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Abstract: Population ageing and urbanisation are global phenomena that call for an understanding
of the impacts of features of the urban environment on older adults’ cognitive function. Because
neighbourhood characteristics that can potentially have opposite effects on cognitive function are
interdependent, they need to be considered in conjunction. Using data from an Australian national
sample of 4141 adult urban dwellers, we examined the extent to which the associations of interre-
lated built and natural environment features and ambient air pollution with cognitive function are
explained by cardiometabolic risk factors relevant to cognitive health. All examined environmental
features were directly and/or indirectly related to cognitive function via other environmental features
and/or cardiometabolic risk factors. Findings suggest that dense, interconnected urban environments
with access to parks, blue spaces and low levels of air pollution may benefit cognitive health through
cardiometabolic risk factors and other mechanisms not captured in this study. This study also high-
lights the need for a particularly fine-grained characterisation of the built environment in research on
cognitive function, which would enable the differentiation of the positive effects of destination-rich
neighbourhoods on cognition via participation in cognition-enhancing activities from the negative
effects of air pollutants typically present in dense, destination-rich urban areas.

Keywords: walkability; greenspace; blue space; cardiometabolic health; cognitive function

1. Introduction

Population ageing and urbanisation are global phenomena with major consequences
for almost all sectors of society [1,2]. The majority of older adults live in cities [3], with mi-
gration from rural to urban areas expected to continue in this age group [2]. These trends
call for an understanding of the impacts of urban environments on the health and well-being
of older people.
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One of the most burdensome non-communicable diseases in people aged 60 years
or over is dementia [4]. Due to the current global increasing trend in population ageing,
the number of dementia cases is expected to double every 20 years and reach over 135 mil-
lion worldwide in 2050, with major societal implications for both high-income as well
as low-middle-income countries [5]. An important cornerstone of a global strategy for
long-term dementia risk reduction is cognitive health promotion throughout adulthood,
which aims to maintain cognitive function in healthy individuals and minimise cognitive
decline in those with cognitive impairment by targeting relevant modifiable risk factors [6].
These factors include several indicators of cardiometabolic health, such as obesity, elevated
blood glucose and blood pressure [6] and dyslipidaemia [7].

Urban environments have been identified as important contributors to cardiometabolic
health [8] through their influence on health-related lifestyle behaviours (e.g., physical activ-
ity and sedentary behaviours) [9,10] and through exposure to environmental stressors, such
as air pollutants and noise [11–13]. More compact neighbourhoods with interconnected
streets and access to amenities and parks were found to promote walking for transport [9]
and leisure-time physical activity [14] in older populations and, by doing so, reduce seden-
tary behaviour [10,15]. A recent systematic review reported beneficial effects of walkable
neighbourhoods (typified by higher levels of density, street connectivity and access to
services) on changes in cardiometabolic health outcomes, including obesity, type 2 diabetes
and hypertension [8]. There is, however, a dearth of studies on neighbourhood environ-
mental characteristics potentially contributing to middle-aged and older adults’ cognitive
function and the related role of cardiometabolic risk factors [16,17].

In general, studies on environmental correlates of cognitive function examined a lim-
ited range of neighbourhood attributes and often reported mixed findings [16], possibly
because of the omission of important environmental confounders [17]. For example, while
access to amenities is expected to benefit cognitive function by facilitating social engage-
ment and promoting an active lifestyle and, hence, cardiometabolic health, it is also often
associated with higher levels of traffic-related air pollution [18]. In this case, the omission of
air pollution indicators from models of cognitive function may lead to the conclusion that
destination accessibility is not an important factor [17]. This shortcoming can be addressed
by including key sets of environmental attributes in models of cognitive function and con-
sidering their interrelationships, as proposed in an ecological model of urban environment
effects on cognitive health [17,19], a simplified version of which, adapted to the present
study, is presented in Figure 1.
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The model in Figure 1 posits that characteristics of the urban built, natural and socio-
economic environment and their by-products (air pollution), influence cognitive health
indirectly via cardiometabolic health parameters that have been linked to dementia [6,7]
and via other pathways (e.g., engagement in social and intellectual activities, attentional
restauration) here depicted as ‘direct’ effects. Using this ecological framework, the present
study examined the extent to which cardiometabolic health indicators explain associations
of interrelated characteristics of the neighbourhood environment with cognitive function in
mid-age and older Australians.

