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ABSTRACT 

The Fourth Industrial Revolution, namely Industry 4.0, has provided opportunities for digitalization 

and paradigm shifts in many industries and business sectors. Reverse logistics is currently being 

increasingly focused on by worldwide companies and governments due to the pressure on 

sustainable development and circular economy. Through the gradual but steady adoption of several 

disruptive technologies in Industry 4.0, the traditional reverse logistics operations will be 

dramatically improved with the increasing use of the internet of things (IoT), cyber-physical 

systems (CPS), artificial intelligence (AI), digital twin, smart robots and machines, etc., which may 

eventually lead to a smart and sustainable transformation of Reverse Logistics 4.0. 

However, there is a lack of a systematic analysis of the impacts of these Industry 4.0 technologies 

on reverse logistics. Moreover, the adoption of new technologies will further complicate the reverse 

logistics network design at the initial stage, which involves many stakeholders with often 

contradictive objectives. To fill these gaps, this Ph.D. project first presents a comprehensive 

literature review and conceptualization of Reverse Logistics 4.0 in order to provide a holistic and 

systematic analysis of the implications of disruptive technologies and Industry 4.0 for smart and 

sustainable reverse logistics transformation. Based on the conceptualization, an improved two-level 

decision-support framework, which combines both multi-objective optimization and dynamic 

simulation, is proposed to better help with robust strategic decisions under high dynamicity and 

uncertainty.   

The methodological integration leads to the development of a conceptual framework for the digital 

reverse logistics twin. It represents a high level of methodological and system integration that can 

potentially connect the physical system and data with various analytical models for both proactive 

and real-time decision supports in reverse logistics management. Finally, this Ph.D. project 

presents several managerial implications and research implications for both industrial practitioners 

and academic researchers.  
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1 INTRODUCTION  

Recently, rapid economic growth and technological development have not only improved people’s 

lives but also accelerated waste generation. Drastically increased waste generation and improper 

waste management have become significant concerns for worldwide urban communities. 

Meanwhile, Circular Economy (CE) and sustainable development have attracted increasing 

attention in order to alleviate the problems of scarcity of resources, stringent legislation, and 

emerging business models, which further motivate and drive the recovery of value and materials 

from end-of-use (EOU) and end-of-life (EOL) products [1]. Reverse logistics is the core process of 

the value and material recovery from EOU and EOL products, which has gained increasing 

importance as a profitable and sustainable business strategy [2]. 

Reverse logistics is a complex system for dealing with possible reuse, re-fabrication, 

remanufacturing, recycling, and disposal for efficient management and resource recovery from EOU 

and EOL products. The main activities and operations of a reverse logistics system consist of the 

collection of EOL/EOU products from consumers, the appropriate inspection, sorting, 

disassembling, and/or pre-processing, the distribution of different products, components, and 

materials to respective locations and facilities for further treatment, e.g., reuse, refurbishing, 

remanufacturing, recycling, energy recovery, and for proper disposal of non-recyclable, as well as 

the planning of facility operations and transportation [3]. 

A reverse logistics network consists of several facilities/stakeholders and the links among them. 

Thus, designing a reverse logistics network is one of the most important strategic decisions, which 

has a long-term impact on the economic performance, environmental impacts, and social 

responsibility of a reverse logistics system. On the other hand, reverse logistics network design is 

complex, and several key decisions, e.g., facility location, capacity allocation, transportation, etc., 

need to be made by considering several conflicting objectives. Furthermore, the coming digital era 

with the increasing adoption of disruptive technologies in Industry 4.0 provides various 

opportunities for increasing the smartness and sustainability of reverse logistics systems, which may 

eventually lead to a smart reverse logistics transformation. However, this smart transformation 

further complicates the reverse logistics network design at the initial stage, it is thus imperative to 

develop new methods and frameworks for better decision support in a more dynamic and uncertain 

environment.   

The remaining value needs to be recovered from the EOU and EOL phases of products. However, 

the challenges faced by many companies are the lack of models and methods to support the key 

decisions, e.g., facility upgrade with Industry 4.0 technologies, in the development of reverse 

logistics operations and business. In this Ph.D. project, the implications of descriptive technologies 

for smart reverse logistics transformation are first analyzed. A two-stage decision-support 

framework that combines both multi-objective optimization and dynamic simulation is then 

developed to help with making robust strategic decisions and evaluating the system configuration 
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in a dynamic, stochastic, and realistic operating environment. Finally, the conceptual framework of 

the digital reverse logistics twin with a high level of system integration is formulated.   

This Ph.D. thesis consists of two sections. The first section including Chapters 1-4 is an introductive 

section that aims at giving the background information, motivation, research questions, literature 

gaps, objectives, research design and methods, contributions, and future works. The second section 

is a collection of five selected papers, which forms the main contributions to this Ph.D. project. 

1.1 Background 

Today, the rapid pace of technological innovation and development has not only improved people’s 

living standards and changed consumption patterns, but also significantly shortened the product 

lifecycles and accelerated the generation of EOL and EOU products [4, 5]. For instance, the annual 

generation of end-of-life vehicles (ELVs) in the European Union (EU) countries increased by 22% 

from 5.54 million tons in 2011 to 6.732 million tons in 2018 [6]. Furthermore, waste electrical and 

electronic equipment (WEEE/e-waste) generation has become one of the fastest-growing waste 

streams worldwide [7]. As shown in Figure 1-1, the volume of e-waste generation worldwide has 

been gradually increasing since 2010, which reached a peak level of 53.6 million metric tons in 

2019, showing a rise of 21% in just five years [7]. According to forecasts in Figure 1-2, this trend 

is expected to continue. With projections showing that by 2030, the global e-waste generation will 

increase by approximately 30%  to reach 74.7 million metric tons [8], which is equivalent to nearly 

double the 2012 figure. If the current trend continues, the worldwide e-waste generation will exceed 

120 million metric tons per year by 2050 [9]. From another perspective, the carbon emissions from 

the manufacturing and the use of consumer electronics, e.g., PCs, laptops, smartphones, monitors, 

etc., will account for 14% of total emissions by 2040 [9].   

 

Figure 1-1 Global e-waste generation from 2010 to 2019, in million tons [7]. 

While the rate of e-waste generation is undoubtedly a key issue, another issue is that the increase in 

collection and value recovery activities have not complied with the rate of e-waste generation [10]. 

Figure 1-3 shows an overview of the volumes of electrical and electronic equipment (EEE) that are 

put into the market and the volumes of WEEE collected, reused, and recycled in the EU during the 
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period of 2011–2019. Even though EU countries have played a leading role in the world for e-waste 

recycling, the average collection rate of WEEE is 48.5% [11], and only 35% of WEEE is officially 

recorded as formally recycled in the EU [9]. The global average recycling rate of e-waste is much 

lower, which is only 20% [12]. Instead, large volumes of WEEE as well as other EOL products with 

high remaining values usually end up in landfill sites or are improperly recycled and disposed of in 

developing countries by workers under harsh working conditions and environments. As shown in 

Figure 1-4, due to the legal and regulatory requirements, the transportation of WEEE can be 

complex and fragmented. The illegal shipment of WEEE from developed countries to developing 

countries has already become another huge and global challenge [9].  

 

Figure 1-2 Projected volume of e-waste generation worldwide from 2019 to 2030, in million tons [8]. 

 

 

Figure 1-3 An overview of the volume of EEE put on the market, collected, reused and recycled volumes of 

WEEE in the EU in the period of 2011–2019, adapted from [12]. 

According to the report, the annual value of WEEE produced exceeds $62.5 billion, which is more 

than the GDP of most countries [9]. From the short-term perspective, WEEE may remain largely 

unused, but in the long run, almost all of them are likely to be recovered due to the growing 

consumer demand and the scarcity of precious resources. For instance, a ton of WEEE contains 
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nearly 100 times the amount of gold found in a ton of gold ore [12]. Furthermore, resource extraction 

from complex WEEE streams is more cost-effective, practical, and energy-efficient than mining 

metal ore from the ground [9]. Due to the hazardous materials that are commonly used in consumer 

electronics (including arsenic, cadmium, lead, mercury, and certain flame retardants), WEEE is not 

biodegradable, and some components can even be toxic. In this regard, the lack of recycling network 

and capacity not only causes significant economic losses in wasting resources, e.g. the precious 

metals from WEEE, but may also lead to severe environmental pollution and accumulation of 

hazardous elements in ecosystems including soil, air, water, and organisms [9]. These may pose 

several health risks and result in irreversible long-term environmental and public health threats.  

 

Figure 1-4 Mapping out e-waste, reproduced from [9] with permission from Creative Commons Attribution-

NonCommercial-NoDerivs 4.0 Unported License. 

As the traditional "take, make, use and dispose" model poses serious impacts on both environment 

and human society, e.g., negative effects on health, climate change, global warming, etc. The EU 

proposals aim to increase recycling objectives to transform the traditional linear economy into a 

circular economy and support long-term growth aligned with environmental sustainability [13]. The 

circular economy approach decouples the value creation of the economy from resource consumption 

by keeping resources in use for as long as possible, extracting the maximum value in use, and then 

recovering and regenerating products at the end of their service life [14]. The Directive 2012/19/EU 

launched in August 2018 sets the minimum recovery targets by category, for instance, the recovery 

rate and the reused and recycling rate for large equipment of WEEE are 85% and 80%. Compared 

with that in 2015, they have increased by 5% and 10%, respectively [15]. The increase in recovery 

and recycling rates is mainly due to the EU's determination to continuously strengthen the regulation 

and develop the corresponding legislative mechanisms, e.g., expanded producer responsibility 

(EPR) [16]. Typically, the majority of laws and ordinances have geared toward producers [17]. The 

recent EU directive, known as the "right to repair," is with a view to saving costs for consumers, 

which aims at empowering consumers for the green transition by giving them greater rights to repair 

rather than discard away [18]. Current and future purchasing patterns and consumer behaviors may 

be directly influenced by this EU directive.  
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In addition to stricter legislative requirements, another key driver for companies and organizations 

to actively participate in the value recovery activities of their EOU and EOL products is the push 

from the growing environmental awareness among the consumers. While the conversion of 

customers' intentions and behaviors to green and sustainable consumption is a time-consuming 

process, an increasing percentage of consumers are willing to pay extra for green and sustainable 

products and services [19]. Currently, the start-of-the-art technologies in Industry 4.0 can provide 

competitive advantages in cost reduction, operations flexibility, product quality improvement, 

increase in efficiency as well as less waste generation [20]. Besides, it has the potential to tackle 

many ecological and social challenges and limitations of traditional industrial practices [21]. Recent 

studies have shown that more focus and investments in enterprises’ sustainable practices not only 

help them to build up a socially responsible image but also improve their overall sustainable 

performance in both economic and environmental dimensions [22]. Finally, these smart and 

sustainable actions may convert into long-term competitiveness. Thus, many enterprises have 

started to rethink their business models and transform their businesses and operations into more 

sustainable ways [23].   

  

However, managing value recovery activities of EOL and EOU products is a complex task, which 

involves different operations and communications among multi-layered and non-homogeneous 

stakeholders, i.e., waste collector, waste transporter, distributor, facility managers of reuse, 

remanufacturing, recycling, and disposal. This is not a self-contained endeavor, it needs the 

collaboration of the state, government, firms, organizations, research institutes as well as the general 

public. Furthermore, adopting improper value recovery operations can also result in environmental 

and health risks as well as the loss of profit and valuable resources. To better manage this, it is of 

imperative importance to move towards smart and sustainable reverse logistics management, which 

helps to better achieve the sustainable development goals and circular economy. Thus, reverse 

logistics is considered a crucial step to holistically and systematically managing those activities for 

recapturing and reclaiming the value of EOL and EOU returns, which can bring various profits for 

companies in the competitive markets [24]. To manage this exponential increase trend in the 

generation of EOL and EOU products, worldwide research attention has been given to the 

development of both regional and international reverse logistics systems. However, significant work 

needs to be done to better support the smart and sustainable reverse logistics transformation in a 

more dynamic and uncertain environment. 

1.2 Motivation 

The advancement, adoption, implementation, and integration of several disruptive technologies in 

Industry 4.0 provide new opportunities for smart and sustainable reverse logistics [25], which can 

potentially shift and improve traditional reverse logistics operations through the increasing use of 

smart data analytics and autonomous technologies. For instance, the increased data availability can 

improve the prediction and traceability of EOL products, and this minimizes the uncertainty of the 

reverse flows and improves the planning of different operations, e.g., collection [26] and 

remanufacturing [27, 28]. The high-quality data also improves the outputs of the model-based 

optimization and simulation approaches for critical decisions [29]. In addition, the increased use of 

AI-enabled smart robots can replace human workers from harsh working environments and can also 
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enhance the interaction among different partners and stakeholders via a highly connected digital 

platform to achieve a high level of inter-company information sharing and resource utilization.  

 

On the other hand, reverse logistics network design is a strategic decision that has long-term impacts 

on the overall system performance, which requires the balance of the trade-offs among economic, 

environmental, and social objectives in a highly dynamic and uncertain environment. The recent 

technological innovation and development of Industry 4.0 have opened up new opportunities for 

configurational upgrades and smart transformation. Eventually, these technological drivers will 

significantly alter the operations and several key operational parameters of a reverse logistics system 

within the planning horizon. It's worthy to note that adopting new technologies is typically not a 

one-time endeavor, but rather a dynamic process in which the change of system configurations 

occurs gradually over several periods. However, considering the configurational and technological 

changes of a smart reverse logistics system will dramatically increase the complexity, dynamicity, 

and uncertainty at the initial network design stage. Moreover, the currently existing methods have 

several limitations that may significantly hinder their usage. Thus, it is of imperative importance to 

develop an improved decision-support framework that incorporates different analytical models and 

methods for smart and sustainable reverse logistics network design.  

 

Based on the discussions above, the motivation of this Ph.D. project is to first thoroughly investigate 

the impacts of different Industry 4.0 technologies on reverse logistics and the potential changes in 

various reverse logistics operations. This aims to provide a holistic and systematic conceptual 

development and framework for a better understanding of the implications of disruptive 

technologies for smart reverse logistics transformation. The obtained comprehensive understanding 

may eventually lead to the emergence of highly intelligent and autonomous operations in Reverse 

Logistics 4.0. This investigation also aims to identify whether there is a clear need for a decision-

support framework for smart and sustainable reverse logistics network design, when multiple 

objectives are subjected and smart transformation, practical operational policies, and a realistic 

geographical information system (GIS) and planning horizon need also to be considered. With a 

high level of methodological integration in this decision-support framework, this project aims also 

at presenting a conceptual framework for future system integration and the development of digital 

reverse logistics twin.   

