned (blue path in step 3) to the external validation sample. CA indicates
corrected age.
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Motion Tracking
The raw video was processed by a motion tracker36 that localized horizontal and vertical coordinates
of 19 important body points (forehead, nose, ears, upper neck, shoulders, elbows, wrists, upper
chest, right pelvis, left pelvis, midpelvis, knees, and ankles) (step 1 in Figure 2), creating an infant
skeleton (ie, a full pose of the infant in the form of a digital skeleton model). The motion tracker had
previously been trained and validated on infant videos according to GMA standards following
in-motion poses as defined by Groos et al37; further technical details of the motion tracker are
described in the original articles by Groos et al.36,37

Skeleton Sequence
The infant skeletons of all video frames composed a spatiotemporal skeleton sequence (step 2 in
Figure 2) representing infant movements in the video. The skeleton sequence was divided into
5-second windows, which were processed by the deep learning–based prediction model to estimate
CP risk in that particular window.

Deep Learning–Based CP Prediction Model
To automatically detect movement features associated with CP, a novel deep learning procedure was
developed. A deep learning model consists of multiple layers (step 3 in Figure 2). The initial layers
detect features of movements of a single limb or joint, whereas subsequent layers detect features of
whole-body movements. To prevent manual selection bias, the optimal model architecture was set
by an automatic search on the training and internal validation data. The first 10 automatically
selected models were defined as artificial experts and retrained on the 7 internal validation samples
(internal validation results are provided in eTable 2 in the Supplement). Each of the resulting 70
artificial expert instances used the biomechanical properties (position, velocity, and body segment
length) in 5-second windows to detect whole-body movement features that distinguished infants
with CP from infants without CP. Details on the automatic search procedure and configurations of
selected deep learning models are available in eAppendix 3, eTable 3, eTable 4, and eFigure 1 in the
Supplement.

With regard to the group of artificial experts and uncertainty of decisions, based on the
obtained movement features in each of the 70 artificial expert instances, CP risk was estimated on a
continuous scale from low (0%) to high (100%). The median value of the 70 individual artificial
expert predictions was used as CP risk in the 5-second window, with uncertainty of CP risk color
coded based on the level of agreement across the 70 predictions. Green (with 0-17 agreements
[<25.0%] predicting CP) and yellow (with 18-35 agreements [�50.0%] predicting CP) represented
certain and uncertain predictions of no CP, respectively. Orange (with 36-52 agreements [>50.0%]

Figure 2. Steps Involved in Deep Learning–Based Method for Cerebral Palsy Prediction

5s Window

Single-joint movement
(initial layers)Skeleton sequence

Step 1 Step 2 Step 3 Step 4

Whole-body
movement

(final layers)

CP risk
in 5s

window

100% CP

0% CP

>75% CP

>50% CP

≤50% CP

<25% CP

In the deep learning–based method, a video-based infant motion tracker (step 1)
constructs a skeleton sequence of 5-second (5s) windows (step 2), in which a deep
learning–based prediction model estimates cerebral palsy (CP) risk in each 5-second
window by detecting single-joint movements over a few time steps in the initial model
layers and whole-body movements over many time steps in the later model layers (step
3). Next, CP risk of the total video is aggregated to classify an infant as having CP or no

CP (step 4) based on the decision threshold (dashed line) and yield uncertainty of
classification (color coding, with red representing certain classification of CP, orange
representing uncertain classification of CP, yellow representing uncertain classification
of no CP, and green representing certain classification of no CP). Written parental
consent was obtained for publication of the infant image in step 1.
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predicting CP) and red (with 53-70 agreements [>75.0%] predicting CP) represented uncertain and
certain predictions of CP, respectively.

Prediction of CP
The final score for CP risk in a total video was estimated as the median CP risk across all 5-second
windows of the skeleton sequence (step 4 in Figure 2). This score was used to classify an infant as
having CP or no CP based on a fixed decision threshold (different thresholds are shown in eAppendix
4, eFigure 2, and eTable 5 in the Supplement). A classification of CP was considered certain (red) if
more than 75.0% of the artificial expert predictions were classified as CP and uncertain (orange) if
more than 50.0% were classified as CP. A classification of no CP was considered uncertain (yellow) if
50.0% or fewer of the artificial expert predictions were classified as CP and certain (green) if fewer
than 25.0% were classified as CP (step 4 in Figure 2).

Conventional Machine Learning Method
To enable objective comparison between the deep learning method and the conventional machine
learning method previously described,28 retraining of the conventional machine learning method
was performed on skeleton sequences of 19 important body points in the method development data
set. Additional details about the conventional machine learning method have been published
previously by Ihlen et al.28

Statistical Analysis
The sensitivity of the methods used for external validation was fixed a priori based on the sensitivity
level of the GMA tool to ensure objective comparisons. The Clopper-Pearson method was used to
calculate 95% CIs for sensitivity, specificity, positive and negative predictive value, and accuracy,
which were computed using the conf package in R software, version 4.0 (R Foundation for Statistical
Computing). The difference in CP risk between infants with ambulatory CP (GMFCS level I, II, or III)
and nonambulatory CP (GMFCS level IV or V) was assessed using a 2-sided Wilcoxon rank sum test
and computed using algorithms from the SciPy library in Python, version 3.6 (Python Software
Foundation). A Wilcoxon rank sum test was also used to assess the difference in CP risk among
infants with spastic unilateral CP vs spastic bilateral CP. The significance threshold was 2-tailed
P < .05.

