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a b s t r a c t

In this paper, we introduce a blending spline type construction into the isogeometric
analysis. We consider a general algorithm for solving a number of boundary value
problems, including heat equation, wave equation, linear elasticity, etc. The usage of
blending spline construction in the isogeometric context mixes standard finite element
and NURBS-based approaches while accumulating the benefits of both. Since the blend-
ing spline construction is locally represented, the finite element discretization can be
formulated in a standard way, while the smooth representation of these splines provides
an accurate approximation of the computational domain even on a coarse mesh.

Besides the standard L2-projection algorithm for the domain approximation, we
demonstrate a unique scheme for domain construction based on local surfaces and
subsequent hp-refinement.

In the proposed paper we focus on the features of blending splines in the isoge-
ometric analysis context, identify possible applications, and provide some numerical
analysis.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Isogeometric analysis (IGA) [1] is a generalization of the standard finite element method. The main idea of the
sogeometric concept is that the same basis functions are used for both geometry description and analysis. In contrast
o standard polynomial elements, which give a continuous but not smooth solution, the isogeometric representation is
ypically smooth. The usage of a smooth basis is efficient in many areas including structural analysis [2–4], fluid–structure
nteraction [5], phase-field models [6], etc. Currently, a standard tool for isogeometric analysis is the non-uniform B-
plines (NURBS) [7,8] and their modifications, such as Hierarchical B-splines, T-splines, LR-splines. These modifications
re successfully used for local refinement in the isogeometric analysis [9–12].
Refinement schemes are essential for improving the solution in both the standard finite element method and

sogeometric analysis. Besides standard h-refinement and p-refinement, the isogeometric approach using a B-spline
basis supports a combination of these two refinement schemes when both degree and mesh density are increased. In
addition, increasing the spline degree leads to higher continuity of the function, which is one of the important features
of NURBS-based isogeometric analysis.

Blending spline type construction is an alternative tool for geometric modeling and isogeometric analysis, firstly
introduced in [13]. In contrast to B-splines, the support of blending spline basis functions does not depend on their
degree, in other words, the locality of the basis is always maintained. Blending spline representation in application to
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sogeometric framework accumulates the benefits of both B-spline and standard finite element approaches. A concept
f blending splines is founded on blending basis functions, in particular, expo-rational basis functions (ERBS) and their
eneralizations (GERBS) [14]. Some related work regarding the utilization of expo-rational B-splines in finite element
ontext can be found in [15,16].
Blending spline construction has a hierarchical (multilayer) structure, i.e. parametric local geometries are blended by

nderlying basis function to form global surface patches. An ordered set of global surface patches forms a smooth global
urface due to the overlapping of local surfaces. Local surfaces contain information about global surface derivatives at the
nots. The independence of local surfaces from each other allows for flexible modeling and flexible inner parameterization
f the global surface.
Spline spaces that are a tensor product of two univariate spline spaces are standard for surface representation in

omputer-aided design (CAD) and IGA. Blending splines naturally support tensor product surfaces that can be locally
efined by knot insertion [17]. In addition, the blending splines allow for more flexible surface constructions, such as
riangulated surfaces [18,19] and polygonal surfaces [20].

The novelty of this paper is to examine the utilization of blending spline construction in the isogeometric analysis
ramework. We present a new approach to the blending basis function evaluation such that it can be successfully applied
o the finite element analysis context. In addition, we demonstrate a unique method for computational domain modeling
echnique using blending splines.

The proposed paper consists of the following sections. Section 2 describes an evaluation of the blending spline
onstructions and corresponding basis functions with a purpose for application in the analysis. Section 3 focuses on
he methods for modeling 2D domains. In Section 4 we formulate the general procedure of applying the isogeometric
pproach to solving various boundary value problems. Section 5 provides several examples of the usage of blending spline
onstruction for solving different physical problems. Finally, we summarize the proposed work and identify research
uestions for future development in Section 6.

. Blending type spline construction

We now consider some of the theory of blending type spline constructions, which is relevant for this work. A detailed
tudy of the expo-rational B-splines (ERBS) can be found in [13,21].
Let Φ be a one-dimensional domain with u ∈ [0, 1] as a parameter subdivided into mu intervals. An open knot vector

efined on Φ has two multiple knots on both sides. The knots are numerated from 0 to mu + 2. The simple version of an
xpo-rational basis function associated with the strictly increasing knots uk−1, uk and uk+1, k = 1, . . . ,mu + 1, is defined
n [21] as

Bk(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Γk−1

∫ u

uk−1

φk−1(s)ds, uk−1 < u ≤ uk,

Γk

∫ uk+1

u
φk(s)ds, uk < u < uk+1,

0, otherwise,

(1)

here

φk(u) = exp

⎛⎜⎜⎜⎝−

(
u −

uk + uk+1

2

)2

(u − uk)(uk+1 − u)

⎞⎟⎟⎟⎠ ,

nd the scaling factor

Γk =
1∫ uk+1

uk
φk(u)du

.

Fig. 1(c) demonstrates the expo-rational basis function (1) with support on two neighbor knot intervals. In the blending
construction, the expo-rational basis functions are used as functions that blend together overlapped local geometry.
Fig. 1(a) shows a part of the domain Φ and identifies supports of the overlapped local curves ℓk, k = 1, . . . ,mu + 1.
In our particular case, we choose Bézier curves (Bézier surfaces for the two-dimensional case) as local geometry. Each
Bézier curve is defined as a linear combination of control points and Bernstein polynomials. Moreover, they are scaled
and translated to the interval [uk−1, uk+1], as shown in Fig. 1(b). For this, we introduce a local/global mapping ωk(u), which
scales the support of the local curves ℓk to the interval [uk−1, uk+1].