1.3 Research Questions 

Through the extensive literature review, conceptual development, and methodological development 

and validation, this Ph.D. project aims at answering the following research questions: 

• RQ1: What are the impacts of disruptive technologies on smart and sustainable logistics/reverse 

logistics operations?  

• RQ2: What is the potential smart reverse logistics transformation in Industry 4.0? 

• RQ3: How to design and configure a smart and sustainable reverse logistics network? 

• RQ4: How to develop a smart digital reverse logistics twin? 
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Figure 1-5 Research approaches associated with research questions in this Ph.D. project. 

 

Figure 1-5 shows the focus of each research question related to the comprehensive literature review, 

conceptual development, methodological development, system integration, and developing digital 

twin in this Ph.D. project. 
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2 THEORETICAL BACKGROUND, RESEARCH GAPS, AND 

OBJECTIVES 

2.1 Reverse Logistics  

Reverse logistics commonly refers to the backward movement of materials, parts, and products in 

the supply chain, which focuses on the value recovery from EOL and EOU products and the proper 

treatment of non-recyclables [30, 31]. In the early 1990s, the concept of reverse logistics was first 

put forward to depict all relevant activities and logistics flows from the end customers to different 

remanufacturers, recyclers as well as other actors. The main activities and operations of a reverse 

logistics system consist of the collection of EOL/EOU products from consumers, the appropriate 

inspection, sorting, disassembling and/or pre-processing, the distribution of different products, 

components, and materials to respective locations and facilities for further treatment (e.g., reuse, 

refurbishing, remanufacturing, recycling, etc.), and the planning and scheduling of facility 

operations and transportation [3, 31, 32]. 

 

Reverse logistics has already been practiced in many industries resulting in long-term environmental 

and resource benefits. The motivation of reverse logistics comes initially from two aspects [32]. 

From the ecological and environmental perspective, reverse logistics drastically improves the 

utilization of various materials and hence aids in solving the global resource depletion issues. On 

the other hand, it may provide companies with opportunities to cut down their cost and improve 

profitability through product recovery operations. However, in practice, several factors, e.g., the 

low-profit margin [33], the possible competition with new products [34], the uncertainty related to 

market acceptance [35], the uncertainty of reverse flows [36], and the complexity of managing 

reverse flows, may significantly hinder the value recovery activities through reverse logistics. 

Furthermore, while reverse logistics has been considered a fundamental and critical component of 

sustainable development and circular economy, improper recycling practices may have detrimental 

environmental and social consequences. For example, the large export volume of WEEE from 

developed countries, such as the United States, the European Union, Japan, etc., to the developing 

countries in southeast Asia, not only results in increased greenhouse gas (GHG) emissions due to 

maritime transportation, but also poses significant risks to the workers and the environment due to 

the primitive and low-tech recycling methods used. Thus, the effective design and operation of a 

reverse logistics system will help to create more sustainable practices in many countries. 

 

Since the early 2000s, the network design and planning of a reverse logistics system has become a 

highly focused topic [37]. It is commonly recognized as a strategic decision issue that is of prime 

importance [38, 39]. Strategic decisions have long-term impacts on a reverse logistics system since 

they are difficult or extremely expensive to alter in the later operational stage. Besides, several major 

determinant performances will potentially affect the performance of a reverse logistics network in 
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many different ways, i.e., the determination of the number and locations of potential facilities, 

capacity planning, identification of transportation mode, determination of transportation and 

operational strategy, selection of service providers, establishment of distribution channels for the 

treatment of recovery products as well as the judgment of remanufacturing and recycling 

technologies application [40-42]. 

2.1.1 End-of-Use (EOU) Product and End-of-Life (EOL) Product 

Reverse logistics comprises several value recovery activities including reuse, repair, refabrication, 

remanufacturing, recycling, and disposal [31, 43]. Reuse is to give the secondary usage of a 

functional product from a used/retired one, which is typically used for the same purpose for which 

it was designed [1]. Repair/refurbishing is to bring the damaged/non-functional components back 

to their original functions through the process of refinishing in order to extend the lifespan of the 

product [44]. Remanufacturing transforms used/worn-out components or parts into units or products 

with an ‘as good as new’ condition that satisfies all the same quality and other standards [45] and 

uses them for the production of new products. Remanufacturing targets the maximum recovery of 

high-value EOL products and may require a higher quality standard than the original products. 

Recycling is the reprocessing of scrap for its original use or being degraded into new materials for 

other use [1]. Finally, disposal is to handle the non-recyclable components and hazardous materials 

either for energy recovery or for incineration and landfill. 

 

Figure 2-1 Illustration of End-of-Use and End-of-Life points with the product’s lifespan, adapted from [10]. 

Circular economy is becoming more widely recognized as a promising sustainable business strategy 

that aims to keep the value of products, materials, and resources in the economic loop for as long as 

possible while promoting waste reduction throughout establishing product life cycles [44, 46]. 

When a product reaches the end of its product life cycle and is withdrawn from the market, it is 

known as EOL [47]. EOU return signifies the product that comes out of service due to some reasons, 
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e.g., unwanted or obsolete [48]. The difference between EOU and EOL products is discussed from 

the standpoint of a product's useful lifespan. EOU products can be returned at every stage of the 

product's useful lifespan, not necessarily end-of-life [49]. Figure 2-1 illustrates two cases of EOU 

and EOL points within the product's useful lifespan. The value recovery options vary depending on 

the difference in product quality between EOU and EOL returns. In Case (a), typically, the total 

product's useful lifespan is extended by reuse through changing ownership due to the returns are 

still reusable that can be simply and properly treated through repair and refabrication before re-

introducing into the primary (usually at a lower price) and second-hand markets. For instance, the 

product has become obsolete and replaced by functionally richer technology, but it is still reusable.  

In case (b), due to the long useful lifespan and the issue of product quality, the EOL products are 

usually lost their functionalities with worse quality conditions. Thus, they can be directly sent to the 

value recovery stage for further treatments including remanufacturing, recycling, and disposal. As 

can be seen, the EOU and EOL stages are the keys to circulating the product's life cycle, rather than 

direct disposal. 

2.2 Reverse Logistics Network Design 

Reverse logistics management covers a wide range of problems and decisions, which are typically 

divided into three categories, namely, strategic, tactical, and operational [50]. At the strategic level, 

several factors and decisions are typically about the number and locations of potential facilities, 

capacity planning, the establishment of distribution and collaboration channels for the recovery of 

products and materials, remanufacturing and recycling technologies, transportation strategy, and so 

forth [40, 41, 50].  Tactical decisions are usually related to the determination of production policy, 

inventory policy [51], fleet management, and vehicle routing [52]. Operational decisions are the 

short-term decisions, which are normally associated with dynamic control of product recovery 

operations, dynamic inventory control, real-time vehicle routing and scheduling problems, service 

level enhancement [53], risk analysis, and so forth [50]. Network design is typically considered to 

be a cross-level decision-making problem that involves both long-term and mid-term decisions [51, 

54].  

 

Figure 2-2 A conceptual framework of the reverse logistics system. 
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Reverse logistics network design is a complex decision-making problem and has gained increasing 

importance as a sustainable business strategy [2]. From a broader perspective, there are five types 

of material flows in reverse logistics activities: product recalls, B2B/B2C commercial returns (e.g. 

unsold products, wrong/damaged deliveries), manufacturing returns (e.g., raw material surplus, 

quality-control returns, production leftovers), warranty and service returns, and EOU and EOL 

returns [55]. Compared with other returned flows in reverse logistics, EOU and EOL return for value 

recovery and waste disposal have been attracted more focus in the research field due to two main 

reasons: 1) The potential economic and environmental value behind the large generation of EOL 

and EOU products is enormous, and 2) the network structure is more complex. Thus, this Ph.D. 

project puts the focus on the management of the reverse flows of EOL and EOU products. As shown 

in Figure 2-2, a reverse logistics network consists of different facilities, i.e., local collection points, 

regional collection/disassembly centers, remanufacturing plants, recycling plants, and disposal sites. 

It is noteworthy that some operations, e.g., disassembly, may take place at different facilities. The 

material flow in a reverse logistics system starts from the end-users and moves toward various 

facilities for the further treatment of value-added recovery or proper disposal. 

Reverse logistics network design primarily determines the locations of different types of facilities 

and the material flows among the facilities [56]. Essentially, it is a two-stage decision-making 

problem, where the first-stage location decisions configure the reverse logistics network, while the 

second-stage decisions explore the best use of the network [57]. Considering the nature of these two 

types of decisions, the first-stage decisions need to be robust to withstand the change in both internal 

and external environments. On the other hand, the second-stage decisions are more flexible to be 

adjusted in order to optimize the use of the reverse logistics system. Research has also been done to 

support various second-stage decisions, e.g., routing, inventory, etc.[58, 59]. Literature addresses 

reverse logistics network design problems mainly by leveraging relevant quantitative models in two 

groups, namely, mathematical optimization and simulation. Mathematical models, e.g., multi-

objective models, stochastic models, etc., are used to primarily solve combinatorial optimization 

problems and find out the optimal decisions among a large number of alternatives under different 

conditions, while, on the other hand, simulation models are used to provide a comprehensive 

analysis of several scenarios in much more details.  

2.3 Smart Reverse Logistics System 

2.3.1 Industry 4.0 and Its Impact on Logistics 

Industry 4.0 represents the fourth industrial revolution. This concept was first put forward at the 

Hannover Fair of Industrial Technologies in 2011 to enhance the competitiveness of the German 

manufacturing industry [60]. It has shown a blueprint of the next-generation manufacturing systems 

with the adoption of disruptive manufacturing technology and information and computer technology 

(ICT). At the global level, several countries have launched their own strategies, e.g., the United 

States’ National Network for Manufacturing Innovation, Japan’s New Robot Strategy, and China’s 

Made in China 2025, in order to strengthen their manufacturing industries as well as other business 

sectors through the utilization of the latest technological advancements [61]. According to a 

collaboration report by the World Economic Forum and McKinsey & Company, the innovation and 
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adoption of the disruptive technologies in Industry 4.0 will generate inclusive growth and potentially 

create up to $3.7 trillion for the global economy by 2025 [62], and approximately 68% companies 

interviewed seeing it as their top strategic plan [20]. 

Compared with the past three industrial revolutions in history, where the major results were the 

mechanization of production, the use of electricity and mass-production systems, and the automated 

and flexible manufacturing systems [60], Industry 4.0 predominantly emphasizes the combination 

of Internet-based communication technologies, digitalization, and future-oriented intelligent 

manufacturing technologies in order to build smart machines and systems, implement smart 

manufacturing and logistics processes, and provide smart products and services [61]. From the 

technological perspective, an Industry 4.0 manufacturing system emphasizes the internet/5G-based 

communication and the connectivity of different smart devices and cyber elements, which enable 

real-time data collection, autonomous system control, and effective human-machine interaction 

[63]. Another significant feature is the computational intelligence brought by AI, big data analytics, 

and advanced optimization and simulation tools, which enables better proactive decision support 

with better prediction and real-time data-driven decision makings. From the commercial 

perspective, these Industry 4.0 technologies pave the way for new business models [64], 

individualized customization, better resource planning and sharing, and more sustainable production 

and logistics management [21, 65].  

Empowered by the disruptive technologies in Industry 4.0, there is an opportunity to develop a smart 

production network characterized by real-time monitoring, autonomous operations, responsive 

communication, smooth material flows, and self-organized and integrated production system. Over 

the past two decades,  the productivity of workers in the manufacturing industry has improved by 

47% in the United States, which is mainly driven by the innovation and adoption of new 

technologies [62]. Technological advancements have also created opportunities and new business 

models for value creation and value proposition by targeting individualized product demands and 

services [66]. According to the McKinsey Global Institute, current technologies can realize more 

than 60% automation of all manufacturing tasks [62]. Previous studies [67-69] have revealed the 12 

fundamental enabling pillars of Industry 4.0, which are the internet of things (IoT), cyber-physical 

system (CPS), big data analytics, artificial intelligence (AI), cloud technologies, autonomous robots, 

blockchain, unmanned aerial vehicle (UAV), additive manufacturing (AM), augmented reality 

(AR), virtual technologies and simulation, cybersecurity. These technologies may not only change 

the paradigm of the manufacturing industry but also dramatically impact other industries and 

business sectors through improved digitalization, connectivity, and intelligence. In addition, digital 

twin is one of the most promising concepts in Industry 4.0, which combines several ICT and virtual 

technologies to re-create a physical object or a physical process/system in the digital world. A digital 

twin can help to capture all the variables of an object or a system, perform tasks faster, and enable 

companies to better understand the working condition and optimize reactions and decisions under 

various scenarios. With the help of simulation, different experiments can be performed to determine 

the optimal solution in a risk-free environment and with much lower resource commitments in terms 

of time, money, or manpower. A better understanding of the features of new technologies and the 

prompt awareness of the potential critical issues are of significant importance for successful 

business innovation and transformation in the Industry 4.0 era [20]. 
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The phrase "4.0" has been extensively used to depict the future paradigm shift in many industries, 

which are brought by disruptive technologies and increased digitalization. Traditionally, Logistics 

is considered a labor-intensive industry, which will be dramatically affected by the coming 

Industrial Revolution. With the emphasis on the role of Industry 4.0 technologies, the concept of 

Logistics 4.0 was proposed in 2014 [70]. Logistics 4.0 is believed to be a conceptual extension of 

Industry 4.0, and it emphasizes the real-time ability, autonomous operations, fast decision supports, 

and convertibility of a new IT system empowered by CPS. Logistics 4.0 provides new prospects as 

a result of technological advances in the logistics sector, and several major elements are highlighted 

by Strandhagen, Vallandingham [68] and Yu and Solvang [71] as follows: 

• Demand-driven individualization and personalization 

• Product-service system 

• Digitalization  

• Autonomous operations  

• Resource sharing  

• Green and sustainable logistics 

To achieve these goals, increased digitalization and system integration at both intra- and inter-

enterprise levels are required to facilitate effective interactions among stakeholders, better data 

utilization, real-time decision-making, streamlined and autonomous operations, and fewer resource 

utilization in a logistics system.  

2.3.2 Smart Reverse Logistics Transformation 

Even though Logistics 4.0 has gained increasing attention in recent years, there is still a lack of 

research focus on reverse logistics, particularly from a holistic and systematic perspective [72, 73]. 

With the help of technological advancements of Industry 4.0, reverse logistics is being influenced 

in an accelerated way [29], and efforts have been made to improve the smartness and sustainability 

of various operations and activities in a reverse logistics system [25, 74]. The improved 

digitalization, connectivity, and smartness brought by Industry 4.0 have changed the paradigms of 

reverse logistics predominantly in three ways: data, service, and operations, respectively. In this 

regard, a thorough understanding and conceptualization of Reverse Logistics 4.0 are of critical 

importance to provide a systematic and holistic overview of the technological impacts of reverse 

logistics. Based on the main characteristics of Industry 4.0, the concept of Reverse Logistics 4.0 can 

be defined as follows: 

Reverse Logistics 4.0 is the sustainable management of all relevant flows and activities for value 

recovery and/or proper disposal of EOL products by using data-driven and smart technologies 

enabled individualization and innovative services. 