Results

Among 557 infants at high risk, 310 (55.7%) were male, and 247 (44.3%) were female; the median
(IQR) corrected age at assessment was 12 (11-13) weeks, and 84 infants (15.1%) had a diagnosis of CP
at a mean (SD) age of 3.4 (1.7) years (eTable 1 in the Supplement). The median (IQR) corrected age at
which CP status was evaluated was 38 (23-46) months. A total of 418 infants (75.0%) were randomly
assigned to the model development sample, and 139 (25.0%) were randomly assigned to the
external validation sample.

Predictive accuracies of the deep learning method, the GMA tool, and the conventional machine
learning method are presented in the Table. On external validation, the deep learning–based CP
prediction method had sensitivity of 71.4% (95% CI, 47.8%-88.7%), specificity of 94.1% (95% CI,
88.2%-97.6%), positive predictive value of 68.2% (95% CI, 45.1%-86.1%), and negative predictive
value of 94.9% (95% CI, 89.2%-98.1%). In comparison, the GMA tool had sensitivity of 70.0% (95%
CI, 45.7%-88.1%), specificity of 88.7% (95% CI, 81.5%-93.8%), positive predictive value of 51.9%
(95% CI, 32.0%-71.3%), and negative predictive value of 94.4% (95% CI, 88.3%-97.9%). The deep
learning method achieved higher accuracy than the conventional machine learning method (90.6%
[95% CI, 84.5%-94.9%] vs 72.7% [95% CI, 64.5%-79.9%]; P < .001), but no significant improvement
in accuracy was observed compared with the GMA tool (85.9%; 95% CI, 78.9%-91.3%; P = .11).
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The external validation sample comprised 139 infants; of those, 21 infants (15.1%) were
diagnosed with CP. Among those diagnosed with CP, 12 infants (57.1%) were correctly classified as
having certain CP, and 2 infants (9.5%) were incorrectly classified as having certain no CP (red and
green box plots in Figure 3C). Of 118 infants without CP, 104 (88.1%) were correctly classified as
having certain no CP, and 2 (1.7%) were incorrectly classified as having certain CP (green and red box
plots in Figure 3D). Cerebral palsy risk across 5-second windows for 1 representative infant with CP
and 1 representative infant without CP, both classified correctly with high certainty, are shown in
Figure 3A and B.

The deep learning–based CP prediction method had higher sensitivity (ie, a greater percentage
of infants higher than the decision threshold) among infants with nonambulatory CP (100%; 95%
CI, 63.1%-100%) vs ambulatory CP (58.3%; 95% CI, 27.7%-84.8%; P = .02) and among infants with
spastic bilateral CP (92.3%; 95% CI, 64.0%-99.8%) vs spastic unilateral CP (42.9%; 95% CI,
9.9%-81.6%; P < .001) (Figure 3C). A significantly higher estimated CP risk was observed among
infants with nonambulatory motor function (median [IQR], 0.90 [0.75-0.93]) vs ambulatory motor
function (median [IQR], 0.45 [0.24-0.78]; P = .007) and among infants with spastic bilateral CP
(median [IQR],0.85 [0.55-0.92]) vs spastic unilateral CP (median [IQR], 0.26 [0.23-0.56]; P = .03)
(Figure 4).

Discussion

In this prognostic study, a fully automated deep learning method for early CP prediction had high
predictive accuracy in an external sample of infants from different countries with heterogenous
perinatal risk factors and variation in video quality. Furthermore, the deep learning method
differentiated between infants who developed ambulatory vs nonambulatory CP as well as spastic
unilateral vs spastic bilateral CP. This novel method may support decisions in early pediatric care by
initiating targeted interventions to improve function, prevent complications, and individualize
follow-up. This prediction method is a substantial improvement compared with previously published
conventional machine learning–based CP prediction methods.28

The improved predictive accuracy of the deep learning method compared with the
conventional machine learning method used in a previous study28 may have occurred for several
reasons. First, the deep learning method has the capacity to identify intricate associations in the data
because it processes data in several layers. This ability suggests that deep learning could handle the
high complexity and variation observed in infants’ spontaneous movements. Second, manual
selection of movement features, which is required when using conventional machine learning
methods,25,26 is eliminated by the automatic feature detection of deep learning methods. Although
previous studies have also used deep learning methods for classification of infant motor
function,38-41 these studies have been limited by small samples and lack of external validation and
have used surrogate outcomes for CP.18,21,29