ωk(u) =

⎧⎨⎩
u − uk−1

uk+1 − uk−1
, uk−1 < u ≤ uk+1,
0, otherwise.

2
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Fig. 1. The construction process of the univariate combined expo-rational basis G3,k on example of kth node. (a) One-dimensional domain Φ , and
kth node support covered with local curve ℓk . (b) A set of Bernstein polynomials {b3,a}3a=0 forming a basis of the local curve ℓk . (c) Underlying
expo-rational basis function Bk . (d) A set of combined expo-rational basis functions G3,k obtained by sequential multiplication of the expo-rational
basis function and corresponding Bernstein polynomials.

Thus, the local Bézier curve ℓk, k = 1, . . . ,mu + 1 is defined as

ℓk =

d∑
a=0

bd,a(ωk(u)) qk,a, (2)

where qk,a are control points of the kth local curve, and bd,a are Bernstein polynomials of degree d, which are generated
by the general formula

bd,a(t) =

(
d
a

)
ta(1 − t)d−a

=
d!

a!(d − a)!
ta(1 − t)d−a, a = 0, . . . , d.

Using (1) and (2), we describe the expo-rational B-spline curve as

A(u) =

mu+1∑
k=1

Bk(u)ℓk. (3)

In order to apply the isogeometric method to the blending splines, we merge underlying expo-rational basis functions
and local Bernstein polynomials as follows

Gd,k = {Bk bd,a(ωk(u))}da=0. (4)

The set of functions Gd,k (4) is called a set of combined expo-rational basis functions of local degree d evaluated under
kth local curve. An example of evaluating the set G3,k is shown in Fig. 1. Comparison of combined expo-rational basis
functions and B-spline basis functions in the isogeometric context is presented in [22]. The row vector Gd = {Gd,k}

mu+1
k=1

forms a combined expo-rational basis of local degree d, defined on the one-dimensional domain Φ .
The combined expo-rational basis possesses the following properties:

• basis functions constitute a partition of unity;
• basis functions are linearly independent;
3
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• minimal support of the basis functions is ensured independently of the local degree;
• basis functions are locally symmetric on the uniform knot vector.

From the properties above it follows that the basis evaluation can be parallelized in the computations. Each local
urve/surface covers one node, hence, the computations can be performed node by node separately. Parallelization and
re-evaluation of basis functions are possible and successfully implemented, but achieving maximum performance is
eyond the scope of the current paper.
One-dimensional blending spline constructions, i.e. curves, can be evaluated, alternatively to (3), by the following

atrix formulation

A(u) = Gd(u)Q, (5)

here the set of control points Q forms an ordered set of Bézier local curves of degree d.
The derivative of the curve (5) can be found as

DA(u) = DGd(u)Q,

here

DGd = {DGd,k}
mu+1
k=1 = {{DBk bd,a(ωk) + Bk Dbd,a(ωk)}da=0}

mu+1
k=1 . (6)

Bivariate basis can be easily obtained by the product of univariate bases, evaluated along two orthogonal parameters
u and v, (u, v) ∈ Θ = [0, 1]2.

Gd,i(u, v) = Gd,ku,au (u)Gd,kv ,av (v), (7)

here Gd,ku,au (u), Gd,kv ,av (v) represent single combined expo-rational basis function evaluated in u or v direction,
espectively, in accordance with formula (4), having local degree d (which is not necessary should be equivalent in both
irections). Finally, the basis functions Gd,i(u, v) assemble a row vector of bivariate combined expo-rational basis functions

d(u, v) = {Gd,i}
(mu+1)(mv+1)(d+1)2
i=1 . Alternatively, bearing in mind the hierarchical structure of blending splines, one can

valuate a set of bivariate basis functions under each local surface ℓk as follows

Gd,k(u, v) = {Bku (u) bd,au (ωku (u)) Bkv (v) bd,av (ωkv (v))}
d
au,av=0, (8)

here the index k for bivariate case is a pair (ku, kv).
In (8) local indices au and av iterate d + 1 times each, therefore, a number of basis functions on one node is (d + 1)2.
set of bivariate basis functions evaluated under one local surface ℓk by formula (8) is shown in Fig. 2.
In the isogeometric analysis context, both geometry and solution are represented by the same basis functions. We

ill represent an initial geometry (domain) as a linear combination of bivariate combined expo-rational functions and
orresponding control points Q ∈ R2, while the solution of the physical problem, described by variational formulation,
ill be solved via the same set of basis functions with aim to obtain a vector of coefficients, whose combination with
asis functions gives a smooth solution.

. Domain construction

It is common to use triangulation algorithms for mesh generation. There are effective algorithms for triangulation that
re suitable for complex shaped domains in 2D, for example, Delaunay algorithm. Since for tensor product surface a mesh
rid is defined as a tensor product of two knot vectors, it imposes additional restrictions on mesh generation.
In the case of tensor product surfaces, the standard technique for surface approximation, called L2-projection [23], can

e used straightforward for the mesh generation, when the target domain parameterization χ (u, v), (u, v) ∈ Θ = [0, 1]2,
s given in such a way that the boundary ∂Θ is mapped onto the boundary Γ . This projection minimizes L2-norm of the
ifference between the target function and its approximation. Hence, χ (u, v) is a mapping χ : Θ → Ω whose discretized
pproximation χh(u, v) is expressed in terms of blending tensor product surface. The L2-projection method can be used
or both mesh generation and subsequent hp-refinement.