As can be seen, Reverse Logistics 4.0 emphasizes the use of data and technologies to achieve 

innovative reverse logistics services and operations, through which the harmony among the three 

pillars of sustainable development can be better achieved by taking into account economic benefits, 

environmental friendliness, and social responsibility. Herein, individualization represents the 

service innovation enabled by new technologies in a reverse logistics system. For example, the 
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collection service of EOL products may be performed based on the filling data of the recycle bins 

or the request from individual customers, and the use of emerging technologies, i.e., IoT, AI, real-

time optimization, etc., can help to optimize the task allocation and resource utilization so that both 

service level and operating efficiency can be well-balanced.  

 

Figure 2-3 Smart reverse logistics transformation [75]. 

The term "smart transformation" refers to a paradigm shift fueled by innovation and the accelerating 

utilization of smart and disruptive technologies. As shown in Figure 2-3, a smart transformation will 

result in a paradigm change toward highly interconnected, intelligent, and autonomous reverse 

logistics systems, where data-driven decision-making and operations with both accurate prediction 

and real-time data are of significant importance. From the planning perspective, the value of data 

and information are predominately emphasized in a smart reverse logistics system, with which the 

impact of uncertainty of the EOL and EOU products can be significantly minimized. For example, 

a product-based digital twin of consumer electronics can effectively bridge the information gaps 

between end-users and reverse logistics companies. The collectors can have a clearer overview of 

when and where these EOL and EOU products will be returned, based on which the collection can 

be better planned and scheduled. The quality data can also be collected via a cloud-based 

information system or from the end user's registration via smartphone, which can help to organize 

the repairing and remanufacturing activities in a more effective and efficient fashion. On the other 

hand, various reverse logistics operations can become autonomous with the help of intelligent 

robots, UAVs, and AI-enabled autonomous vehicles and smart devices. This may drastically reduce 

the need for human operators, which occupy the largest share of the operating costs in a traditional 

labor-intensive logistics system. Meanwhile, the environmental impacts and safety issues can also 

be minimized.  
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The wide and increasing adoption of emerging technologies in Industry 4.0 enables a high level of 

automation and intelligence and will eventually lead to a smart reverse logistics transformation in 

different aspects, i.e., smart collection of EOU and EOL products, smart sorting and process 

management, smart transportation, smart remanufacturing and recycling, and smart disposal [76]. 

For instance, in the automotive remanufacturing process, the sustainability benefits of digitization 

could be significant. It has been revealed that the adoption of data-driven remanufacturing enhances 

sustainable practices, which may reduce the machine downtime by 20–30%, inventory level by 12–

20%, and quality costs by 30–50% [14]. Meanwhile, the forecasting accuracy can be increased by 

up to 80% [14]. Besides, research has shown that AR may help to achieve up to 25% improvement 

in operator productivity while providing a better and safer working environment [77, 78]. Digital 

twin plays an essential role to connect the physical world with the digital world in order to achieve 

a high level of system integration, and remanufacturing has become one of the most focused areas 

of the adoption of digital twin [79]. In addition, emerging technologies will also yield significant 

impacts on transportation through the increased use of cleaner energy and improved fuel efficiency 

[80], and the use of intelligent transport systems and truck platooning has the potential to reduce 

CO2 emissions by 10-25% in the near future [80, 81].  

2.4 Smart Reverse Logistics Network Design 

Even though Industry 4.0 provides new opportunities for smart reverse logistics transformation, the 

adoption of new technologies is usually not a one-time endeavor but rather a gradual and dynamic 

process throughout the whole lifespan of a reverse logistics system. However, this will further 

complicate the reverse logistics network design problem in the initial strategic planning stage. 

Reverse logistics network design is a complex decision-making problem that needs to balance the 

long-term trade-off between the economic, environmental, and social performances, and the gradual 

adoption of Industry 4.0 technologies may result in significant changes in the way of operations, 

e.g., inventory policy, transportation strategy, etc., and the key parameters of a reverse logistics 

system, e.g., costs and carbon emissions related to facility operation and transportation. Thus, the 

planning of a smart and sustainable reverse logistics network needs not only to consider the external 

fluctuations, e.g., generation of EOL and EOL products, fuel prices, etc. but also to take into account 

the internal configurational changes and performance improvement through the adoption of Industry 

4.0 technologies within the planning horizon. 

Recently, Govindan and Gholizadeh [82] studied a sustainable and resilient reverse logistics 

network design problem using a scenario-based robust optimization model. This research considers 

the impact of big data analytics, which is one of the most important Industry 4.0 enablers, on reverse 

logistics network design, where the volume, velocity, and variety (big data’s 3V feature) are 

modeled as uncertain parameters related to the quality and quantity of EOL returns. This research 

is the first one that considers the impact of smart reverse logistics transformation on strategic 

network decisions, however, the method is oversimplified and cannot fully account for the 

dynamicity, uncertainty, as well as other real-life characteristics of the problem. Besides, even 

though significant modeling efforts have been made, no research has been conducted to 

simultaneously investigate the smartness, sustainability, uncertainty, and dynamicity in reverse 

logistics network design. Thus, new models and methods are needed to better support the decision-

making of smart and sustainable reverse logistics network design in Industry 4.0.    
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2.5 Research Gaps 

Despite significant advancement have been achieved in terms of Industry 4.0 technologies, reverse 

logistics, and strategic network design, there is no research at present time has been conducted that 

integrating these key concepts. This hinders a holistic understanding of the importance of Industry 

4.0 to reverse logistics and thereafter properly designing smart and sustainable reverse logistics 

networks. Besides, from the methodological perspective, there is a lack of an effective combination 

of different analytical methods in reverse logistics network design. Table 2-1 presents a vis-à-vis 

comparison of 85 research papers focusing on the development of analytical models for reverse 

logistics network design with either mathematical optimization or simulation methods. In the 

literature search, the Web of Science (WoS) database is used with a set of keyword combinations, 

i.e., “reverse logistics network design”, “reverse logistics network planning”, “reverse logistics”, 

“optimization”, and “simulation”. The search results are limited to journal articles published from 

2011, and the most relevant research papers are selected based on the full-text reading.  

The results show that majority of studies have modeled and solved reverse logistics network design 

problems by employing a single method either mathematical optimization or simulation [54]. A few 

research have incorporated a simplified simulation model, e.g., Monte Carlo simulation, as a 

validation method for the results from the optimization models [83]. These models can only evaluate 

the parametric uncertainty and find the statistically optimum with a static and oversimplified 

depiction of real-world situations [54]. However, they are incapable to evaluate the dynamic system 

transformation by adopting new technologies and test the system performance with practical 

operational policies, e.g., inventory control policy, transportation policy, etc. Furthermore, no 

research has been conducted to discuss the system integration problem, which has a significant 

potential to seamlessly link the physical elements, data, and various analytical models and tools in 

a highly integrated and cloud-based environment for supporting smart and sustainable reverse 

logistics management.  

Table 2-1 Related research in reverse logistics network design and optimization. 

Authors Network features Analytical methods 

 Dynamicit

y 

Uncertainty Smartness Sustainability Optimization Simulation 

     Single Multiple Monte 

Carlo 

Discrete 

event 

Tuzkaya, 

Gulsun [84] 

- √ - √ - √ - - 

Alumur, 

Nickel [40] 

√ - - - √ - - - 

Kannan, 

Diabat [85] 

- - - √ √ - - - 

Li, Wang [86] - - - √ - √ - - 

Lieckens and 

Vandaele [87] 

- √ - √ √ - - - 

Eskandarpour, 

Zegordi [88] 

- - - √ - √ - - 

Keyvanshokoo

h, Fattahi [89] 

√ - - - √ - - - 
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Alumur and 

Tari [90] 

√ - - √ - √ - - 

Bing, 

Bloemhof-

Ruwaard [91] 

- - - √ √ - - - 

Hatefi and 

Jolai [92] 

- √ - - √ - - - 

Litvinchev, 

Rios [93] 

√ √ - - √ - - - 

Mirakhorli 

[94] 

- √ - - - √ - - 

Ramos, 

Gomes [95] 

√ - - √ - √ - - 

Soleimani and 

Govindan [57] 

- √ - - √  - - - 

Suyabatmaz, 

Altekin [96] 

- √ - - √ - - - 

Alshamsi and 

Diabat [97] 

√ - - - √ - - - 

Aras, Korugan 

[98] 

√ √ - - √ - - - 

Ayvaz, Bolat 

[99] 

- √ - - √ - - - 

Baykasoglu 

and Subulan 

[100] 

- √ - - √ - - - 

Galvez, 

Rakotondranai

vo [101] 

- - - √ √ - - - 

Hatefi, Jolai 

[102] 

- √ - - √ - - - 

Hatefi, Jolai 

[103] 

- √ - - √ - - - 

Yanik [104] - - - √ √ - - - 

Chari, 

Venkatadri 

[105] 

- - - √ √ - - - 

Govindan, 

Paam [106] 

√ √ - √ - √ - - 

Hatefi, Jolai 

[107] 

- √ - - √ - - - 

Li, Wang 

[108] 

√ - - - - √ - - 

Qiang and 

Zhou [109] 

- √ - - √ - - - 

Yu and 

Solvang [110] 

- - - √ - √ - - 

Yu and 

Solvang [111] 

- √ - √ √ - - - 

Yuchi, He 

[112] 

- - - - √ - - - 

Zohal and 

Soleimani 

[113] 

- - - √ - √ - - 

Alshamsi and 

Diabat [56] 

- - - - √ - - - 

de Souza, 

Borsato [114] 

- - - √ - - - - 
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Fattahi and 

Govindan 

[115] 

√ √ - - √ - √ - 

John, 

Sridharan 

[116] 

√ - - √ √ - - - 

Temur and 

Bolat [117] 

- - - √ - √ - - 

Temur and 

Yanik [118] 

√ √ - - √ - - - 

Vahdat and 

Vahdatzad 

[51] 

√ √ - - √ - - - 

Yu and 

Solvang [119] 

- √ - √ √ - - - 

Banguera, 

Sepulveda 

[120] 

- - - √ √ - - - 

John, 

Sridharan 

[121] 

- - - - √ - - - 

John, 

Sridharan 

[122] 

√ - - - √ - - - 

Liao [123] - - - - √ - - - 

Rahimi and 

Ghezavati 

[124] 

√ - - √ - √ - - 

Yu and 

Solvang [125] 

- √ - √ - √ - - 

Farrokh, Azar 

[126] 

√ √ - - √ - - - 

Gao [127] - √ - √ - √ - - 

Oyola-

Cervantes and 

Amaya-Mier 

[128] 

√ - - - √ - - - 

Reddy, Kumar 

[129] 

√ - - √ √ - - - 

Trochu, 

Chaabane 

[130] 

√ √ - - √ - √ - 

Yuchi, Wang 

[131] 

- - - √ - √ - - 

Zarbakhshnia, 

Soleimani 

[132] 

- - - √ - √ - - 

Xiao, Sun 

[133] 

- - - √ √ - - - 

Kuşakcı, 

Ayvaz [134] 

- √ - - √ - - - 

Gonçalves, 

Fagundes 

[135] 

- - - √ - - - √ 

de Oliveira, 

Fagundes 

[136] 

- - - √ - - - √ 
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Elia, Gnoni 

[137] 

- - - √ - - √  √ 

Ameli, 

Mansour [138] 

- √ - √ - √ √ - 

Azizi, Hu 

[139] 

√ √ - - √ - - - 

Kargar, 

Pourmehdi 

[140] 

√ - - - - √ - - 

Lu, Zhu [141] √ √ - - √ - - - 

Pan, Xie [142] √ - - - - √ - - 

Reddy, Kumar 

[143] 

√ - - √ √ - - - 

Ren, Wang 

[144] 

- √ - √ √ - - - 

Safdar, Khalid 

[145] 

- -  - √ - √ - - 

Temucin and 

Tuzkaya [146] 

- - - - - √ - - 

Trochu, 

Chaabane 

[147] 

√ √ - √ - √ - - 

Yang and 

Chen [148] 

- √ - - √ - √ - 

Yu, Sun [149] - √ - √ - √ √ - 

Budak [150] √  - - √ - √ - - 

Gao and Cao 

[151] 

- √ - √ - √ - - 

Tosarkani, 

Amin [152] 

√ √ - √ - √ √ - 

Yu and 

Solvang [153] 

- √ - - - √ √ - 

Nayeri, Paydar 

[154] 

- √ - √ - √ - - 

Zarbakhshnia, 

Kannan [155] 

√ √  - √ - √ - - 

Hao, Sun 

[156] 

√ - - √ - √ - - 

Hashemi [157] √ √ - √ - √ - - 

Islam, Nizami 

[158] 

- - - - √ - - - 

Roudbari, 

Ghomi [159] 

- √ - - √ - - - 

Song, Tian 

[160] 

- - - √ - √ - - 

Wang, Huang 

[161] 

√ - - √ - √ - - 

Shahparvari, 

Soleimani 

[162] 

- √ - √ √ - - - 

Che, Lei [163] - - - - √ - - - 

Govindan and 

Gholizadeh 

[82] 

√ √ √ √ √ - - - 
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Therefore, the research gaps related to smart and sustainable reverse logistics network design are 

summarized from conceptual, decisional, methodological, and integrational perspectives: 

1. First, from the conceptual perspective, no research has been conducted to present a holistic 

overview of the impacts of disruptive technologies on reverse logistics. Besides, there is 

also a lack of a systematic conceptualization, definition, and analysis of smart reverse 

logistics transformation in Industry 4.0 and how these Industry 4.0 features can be 

interpreted in the context of reverse logistics.   

2. From the decisional perspective, no research efforts have been given to the development of 

a hand-on decision-support system that can be used to better assist the smart and sustainable 

reverse logistics network design under various real-life scenarios considering conflicting 

objectives, dynamicity, uncertainty, technological alternatives, disruption, and operational 

policies. 

3. From the methodological perspective, to solve reverse logistics network design problems, 

the effective combination of different analytical methods, e.g., mathematical optimization 

and advanced simulation remains still under-explored [164]. There is a lack of research on 

solving the methodological integration issues, e.g., the complexity of building respective 

models, data conversion between different models, setup of practical operational policies, 

etc. 

4. Last but not the least, no research has been conducted to present a comprehensive analysis 

of a general framework and the associated challenges related to the system integration of 

different physical elements, data, and analytical models and algorithms for reverse logistics 

management, which may form the theoretical foundation for a highly connected, smart, and 

sustainable digital reverse logistics twin.  