2. Materials and Methods

We used data from the Australian Diabetes, Obesity and Lifestyle (AusDiab) study,
a three-wave population-based survey designed to examine the prevalence, incidence and
determinants of diabetes in Australian adults aged 25 years and over [20,21]. Data were
collected from participants living in 42 selected areas consisting of 1,286 contiguous census
administrative units (Statistical Areas 1, SA1) across metropolitan and regional cities of
seven Australian states/territories. SA1s have an average population size of 400 people.
Participants were eligible to participate if they were within the target age bracket, resided
at their addresses for at least 6 months prior to the survey, had no physical or intellectual
disabilities and provided informed written consent. We used data from the third wave
of AusDiab, the only wave in which cognitive function tests were administered and for
which relevant environmental exposures were available (ethics approval: Alfred Hospital
Ethics Committee, ref. no. 39/11) [21–23]. Details about AusDiab data collection proce-
dures are provided elsewhere [20–22]. Because this study focused on urban environments,
473 participants who did not reside in urban areas (here defined as towns and cities of
10,000 people or more) were excluded from the analyses, giving an analytical sample of
4141 participants. (The study was conducted according to the guidelines of the Declaration
of Helsinki, and approved by the Alfred Hospital Ethics Committee, Melbourne, Australia
(ref. no 39/11; 2 March 2011).)

2.1. Measures
2.1.1. Environmental Measures (Exposures)

Neighbourhood built and natural environment measures were generated using Geo-
graphic Information Systems (GIS) software. Street-network buffers of a 1-km radius were
created around geocoded participants’ residential addresses to define neighbourhoods.
A 1-km radius was used because it corresponds to a 10–20 min walk, which is a common
definition of a neighbourhood [23]. Four built environment, two natural environment
and two ambient air pollution measures were computed. These were population density
(persons/ha), street intersection density (intersections/km2), percentage of commercial
land use, non-commercial land use mix (range: 0–1), percentage of parkland, percentage
of blue spaces (e.g., lakes, coastlines and rivers) and annual average concentrations of
nitrogen dioxide (NO2, units: ppb) and fine particulate matter <2.5 µm in aerodynamic
diameter (PM2.5, units: µg/m3). Details on these measures are provided elsewhere [23–25]
and in the Supplementary Materials (Section S1).

2.1.2. Cognitive Function Measures (Outcomes)

Memory and processing speed were the cognitive functions examined in this study be-
cause they are essential to learning and reasoning, they typically decline with age, but their
decline can be slowed down by leading an active lifestyle and reducing cardiometabolic
risk factors [26]. Memory was assessed using the California Verbal Learning Test (CVLT)
whereby participants recalled 16 common shopping items after a 20-min delay (score range:
0–16) [27]. Processing speed was measured using the Symbol–Digit Modalities test (SDMT),
which requires participants to use a reference key to find and report the numbers (1 to
9) corresponding to nine geometric figures as quickly as possible in 90 s (score range:
0–60) [28].
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2.1.3. Cardiometabolic Risk Factors (Potential Mediators)

Cardiometabolic risk factors considered as potential mediators of the associations
between neighbourhood environment characteristics and cognitive function included:
an adiposity indicator (waist circumference expressed in cm); an indicator of elevated
blood pressure (mean arterial pressure expressed in mmHg); an indicator of elevated blood
glucose (glycated haemoglobin [HbA1c in mmol/mol]); and three indicators of dyslip-
idaemia (low-density lipoprotein [LDL] cholesterol (mg/dL), high-density lipoprotein
[HDL] cholesterol (mg/dL) and triglycerides (mg/dL)). The assessment of cardiometabolic
risk factors in AusDiab has been detailed elsewhere [20,21].

2.1.4. Confounders and Covariates

Several variables were included as potential confounders or covariates as appropriate
(see Supplementary Materials, Table S1 for details). These were self-reported sex, age, edu-
cational attainment, employment status, household income, living arrangements, ethnicity,
history of heart problems or stroke, tobacco smoking status, area-level socio-economic
status, relevant medications (hypertension, diabetes and lipid-lowering medications) and
residential self-selection.