Without going into much detail, we write the L2-projection method in the matrix form as follows∫
Θ

GT
dGd dΘ Q =

∫
Θ

χGT
d dΘ, (9)

here Gd is a row vector of combined expo-rational basis functions of local degree d, Q ⊂ R2 is a column vector of
oefficients to be found, and χ (u, v) is a given function. The final domain approximation can be written as a tensor
roduct surface in the form

χh = Gd Q. (10)

An example of constructing the domain is demonstrated in Fig. 3. Here the parameterization of a quarter of an annular
ection is given. The result of the L2-projection method (9) is a set of control points Q forming local Bézier surfaces,
4
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Fig. 2. A set of bivariate combined expo-rational basis functions G2,k(u, v) defined on four neighbor elements [uku−1, uku+1] × [vkv−1, vkv+1] covered
with one local surface ℓk , k = (ku, kv).

whose blending gives the resulting domain χh (10). Fig. 4 shows the numerical convergence of the L2-projection method
of the surface approximation, shown in Fig. 3, with blending type surface construction. As one can see, the geometry error
rapidly decreases with mesh refinement.

Alternatively, a hp-refinement scheme can be obtained by initializing the first coarse mesh manually. The blending
splines provide a unique strategy for initial domain construction, which consists of a flexible arrangement of the initial
local surfaces with successive mesh refinement.

Let χh,0 be an initial coarse mesh, defined as

χh,0 = Gd0Q0,

where d0 is an initial local degree and Q0 is a given column vector of points forming local Bézier surfaces. For example,
if the initial mesh has size 2 × 2, nine local surfaces should be initialized, thus, for the local degree d0 = 1, the vector Q0
contains 36 points.

In order to refine χh,0, we evaluate new combined expo-rational basis Gd of local degree d on a new mesh and solve
the following system of equations∫

Θ

GT
dGd dΘ Q =

∫
Θ

χh,0GT
d dΘ (11)

or, in the matrix form

MQ = b.

A new blending tensor product surface χh = Gd Q approximates the initial coarse mesh χh,0. An example of manual
mesh initializing and its refinement is shown in Figs. 5 and 6, respectively. The uniqueness of this method is that the
local surfaces can be oriented separately from each other yielding flexibility for both boundary construction and inner
parameterization. While refinement occurs, the locality of the construction is preserved. Thus, the blending structure
possesses a strong opportunity for adaptive mesh refinement strategies to be developed.

Fig. 7 demonstrates the dependence between the number of elements (m) of the square mesh and the number of
degrees of freedom (n) for the corresponding blending tensor product surface of the local degrees d = 1, 2, . . . , 5. The
number of degrees of freedom is equivalent to the cardinality of the set of basis functions G , and, correspondingly, the
d

5
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Fig. 3. An example of the domain approximation by using the combined expo-rational basis of local degree 2. The mesh of size 2 × 2 is obtained by
he L2-projection scheme. Nine Bézier local surfaces of the second degree are shown as orange surfaces with corresponding nets of control points.
ach local surface affects some mesh elements, which are highlighted in blue color. Thus, each element is constructed by four overlapped local
urfaces.

ardinality of the set of control points Q, whose combination with basis functions gives a surface. Hence, the matrix M
as size n × n.
The hierarchical structure of the combined expo-rational basis leads to a specific form of stiffness, mass, and other

imilar matrices, which describe a physical system to be solved. Basis functions of each node contribute to the symmetric
atrix block, whose set assembles a global matrix with predetermined structure always having block-tridiagonal form

ndependently of the local degree. Schematically, the matrix M has the following form

M =

⎡⎢⎢⎢⎢⎢⎢⎣

M1,1 MT
2,1 0 ... 0

M2,1 M2,2 MT
3,2 ... 0

0 M3,2 M3,3
...

...
. . . MT

mu+1,mu
0 ... Mmu+1,mu Mmu+1,mu+1

⎤⎥⎥⎥⎥⎥⎥⎦ , (12)

where Mi,j are the blocks of size mv + 1 × mv + 1, mumv = m is a number of elements. Each block Mi,j also has
block-tridiagonal form and consists of symmetric sub-blocks of size (d + 1)2 × (d + 1)2 associated with particular basis
functions, whose example is shown in Fig. 2. A specific example of the matrix M is shown in Fig. 8 for the mesh of size
6
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Fig. 4. Geometry error of the given domain shown in Fig. 3 approximated by the blending spline surface of the second degree. The error is computed
as an absolute difference between the outer edge of the approximation (u = 1, 0 ≤ v ≤ 1) and the exact outer radius of the domain. Four different
meshes of size 2 × 2, 4 × 4, 8 × 8 and 16 × 16 are considered.

Fig. 5. An example of the initial domain consisted of one element and constructed manually by using four local surfaces of the first degree.

Fig. 6. Two refinements (a) 8 × 8 elements and (b) 16 × 16 elements of the initial mesh shown in Fig. 5 are obtained by the L2-projection scheme.
7
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Fig. 7. Number of degrees of freedom (n) versus number of elements (m) for square 2D meshes with local degrees d = 1, 2, . . . , 5 (•, ■, ▼, ▲, ⋆).