Table. Predictive Values on External Validation Given a Fixed Sensitivity of 70.0%a

Method

Result, No. Validation measure, % (95% CI)
True
positive

False
positive

True
negative

False
negative Sensitivity Specificity PPV NPV Accuracy

Deep learning 15 7 111 6 71.4 (47.8-88.7) 94.1 (88.2-97.6) 68.2 (45.1-86.1) 94.9 (89.2-98.1) 90.6 (84.5-94.9)

GMA 14 13 102 6 70.0 (45.7-88.1) 88.7 (81.5-93.8) 51.9 (32.0-71.3) 94.4 (88.3-97.9) 85.9 (78.9-91.3)

Conventional
machine learning

15 32 86 6 71.4 (47.8-88.7) 72.9 (63.9-80.7) 31.9 (19.1-47.1) 93.5 (86.3-97.6) 72.7 (64.5-79.9)

Abbreviations: GMA, general movement assessment tool; NPV, negative predictive
value; PPV, positive predictive value.
a The external validation sample included 4 infants (1 with cerebral palsy and 3 without

cerebral palsy) with exaggerated fidgety movements (excluded by the GMA), yielding 3

true-negative results and 1 false-negative result, both with deep learning–based and
conventional machine learning–based predictions of cerebral palsy. Sensitivity was
fixed based on the sensitivity level of the GMA tool.
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More studies are needed to identify which movement features the deep learning method
selects as relevant for CP. A step toward this identification could be localization of movement
features within skeleton sequences (eFigure 3 in the Supplement).40,42 In the present study, we did
not investigate whether the deep learning method used features associated with fidgety
movements, other movements, and postural patterns in the early motor repertoire (eg, kicking and
body symmetry)43 or as yet unidentified patterns of movement.

The comparable performance of the deep learning method vs the observational GMA tool in this
study may reflect an upcoming paradigm shift in early prediction of CP. A recent review by Silva et al18

highlighted the fact that adoption of automated CP prediction in clinical practice has been restricted
because existing machine learning methods lack the predictive accuracy of the GMA. The feasibility
of home-based smartphone recordings22,44-47 and associated infant motion tracking37 may be
combined with the proposed deep learning method to obtain a fully automated system for clinical
decision support.

The sensitivity of the observational GMA tool was lower than reported in some previous
reviews13,48 but similar to findings of other studies.49,50 A sensitivity level that was lower than
commonly reported4 may, at least in part, be explained by the classification of sporadic fidgety
movements as normal. This approach contrasted with the classification method taught in courses by
the General Movements Trust, but it may increase the accuracy and positive predictive value of the
GMA, as reported in a previous study.31 Furthermore, a single assessment at approximately 12 weeks’
corrected age may have had a role in the lower sensitivity observed in the present study compared
with the sensitivity levels reported by studies performing several assessments throughout the
fidgety movement period.9,51

The present study included infants recruited from several sites based on a variety of risk factors
for perinatal brain injury.27,31-33 Despite the diverse set of risk factors and clinical characteristics of
infants, the prevalence of CP in each diagnostic group matched numbers found in the literature.52-54

This consistency suggests that the results are generalizable to clinical follow-up programs for infants
who were previously in the neonatal intensive care unit based on an increased risk of adverse
neurodevelopment.

Limitations
This study has several limitations. The use of a separate data set for method development limits the
number of infants with CP who can be included in the assessment of external validity. This smaller

Figure 4. Cerebral Palsy (CP) Risk Among Infants in the External Validation Sample With Different Outcomes
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sample limits the possibility of performing subgroup analyses of CP subtypes and GMFCS levels.
Further research could assess the validity of the deep learning method on different types of CP and
separate medical risk factors. Few children were assessed for CP before age 2 years, which may have
resulted in lack of identification of several children with mild phenotypes. Short follow-up duration
may also have produced less accurate GMFCS classification because of lower reliability among
children younger than 2 years.55 However, inaccurate GMFCS classification of a few children is
unlikely to change the general interpretation of results because classification rarely changes from
ambulatory CP to nonambulatory CP and vice versa.55

The present study included videos recorded using a standardized setup; therefore, the deep
learning–based CP prediction method requires validation using home-based smartphone recordings.
The prediction model may also be refined by extending the skeleton sequence to include facial
expressions and fine motor function in fingers and toes that may be associated with CP43 and by
including techniques, such as temporal attention,40 to enable varying influence of the CP risk of
different 5-second windows in the skeleton sequence.

Conclusions

In this prognostic study, the novel deep learning–based CP prediction model had predictive accuracy
comparable with GMA results among an external multicenter sample of infants at high risk. The
predictive model also differentiated between infants with ambulatory vs nonambulatory CP and
infants with spastic unilateral vs spastic bilateral CP. A fully automated movement analysis for CP
prediction may serve as an important decision support for clinicians caring for infants at high risk.18,21

Future research is needed to identify specific movement biomarkers associated with CP outcome
and facilitate widespread clinical use.
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