2.2. Statistical Analyses

Descriptive statistics and the percentage of missing values were computed for all
variables. Because 17% of cases had missing data on at least one variable, multiple imputa-
tions by chained equations [29] were used to create ten imputed datasets for the regression
analyses. Directed acyclic graphs informed the selection of a minimally sufficient set of
confounders for regression models estimating exposure-mediator and mediator-outcome
relationships (Figure S1). The potential mediating role of cardiometabolic risk factors in the
associations between neighbourhood environmental characteristics and cognitive function
was examined using the joint-significance test according to which data support media-
tion if the exposure-mediator associations and the exposure-adjusted mediator-outcome
associations are both statistically significant [15]. Generalised additive mixed models
(GAMMs; package ‘mgcv’ version 1.8.22 [30] in R) with random intercepts at the SA1 level
were used to estimate these associations to allow for possible curvilinear effects. Analyses
were conducted in several steps detailed in the Supplementary Materials (Section S2 and
Table S1).

Briefly, given that our analyses considered potential causal effects among environ-
mental characteristics, we first estimated the confounder-adjusted total effects of each
environmental variable on each cardiometabolic risk factor. Here, ‘total effect’ refers to
the sum of effects mediated and unmediated by other environmental variables and is
estimated by excluding from the regression model those environmental characteristics
that are deemed to be in the pathway between the environmental exposure of interest
and the response variable (outcome or mediator). We then estimated the ‘direct effects’
of environmental characteristics on the cardiometabolic risk factors (i.e., unmediated by
other environmental variables) by including in the regression models all environmental
characteristics hypothesised to mediate the effects of the environmental exposure of interest
on the response variable. As we hypothesised that adiposity (waist circumference) would
be a determinant of other cardiometabolic risk factors [31,32], we also estimated the direct
effects of waist circumference on other cardiometabolic risk factors adjusted for all environ-
mental variables. Finally, a set of models estimated the environmental-exposure-adjusted
associations of cardiometabolic risk factors with cognitive function. These models also
provided estimates of the effects of environmental characteristics on cognitive function
not explained by cardiometabolic risk factors (i.e., ‘direct’ effects of the environment on
cognition). In the above models, we also examined whether taking medications for a
specific cardiometabolic risk factor moderated the associations of environmental character-
istics, waist circumferences with the cardiometabolic risk factor and the associations of the
cardiometabolic risk factors with cognitive function.
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3. Results

The average age of the sample was 61 years (SD = 11). The majority of participants
were of English-speaking background, female and in paid employment (Table 1). Nearly
half of the participants were living with a partner but without children. The sample
was heterogeneous in socio-economic status, both in terms of educational attainment
and household income. Only 6.3% of participants were taking diabetes medications,
while lipid-lowering and antihypertensive medications were considerably more prevalent.
There was substantial variability in several neighbourhood environmental characteristics.
However, the percentage of blue space and commercial land in residential buffers was low.
The average annual concentrations of air pollutants were also relatively low, with NO2 at
5.5 ppb and PM2.5 at 6.3 µg/m3.

Table 1. Sample characteristics (N = 4141).

Characteristics Statistics Characteristics Statistics

Socio-demographic characteristics

Age (years), M ± SD 61.1 ± 11.4 Sex, female, % 55.2
Educational attainment, % Employment status, %

Up to secondary 32.7 Not employed 30.4
Trade, associate diploma 43.6 Paid employment 52.2

Bachelor degree, postgraduate 23.1 Volunteering 15.1
Missing data 0.6 Missing data 2.3

Living arrangements, % Household income (annual), %
Couple without children 48.2 Up to $49,999 32.9

Couple with children 26.8 $50,000–$99,999 26.8
Other 22.4 $100,000 and over 28.9

Missing data 2.4 Missing data 11.5
Area-level IRSAD, M ± SD 6.4 ± 2.7 English-speaking background, % 89.9

Residential self-selection—access to
destinations, M ± SD 3.0 ± 1.4 Residential self-selection—recreational

facilities, M ± SD 3.1 ± 1.5

Missing data, % 7.8 Missing data, % 7.8

Cardiometabolic risk factors and other health-related variables

Heart problems/stroke history, % 8.7 Tobacco-smoking status, %
Missing data, % 1.0 Current smoker 7.0