Fig. 8. The sparsity pattern of the matrix M for the mesh of size mu × mv = 4 × 4 and local degree d = 2.

u ×mv = 4× 4 and local degree d = 2, where the size of each matrix block is demonstrated. The hierarchical structure
f the matrix M provides opportunity to parallelize the computational process in such a way that contribution of each
ode can be computed separately of others. Parallelization can be useful for complex cases, for instance, with non-uniform
not distribution, or for local refinement schemes.

. Isogeometric analysis

Many physical problems described by partial differential equations can be addressed by solving a variational problem.
he isogeometric finite element method can be formulated in a very general framework. Let Ω ⊂ R2 be a computational

domain parameterized by planar blending tensor product surface with boundary Γ . As an illustrative example we consider
the Poisson’s equation

− ∆ϑ = f , in Ω, (13)

with generalized boundary conditions, called Robin boundary conditions,

∇ϑ · n̄ = κ(ϑ − g ) − g , on Γ , (14)
D N

8
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here gD and gN are given functions, and κ is a constant that specify boundary conditions to be a Neumann or Dirichlet
ype. A large κ leads to the Dirichlet boundary conditions, while κ = 0 yields the Neumann boundary conditions.

To define the variational formulation of the problem, we introduce the trial and test spaces

Υg = {ϑ : ϑ ∈ H1(Ω), ϑ |Γ = gD},

Υ = {υ : υ ∈ H1(Ω), υ|Γ = 0}.

Multiplying (13) with a test function υ ∈ Υ and integrating by Green’s formula, we obtain the following variational
formulation: find ϑ ∈ Υg such that υ ∈ Υ and∫

Ω

∇ϑ · ∇υ dΩ + κ

∫
Γ

ϑυ dΓ =

∫
Ω

f υ dΩ +

∫
Γ

(κgD + gN )υ dΓ . (15)

The blending spline basis functions form a set of finite-dimensional approximations of the test and trial spaces. The
esh is defined as a tensor product surface χh : Θ → Ω consisted of m = mumv curvilinear elements. To compute the

inite element approximation ϑh let Gd = {Gd,i(u, v)}ni=1 be a basis defined on the parametric domain Θ = [0, 1]2 with n
ombined expo-rational basis functions of local degree d defined by formula (7). Applying the key idea of the isogeometric
nalysis, we represent the discrete solution field ϑh in a blending spline form, that is,

ϑh =

n∑
i=1

Gd,i(u, v)ζi = Gd ζ , (16)

here ζi, i = 1, . . . , n, are unknown coefficients to be found.
The discrete test functions υh are defined as

υh = Gj(u, v), j = 1, . . . , n. (17)

Substituting (16) and (17) into the variational formulation (15) we define a system of n PDEs for n coefficients ζi,
i = 1, . . . , n. In the matrix form we write this as

(A + κ R)ζ = b + r, (18)

here the entries of the n × n stiffness matrix A and the n × 1 force (load) vector b are defined as

A =

∫
Ω

∇GT
d ∇Gd dxdy, (19)

b =

∫
Ω

f GT
d dxdy. (20)

The assembled stiffness matrix has a special form, which is similar to (12). Due to the tensor product representation, the
stiffness matrix can be assembled for the entire set of basis functions simultaneously, without dividing it into elements.
However, in order to keep parallelization of the computational process, one can conduct computations isolated for each
local surface ℓk, or, in terms of finite elements, for each node.

Since the basis functions are defined on the parametric domain Θ , we need to determine the gradient ∇Gd and the
differential element of area dxdy in the global coordinate system. The generalized approach of deriving the stiffness and
mass matrices for curvilinear elements is detailed in [24,25]. We apply such an approach to blending spline finite elements
without loss of generality.

The mapping of local parameters (u, v) onto global coordinates (x, y) is given by

x = Gd Qx, y = Gd Qy,

here Q =
[
Qx Qy

]
is a column vector of control points of all the local surfaces with corresponding x- and y-components.

The partial derivatives of each basis function Gd,i(u, v) with respect to the global coordinate system can be determined
sing the chain rule as follows

∂Gd,i

∂x
=

∂Gd,i

∂u
∂u
∂x

+
∂Gd,i

∂v

∂v

∂x
,

∂Gd,i

∂y
=

∂Gd,i

∂u
∂u
∂y

+
∂Gd,i

∂v

∂v

∂y
. (21)

Expressions (21) can be rewritten in the matrix form for the entire set of basis functions[
DxGd
DyGd

]
= J−1

[
DuGd
DvGd

]
, (22)

here J is the Jacobi matrix, defined as

J =

⎡⎢⎣
∂x
∂u

∂y
∂u

∂x ∂y

⎤⎥⎦ =

[
DuGd
DvGd

]
Q.
∂v ∂v

9
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The differential element of area can be shown to transform according to [26]

dxdy = |J|dudv. (23)

Substituting (22) and (23) into (19) we obtain

A =

∫ 1

0

∫ 1

0

(
J−1

[
DξGd
DηGd

])T (
J−1

[
DξGd
DηGd

])
|J|dudv. (24)

Similar computational strategy is valid for the load vector b (20)

b =

∫ 1

0
f (u, v)GT

d |J|dudv. (25)