Through the comprehensive literature review, the four research gaps above are thoroughly analyzed 

and further discussed in Part II.   

2.6 Research Objectives 

This Ph.D. project aims at filling the identified research gaps in smart and reverse logistics network 

design. The research results of this Ph.D. project will be used to answer the four research questions 

proposed in Chapter 1.   

With respect to the four research gaps identified, the main objectives of this Ph.D. project are given 

as follows: 

1. This Ph.D. project aims first at providing a comprehensive analysis of Industry 4.0-enabled 

smart logistics in both forward and reverse channels to better understand the technological 

impacts on smart logistics services and operations. Specifically, systematic conceptual 

development of smart and sustainable reverse logistics transformation in Industry 4.0 will 

be focused on in order to present a clear roadmap to guide both researchers and practitioners 

in this field. 

2. This Ph.D. project aims primarily at developing an improved decision-support framework 

that can be used to effectively support sustainable reverse logistics network design. This 
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framework will take into account of current undergoing smart and dynamic transformation, 

the implied uncertainty as well as other real-life conditions. The developed framework 

needs to be tested and validated through numerical methods or case studies to show its 

applicability and to obtain meaningful implications in a real-life environment. 

3. Thirdly, this Ph.D. project aims also at exploring the effective way to combine different 

analytical models and methods, i.e., prescriptive analytics and descriptive analytics, in the 

decision-support framework for smart and sustainable reverse logistics network design, 

through which different analytical models and methods can be connected and their strengths 

can be better utilized to yield robust strategic decisions and comprehensive performance 

analyses.   

4. Finally, this project Ph.D. project aims at providing a system-based framework of digital 

reverse logistics twin and a general structure for system integration, which potentially help 

to achieve a highly connected and automatic decision-support system. This general 

framework may help to guide future software development for smart and sustainable reverse 

logistics management. 
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3 RESEARCH DESIGN AND METHODS  

3.1 Research Design 

Research design is a comprehensive plan developed for answering specific research questions or 

testing specific hypotheses using empirical data [165], which plays the most important and 

fundamental role in each type of research. A well-planned research design will help to ensure that 

the research methods employed are appropriate to achieve the research goals and that the correct 

type of data analysis is adopted. A well-devised research design will also guarantee that different 

parts can work harmoniously together in order to promote efficient and successful functioning [166]. 

As shown in Figure 3-1, a systematic framework of research design is presented by Maxwell [166], 

which includes five key components, namely, research questions, goals, conceptual framework, 

research methods as well as validity. These five elements create logical and workable relationships, 

and the linkages among each element are strongly tied to several others. The top triangle is more 

conceptual, which is generally regarded as the initial stage in developing a research project. On the 

other hand, the lower triangle is more operational and is usually the next step considering the 

implementation of research methodologies and the verification of validity and feasibility [166]. The 

research questions play a vital role and should have a clear relationship to link the other elements in 

the research design. 

 

Figure 3-1 Research design for a research project [166]. 

Basically, there are three general categories of research methods, i.e., qualitative, quantitative, and 

mixed methods, respectively. From a broader perspective, it reflects the research strategies that 

could have impacts on which data collection and analysis techniques can be used. At the most basic 
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level, qualitative research uses data that is not number-based, which focuses on words, concepts, 

ideas, feelings, and so forth. Therefore, it is a more subjective method. In contrast, the quantitative 

method emphasizes the use of numerical values and statistics to measure and evaluate differences 

and relationships. However, it is noteworthy that both subjective values and objective values may 

be employed in the quantitative method. The mixed-method is the combination of both qualitative 

and quantitative methods. The proper selection of the research methods depends on the research 

questions and objectives. 

3.2 Research Design of the Ph.D. Project 

Based on the definition of the five fundamental elements, the research design framework of smart 

and sustainable reverse logistics network design is given in Figure 3-2. First, the research questions 

are clearly identified, based on which the research objectives and goals are proposed. In order to 

achieve these research objectives and goals, conceptual development and quantitative models are 

given for answering the proposed research questions while seeking ways to improve and enhance 

the existing decision-support methods for smart and sustainable reverse logistics network planning. 

In the following sub-sections, these five fundamental elements are discussed. 

 

Figure 3-2 Research Design for the Smart and Sustainable Reverse Logistic Network Design. 

3.2.1 Research Questions 



A Decision-Support Framework for Smart and Sustainable Reverse 

Logistics Network Design by Xu Sun 

24 | P a g e  

Smart and sustainable reverse logistics network design is a complex decision-making problem that 

has gained increasing importance as a sustainable business strategy [2]. Based on the heterogeneous 

characteristics of the EOL and EOU products received, various operations are performed for either 

recapturing their remaining value or proper disposal. As shown in Figure 3-3, a reverse logistics 

network consists of different nodes, i.e., local collection points, regional collection/disassembly 

centers, remanufacturing plants, recycling plants, and disposal sites. They are linked by the material 

flows starting from the collection from end-users to different destinations. The collected EOL and 

EOU products are transported to regional collection centers for inspection and disassembly. The 

components with high residual value are sent either for repair and re-sell at second-hand markets or 

for remanufacturing and refurbishing for function restoration. The others are sent to recycling plants 

to be degraded into new materials and then sold to the raw material suppliers. The non-recyclable 

components and hazardous materials are sent either for energy recovery or proper disposal.  

 

Figure 3-3 A smart multi-echelon reverse logistics system. 

Today’s disruptive technologies in Industry 4.0 pave the way for improving the smartness and 

sustainability of reverse logistics systems. For example, internet/5G-based connectivity may better 

connect all the elements and stakeholders in a reverse logistics system, as shown in the figure. 

However, the technological impacts on various reverse logistics operations and decision-making, 

e.g., network design, have not been well investigated and clearly understood, so the research 

questions are defined accordingly to provide better knowledge on: 

1. How will disruptive technologies affect smart and sustainable reverse logistics? 

2. What may happen in a smart paradigm transition of reverse logistics? 

3. How to design a smart reverse logistics network for improving sustainability? 

4. How can a smart digital reverse logistics twin be developed? 
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3.2.2 Research Goals 

The research goals of this Ph.D. project are to properly answer these four research questions. The 

first goal is to better understand the impacts of using disruptive technologies in Industry 4.0 on smart 

logistics services and operations, especially, on the smart paradigm transition of reverse logistics. 

Based on this, an improved decision-support framework is to be developed to better capture the 

nature of smart reverse logistics transformation and its impact on the decision-making of sustainable 

reverse logistics network design. Finally, this Ph.D. project is to investigate a conceptual framework 

for the digital twin reverse logistics twin, which may potentially help to achieve a highly connected 

and automatic decision-support system for smart and sustainable reverse logistics management. 

3.2.3 Conceptual Framework 

To answer the research questions and achieve the research goals, a conceptual framework plays a 

vital role at the beginning stage, which can help to better guide and direct the further methodological 

development of the Ph.D. project. First, based on a comprehensive analysis of the existing literature 

and reported case studies, the conceptual development of the smart and sustainable reverse logistics 

transformation in Reverse Logistics 4.0 is designed. In the course of this project, I’ve developed a 

conceptual framework of Reverse Logistics 4.0 [76]. As shown in Figure 3-4, this framework links 

the technological enablers of Industry 4.0, reverse logistics activities, smart reverse logistics service 

and operation transformations, and the targeted sustainability goals. Essentially, it reveals the 

technology-enabled smart transformation occurs across all reverse logistics stages and activities, 

i.e., collection, sorting and processing, remanufacturing and recycling, transportation, and disposal, 

which lead to improved services and operations in order to better meet the sustainability goals in 

economic, environmental, and social dimensions. 
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Figure 3-4 A conceptual framework of smart and sustainable reverse logistics transformation in Reverse Logistics 

4.0 [76]. 

This conceptual framework explicitly shows the interconnection between technology, paradigm 

transition, and sustainability in the context of reverse logistics. Notably, the adoption of the various 

enabling technologies in Industry 4.0 is not the goal but rather the means to improve the services 

and operations in the smart reverse logistics transformation. In addition, technology itself may not 

be able to achieve a better performance, but the redesign and reform of the reverse logistics services 

and operations may help to improve sustainability. In this regard, the conceptual development of 

Reverse Logistics 4.0 and smart and sustainable reverse logistics transformation is of essential 

importance, which helps to thoroughly understand how disruptive technologies may affect the 

service, operation, and performance at different nodes and flows of a reverse logistics network. 

These form the basis for the development of a decision-support framework for sustainable reverse 

logistics design under smart transformation. For example, it provides a better understanding of the 

system and environment under which key decisions are to be made and the decision-support tool is 

to be developed. In addition, based on the conceptual development, the assumptions, parameter 

adjustments, and scenario setups can also be properly given in the modeling process so that more 

comprehensive insights can be obtained for answering the research questions.   

3.2.4 Methods 

Based on the conceptual framework, improved decision-support methods and systems need to be 

developed for smart and sustainable reverse logistics network design to properly answer the 

proposed research questions and achieve the defined goals. In this phase, it is crucial to understand 
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the decision environment and assumptions, develop proper models and methods, and effectively use 

them with different data sources and the other elements in the decision-support framework.  

3.2.4.1 Development Environment and Assumptions 

The decision-support framework for smart and sustainable reverse logistics network design needs 

to be developed under a comprehensive environment that can reflect the key features of the real-life 

problem. Thus, understanding the development environment is of essential importance, which can 

be described by six categories of influencing factors as follows: 

1) Performance measures 

• Economic performance 

• Environmental performance 

• Social performance 

2) Logistics structure 

• Product flow 

• Network structure 

• Transportation links 

3) Planning horizon 

• Dynamic 

• Static 

4) Parameters 

• Deterministic 

• Uncertain 

5) Operations 

• Inventory control 

• Production 

• Sourcing  

• Transportation 

6) Configuration 

• Rigid and unchanged 

• Dynamically evolving 

These factors can thoroughly depict the features of a reverse logistics system and the development 

environment, under which the decision-support models and framework are formulated. The first 

category measures the sustainable performances in different dimensions for a reverse logistics 

system. Then, the logistics structure is depicted with the type of the reverse product flow, the number 

of echelons in the network, and the links between each echelon. The third and fourth categories 

specify the features of the planning horizon and parameters. The fifth category focuses on the 

operations of the reverse logistics system, while the last category shows the configurational changes 

over the planning horizon. In this Ph.D. project, considering the smart transformation and the 

operational policies over the planning horizon, Table 3-1 explicitly shows the development 

environment for the decision-support framework.  
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Table 3-1 Development environment of the decision-support framework for smart and sustainable reverse logistics 

network design. 

Category Influencing factors Description 

Performance measures • Economic performance Total costs of operating the reverse 

logistics system 

• Environmental performance Total carbon emissions from reverse 

logistics activities 

Logistics structure • Product flow Multiple types of EOL products 

• Network structure Multi-echelon reverse logistics network 

• Transportation link Transshipment via regional collection 

center 

Planning horizon • Dynamic Dynamic and realistic planning horizon 

Parameters • Uncertain Parametric uncertainty related to the 

demand, generation, value recovery 

operations 

Operations • Inventory Different inventory control policies used  

• Production Simple manufacturing strategy  

• Sourcing Various sourcing policies 

• Transportation Partial shipment policy and two types of 

vehicles 

Configuration • Dynamically evolving Scenario analyses of smart and gradual 

transformation of facilities and 

transportation  

 

As shown, a multi-product multi-echelon dynamic and sustainable reverse logistics network design 

problem is focused on in this Ph.D. project, which considers the trade-off between total costs and 

total carbon emissions. The parametric uncertainties are taken into account due to the heterogeneous 

quality and quantity of the reverse product flows. To better formulate the features of a reverse 

logistics system, various operational strategies and policies are considered at both facility and 

transpiration levels. Furthermore, the configurational changes within the planning horizon are also 

considered through scenario analyses.  

Several assumptions are made for the development of respective analytical models in the decision 

support framework: 

• The location of the generation points and markets are known. 

• The candidate locations for respective facilities can be pre-determined. 

• The relevant parameters are known or can be properly estimated. 

• Different facilities may implement different operational policies. 

• The smart transformation will, in general, yield positive impacts on reverse logistics  

3.2.4.2 Methodological Development 

Smart and sustainable reverse logistics network design is to make important decisions under a highly 

dynamic, realistic, and uncertain environment, which requires methodological development 

combining different analytical tools, e.g., optimization, simulation, etc. While mathematical models 

have been extensively formulated and used in reverse logistics, the combination with comprehensive 

simulation analysis remains under-exploited, even in the forward logistics [164]. Due to the 
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complementary of optimization and simulation, they can be combined in the decision-making cycle. 

On the one hand, a simulation analysis can be used to provide valuable input parameters for the 

optimization model. For example, Costa, Duarte [167] investigated a simulation-optimization 

decisional framework for sustainable biodiesel supply chain design, where process simulation was 

used to estimate the key parameters of the system. On the other hand, the optimization results 

obtained can be better tested and validated with a comprehensive simulation analysis [168].  

However, combining both optimization models and comprehensive simulation analysis in smart and 

sustainable reverse logistics network design faces several challenges:  

• The complexity of building respective models  

• The requirement of different software packages and/or coding language 

• The unclear linkage between different models  

• The data conversion with different levels of aggregation  

• The setting up of realistic operational policies 

Thus, in this Ph.D. project, a two-level decision-support framework is under investigation, in which 

the methodological development focuses, by tackling these challenges above, on the combination 

of mathematical optimization and dynamic simulation. By combining both analytical methods, the 

features of smart transformation can be better captured and modeled, and its impacts on sustainable 

reverse logistics network design can be comprehensively and holistically analyzed to support robust 

and reliable decisions.  

3.2.4.3 System Integration  

While the proposed decision-support framework can be used as an ad-hoc process for smart and 

sustainable reverse logistics network design, high-level system integration can help to seamlessly 

link different elements in a CPS, which forms the foundation for smart digital reverse logistics twin 

for sustainable reverse logistics management. Figure 3-5 shows the architecture of a high-level 

CPS, which includes five important layers:  

1. Smart connection 

2. Data conversion 

3. Cyber-physical system 

4. Cognition 

5. Configuration 

The first three layers emphasize the internet/4G/5G-based connectivity between physical equipment 

and the cyber environment, where data can be effectively collected, stored, and converted to relevant 

information for predictive analytics and further decision-making. The fourth layer is located in the 

cyber system and emphases the computational intelligence and smartness for supporting different 

decisions in a manufacturing or a logistics process. The fifth layer is considered the highest level of 

CPS in Industry 4.0, in which the autonomy of a smart system can be achieved through a high level 

of system integration that enables both connectivity and intelligence through effective connection 

and interaction between different physical and cyber elements.   
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Figure 3-5 The architecture for a high-level CPS, adapted from [169, 170]. 