LDL cholesterol, mg/dL, M ± SD 3.0 ± 0.9 Previous smoker 35.9
Missing data, % 1.4 Non-smoker 54.5

HDL cholesterol, mg/dL, M ± SD 1.5 ± 0.4 Missing data 2.6
Missing data, % 0.3 Waist circumference (cm), M ± SD 94.6 ± 14.2

Triglycerides, mg/dL, M ± SD 1.3 ± 0.9 Missing data, % 0.2
Missing data, % 0.3

Glycated haemoglobin (HbA1C), mmol/mol,
M ± SD 39.9 ± 6.3 Mean arterial pressure, mmHg, M ± SD 92.0 ± 12.3

Missing data, % 0.5 Missing data, % 0.2
Diabetes medication, % 6.3 Anti-hypertensive medication, % 32.0

Missing data, % 1.8 Missing data, % 1.8
Lipid-lowering medication, % 24.5

Missing data, % 1.8

Cognitive function, M ± SD

Memory, CVLT score 6.5 ± 2.4 Processing speed, SDMT score 49.7 ± 11.6
Missing data, % 2.3 Missing data, % 2.0
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Table 1. Cont.

Characteristics Statistics Characteristics Statistics

Neighbourhood environmental characteristics (1 km-radius street-network buffers), M ± SD

Population density, persons/ha 17.4 ± 10.0 Street intersection density,
intersections/km2 62.2 ± 32.2

Percentage of commercial land use in
residential buffer 2.5 ± 6.1 Non-commercial land use mix, entropy

score (0 to 1) 0.14 ± 0.13

Percentage of parkland in residential buffer 11.6 ± 12.5 Percentage of blue space (waterbody)
in residential buffer 0.24 ± 1.98

NO2, ppb 5.5 ± 2.1 PM2.5, µg/m3 6.3 ± 1.7

Notes. M, mean; SD, standard deviation; IRSAD, Index of Relative Socioeconomic Advantage and Disadvantage;
LDL, low-density lipoprotein; HDL, high-density lipoprotein; CVLT, California Verbal Learning Test; SDMT,
Symbol–Digit Modalities Test; NO2, nitrogen dioxide; PM2.5, particulate matter <2.5 µm.

The total effects of environmental characteristics on cardiometabolic risk factors are
reported in Table 2. Population density and NO2 showed mixed total effects on car-
diometabolic risk factors. In contrast, intersection density, non-commercial land use mix
and PM2.5 were prevalently associated with unfavourable outcomes, while indicators of
natural environment tended to show positive effects on cardiometabolic health. Taking
diabetes medications moderated the total effect of the percentage of blue space on gly-
cated haemoglobin whereby only those on medication showed a negative association (10%
increase in blue space; eb = 0.845; 95% CI: 0.743, 0.962; p = 0.011). Significant total but
not direct effects on cardiometabolic risk factors were observed for population density
in relation to glycated haemoglobin, percentage of commercial land in relation to mean
arterial pressure and non-commercial land use mix in relation to HDL cholesterol and
triglycerides (Table 2; Figures 2 and 3). The total effects of these three built environment
attributes were fully explained by their impact on other environmental attributes depicted
in Figures 2 and 3.

HDL cholesterol mediated some of the associations between environmental charac-
teristics and both cognitive functions (Figures 2 and 3), while waist circumference and
glycated haemoglobin were identified as mediators of environment-processing speed as-
sociations (Figure 3). Environmental attributes that showed positive indirect effects on
both cognitive functions through HDL cholesterol were intersection density, population
density (via intersection density) and percentage of blue space (via waist circumference)
(Figures 2 and 3). Environmental characteristics that exhibited a detrimental indirect effect
on cognitive functions through HDL cholesterol were PM2.5 and environmental attributes
that contributed to higher levels of PM2.5 (population density, percentage of commercial
land and parkland and non-commercial land use) (Figures 2 and 3). In addition, PM2.5
showed a positive direct effect on memory, NO2 on processing speed and percentage of
parkland on both cognitive functions.