Note that all the given functions, such as the external force f and similar, should be expressed in terms of parametric
oordinates (u, v).
Now, we proceed to the Robin boundary conditions, defined as (14). This generalization of the boundary conditions

eads to the following sparse boundary matrix R and boundary vector r

R =

∫
Γ

GT
dGd ds, (26)

r =

∫
Γ

(κgD + gN )GT
d ds. (27)

The boundary matrix and vector imply computations of curvilinear integrals along each boundary edge. Due to the
greement given in Section 3, the boundary of the parametric domain ∂Θ is projected onto the real boundary Γ . Then,
e define the boundaries as a mapping of one of the parameters (u, v), while the other one is fixed, onto (x, y)

Γ = {γ1, γ2, γ3, γ4} = {Gd(u, v = 0)Q, Gd(u = 1, v)Q,

Gd(u, v = 1)Q, Gd(u = 0, v)Q}.

Corresponding derivatives along edges are denoted as

DΓ = {Dγ1,Dγ2,Dγ3,Dγ4} = {DuGd(u, v = 0)Q, DvGd(u = 1, v)Q,

DuGd(u, v = 1)Q, DvGd(u = 0, v)Q}.

Then, the boundary matrix R (26) can be expressed as

R =

4∑
ι=1

∫
γι

κGT
dGd ds =

4∑
ι=1

∫ 1

0
κGd

⏐⏐T
γι
Gd

⏐⏐
γι

√
(Dγ x

ι )
2
+ (Dγ

y
ι )

2 dw, (28)

here the basis functions Gd
⏐⏐
γι

are defined on the respective boundary edge, Dγ x
ι and Dγ y

ι are the corresponding x- and
y-coordinates of the boundary derivative, and w is a formal parameter, which is u or v depending on the boundary index.

The entries of the boundary vector r (27) can be transformed as

r =

4∑
ι=1

∫
γι

(κgD + gN )GT
d dγι =

4∑
ι=1

∫ 1

0
(κgD + gN )Gd

⏐⏐T
γι

√
(Dγ x

ι )2 + (Dγ
y
ι )2 dw. (29)

Substituting (24), (25), (28) and (29) into (18) and solving this matrix equation, we finally obtain a discrete solution
of the Poisson’s equation in the following form

ϑh = Gd ζ .

5. Numerical examples

The numerical examples below demonstrate the main features of the blending splines in application to the isogeometric
nalysis. We consider the specific approaches to the construction of 2D domains, approximation of the boundary
onditions, and the convergence rate of the proposed method. A comparison of the proposed method with the NURBS-
ased isogeometric approach is not straightforward due to the inconsistency in the number of degrees of freedom in
oth cases, as well as the lack of strict locality in the NURBS case with increasing the spline degree. However, conversion
etween both the bases is supported, and the corresponding research can be found in [22], where the blending spline
asis and the B-spline basis are compared locally.
10



T. Kravetc Journal of Computational and Applied Mathematics 414 (2022) 114438

w

o
b
s

w
c

w
b
(

Fig. 9. Geometry, boundary conditions and exact solution of the Poisson’s equation example.

5.1. Poisson’s equation

To illustrate the blending-spline-based finite element method, we consider a test problem with a known solution. As
shown in Fig. 9, the given domain Ω is bounded by the quarter annulus, located within the positive quadrant of the
Cartesian coordinate system. A boundary Γ consists of four edges Γ = {γ1, γ2, γ3, γ4}.

A model problem is a Poisson’s equation given by

− ∆ϑ = f , in Ω, (30)

the boundary conditions are{
ϑ = gD, on γ1,

ϑ = 0, on γ2, γ3, γ4,
(31)

here gD = (x4 − 16x2 + 17) sin x.
We define the load f in such a way that the exact solution reads

ϑ = (ρ2
− 1)(ρ2

− 16) sin x,

where ρ =

√
x2 + y2. The exact solution is shown in Fig. 9.

We first construct a mesh as the L2-projection of the given domain parameterization onto the discretized finite element
space of blending splines. An example of the mesh generation by the L2-projection method is shown in Fig. 3. The domain
parameterization is given as

χ (u, v) =

{
ρ cosφ

ρ sinφ
=

{
(3u + 1) cos π

2 v

(3u + 1) sin π
2 v.

(32)

Let Gd(u, v) be a combined expo-rational basis of local degree d evaluated on a mesh constructed by a tensor product
f two uniform knot vectors defined along two orthogonal parameters u and v. A mesh width h is defined as a distance
etween two neighbor knots. A column vector of control points Q can be found by the L2-projection scheme (9) by
ubstituting the given χ (u, v) (32).
The finite element method for the problem (30)–(31) can be formulated as follows(∫

Ω

∇GT
d∇Gd dΩ + κ

∫
Γ

GT
dGd dΓ

)
ζ =

∫
Ω

f GT
d dΩ +

∫
∂Ω

κgD GT
d dΓ , (33)

here κ is a constant which affects the type of the boundary conditions. Sufficiently high κ gives the Dirichlet boundary
onditions.
In the compact matrix form (33) can be rewritten as

(A + κR)ζ = b + r, (34)

hereA is a stiffness matrix, b is a force vector,R and r are the boundary matrix and vector, respectively. A transformation
etween the parametric domain Θ and the real domain Ω is performed in accordance with formulas (24), (25), (28) and
29). After solving the matrix equation (34), we express the solution as

ϑh = Gd ζ .
11
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Fig. 10. Errors ∥eh∥L2 and ∥eh∥H1 (top) and convergence rates (bottom) for blending spline approximations of local degrees d = 1, 2, 3 (•, ■, ▲) and
grid width h = 2−µ , µ = 0, 1, . . . , 5.