This Ph.D. project focuses primarily on the smart decision-support framework in the cognition layer 

for smart and sustainable reverse logistics management. Furthermore, considering the architecture 

given in the figure, a conceptual framework of a smart digital reverse logistics twin is given, which 

specifies the key elements, enablers, and data flows to achieve a high level of system integration for 

sustainable reverse logistics management. Moreover, the criteria for measuring the maturity level 

of system integration are also defined to guide future software development in this field.   

3.2.5 Validity 

The validity of the proposed decision-support framework is to examine the functionality, behavior, 

and results through different processes. As an important step, the developed models and methods 

need to be verified and validated before they can be used to support real-life decision-making of 

smart and sustainable reverse logistics network design. The validity process aims at answering two 

important questions. The first one is whether the methodological development process is properly 

performed to obtain the required results, while the second question is if the method formulated is a 

proper representation of the real-life problem under investigation.  

Verification is the process that targets the first question. Verification checks are different depending 

on the complexity and scope of the methodological development, which may include three phases, 

e.g., requirement verification, design verification, and code verification. Verification may take place 

at every stage of the methodological development in order to eliminate defects and save time [171]. 

In this Ph.D. project, several small-scale numerical experiments under real-life settings are 

performed to test both the mathematical optimization model and the dynamic simulation in the 

methodological development phase. With small-scale numerical experiments, whose results are 

easily obtained, the performance of both the optimization process and the simulation process in the 

decision-support framework can be verified against the design objectives, the correctness of the 

model building and coding, and the reliability of the analytical results obtained. Furthermore, these 

models are evaluated with several sets of parameters with various data structures through several 
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rounds of tests to eliminate errors or defects. In addition, the proposed conceptual framework for 

system integration and digital reverse logistics twin is also verified by an integrated process, which 

connects the optimization model and the dynamic simulation with the automatic data flow. 

Validation aims, on the other hand, at answering the second question, and it evaluates the final 

performance, functionality, and usability of the proposed method and checks whether it fulfills all 

the needs [171]. Validation usually takes place in the later stage of the methodological development, 

which ensures a high level of compliance between the real-life problem and the method developed, 

say, the method can be used to reflect the features and effectively solve the modeled problem. In 

this Ph.D. project, the proposed decision-support framework is validated through a case study of 

sustainable WEEE management in Norway and comparative analyses. The analytical results given 

by the decision-support framework are compared with that obtained from a pure mathematical 

optimization model, which shows the proposed method outperforms a purely mathematical model 

in capturing the real-life features and providing more reliable decision support for sustainable 

reverse logistics network design under a dynamic, realistic, and uncertain environment.   

Both verification and validation are important steps for the validity of methodological development, 

which are integral parts to ensure robust and reliable decisions and analyses can be reached in smart 

and sustainable reverse logistics network design. 

3.3 Research Methods 

This section provides a brief introduction of the research methods in this Ph.D. project, including 

the two-level decision-support framework, multi-objective optimization, dynamic simulation, and 

system integration and digital twin.  

3.3.1 Two-Level Decision-Support Framework 

Reverse logistics network design is about making important decisions at two stages. In the first 

stage, the strategic facility location decisions are made to establish and configure a reverse logistics 

system. In the second stage, the reverse logistics network is utilized through a set of decision-making 

at both tactical and operational levels, e.g., demand allocation, inventory control, vehicle routing, 

operational planning, etc. While the strategic facility location decisions are to be robust, the tactical 

and operational decisions are, however, much more flexible to be adjusted for better use of the 

reverse logistics network. From the decision-making perspective, the uncertainty related to the 

reverse material flows and the opportunities for smart transformation within the planning horizon 

have brought more challenges to the initial network design of a reverse logistics system. Thus, in 

order to solve this challenge, a two-level decision-support framework is proposed in Figure 3-6 to 

better support strategic decision-making of smart and sustainable reverse logistics network design 

in the Industry 4.0 era. 
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Figure 3-6 The two-level decision-support framework [75]. 

The proposed framework aims, through methodological integration, at providing a more close-to 

real-life modeling environment to better capture the features of smart and sustainable reverse 

logistics network design, in which the strengths of both mathematical optimization and dynamic 

simulation can be effectively used. Despite optimization and simulation being two extensively 

focused analytical methods, they are fundamentally different with targets for solving different types 

of problems. Even if modeling the same problem, they may provide different levels of details and 

real-life features. As prescriptive analytics, optimization is to formulate the reverse logistics 

network design problem with a mathematical model, which can help with decision-making at a 

highly aggregate level. The previous literature has clearly shown the advantage of using a 

mathematical optimization model lies in the effectiveness of selecting the optimal solutions under 

various objectives and constraints from a large number of alternative combinations. Both the first-

stage and second-stage decisions can be simultaneously made for reverse logistics network design 

in a holistic fashion. However, a mathematical optimization model suffers from several limitations. 

For instance, many assumptions need to be made so that the problem can be properly accommodated 

in the mathematical structure, e.g., linearized transportation flow, highly aggregate amount, etc. 

Meanwhile, the analysis given by a mathematical optimization model is relatively static, which is, 

however, ineffective in modeling and analyzing time-dependent system operations and interactions. 

Furthermore, a more realistic optimization model for the real-life problem may exponentially 

increase the complexity of solving it.   

Simulation is descriptive analytics, which aims at modeling most of the real-life features of a system 

with minimum assumptions. Modern computer-based simulation software may include and combine 

different simulation methods, e.g., discrete-event simulation, system dynamics, etc., to provide 

powerful analytical capabilities for comprehensively evaluating the performance of a system under 



Chapter 3 Research Design and Methods 

33 | P a g e  

various scenarios. Meanwhile, the physical elements in a system can be better visualized in the 

simulation environment, which allows a better understanding of the operations of the system and 

the interactions among different elements in a real planning horizon. However, there are also several 

limitations of simulation. First, building and running a highly detailed simulation model of a 

complex reverse logistics system is extremely time-consuming and require high computational 

power of the hardware. Thus, simulation models can only be used for performance evaluation, but 

it is ineffective or impossible to select the optimal solution from a large number of alternative 

combinations. Second, the input data of a simulation model need to be given at a much more detailed 

level. Besides, more comprehensive knowledge about the reverse logistics system needs to be 

provided so that realistic operational policies can be formulated to test the system in a close-to real-

life environment. Table 3-2 shows the comparison between optimization and simulation. 

Table 3-2 Comparison between optimization and simulation, adapted from [168].   

 Optimization Simulation 

Strengths • Solving complex decision-making 

problems 

• Finding optimal solutions from a 

large alternative combinations 

• Comprehensive performance 

evaluation in a close-to real-life 

environment 

• High-quality system visualization 

Weaknesses • Restricted mathematical structure  

• Many assumptions and 

simplifications 

• Result presentation issues 

• The incapability of solving complex 

decision-making problem 

• Time-consuming  

• Requirement of expensive 

computational power and hardware 

• Comprehensive data and details of 

the system 

Figure 3-6 illustrates how the mathematical optimization model and the dynamic simulation model 

are linked by proper data conversion and model set ups in the two-stage decision-support system 

for smart and sustainable reverse logistics network design. In the first level, a multi-objective 

optimization model is developed to solve the revere logistics network design problem under 

sustainability in different dimensions. The model can determine a set of Pareto optimal solutions 

and simultaneously make both first-stage and second-stage decisions. However, only the first-stage 

strategic facility location decisions are focused on at this level. Based on the evaluation of the Pareto 

optimal solutions by the decision-maker, a set of candidate network configurations can be chosen. 

Then, in the second level, the respective simulation models are built for the selected network 

configurations, which provide further performance evaluation in a dynamic, realistic, and complex 

environment. In this Ph.D. project, the dynamic simulation model is established by combining both 

discrete-event simulation and Monte Carlo simulation in order to appropriately model the dynamic 

features, parametric uncertainties, logistics operations, and upgrades of facilities and transportation 

over the planning horizon. The performance of the chosen reverse logistics network configurations 

is compared with respect to the pre-determined indicators, and new networks, operational policies, 

and update strategies may be tested if needed.  
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3.3.2 Multi-Objective Mixed-Integer Optimization 

Integer program and mixed-integer program are among the most important optimization techniques 

to model and solve many real-life problems, where all (integer program) or some (mixed-integer 

program) of the variables does not belong to real numbers but to integers. For example, a service 

provider for cold-chain COVID-19 vaccine delivery may purchase several drones to shorten the 

delivery time, improve service levels, and reduce the risk of infection during the vaccine delivery. 

An optimization model may thus be formulated to minimize the number of drones required to 

maintain a certain level of delivery service. In this case, it is apparent to see a non-integer optimal 

solution is unrealistic, so an integer constraint needs to be incorporated to find the optimal decisions 

on the number of drones that should be purchased. Mixed-integer programming optimization has 

been extensively used to formulate and solve reverse logistics network design problems [172]. 

Considering the two-stage nature of the decision-making, binary decision variables are used to 

model and determine the strategic facility location decisions at the first stage [125] of reverse 

logistics network design. While, on the other hand, continuous variables, integer variables, or both 

of them may be used to model the second-stage decisions related to, for example, demand allocation, 

vehicle routing, inventory control, and so forth.  

The early modeling efforts focus on single-objective mixed-integer optimization with primary 

consideration of either cost-effectiveness or economic feasibility of EOL and EOU recovery. 

However, taking into account the environmental footprints and social impacts of reverse logistics 

activities, increasing research attention has been paid to the management of the environmental and 

social sustainability through better decision support for reverse logistics systems. For instance, 

different carbon emission policies have been incorporated in the optimization models for sustainable 

reverse logistics network design in order to minimize the environmental impact, where the carbon 

tax can be modeled as an additional cost component in the objective function [85] to penalize the 

excessive carbon emissions. On the other hand, a carbon cap constraint can be used to set a 

maximum level of carbon emission for a reverse logistics system. Nonetheless, increasing modeling 

efforts have tackled the sustainability issues related to reverse logistics network design with multi-

objective optimization models.  

Multi-objective optimization is another most important modeling technique that can be used to solve 

a wide range of problems with conflicting objectives, and it has been widely used in economics, 

logistics and supply chain management, and various engineering disciplines [173]. Many real-life 

problems cannot be modeled with a single-objective optimization model due to the fact that the 

conflicting interests, usually among different stakeholders, need to be simultaneously considered in 

the decision-making. In this regard, a multi-objective optimization model needs to be developed to 

manage the trade-off among different objectives. In a multi-objective optimization problem, it is 

usually impossible to find a solution that optimizes all the objectives and fulfills all the constraints 

at the same time. Instead, the problem is solved by finding a Pareto optimal solution or a set of 

Pareto optimal solutions. As defined by Censor [174], a Pareto optimal solution is an extreme point 

within the feasible solution area of a multi-objective optimization problem, at which the value of 

one objective function cannot be improved without the degradation or compromise of the values of 

the other objectives.  
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For solving sustainable reverse logistics network design problems, multi-objective mixed-integer 

optimization models have been well developed and extensively used to support the two-stage 

decision-making taking into account conflicting objectives [58, 175]. When using different 

sustainability indicators to measure the performance of a reverse logistics system, the optimal 

decisions obtained are by no means identical. For example, the economic objective may, on the one 

hand, leads to a more compact network configuration to minimize the cost of a reverse logistics 

system, particularly the expensive facility operating cost. While, on the other hand, an emission 

reduction objective may lead to a dispersed network structure with more facilities opened to 

minimize the carbon emissions associated with transportation on links. Furthermore, a social 

sustainability objective may lead to more employment, which consequently increases the cost of 

operating the reverse logistics system. In this regard, a Pareto optimal solution needs to be achieved 

to balance the trade-off among different sustainability indicators through appropriate decisions on 

both stages of the reverse logistics network design. 

 

Minimize 𝑔1(𝒙, 𝒚) = 𝒖𝟏𝒙 + 𝒇𝟏𝒚 

Minimize 𝑔2(𝒙, 𝒚) = 𝒖𝟐𝒙 + 𝒇𝟐𝒚 

... 

Minimize 𝑔𝑛(𝒙, 𝒚) = 𝒖𝒏𝒙 + 𝒇𝒏𝒚 

(1a) 

Subject to:  

𝑨𝒙 ≥ 𝒃 (1b) 

𝑪𝒙 ≤ 𝒅𝒚 (1c) 

𝑬𝒙 = 𝑯𝒙 (1d) 

𝒙 ≥ 0 (1e) 

𝒚 ∈ {0, 1} (1f) 

 

The general form of a multi-objective mixed-integer optimization model for sustainable reverse 

logistics network design is given in Model (1). The objection functions are given in Eq. (1a), where 

all objectives are minimized. The model is subjected to three sets of constraints, namely, demand 

satisfaction (1b), capacity (1c), and flow balance (1d). There are two types of decision variables, 

i.e., binary integer variables and continuous variables, whose domains are given by constraints (1e) 

and (1f), respectively.  

𝒙 = [

𝑥1
𝑥2

⋮
𝑥𝑖

] 𝒚 = [

𝑦1
𝑦2

⋮
𝑦𝑗

] 
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As shown above,  𝒙 and 𝒚 are the vectors of the continuous variables and the binary variables, and 

𝒖 and 𝒇 are their corresponding coefficient vectors. Besides, 𝑨, C, 𝑬, and 𝑯 are the coefficient 

matrixes, and 𝒃 and 𝒅 are the right-hand-side vectors for the respective constraints. The expanded 

forms of 𝑨 and 𝒃 are given below.  

𝑨 = [

𝑎11

𝑎21

𝑎12

𝑎22
⋯

𝑎1𝑖

𝑎2𝑖

⋮ ⋱ ⋮
𝑎𝑘1 𝑎𝑘2 ⋯ 𝑎𝑘𝑖

] 𝒃 = [

𝑏1

𝑏2

⋮
𝑏𝑗

] 

 

When all the objectives converge toward the same direction either minimization or maximization, 

the general multi-objective mixed-integer optimization model can be re-written to a more compact 

form, as illustrated in Model (2). 