PM2.5 and its environmental antecedents had a negative and percentage of blue space
a positive, indirect effect on processing speed through waist circumference and glycated
haemoglobin (Figure 3). NO2 with its environmental antecedents (population density,
percentage of parkland, street intersection density and non-commercial land use mix) had
a negative indirect effect on processing speed through glycated haemoglobin. Blue space
had a positive indirect effect on processing speed through glycated haemoglobin in those
on diabetes medications (Figure 3).
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Table 2. Total effects of neighbourhood environmental characteristics on cardiometabolic risk factors.

Environmental
Characteristic (Units)

Waist Circumference
(cm)

HDL Cholesterol
(mg/dL)

LDL Cholesterol
(mg/dL) Triglycerides (mg/dL) Glycated Haemoglobin

(mmol/mol)
Mean Arterial Pressure

(mmHg)

b (95% CI) eb (95% CI) b (95% CI) eb (95% CI) eb (95% CI) b (95% CI)
Population density −0.163 0.998 −0.011 0.992 1.006 −0.659

(10 persons/ha) (−0.646, 0.320) (0.989, 1.008) (−0.037, 0.014) (0.972, 1.012) (1.002, 1.010) (−1.083, −0.234)
Street intersection

density 0.145 1.001 0.010 1.012 1.000 0.706

(10 intersections/km2) (−0.035, 0.326) (0.998, 1.005) (0.001, 0.019) (1.004, 1.019) (0.999, 1.002) (0.553, 0.859)
Percentage of

commercial land 0.270 0.986 −0.010 1.026 0.998 0.761

(10%) (−0.504, 1.044) (0.972, 1.001) (−0.051, 0.031) (0.993, 1.060) (0.991, 1.004) (0.086, 1.435)
Non-commercial land

use mix 0.377 0.990 0.014 1.015 1.002 0.761

(0.10 score) (−0.004, 0.770) (0.983, 0.997) (−0.006, 0.034) (1.000, 1.031) (0.999, 1.006) (0.424, 1.098)
Percentage of parkland −0.314 0.996 −0.021 1.003 1.001 −0.303

(10%) (−0.714, 0.087) (0.989, 1.004) (−0.041, −0.001) (0.987, 1.019) (0.997, 1.004) (−0.660, 0.053)
Percentage of blue space −3.237 1.041 −0.076 0.972 0.989 * −1.566

(10%) (−5.461, −1.013) (1.003, 1.088) (−0.197, 0.045) (0.882, 1.070) (0.971, 1.006) (−3.477, 0.346)
NO2 0.066 0.999 −0.002 1.000 1.003 −0.381
(ppb) (−0.242, 0.373) (0.993, 1.006) (−0.018, 0.015) (0.988, 1.013) (1.000, 1.006) (−0.647, −0.115)
PM2.5 0.372 0.994 0.026 1.008 1.001 Curvilinear (see

Figure S5)(µg/m3) (0.064, 0.681) (0.990, 0.999) (0.006, 0.047) (0.996, 1.021) (0.998, 1.006)

Notes. b, regression coefficient; eb, exponentiated regression coefficient; CI, confidence intervals; * effect moderated by diabetes medication. Effects in bold are statistically significant at a
probability level of 0.05. Details on regression models, including confounders, are in the Supplementary material (Table S1).
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Figure 2. Effects of neighbourhood environmental characteristics on memory and the mediation roles of cardiovascular risk factors. Arrows linking variables indicate
significant associations; b, regression coefficient; eb, exponentiated regression coefficient; ha, hectare; C+, −, +/− = curvilinear positive, negative, non-monotonic
association; Figure Sx; the supplementary figure of a curvilinear association. * p < 0.05; ** p < 0.01; *** p < 0.001. Cardiometabolic risk factors are represented by
darker grey rectangles; environmental characteristics directly associated with memory or cardiometabolic risk factors are represented by light grey rectangles;
environmental attributes indirectly associated with cardiometabolic risk factors through other environmental characteristics are represented by white rectangles.
All significant and non-significant associations (regression coefficients and 95% CIs) are presented in the Supplementary Materials (Tables S2–S4). Table S2 also
provides the F-ratio of the smooth terms for significant curvilinear associations.
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Figure 3. Effects of neighbourhood environmental characteristics on processing speed and the mediation roles of cardiovascular risk factors. Arrows linking
variables indicate significant associations; b, regression coefficient; eb, exponentiated regression coefficient; ha, hectare; C+, −, +/− = curvilinear positive, negative,
non-monotonic association; Figure Sx; supplementary figure of a curvilinear association. * p < 0.05; ** p < 0.01; *** p < 0.001. Cardiometabolic risk factors are
represented by darker grey rectangles; environmental characteristics directly associated with memory or cardiometabolic risk factors are represented by light
grey rectangles; environmental attributes indirectly associated with cardiometabolic risk factors through other environmental characteristics are represented by
white rectangles. All significant and non-significant associations (regression coefficients and 95% CIs) are presented in the Supplementary Materials (Tables S2–S4).
Table S2 also provides the F-ratio of the smooth terms for significant curvilinear associations.
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4. Discussion