We compute errors of the blending spline approximations obtained on the tensor product mesh with grid width h in
two norms: L2-norm

∥eh∥L2 =

(∫
Ω

|ϑh − ϑ |
2dΩ

) 1
2

(35)

nd H1-norm

∥eh∥H1 =

(∫
Ω

(
|ϑh − ϑ |

2
+ |∇ϑh − ∇ϑ |

2) dΩ) 1
2

, (36)

here ϑ is an exact solution of the considered problem and ϑh is an approximated solution.
In order to demonstrate the convergence rate, we use the following formula

r(·) = log2

(
∥eh∥(·)

∥eh/2∥(·)

)
, (37)

here (·) defines L2- or H1-norm.
Fig. 10 visualizes the error of blending spline approximations. In the top two diagrams, errors ∥eh∥L2 (35) and ∥eh∥H1

36) are plotted versus the grid width h for local degrees d = 1, 2, 3. The bottom diagrams show the numerically computed
convergence rates (37).

The approximations maintain the local representation independently of the local degree d. However, a higher degree
gives better approximation and faster convergence.

5.2. Helmholtz equation

In the second example we consider the Helmholtz equation defined on a convex hexagon domain. When high wave
numbers or highly oscillatory solutions occur, it becomes a challenge to achieve reasonable accuracy, namely, for the
linear elements the element size is required to be less than 1/10th of the minimum wavelength [27]. This problem has
been studied, for instance, in [28,29].
12
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The Helmholtz equation is typical of the form

− ∆ϑ − k2ϑ = f , in Ω, (38)

here k is the wave number, f represents a harmonic source. We involve the following Robin boundary conditions

∇ϑ · n̄ − i kϑ = g, on Γ . (39)

In our particular case f = sin(kρ)/ρ, where ρ =

√
x2 + y2, and the boundary data g is chosen so that the exact solution

eads

ϑ =
cos(kρ)

k
−

cos k + i sin k
k(J0(k) + iJ1(k))

J0(kρ),

where Jι(z) are Bessel functions of the first kind.
We construct a mesh by manual initialization of initial local surfaces. A coarse 2 × 2 mesh requires 9 local surfaces

located in such a way that the hexagon domain is constructed. One can manipulate with inner domain parameterization by
adjustment of control points. We start with the first degree and then automatically refine local surfaces to a higher degree
by using the L2-projection method (11). Since the purpose of this example is to show the high local degree approximation,
we refine mostly the local degree, not the mesh grid.

The finite element method for the problem (38)–(39) is formulated as(∫
Ω

∇GT
d ∇Gd dΩ − k2

∫
Ω

GT
d Gd dΩ − ik

∫
Γ

GT
d Gd dΓ

)
ζ =

∫
Ω

f GT
d dΩ +

∫
Γ

g GT
d dΓ . (40)

Rewriting (40) in the compact matrix form, we obtain

(A − k2M − ikR)ζ = b + r. (41)

We solve the system (41) with respect to the column vector of coefficients ζ , involving coordinate transformation
etween the parametric domain Θ and the real domain Ω . Finally, a linear combination of the basis functions Gd and

complex coefficients ζ gives us an approximated solution of the Helmholtz equation.
Fig. 11 demonstrates the approximated solution for the problem (38)–(39) with k = 20. Two coarse meshes are

considered: 2 × 2 and 4 × 4. The solution is approximated by blending tensor product surfaces of two local degrees: d = 4
and d = 7. Another example, see Fig. 12, presents the blending surface approximation when applied to a challenging case
of high wave number. Here we take k = 50, uniform mesh of size 8 × 8 and local degree d = 10. One can see that the
numerical result with the coarse mesh captures the oscillation of the exact solution very well. We leave a deeper analysis
of the application of blending spline construction to the Helmholtz problem for future research when we will investigate
adaptive mesh refinement schemes.

Comparing theoretically isogeometric approach based on B-splines with an alternative isogeometric approach, which is
based on blending spline construction, one can realize the differences between them. The B-spline basis function of degree
p covers p+ 1× p+ 1 elements. For a high degree and a coarse mesh this leads to the globality of the basis. Maintaining
locality, the blending spline construction is more beneficial for high frequency approximation in terms of computations,
because each node can be treated independently of each other. Moreover, there is a strong opportunity to develop an
adaptive curvilinear grid for blending spline construction by flexible manipulating with inner parameterization, which
can improve the final approximation. Also, the strict locality allows for local refinement by knot insertion maintaining
minimal support of basis functions independently of the local degree. Alternatively, the local degree refinement can handle
local oscillations without affecting the rest of the domain. We believe that mesh adaptability can give a much better result
in terms of the convergence rate in future development.

5.3. Linear elasticity problem

We now consider the problem of linear elastostatics. For more details regarding the derivation of the partial differential
equation governing linear elasticity, we refer to [23,30].

Let the vector ϑ be a displacement ϑ = (ϑ1, ϑ2) = x̄ − x̄0, where x̄ is a current position of some material particle and
¯0 is an initial position.