Minimize/Maximize 𝑔(𝒙, 𝒚) = (𝑔1(𝒙, 𝒚), 𝑔2(𝒙, 𝒚), … , 𝑔𝑛(𝒙, 𝒚))𝑇 

Subject to: 

𝒙, 𝒚 ∈ 𝑆 

(2) 

Herein, 𝑔(𝒙, 𝒚) = (𝑔1(𝒙, 𝒚), 𝑔2(𝒙, 𝒚), … , 𝑔𝑛(𝒙, 𝒚))𝑇 is a 𝑛 -dimensional vector of the objective 

functions, whose feasible solution domain is given as follows: 

𝑆 = {𝒙 ∈ ℝ𝑛, 𝒚 ∈ {0,1}|𝑨𝒙 ≥ 𝒃, 𝑪𝒙 ≤ 𝒅𝒚, 𝑬𝒙 = 𝑯𝒙, 𝒙 ≥ 0} 

 

Solving a multi-objective mixed-integer optimization model for sustainable reverse logistics 

network design is to find a solution within the feasible domain, which can optimally balance the 

trade-off among the objective functions under certain conditions. Due to the lack of continuity in 

the decision variables, a mixed-integer program is much more computationally expensive than a 

linear program. Several well-known exact solution methods, i.e., branch-and-bound, cutting plane, 

and branch-and-cut, continuously search the feasible solution area by solving a large number of 

linear relaxation problems in certain directions. While for large-scale integer or mixed-integer 

optimization problems, some advanced reformation methods, e.g., Bender’s decomposition, 

Lagrangian relaxation, etc., need to be used to accelerate the solution speed. For more information 

related to solving an integer or mixed-integer programming model,  Conforti, Cornuéjols [176] can 

be referred to. 

The multi-objective optimization problem is solved by converting it into a single-objective 

optimization problem. There are several well-known scalarization methods, i.e., goal programming, 

weighting method, and constraint method [177]. By the normalization of the objective functions 

with a benchmarking value, e.g., the individually optimized value of each objective function, the 

multiple objective functions can be combined into a single objective function with their respective 

weights in a weighting method, e.g., weighted-sum and weighted Tchebycheff approach. A goal 

programming takes a similar idea, and the (weighted) measures of all objective values from their 

individual optimal solutions are evaluated to determine the Pareto optimal solution of the multi-
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objective optimization problem. On the other hand, a constraint method, e.g., 𝜀-constraint method, 

first selects one objective function to be optimized and then converts the other objective functions 

into constraints of the model. With this method, a set of Pareto optimal solutions can be determined 

by solving these single-objective optimization problems with changing values of 𝜀 . Unlike the 

weighting methods, in which a set of weight combinations need to be determined first by the 

decision-makers before solving the optimization model, decisions can be made after the 

optimization model is solved with the constraint method, so it is more attractive in many ways when 

determining the objective weights in advance is difficult. However, since more constraints are added 

on, the constraint method for solving a multi-objective optimization problem is more 

computationally expensive.  

The recent research has enhanced the traditional solution methods for solving multi-objective 

mixed-integer optimization models in reverse logistics management, e.g., augmented weighted 

Tchebycheff approach and augmented 𝜀-constraint method [178]. For instance, by employing a 

lexicographic approach at the initial stage, the quality of the payoff matrix used in the augmented 

𝜀-constraint method can be significantly improved by reducing the dominated solutions, which 

consequently improves the setup of the 𝜀  value and the quality of the Pareto optimal frontier 

obtained [179]. In addition, several metaheuristics, e.g., non-dominated sorting genetic algorithm II 

(NSGA-II), particle swarm optimization (PSO), etc., have been used to improve the computational 

efficiency in finding the near-optimal solutions for large-scale problems. In this Ph.D. project, the 

augmented 𝜀-constraint method [178] is used to provide a set of efficient Pareto optimal solutions 

and candidate network configurations for smart and sustainable reverse logistics network design.  

3.3.3 Dynamic Simulation 

Simulation has been increasingly focused on in logistics and supply chain management since it is a 

powerful tool and can be used for various planning purposes, e.g., system design, performance 

evaluation, the test of operation policies, analysis of system behaviors understanding, and prediction 

and estimation of parameters. Today, computer-based high-quality simulation models are capable 

of providing powerful virtual representations of a process or system over a dynamic horizon and of 

performing comprehensive scenario analyses in a close-to real-life environment. In general, there 

are four types of simulation, namely, Monte Carlo simulation, discrete-event simulation, system 

dynamics, and agent-based simulation. 

• Monte Carlo simulation: is a simple and static simulation method that models a process or 

a system with a series of probability density functions (PDFs). Based on the repeatedly 

sampling from the given PDFs, it computes the statistical value of interest [180]. Monte 

Carlo simulation uses random numbers and probabilities to find approximate values for 

quantities that are usually difficult to be calculated analytically. For example, based on a 

given PDF, Monte Carlo simulation can be used to generate randomized custom demands 

in a supply chain. 

• Discrete-event simulation: is a comprehensive simulation method that, based on queueing 

theory, models the changes of a process or a system with a sequential set of discrete events 

[181]. It can be either a deterministic or a stochastic method. The progress of the modeled 

system is driven by the changing states of discrete events over time. Due to its powerfulness 
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and applicability in analyzing the behavior of complex systems, discrete event simulation 

is considered one of the most important modeling tools for manufacturing and service 

systems as well as supply chains [182]. For example, discrete event simulation can be used 

to analyze a manufacturing or a remanufacturing system, where parts are processed in 

various sequences at different stations before leaving the system [182]. It can also provide 

a holistic analysis of an inventory system, in which different products are replenished at 

various supply chain stages before being purchased at the store. 

• System dynamics: is a continuous modeling technique that depicts the change and progress 

of a process or system with differential questions, and it is specifically designed for long-

term, chronic, dynamic management problems [183]. The structure of the system dynamics 

method is described by causal-loop or influence diagrams, and it represents the system as a 

set of flows and accumulations [184]. A causal-loop diagram describes the key feedback 

loop (either negative feedback or positive feedback loops) [185]. It is an effective method 

to analyze and assess the continued dynamic nature of large-scale complex systems. For 

example, system dynamics models have widely been used to predict the development of an 

epidemic disease [186].  

• Agent-based simulation: is a relatively novel modeling technique that can be used to 

simulate autonomous decision-making individuals (agents)' activities and communications, 

behaviors, influences, and interactions in order to analyze their effects on the system as a 

whole [187, 188]. Different from the other traditional simulation techniques, which model 

and analyze the whole system’s behaviors, agent-based simulation primarily focuses on the 

autonomous agents and provides valuable information about a process or a system based on 

the collective analysis of their behaviors and interactions. The agents can represent a variety 

of real-life entities, e.g., people, animals, vehicles, etc., and their behaviors need to be first 

defined in a dynamic simulation environment. Agent-based simulation has been extensively 

used in biological sciences and social sciences. For instance, agent-based models can be 

used for analysis and decision-support of disaster response and emergency management 

[189]. 

Based on the introduction above, a comparison of different simulation methods is shown in Table 

3-3. 

Table 3-3 Comparison of the four simulation methods. 

Simulation methods Model classification criteria 

 Static / Dynamic Deterministic / Stochastic 

Monte Carlo simulation  Static Stochastic 
Discrete-event simulation Dynamic (discrete) Mostly stochastic 
System dynamics  Dynamic (continuous) Mostly deterministic 
Agent-based simulation Dynamic (discrete) Mostly stochastic 

 

Despite system dynamics and agent-based simulation can be used in several areas, e.g., prediction 

of epidemic development for temporary reverse logistics network design under the pandemic [190], 

etc., Monte Carlo simulation and discrete-event simulation are the most widely used modeling tools 

in logistics planning and supply chain management due to their effectiveness and applicability. 

Monte Carlo simulation is primarily used for parameter generation and performance evaluation 
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under stochasticity. On the other hand, computer-based discrete-event simulation models are 

powerful tools to holistically and dynamically re-create the logistics systems and various operations 

in the virtual environment, which allows comprehensive performance analyses under different 

scenarios and real-life environments.  

In smart and sustainable reverse logistics network design, the term “dynamic simulation” refers to 

the combination of both discrete-event simulation and Monte Carlo simulation. Discrete-event 

simulation is used to model the reverse logistics flow logic, facility operational policies, souring 

and transportation strategies, and dynamic transformation of facilities and transportation in the real 

planning horizon. Monte Carlo simulation is to deal with the stochasticity related to input 

parameters, which, through repetitively running the simulation model, ensures high confidence in 

the simulation result under uncertain environments.  

3.3.4 System Integration and Digital Twin 

The proposed decision-support framework allows a high level of methodological integration with 

different analytical tools and various sources of data. However, the effective utilization of these 

analytical methods and data by decision-makers, practitioners, as well as other non-expert users 

requires a user-friendly interface with a highly integrated system and environment. Therefore, 

system integration of different physical elements, data, analytical models, and algorithms for reverse 

logistics management plays a vital role. In this Ph.D. thesis, the conceptual framework of a digital 

reverse logistics twin is proposed from the system perspective, which potentially helps to achieve a 

highly connected and automatic decision-support for various reverse logistics activities. Digital twin 

is not a new concept in reverse logistics related operations and activities. For example, a product-

based digital twin can provide valuable information and data throughout the entire product lifecycle. 

At the EOL stage, the data provided by a digital twin can help to better organize the collection and 

value recovery activities [27].  

From the system perspective, Figure 3-7 illustrates the key elements and their connections in a 

smart digital twin for sustainable reverse logistics management. The product-based digital twin can 

also be incorporated, as well as the other IoT-enabled smart devices, to provide key data of the 

reverse logistics system, e.g., product data, vehicle data, facility data, real-time traffic and weather 

data, etc. Through highly integrated data flow, the physical assets can be collected with the cyber 

layer that provides intelligence for smart and sustainable reverse logistics management. At the cyber 

layer, data needs to be properly cleaned and processed, and several analytical tools, i.e., predictive 

analytics, prescriptive analytics, and descriptive analytics, are needed for supporting various 

decision-making at strategic, tactical, and operational levels in an interactive way [191]. 
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Figure 3-7 Digital reverse logistics twin [192]. 

A digital reverse logistics twin is an integrated information platform, where the potential of different 

elements, e.g., AI, GIS, analytical models, simulation, etc., can be effectively utilized to support 

different decisions for reverse logistics management. To develop a smart twin for sustainable reverse 

logistics management, seven criteria are defined to measure the level of maturity of system 

integration, which can be used to evaluate the existing software solutions and also to guide future 

software development.  

These criteria are discussed as follows [50]: 

• Cyber-physical structure is considered the fundamental level of system integration, which 

enables the collection of various data from both physical and cyber elements of a reverse 

logistics system. Data is the most important component that links the physical system and 

the virtual system, through which different analytical models in the cyber layer can also be 

seamlessly connected for different decision-support purposes.  

• Cloud-based system is to provide a cloud-based platform for both data and analytical tools 

in the cyber layer, which enables effective connection and distributed access to the data and 

analytical models. 

• Shared database and data conversion ensure the same dataset is used and can effectively 

be converted for different analytical models that may require different input structures and 

the level of aggregation.  This is important to guarantee the consistency and reliability of 

the analysis.  

• Flexible network structure requires that the digital twin needs to be flexible enough to 

adapt to the structural change of actors, facilities, material flows, operational policies, as 

well as other factors in a reverse logistics system, for example, by adding or subtracting 

relevant elements in the system. 
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• Large model database ensures that several decision-support models need to be included in 

the digital twin to tackle a wide range of reverse logistics planning problems at different 

levels, e.g., facility location, vehicle routing, inventory control, etc. 

• Flexible model modification refers to the flexibility related to the model building, which 

means the model can be easily modified based on the changing environments and specific 

problems. For example, new objectives and/or new constraints can be added to model the 

new features in the digital reverse logistics twin.  

• User-friendly interface can provide an easier way for users without professional modeling 

background. Furthermore, it can provide better visualization of result analysis, which can 

help with better decision support. 

The ultimate goal of a digital reverse logistics twin is to link different physical and cyber elements 

in a highly integrated way through data, in which the value of data in decision support can be better 

exploited for smart and sustainable reverse logistics management.  
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4 CONCLUSION AND FUTURE WORKS 

4.1 Summary of the Ph.D. Project 

This Ph.D. thesis consists of five papers, of which three are published and/or submitted to peer-

reviewed international journals and two are conference papers. Figure 4-1 shows the structure of 

the selected papers with respect to the progress of this Ph.D. project. As shown, these five selected 

papers can explicitly reflect the objectives of this Ph.D. project from the beginning to the completion 

in a linear and clear manner. At the beginning stage of the Ph.D. project, a systematic literature 

review was first conducted to illustrate and explore the current and future research trends and 

opportunities of sustainable logistics in Industry 4.0. Based on the targeted research directions from 

Paper 1, a holistic and systematic conceptual development of Reverse Logistics 4.0 is given in 

Paper 2, which presents a roadmap and several possible challenges for achieving the smart and 

sustainable transformation of reverse logistic systems. Besides, it also explains why smart reverse 

logistics should be better studied in the context of digitalization and technological innovations. Next, 

based on one of the major challenges of Reverse Logistics 4.0  identified in Paper 2, Paper 3 focuses 

on the methodological development of a two-level decision-support framework combining both 

mathematical optimization and dynamic simulation for designing a dynamic,  smart, and sustainable 

reverse logistics network. The proposed decision-support framework can better capture the nature 

of smart reverse logistics transformation and provide effective decision support and visual 

representation of the system. Last, a conceptual framework from the system integration and digital 

twin’s perspectives was proposed in Paper 4 and Paper 5, which formulated the system structure 

and the key components required for automatic decision-supports through the digital reverse 

logistics twin. These two papers help to guide the development of next-generation methodological 

and system integration for smart reverse logistics management. 
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Figure 4-1 Schematic view of the structure of the selected papers and other published papers in this Ph.D. project. 

In addition, the other published papers (Papers 6-14) have also contributed to both theoretical and 

methodological developments of this project. For instance, Paper 6 discussed the opportunities for 

improving sustainable supply chain management with the key enabling technologies of Industry 4.0. 

In Paper 8, a system dynamic simulation was used at the first stage to yield the estimation of 

infections at the early stage of the COVID-19 outbreak in Wuhan, China, whose results were then 

used as the inputs to a multi-objective mixed integer programming model to optimize the locations 

of temporary waste incinerators during the pandemic. Besides, a combined two-stage optimization-

simulation analysis was performed for route optimization and evaluation of different transportation 

strategies for cold chain vaccine distributions in the COVID-19 outbreak in Paper 7. The research 

results of these papers may also be applicable, to some extent, for solving specified reverse logistics 

challenges.  