This study examined the potential effects of characteristics of the neighbourhood built
and natural environment on cognitive function in conjunction with ambient air pollution.
In doing so, it identified potential pathways of influence via cardiometabolic health indica-
tors. We discuss the findings starting from the environmental attributes more proximal to
cognitive function (ambient air pollution) as depicted in the proposed conceptual model of
neighbourhood environmental influences on cognitive health (Figure 1).

4.1. Air Pollution

After adjusting for built and natural neighbourhood environmental characteristics,
we observed negative indirect effects of PM2.5 and NO2 on cognitive function via car-
diometabolic risk factors. These findings were expected because higher levels of these
air pollutants have been previously associated with worse cognitive health outcomes in
humans [6,18]. Also, animal models showed that PM2.5 and NO2 contribute to neurodegen-
erative processes via cardiovascular and cerebrovascular diseases, and other pathways key
to dementia pathogenesis (e.g., Aβ depositions) [18,33]. In this study, the negative effects
of PM2.5 on cognitive function were channelled through indicators of adiposity (waist
circumference), elevated blood glucose (glycated haemoglobin) and hyperlipidaemia (low
HDL cholesterol), while those of NO2 were mainly explained by elevated blood glucose
(glycated haemoglobin). Exposure to air pollution has been previously associated with
adiposity [34,35], which, as also suggested by this study, is an established causal factor
for elevated blood glucose and dyslipidaemia [36] that, in turn, are harmful to cognitive
health [6,37–39].

We found negative effects on cognitive function mediated by glycated haemoglobin
but independent of waist circumference for NO2 but not PM2.5. In line with these findings,
Honda et al. [40], who estimated long-term annual exposure to air pollutants in older
Americans, reported stronger negative effects of NO2 than PM2.5 on glycated haemoglobin.
Similar associations have also been observed in studies of diabetes prevalence [41,42]
suggesting that traffic-related air pollution, of which NO2 is an indicator, may be more
important than particulate matter for glycaemic control [40,41] and may impact cognitive
function through these particular cardiometabolic risk factors.

In addition to the negative indirect effects of air pollutants on cognitive function,
we observed positive direct effects, which were unexpected and likely due to using coarse
measures of land use as proxies of access to destinations promoting cognition-enhancing
activities (e.g., places in the neighbourhood for social, physical and intellectual activities).
Specifically, commercial destinations that offer opportunities for cognition-enhancing activi-
ties (e.g., cultural and entertainment venues, food outlets) can be major sources of pollution
generated by food preparation and high volumes of visitors and, hence, traffic [24,25,43].
While we adjusted the effects of air pollutants for proxies of destination accessibility, these
proxies (non-commercial land use mix and percentage of commercial land) were likely
unable to discriminate destinations for cognition-enhancing activities (and higher levels of
pollution; e.g., restaurants) from those that were not (e.g., banks or warehouses). This could
have led to us observing the positive direct effects of air pollutants on cognitive function.
In fact, positive associations of NO2 and PM2.5 with walking for transport were observed
in an earlier analysis of AusDiab data [23] and negative associations of NO2 with mean
arterial pressure were found in this study, suggesting that destinations supporting en-
gagement in utilitarian walking and other activities were not accurately captured by the
land-use measures used in this study. These findings highlight the need for an accurate and
comprehensive characterisation of urban neighbourhood environments, encompassing all
key interrelated features, in studies of environmental determinants of cognitive function.