The strain tensor is defined as

ε =
1
2
(∇ϑ + ∇ϑT).

The strain and stress relation takes the form

σ = 2µε(ϑ) + λ(∇ · ϑ)I2, (42)

where I2 is the 2 × 2 identity matrix. The Lamé parameters µ and λ are defined by

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1 − 2ν)
,

where E is Young’s elastic modulus and ν is Poisson’s ratio.
13
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Fig. 11. Two meshes, two local degrees, corresponding solutions and absolute errors for the Helmholtz problem.

The basic problem of linear elastostatics is to find the stress tensor σ and the displacement vector ϑ such that

− ∇ · σ (ϑ) = 0, in Ω, (43a)

σ (ϑ) · n̄ = gN , on ΓN , (43b)

ϑ = gD, on ΓD. (43c)

Let us introduce the Robin boundary conditions that cover both Neumann (43b) and Dirichlet (43c) boundary conditions
as

− σ (ϑ) · n̄ = κ(ϑ − gD) − gN , on Γ = ΓD ∪ ΓN , (44)

where κ is a constant determining the Dirichlet or Neumann type of the boundary conditions.
Let the initial domain be approximated by the blending tensor product surface as

χh = Gd Q,

where Gd is a combined expo-rational basis, constructed on a given mesh, and Q is a column vector of control points
obtained, for example, by the L2-projection method, recall (9).
14
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Fig. 12. (a) Exact solution, k = 50. (b) Blending tensor product surface approximation for 8 × 8 mesh and local degree d = 10. (c) The trace plot
along x-axis.

Using engineering notations, we write the discrete solution ϑh in matrix form as

ϑh =

[
(ϑh)1
(ϑh)2

]
=

[
Gd,1 0 Gd,2 0 ... Gd,n 0
0 Gd,1 0 Gd,2 ... 0 Gd,n

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ11
ζ21
ζ12
ζ22
...

ζ1n
ζ2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Gd ζ . (45)

The relation (42) can be expressed as

σ = Dε,

where

D =

[
λ + 2µ λ 0

λ λ + 2µ 0
0 0 µ

]
.

The strain ε is linked to the displacements ϑ by[
ε11
ε22
2ε12

]
=

[
∂ϑ1/∂x
∂ϑ2/∂y

∂ϑ1/∂y + ∂ϑ2/∂x

]
=

[
∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

][
ϑ1
ϑ2

]
=

=

[
∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

][
Gd,1 0 Gd,2 0 ... Gd,n 0
0 Gd,1 0 Gd,2 ... 0 Gd,n

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ11
ζ21
ζ12
ζ22
...

ζ1n
ζ2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (46)
15
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Fig. 13. Geometry of the cantilever beam.

We now need to express partial derivatives ∂/∂x and ∂/∂y in terms of the parameters u and v. We know, recall (21),
that

∂

∂x
=

∂

∂u
∂u
∂x

+
∂

∂v

∂v

∂x
,

∂

∂y
=

∂

∂u
∂u
∂y

+
∂

∂v

∂v

∂y
.

Thus,[
∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

]
=

[
∂u/∂x 0 ∂v/∂x 0

0 ∂u/∂y 0 ∂v/∂y
∂u/∂y ∂u/∂x ∂v/∂y ∂v/∂x

]⎡⎢⎣∂/∂u 0
0 ∂/∂u

∂/∂v 0
0 ∂/∂v

⎤⎥⎦ . (47)

Substituting (47) into (46) we introduce the strain matrix

B =

[
∂u/∂x 0 ∂v/∂x 0

0 ∂u/∂y 0 ∂v/∂y
∂u/∂y ∂u/∂x ∂v/∂y ∂v/∂x

]
⎡⎢⎣DuGd,1 0 DuGd,2 0 ... DuGd,n 0

0 DuGd,1 0 DuGd,2 ... 0 DuGd,n
DvGd,1 0 DvGd,2 0 ... DvGd,n 0

0 DvGd,1 0 DvGd,2 ... 0 DvGd,n

⎤⎥⎦ (48)

nd obtain the discrete strain and stress

ε(ϑh) =

[
ε11(ϑh)
ε22(ϑh)
2ε12(ϑh)

]
= Bζ , (49)

σ (ϑh) =

[
σ11(ϑh)
σ22(ϑh)
σ12(ϑh)

]
= DBζ . (50)

Using definitions (49) and (50) we obtain the following finite element method for the problem (43a), (44)(∫
Θ

BT DB |J| dudv + κ

∫
Γ

GT
dGd dΓ

)
ζ =

∫
Γ

(κgD + gN )GT
d dΓ . (51)

here Gd is a set of combined expo-rational basis functions written in the special form as shown in formula (45), and
D, gN are vector functions gD =

[
gD1 gD2

]T, gN =
[
gN1 gN2

]T. Transformation between parametric and real domain is
gained by Jacobian |J|, and curvilinear integrals, which are the entires of boundary integrals, are evaluated in accordance
with formulas (28), (29).