 

For the papers that are essential for the subject specified for this Ph.D. project, a brief summary is 

as follows:  

Paper 1 The Application of Industry 4.0 Technologies in Sustainable Logistics: A Systematic 

Literature Review (2012—2020) to Explore Future Research Opportunities  

Through a systematic literature analysis of 115 papers published in peer-reviewed international 

journals between 2012 and 2020, Paper 1 presents a comprehensive understanding of the impacts 

of disruptive technologies on sustainable logistics operations and management in Industry 4.0. A 

bibliometric analysis was first given to show the quantitative insights into several key metrics, i.e., 

publication trend, influential research, co-citation networks, and important keywords. A detailed 

content analysis was then given to show an overview of the current research landscape related to 

the impacts of Industry 4.0 technologies on the performance and sustainability of four main logistics 

activities including production and purchasing, warehousing, transportation, and general system 

integration. The results of Paper 1 show the opportunities brought by Industry 4.0 technologies to 

improve sustainable logistics in economic, environmental, and social dimensions. However, the 
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technology-driven paradigm shift also brings several challenges for sustainable logistics, e.g., the 

trade-offs among conflicting sustainability measures, unclear evaluation of overall benefits and 

lifecycle impacts, etc. Besides, there is also a lack of general guidelines for enterprises to achieve 

sustainability through uptaking of Industry 4.0 technologies. To better guide the future research, 

nine research directions are proposed: 

 

1. Human-centric smart logistics transformation 

2. Multi-objective balanced system design for sustainable logistics operations 

3. Lifecycle environmental impact 

4. Analytical optimization for smart implementation of Industry 4.0 technologies 

5. Digital twin of sustainable logistics systems 

6. Semi-autonomous sustainable transportation solutions 

7. Broad and diversified technology focus 

8. Sustainable reverse logistics 

9. The smart and sustainable logistics solutions for the pandemic 

These research directions have clearly guided the further development of this Ph.D. project. Paper 

2 focuses on smart and sustainable reverse logistics (7,8). Paper 3 develops analytical methods and 

multi-objective models for smart and sustainable reverse logistics design (2, 3, 8). Paper 4 and 

Paper 5 emphasize the methodological and system integration in a digital reverse logistics twin (5, 

8). In addition, the logistical challenges brought by the pandemic are tackled by Paper 7 and Paper 

8 (2, 4, 9). 

Paper 2 Towards the Smart and Sustainable Transformation of Reverse Logistics 4.0: A 

Conceptualization and Research Agenda  

The increasing adoption of new technologies provides opportunities to allow a high level of system 

integration enabled by intelligent devices and smart portals, autonomous robots, and data and 

model-based analytical tools, where the value of technological innovations can be exploited to solve 

various reverse logistics problems. Several studies have been conducted to improve the smartness, 

connectivity, and autonomy of isolated reverse logistics operations, e.g., collection, sorting, etc. 

Based on the findings from the literature and reported case studies, Paper 2 presents a holistic and 

systematic conceptual development of Reverse Logistics 4.0 to guide the smart reverse logistics 

transformation by adopting Industry 4.0 technologies. The conceptual development of Reverse 

Logistics 4.0 is given based on the comparison with the four Industrial Revolutions in history. The 

technology-enabled smartness and service innovation, i.e., individualization, are explicitly 

explained in the reverse logistics context. Furthermore, to explicitly reveal the connection between 

the technological enablers and the smart service and operational transformation, the potential 

impacts of the five main reverse logistics activities are analyzed: 

 

• Smart collection 

• Smart sorting and process management 

• Smart remanufacturing and recycling 

• Smart transportation and distribution 

• Smart disposal 
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To show a clear roadmap toward Reverse Logistics 4.0 through a smart and sustainable 

transformation, Paper 2 specifies a research agenda with a focus on smart reverse logistics network 

management, service innovation, integration, and digital twin. 

Paper 3 A Two-Level Decision-Support Framework for Smart and Sustainable Reverse Logistics 

Network Design  

Based on the findings from the literature review and conceptual development, Paper 3 focuses on 

the methodological development for smart and sustainable reverse logistics network design. A novel 

two-level decision-support framework is proposed considering the trade-off between multiple 

objective functions, smart and dynamic system transformation, parametric uncertainty, real-world 

GIS, and practical operational policies.  The first-level multi-objective mixed integer programming 

model and the second-level dynamic simulation model are connected via a shared database, which 

converts the inputs to the appropriate aggregation levels for respective models. This decision-

support framework uses the strengths of both optimization and simulation, which enables robust 

decision-making and comprehensive performance analysis of smart and sustainable reverse logistics 

network design: 

 

• Stage I (Multi-objective optimization solved with the augmented 𝜀-constraint method): is 

to determine a set of Pareto optimal solutions for reverse logistics network configurations 

considering both economic and environmental objectives. Based on this, a set of candidate 

solutions is selected. 

• Stage II (Dynamic simulation combined with both discrete event simulation and Monte 

Carlo simulation): is to run and evaluate the system performance of each candidate solution 

under a dynamic and realistic environment. The impact of the smart transformation within 

the planning horizon is also evaluated under different scenarios. 

 

Paper 3 is the first research that combines a mathematical optimization model, discrete event 

simulation, and Monte Carlo simulation in supporting the strategic decision-making of reverse 

logistics network design. The proposed two-level decision-support framework is validated through 

a case study in Norway. The results show that the future smart transformation may affect the 

strategic decisions of reverse logistics network design at the initial stage. Besides, incorporating a 

dynamic simulation model can effectively complement the shortcomings of the mathematical 

optimization model and help to yield robust strategic decisions and comprehensive performance 

analyses.  

Paper 4 System Integration for Smart Reverse Logistics Management  

Based on the methodological development in Paper 3 and from the end users’ perspective, Paper 

4 discusses the requirements for system integration in smart reverse logistics management. The 

effective management of a reverse logistics system may require a wide range of analytical tools, 

i.e., predictive analytics, prescriptive analytics, and descriptive analytics, in order to support 

decision-making at strategic, tactical, and operational levels. However, using these analytical tools 

may require different software packages, different coding languages, different data structures, and 

so forth. Paper 4 presents a comprehensive framework for system integration in a smart reverse 
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logistics decision-support system, and seven criteria are defined to evaluate the level of maturity of 

the system integration: 

 

1. Cyber-physical structure 

2. Cloud-based system 

3. Shared databased and data conversion 

4. Flexible network structure 

5. Large model database 

6. Flexible model modification 

7. User-friendly interface 

 

These seven criteria are explained based on the case study performed in Paper 3. Three existing 

software packages in today’s market, i.e., SAP, Optimity, and AnyLogistix, are compared against 

these seven criteria for smart reverse logistics management. Paper 4 identifies a clear roadmap to 

guide the next-generation system integration for smart reverse logistics management, and it also 

defines the criteria for evaluating the level of maturity of system integration.  

Paper 5 A Digital Reverse Logistics Twin for Improving Sustainability in Industry 5.0 

Based on the results from Paper 3 and Paper 4, Paper 5 further develops the concept and method 

of digital reverse logistics twin. As one of the most promising concepts and enablers of Industry 

4.0/5.0, the digital twin has been defined in reverse logistics, primarily from the product- or process-

based perspectives, but not from the system-based perspective. To fill this gap, Paper 5 investigates 

the concept and structure of digital reverse logistics twin from the system perspective: 

 

Digital Reverse Logistics Twin is a data-based digital representation of a real-world reverse 

logistics system, which forms a multi-architecture and high-level integrated information platform 

by integrating different stakeholders, data, and analytical tools to support various proactive and/or 

reactive decisions.  

 

The digital reverse logistics twin is considered a high level of CPS that enables effective system 

visualization and data-driven decision-making with better proactive planning and real-time reactive 

adjustments. Paper 5 shows the structure of the digital reverse logistics twin and partially illustrates 

its application with a remanufacturing network planning problem. Compared with the method in 

Paper 3, the optimization results and the simulation models in Paper 5 can be better and seamlessly 

connected via the automatic data conversion in the shared database. Paper 5 is considered a further 

development of Paper 3 and Paper 4, which shows the future trend in the development of smart 

and sustainable reverse logistics management systems.   

 

From the theoretical and methodological development perspective, Figure 4-2 explicitly illustrates 

the connection among the papers in this Ph.D. project.   
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Figure 4-2 Illustration of the connection among the papers in this Ph.D. project. 

4.2 Conclusions  

Reverse logistics is gaining increasing momentum and has become a strategic emphasis for 

worldwide companies to attain sustainable competitiveness in today's market. The rapid and 

accelerated pace of technological advancements has opened up new opportunities for a smart and 

sustainable reverse logistics transformation in Reverse Logistics 4.0. The literature review shows a 

lack of a systematic analysis of the impacts of disruptive technologies in Industry 4.0 on smart and 

sustainable reverse logistics management. Furthermore, the current mathematical and simulation 

models cannot sufficiently support the reverse logistics network design considering smart 

transformation, dynamicity, uncertainty, and practical operational conditions. Due to these reasons, 

the robustness and reliability of these models may be significantly compromised in the strategic 

decision-making of a smart and sustainable reverse logistics system.  

Table 4-1 The answers to the research questions of the Ph.D. project. 

Research questions Papers Conceptual/Methodological development  
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RQ1:  

What are the impacts of 

disruptive technologies on 

smart and sustainable 

logistics/reverse logistics 

operations?  

Paper 1: 

Bibliometric analysis 

and systematic 

literature review 

Providing a comprehensive overview of the 

recent development and application of the key 

enabling Industry 4.0 technologies in sustainable 

logistics at both intra- and inter-company levels 

to provide a better understanding of the 

challenges and opportunities of the digital 

transformation for sustainable logistics. The 

results identify several research directions to 

guide future research. 

RQ2:  

What is the potential smart 

reverse logistics 

transformation in Industry 4.0? 

Paper 2: 

Conceptual 

development  

Providing a systematic conceptual development 

of Reverse Logistics 4.0 and analyzing the 

opportunities for smart and sustainable reverse 

logistics transformation concerning: 

• Smart collection 

• Smart sorting and process management 

• Smart remanufacturing and recycling 

• Smart transportation and distribution 

• Smart disposal 

RQ3:  

How to design and configure a 

smart and sustainable reverse 

logistics network? 

Paper 3: 

An improved decision-

support framework  

Developing an improved two-level decision-

support system for smart and sustainable reverse 

logistics network design, where the multi-

objective optimization and dynamic simulation 

models are connected with a shared database to 

better model the practical features and analyze 

the dynamic system behaviour of the reverse 

logistics system. 

RQ4:  

How to develop a smart digital 

reverse logistics twin? 

Paper 4 and Paper 5:  

System integration and 

digital reverse 

logistics twin 

 

Proposing a highly integrated and automatic 

structure with the purpose of guiding the next-

generation system integration and the 

development of a fully functional digital twin for 

smart reverse logistics management 

In this Ph.D. project, the aforementioned literature gaps are filled with both conceptual and 

methodological developments. The technological impacts of Industry 4.0 on smart logistics are first 

analyzed to provide several promising research directions in this field. Based on the proposed 

directions, research efforts are given accordingly to the conceptual development of smart 

transformation in Reverse Logistics 4.0, the methodological development of the decision-support 

system for smart and sustainable reverse logistic network design, and the system integration and 

digital twin for smart reverse logistics management. Table 4.1 illustrates how the research questions 

can be answered with the results of the Ph.D. project. The research contributions and industrial 

contributions are discussed in Section 4.2.1 and Section 4.2.2, respectively.  

4.2.1 Research Contributions  

By answering the proposed research questions, this Ph.D. project has made the following 

contributions to the research community related to smart and sustainable reverse logistics 

management: 
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1. This project provides a comprehensive analysis of the impacts of Industry 4.0 on both 

forward and reverse logistics. Nine research directions are suggested to show a clear 

roadmap toward technology-enabled smart and sustainable logistics systems.   

2. This project provides a holistic and systematic conceptualization and definition of Reverse 

Logistics 4.0. It also identifies the key enablers for the smart and sustainable reverse 

logistics transformation.  

3. A novel decision-support framework that integrates multi-objective optimization and 

dynamic simulation is designed for smart and sustainable reverse logistics network design, 

which is validated with a case study. 

4. From the system configuration perspective, the impacts of smart transformation and 

technological upgrades on reverse logistics systems are investigated by using a quantitative 

method.  

5. From the methodological perspective, this project demonstrates the benefits of combining 

advanced optimization with dynamic simulation in the decision support of reverse logistics 

network design under a highly dynamic, uncertain, and closer to a real-life environment.  

6. This project presents a comprehensive discussion on the requirements of system integration 

and defines the structure of the digital reverse logistics twin for smart and sustainable 

reverse logistics management. The data flows and conversion among different elements and 

analytical models are also clearly specified. 

4.2.2 Industrial and Managerial Contributions 

The industrial and managerial contributions are discussed as follows: 

1. The theoretical and conceptual study of Industry 4.0 enabled sustainable logistics provides 

the logistics companies and practitioners with a clear understanding and roadmap to 

increase the chance of success of adopting new technologies in the smart logistics 

transformation. In this regard, one should bear in mind that the benefits should never be 

overestimated, and the challenges and commitments required should never be 

underestimated. 

2. For government, supply chain and logistics managers, and practitioners, this project 

provides a hands-on decision-support framework to optimize the strategic network 

decisions and evaluate new technologies and new operational policies holistically. 

3. This project illustrates the application of the proposed decision-support framework with a 

case study and discusses several managerial implications. For example, the technological 

upgrade may be carefully planned due to its potential impacts on the costs, carbon 

emissions, and service level. From the practical perspective, these discussions may also 

provide other companies with implications for guiding their logistics transformations in the 

Industry 4.0 era. 

4. From the software development perspective, this project defines the structure and key 

elements for a system-based digital reverse logistics twin. Seven key criteria are also 

defined for evaluating the maturity level of the system integration in a digital reverse 

logistics twin, which can be used for better guiding future software development toward 

smart and sustainable reverse logistics management. 
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4.3 Limitations and Future Works 

The Ph.D. project has proposed new concepts and methods for supporting the decision-making for smart 

and sustainable reverse logistics network design in Reverse logistics 4.0. However, there are still several 

limitations that need to be improved in future research: 

1. First, the parametric uncertainty is not considered in the first-stage multi-objective optimization 

model of the decision-support framework but is evaluated by dynamic simulation. Since the 

uncertainties may influence strategic location decisions to a large extent, future research is thus 

suggested to improve the optimization model to better manage uncertainty.  

2. In this Ph.D. project, the economic and environmental indicators are mainly considered in the 

decision-making of smart and sustainable reverse logistics network design. Future research is 

needed to better incorporate the social performance in the decision-support framework. 

3. In the validation stage of the proposed decision-support framework, several assumptions are 

used due to data unavailability, i.e., lack of quantitative data related to smart transformation. 

For future improvement, more quantitative data needs to be acquired for achieving more 

accurate analytical results.   

4. The designed decision-support framework is validated with a case study, which may be 

inadequate to show an overall picture of the impacts of smart transformation and technological 

adoption on reverse logistics network design. Therefore, future works may be performed to 

implement the decision-support framework in other regions, which may yield different insights. 

5. In this Ph.D. project, a conceptual framework of a digital reverse logistics twin was designed 

for methodological and system integration. However, only the combination of prescriptive 

analytics and descriptive analytics is focused on. Future research is thus suggested to also 

combine predictive analytics and real-time data in smart and sustainable reverse logistics 

management.  