4.2. Natural Environment

This study suggests prevalently positive effects of access to parkland on cognitive
function, unmediated by cardiometabolic risk factors and mediated by other environmental
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attributes, albeit some negative indirect effects of parkland via air pollutants and related
cardiometabolic risk factors were also observed. Greenspace has been previously found
to have positive effects on cognitive function in adults [44], whereas the evidence is less
consistent in older adults [45]. The positive effects observed in this study may have
been due to various here unmeasured mechanisms, including engagement in physical
activity [6,9,14], social activities [46] and attention restoration [47], the latter referring to the
restoration of directed attention depleted by attentional tasks for daily living in the context
of complex urban environments [47].

Contrary to our expectation that the positive effects of parkland on cognitive function
would be in part explained by its mitigating effects on air pollution [48], our measure of
greenspace was positively related to both annual average concentrations of PM2.5 and
NO2. The positive association with PM2.5 might have been due to natural sources, in-
cluding wind-blown dust, sea salt and biogenic emissions from parkland [49]. Other
parkland-related contributors to neighbourhood-level PM2.5 and NO2 concentrations could
be smoke from prescribed fires [50] and maintenance activities utilising petrol-powered
machinery (e.g., grass mowing; leaf blowing) [51]. These potential deleterious effects need
to be acknowledged when examining the impact of greenspace on cognitive function and
related biomarkers.

While no direct effect of blue space on cognitive function was observed in this
study, positive indirect effects through waist circumference, HDL cholesterol and gly-
cated haemoglobin (in those on diabetes medications) were observed. These findings may
be due to blue spaces promoting an active lifestyle [52] and physical activity contributing
to better cardiometabolic health [53]. Alternatively, as access to blue space promotes out-
door activities [54] that increase exposure to solar ultraviolet radiation [55], the beneficial
indirect effects of blue space on cognitive function via waist circumference and glycated
haemoglobin, in particular, might have been in part due to higher levels of vitamin D from
sun UV exposure [56,57].

4.3. Built Environment

We hypothesised that built environment indicators of densification and access to ser-
vices (e.g., population density, intersection density and land use mix) would show both
positive and negative effects on cognitive health given that dense, complex, destination-
rich environments provide opportunities for social contacts and other cognition-enhancing
activities (e.g., physical activity) but also increase exposures to stressors such as air pol-
lution and noise [17]. In support of this conjecture, we found positive effects as well as
air-pollution-mediated negative effects of population and intersection densities on both
memory and processing speed via HDL cholesterol. The positive effects of these two built
environment attributes may be linked to them facilitating active travel (i.e., walking for
transport), as previously observed in this [58] and other cohorts [9,59] and to active travel
being associated with healthier blood lipid profiles [60] and better mental and cognitive
health [61]. Notably, only after adjusting for air pollutants, we were able to identify the
positive and negative effects of population and intersection densities on HDL cholesterol
and, thus, cognitive function (NB: the total effects of these attributes on HDL cholesterol
were nil). Also, the unfavourable total effects of several built environment attributes on
specific cardiometabolic risk factors vanished after adjustment for air pollutants. This show-
cases the importance of conducting mediation analyses that consider the inter-relationships
between activity-promoting features of the urban built environment and its by-products
(air pollution) in studies of environmental determinants of cognitive function.

Interestingly, street intersection density and non-commercial land use mix were posi-
tively related to cardiometabolic risk factors that did not mediate environment-cognition
associations in this study (LDL cholesterol, triglycerides and mean arterial pressure) even
after adjustment for air pollutants. Possible contributors to these findings might be access
to unhealthy foods (i.e., fast food outlets) [62] and traffic-related and industrial noise [13,63]
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in neighbourhoods with high levels of non-commercial land use mix (including industrial
land) and intersection density [64].