Thus, the deformed mesh can be constructed as

χh + ϑh =
[
Gd,1 Gd,2 ... Gd,n

]
⎡⎢⎢⎢⎣
qx1 + ζ11 qy1 + ζ21
qx2 + ζ12 qy2 + ζ22

...

qxn + ζ1n qyn + ζ2n

⎤⎥⎥⎥⎦ ,

here
[
qx1 qx2 ... qxn
qy1 qy2 qyn

]T

= Q is a column vector of control points constructing the domain. In addition, strain and stress

can be found by the formulas (49), (50), respectively.
In our particular example of the two-dimensional elasticity problem, we consider the bending of a cantilever beam

loaded at the end. A model shown in Fig. 13 have a narrow rectangular cross-section of unit width bent by a force P
16
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pplied at the end x = 0. In accordance with [31], the stress field in the cantilever is given by

σ11 = −
Pxy
I

, σ22 = 0, σ12 = −
P
2I

(
c2 − y2

)
nd the displacement field ϑ = (ϑ1, ϑ2) is

ϑ1 = −
Px2y
2EI

−
νPy2

6EI
+

Py3

6IG
+

(
PL2

2EI
−

Pc2

2IG

)
y,

ϑ2 =
νPxy2

2EI
+

Px3

6EI
−

PL2x
2EI

+
PL3

3EI
,

where E is replaced as
E

(1 − ν)2
, ν is replaced as

ν

1 − ν
, G =

E
2(1 + ν)

, I =
2
3
c3 is the moment of inertia of the cross

ection of the cantilever. In order to obtain precise approximation we set the exact solution ϑ = (ϑ1, ϑ2) as boundary
onditions.
We approximate the domain by using the L2-projection method, see (9). The cantilever beam is described by the

ollowing parameterization

χ (u, v) =

{
Lu
c(2v − 1),

here L = 8, c = 1. For more uniform density of the mesh, let the number of elements along the parameter u be twice
s large as the number of elements along the parameter v, i.e. mu = 2mv .
We define the combine expo-rational basis Gd on the mesh of size 2mv ×mv and solve system (51). The resulting vector
gives us the solution ϑh and the corresponding stress tensor σ (ϑh), shown in Fig. 14 for meshes (a) 2 × 1, (b) 8 × 4,

c) 32 × 16. Comparing with the exact solution shown in Fig. 14(d), one can see the convergence for stress components
ith mesh refinement.

. Conclusion

In this paper, we demonstrated how the blending type spline construction can be applied to the isogeometric analysis.
e described h-, p-, and hp-refinement schemes of the domains constructed with blending tensor product surfaces and

xplored their behavior on three numerical examples.
The first example is Poisson’s equation with inhomogeneous Dirichlet boundary conditions. It was chosen to demon-

trate the convergence of the proposed method. We studied h- and p-refinement schemes and compared L2- and H1-errors
nd convergence rates. The test has shown improving accuracy with both refinement schemes, while a strong locality of
he representation is maintained.

In the second example, we considered the Helmholtz equation with a relatively large wave number for the mesh
onsisting of a few elements. In addition, manual domain construction and its refinement were demonstrated. The strong
ocality of blending splines facilitates the treatment of local singularities of the desired solution. We assume that there
s an opportunity to improve the accuracy of the approximation by parameterization editing and mesh adaptation. This
esearch question needs to be addressed in future work.

The third example shows how the different characteristics of the physical system (displacement, stress, and strain) are
epresented by the same basis functions in application to the elastostatic problem. We considered in detail the process
f solving the linear elasticity problem and, in particular, applied the method to the bending of a cantilever beam loaded
t the end. Uniform mesh refinement resulted in the improved approximation of the stress components.
In conclusion, our studies reveal the following items and features of the analysis framework based on the blending

plines:

1. A mesh for a tensor product blending surface is defined by the product of knot vectors. Knot intervals subdivide
the domain into elements.

2. The support of each basis function always consists of four elements, where the corresponding local surface is
defined, i.e. the basis is strictly local.

3. The control points associated with the basis functions define the geometry. The same basis functions are used for
representing the solution of the problem of interest.

4. A set of local surfaces provides an additional level of abstraction between control points and elements due to the
multilayer structure. Local surfaces interpolate the finite elements while being constructed by control points. The
finite elements are independent of each other and smoothly connected at the same time.

5. Adjustable mesh refinement can be achieved by knot insertion. New local surfaces can be expressed in terms of
existing local surfaces.

6. Despite the use of standard FEM algorithms, which are common for any type of smooth basis, the solution obtained
by employing the expo-rational basis approximation preserves the properties of blending surfaces, i.e. the spline
structure stores many potentially useful intrinsic properties/inner information about the global geometry (for
example, normals, curvature, torsion, etc.)
17
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Fig. 14. Mesh refinement shown on the displacements, and corresponding stress contours for the cantilever problem.

The main challenge of the usage of the proposed method is computational efficiency. The hierarchical structure of
the blending splines leads to a drastic increase in the number of basis functions with increasing the local degree of
the spline surface and requires the accurate computation of the corresponding integrals. Additional research on the
algorithm efficiency is required, such as improving the numerical evaluation of integrals related to the blending spline
basis functions, which was studied in [32], parallelization of the computational process, etc.

In addition, the tensor product representation is limited in terms of approximation possibilities. An alternative solution
to this issue is to develop blending spline basis function spaces defined on the triangle- or polygonal-based meshes.

We believe that the blending spline construction can be successfully applied to real problems, when a combination
of strong locality, high spline degree, and smoothness is essential. However, further studies need to be performed to
investigate opportunities in a wider variety of problems. We plan to expand possible utilization of the blending spline
type constructions by developing new methods and algorithms, in particular, implementation of other element types,
adaptive refinement schemes, and automatic mesh generation.
18
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