Apart from population density and street intersection density, no other built envi-
ronmental attribute was directly related to the cardiovascular risk factors associated with
cognitive function in this study. However, the percentage of commercial land and land
use mix were related to air pollutants which, in turn, showed negative effects on cognitive
function mediated by cardiometabolic risk factors and positive effects not mediated by
cardiometabolic risk factors. As explained earlier, the latter effects were likely due to air
pollutants being indicators of human activities and, hence, opportunities to engage in
cognition-enhancing pursuits (socialising, entertainment, intellectual activities) rather than
them being beneficial to cognitive health. These findings not only highlight the need for
simultaneously examining the effects of key interrelated features of urban environments
on cognitive function but also the need for a more fine-grained characterisation of urban
environments in terms of destinations that provide attractive opportunities for cognition-
enhancing activities (e.g., the density of food outlets, places for socialising, quality of
green spaces). This information is essential for the cognitive health impact assessment of
neighbourhood environmental features that, in turn, can guide city planning policies.

4.4. Strength and Limitations

A strength of this study is the utilisation of data from a national cohort capturing
diverse urban environments in Australia. We examined the joint linear and/or curvilinear
effects of the neighbourhood built and natural environment and air pollution on cognitive
function, and the potential cardiometabolic mechanisms underpinning them. By doing
so, we accounted for neighbourhood self-selection to partially address reverse causality.
We examined total, direct and indirect cross-sectional effects of urban environmental
features on cognitive function to disentangle their potentially beneficial and harmful
impacts. Study limitations include the cross-sectional nature of the available data and the
employment of coarse measures of destination accessibility relevant to cognition-enhancing
activities. The latter limitation has made it difficult to disentangle the positive (access to
destinations supporting healthy behaviours) and negative effects (pollution and access to
destinations promoting unhealthy behaviours) of urban densification on cognitive function
and related cardiometabolic risk factors. It would have also been desirable to have data
on other key covariates, such as estimates of indoor pollution levels in the home. Future
research would need to address these limitations by conducting longitudinal studies able to
capture changes in exposures and cognitive function [65] and more accurately characterise
urban environments that may influence key biological and behavioural risk factors of
cognitive decline.

5. Conclusions

In line with a proposed ecological model of neighbourhood environmental influences
on cognitive health, this study has found features of urban environments to be directly or
indirectly related, via cardiometabolic risk factors, to cognitive function in middle-aged and
older Australian adults. Dense, interconnected neighbourhoods may contribute to better
cardiometabolic outcomes (e.g., higher HDL cholesterol) and, consequently, better cognitive
health by promoting active transportation. While such environments usually provide better
opportunities for social contacts and other cognition-stimulating activities, they are often
sources of air pollution arising from human activities and vehicular traffic that harm
cardiometabolic health and, hence, cognitive function. Our findings also provide support
for the positive effects of green and blue spaces on cognitive function via cardiometabolic
risk factors and other mechanisms that were not examined in this study (e.g., attention
restoration, social contacts or physical activity). Cognition-friendly urban environments
appear to be typified by compact, interconnected neighbourhoods with good access to
green and blue spaces and low average annual levels of PM2.5 and NO2. Longitudinal
studies with a more accurate characterisation of the built environment, the quality of



Toxics 2022, 10, 23 13 of 16

natural spaces and individual activity locations (within and outside the neighbourhood)
are needed to better understand how to create cities that can help preserve cognitive
function in ageing populations.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/toxics10010023/s1, Section S1: Detailed description of
built and natural environmental exposure, Section S2: Detailed description of analytical steps, Section
S3: Supplementary results, Figure S1: Directed acyclic graph (DAG) depicting the hypothesised
relations between neighbourhood attributes, cardiometabolic risk factors and cognitive function,
Figure S2: Curvilinear relationships of population density with street intersection density (A), per-
centage of commercial land use (B), non-commercial land use mix (panel C) and percentage parkland
(panel D) (in 1km residential buffers), Figure S3: Curvilinear relationships of population density with
average annual concentrations of NO2 (A) and PM2.5 (B), Figure S4: Curvilinear relationships of street
intersection density (A) and non-commercial land use mix (B) with average annual concentrations
of NO2, Figure S5: Curvilinear relationships of average annual concentrations of PM2.5 with mean
arterial pressure (total effects), Table S1: Outline of regression analyses, Table S2: Relationships
between neighbourhood environmental variables, Table S3: Relationships between neighbourhood
environmental characteristics and cardiometabolic risk factors—direct effects, Table S4: Relationships
of neighbourhood environmental characteristics and cardiometabolic risk factors with cognitive
function—direct effects.
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