6. Last but not the least, this Ph.D. project focuses primarily on the technology-driven paradigm 

transition of Reverse Logistics 4.0. However, increasing discussions have been given to the 

human centricity, resilience, and sustainability of smart logistics transformation in Industry 5.0 

[193], so future research is invited to investigate the impact of Industry 5.0 on reverse logistics. 



References 

51 | P a g e  

REFERENCES 

1. Gharfalkar, M., Z. Ali, and G. Hillier, Clarifying the disagreements on various reuse options: 

Repair, recondition, refurbish and remanufacture. Waste Management & Research, 2016. 

34(10)  p. 995-1005. 

2. Dowlatshahi, S., Developing a theory of reverse logistics. Interfaces, 2000. 30(3)  p. 143-155. 

3. Agrawal, S., R.K. Singh, and Q. Murtaza, A literature review and perspectives in reverse 

logistics. Resources, Conservation and Recycling, 2015. 97  p. 76-92. 

4. Sarkis, J., M.M. Helms, and A.A. Hervani, Reverse logistics and social sustainability. 

Corporate Social Responsibility and Environmental Management, 2010. 17(6)  p. 337-354. 

5. Xu, Z., et al., Global reverse supply chain design for solid waste recycling under uncertainties 

and carbon emission constraint. Waste Management, 2017. 64  p. 358-370. 

6. Eurostat, E.w., Waste electrical and electronic equipment (WEEE) by waste management 

operations. Accessed on: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do 

[15.12.2021]. 2021. 

7. Tiseo, I., Global E-Waste - Statistics & Facts. Waste Management. Available on: 

https://www.statista.com/topics/3409/electronic-waste-worldwide/ [17.08.2021]. 2021. 

8. Tiseo, I., Outlook on global e-waste generation 2019-2030. Waste Management. Available on: 

https://www.statista.com/statistics/1067081/generation-electronic-waste-globally-forecast/ 

[17.08.2021]. 2021. 

9. WEF, A New Circular Vision for Electronics: Time for a Global Reboot. Accessed on: 

https://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf 

[12.01.2022]. 2019. 

10. Ylä-Mella, J., R.L. Keiski, and E. Pongrácz, End-of-Use vs. End-of-Life: When Do Consumer 

Electronics Become Waste? Resources, 2022. 11(2)  p. 18. 

11. Eurostat, Waste statistics - electrical and electronic equipment: Eurostat (online data code: 

env_waseleeos and env_waselee). 2019. 

12. UNEP, UN report: Time to seize opportunity, tackle challenge of e-waste. Accessed on: 

https://www.unep.org/news-and-stories/press-release/un-report-time-seize-opportunity-tackle-

challenge-e-waste [06.01.2021]. 2019. 

13. EU, European Commission. Environment: Higher recycling targets to drive transition to a 

Circular Economy with new jobs and sustainable growth. Accessed on: 

https://ec.europa.eu/commission/presscorner/detail/en/IP_14_763 [12.01.2022]. 2014. 

14. Charnley, F., et al., Simulation to Enable a Data-Driven Circular Economy. Sustainability, 2019. 

11  p. 3379. 

15. Directive, E., Directive 2012/19/EU of the European Parliament and of the Council of 4 July 

2012 on waste electrical and electronic equipment (WEEE). 2012. 

16. Van Erp, J. and W. Huisman, Smart regulation and enforcement of illegal disposal of electronic 

waste. Criminology & Pub. Pol'y, 2010. 9  p. 579. 

17. Hernandez, R.J., C. Miranda, and J. Goñi, Empowering sustainable consumption by giving back 

to consumers the ‘right to repair’. Sustainability, 2020. 12(3)  p. 850. 

https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do
https://www.statista.com/topics/3409/electronic-waste-worldwide/
https://www.statista.com/statistics/1067081/generation-electronic-waste-globally-forecast/
https://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf
https://www.unep.org/news-and-stories/press-release/un-report-time-seize-opportunity-tackle-challenge-e-waste
https://www.unep.org/news-and-stories/press-release/un-report-time-seize-opportunity-tackle-challenge-e-waste
https://ec.europa.eu/commission/presscorner/detail/en/IP_14_763


A Decision-Support Framework for Smart and Sustainable Reverse 

Logistics Network Design by Xu Sun 

52 | P a g e  

18. Šajn, N., European Parliamentary Research Service, Right to repair. Accessed on  

:https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698869/EPRS_BRI(2022)69886

9_EN.pdf [12.01.2022]. 2022. 

19. Li, Y., et al., Propensity of green consumption behaviors in representative cities in China. 

Journal of Cleaner Production, 2016. 133  p. 1328-1336. 

20. Choi, T.M., et al., Disruptive technologies and operations management in the Industry 4.0 era 

and beyond. Production and Operations Management, 2021. 

21. Bai, C., et al., Industry 4.0 technologies assessment: A sustainability perspective. International 

Journal of Production Economics, 2020. 229  p. 107776. 

22. Allaoui, H., Y. Guo, and J. Sarkis, Decision support for collaboration planning in sustainable 

supply chains. Journal of Cleaner Production, 2019. 229  p. 761-774. 

23. Rauter, R., J. Jonker, and R.J. Baumgartner, Going one's own way: drivers in developing 

business models for sustainability. Journal of Cleaner Production, 2017. 140  p. 144-154. 

24. Vahabzadeh, A.H., A. Asiaei, and S. Zailani, Green decision-making model in reverse logistics 

using FUZZY-VIKOR method. Resources, Conservation and Recycling, 2015. 103  p. 125-138. 

25. Dev, N.K., R. Shankar, and S. Swami, Diffusion of green products in industry 4.0: Reverse 

logistics issues during design of inventory and production planning system. International 

Journal of Production Economics, 2020. 223  p. 107519. 

26. Sung, S.-I., Y.-S. Kim, and H.-S. Kim, Study on reverse logistics focused on developing the 

collection signal algorithm based on the sensor data and the concept of Industry 4.0. Applied 

Sciences, 2020. 10(14)  p. 5016. 

27. Wang, X.V. and L. Wang, Digital twin-based WEEE recycling, recovery and remanufacturing 

in the background of Industry 4.0. International Journal of Production Research, 2019. 57(12)  

p. 3892-3902. 

28. Kerin, M. and D.T. Pham, A review of emerging industry 4.0 technologies in remanufacturing. 

Journal of Cleaner Production, 2019. 237  p. 117805. 

29. Liu, S., et al., An ‘Internet of Things’ enabled dynamic optimization method for smart vehicles 

and logistics tasks. Journal of Cleaner Production, 2019. 215  p. 806-820. 

30. Rogers, D.S. and R. Tibben‐Lembke, An examination of reverse logistics practices. Journal 

of Business Logistics, 2001. 22(2)  p. 129-148. 

31. Herold, M. and G. Kovács, Creating competitive advantage with end-of-use products. Logistik 

Management, 2005. 7(1)  p. 42-56. 

32. Fleischmann, M., et al., Quantitative models for reverse logistics: A review. European Journal 

of Operational Research, 1997. 103(1)  p. 1-17. 

33. Ravi, V. and R. Shankar, Survey of reverse logistics practices in manufacturing industries: an 

Indian context. Benchmarking: An International Journal, 2015. 

34. Atasu, A., V.D.R. Guide Jr, and L.N. Van Wassenhove, So what if remanufacturing cannibalizes 

my new product sales? California Management Review, 2010. 52(2)  p. 56-76. 

35. Calvo-Porral, C. and J.-P. Lévy-Mangin, The circular economy business model: Examining 

consumers’ acceptance of recycled goods. Administrative Sciences, 2020. 10(2)  p. 28. 

36. Yu, H. and W. Solvang, A Stochastic Programming Approach with Improved Multi-Criteria 

Scenario-Based Solution Method for Sustainable Reverse Logistics Design of Waste Electrical 

and Electronic Equipment (WEEE). Sustainability, 2016. 8(12)  p. 1331. 

37. Fleischmann, M., et al., Reverse logistics network design, in Reverse logistics. 2004, Springer. 

p. 65-94. 

https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698869/EPRS_BRI(2022)698869_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698869/EPRS_BRI(2022)698869_EN.pdf


References 

53 | P a g e  

38. Melo, M.T., S. Nickel, and F. Saldanha-Da-Gama, Facility location and supply chain 

management–A review. European Journal of Operational Research, 2009. 196(2)  p. 401-412. 

39. Fleischmann, M., Reverse logistics network structures and design. 2003. 

40. Alumur, S.A., et al., Multi-period reverse logistics network design. European Journal of 

Operational Research, 2012. 220(1)  p. 67-78. 

41. John, S.T., et al., Multi-period reverse logistics network design for used refrigerators. Applied 

Mathematical Modelling, 2018. 54  p. 311-331. 

42. Alshamrani, A., K. Mathur, and R.H. Ballou, Reverse logistics: simultaneous design of delivery 

routes and returns strategies. Computers & Operations Research, 2007. 34(2)  p. 595-619. 

43. Bouzon, M., K. Govindan, and C.M.T. Rodriguez, Evaluating barriers for reverse logistics 

implementation under a multiple stakeholders’ perspective analysis using grey decision making 

approach. Resources, Conservation and Recycling, 2018. 128  p. 315-335. 

44. Pamminger, R., S. Glaser, and W. Wimmer, Modelling of different circular end-of-use scenarios 

for smartphones. The International Journal of Life Cycle Assessment, 2021. 26(3)  p. 470-482. 

45. Ferguson, N. and J. Browne, Issues in end-of-life product recovery and reverse logistics. 

Production Planning & Control, 2001. 12(5)  p. 534-547. 

46. Cong, L., F. Zhao, and J.W. Sutherland, A design method to improve end-of-use product value 

recovery for circular economy. Journal of Mechanical Design, 2019. 141(4). 

47. Ohri, A., Product End of Life (EOL) Plan: A Guide In 5 Important Points. 2021. 

48. Jungmeier, G., et al., End of use and end of life aspects in LCA of wood products–Selection of 

waste management options and LCA integration. Life cycle assessment of forestry and forest 

products, 2001  p. 1-4. 

49. Bauer, T., et al., Design for cascading applications reuse – understandings of an emerging end-

of-use strategy and propositions for its implementation. Journal of Engineering Design, 2021. 

32(3)  p. 140-163. 

50. Sun, X., H. Yu, and W.D. Solvang. System Integration for Smart Reverse Logistics 

Management. in 2022 IEEE/SICE International Symposium on System Integration (SII). 2022. 

IEEE. 

51. Vahdat, V. and M.A. Vahdatzad, Accelerated Benders' Decomposition for Integrated 

Forward/Reverse Logistics Network Design under Uncertainty. Logistics-Basel, 2017. 1(2). 

52. Tancrez, J.-S., J.-C. Lange, and P. Semal, A location-inventory model for large three-level 

supply chains. Transportation Research Part E: Logistics and Transportation Review, 2012. 

48(2)  p. 485-502. 

53. binti Atan, R. Enhancing service quality through Service Level Agreement (SLA) full 

implementation. in 2016 2nd International Conference on Science in Information Technology 

(ICSITech). 2016. IEEE. 

54. Timperio, G., et al., Integrated decision support framework for distribution network design. 

International Journal of Production Research, 2020. 58(8)  p. 2490-2509. 

55. Brito, M.P.d. and R. Dekker, A framework for reverse logistics, in Reverse logistics. 2004, 

Springer. p. 3-27. 

56. Alshamsi, A. and A. Diabat, A Genetic Algorithm for Reverse Logistics network design: A case 

study from the GCC. Journal of Cleaner Production, 2017. 151  p. 652-669. 

57. Soleimani, H. and K. Govindan, Reverse logistics network design and planning utilizing 

conditional value at risk. European Journal of Operational Research, 2014. 237(2)  p. 487-497. 



A Decision-Support Framework for Smart and Sustainable Reverse 

Logistics Network Design by Xu Sun 

54 | P a g e  

58. Azizi, V., G. Hu, and M. Mokari, A two-stage stochastic programming model for multi-period 

reverse logistics network design with lot-sizing. Computers & Industrial Engineering, 2020. 

143  p. 106397. 

59. Gao, X., A novel reverse logistics network design considering multi-level investments for 

facility reconstruction with environmental considerations. Sustainability, 2019. 11(9)  p. 2710. 

60. Rojko, A., Industry 4.0 concept: Background and overview. International Journal of Interactive 

Mobile Technologies, 2017. 11(5)  p. 77-90. 

61. Lasi, H., et al., Industry 4.0. Business & information systems engineering, 2014. 6(4)  p. 239-

242. 

62. WEF, The Next Economic Growth Engine: Scaling Fourth Industrial Revolution Technologies 

in Production. Available at: 

http://www3.weforum.org/docs/WEF_Technology_and_Innovation_The_Next_Economic_Gr

owth_Engine.pdf [16.01.2022]. 2018. 

63. Salkin, C., et al., A conceptual framework for Industry 4.0, in Industry 4.0: Managing the Digital 

Transformation. 2018, Springer. p. 3-23. 

64. Weking, J., et al., Leveraging industry 4.0–A business model pattern framework. International 

Journal of Production Economics, 2020. 225  p. 107588. 

65. Bag, S., S. Gupta, and S. Kumar, Industry 4.0 adoption and 10R advance manufacturing 

capabilities for sustainable development. International Journal of Production Economics, 2021. 

231  p. 107844. 

66. Esmaeilian, B., et al., Blockchain for the future of sustainable supply chain management in 

Industry 4.0. Resources, Conservation and Recycling, 2020. 163. 

67. Sutawijaya, A.H. and L.C. Nawangsari, What is the impact of industry 4.0 to green supply 

chain? Journal of Environmental Treatment Techniques, 2020. 8(1)  p. 207-213. 

68. Strandhagen, J.O., et al., Logistics 4.0 and emerging sustainable business models. Advances in 

Manufacturing, 2017. 5(4)  p. 359-369. 

69. Barreto, L., A. Amaral, and T. Pereira, Industry 4.0 implications in logistics: an overview. 

Procedia Manufacturing, 2017. 13  p. 1245-1252. 

70. Akinlar, S., Logistics 4.0 and challenges for the supply chain planning and IT. Istanbul, Sept, 

2014. 

71. Yu, H. and W.D. Solvang. Enhancing the competitiveness of manufacturers through Small-

scale Intelligent Manufacturing System (SIMS): A supply chain perspective. in 2017 6th 

International Conference on Industrial Technology and Management (ICITM). 2017. IEEE. 

72. Winkelhaus, S. and E.H. Grosse, Logistics 4.0: a systematic review towards a new logistics 

system. International Journal of Production Research, 2020. 58(1)  p. 18-43. 

73. Sun, X., et al., The application of Industry 4.0 technologies in sustainable logistics: A systematic 

literature review (2012–2020) to explore future research opportunities. Environmental Science 

and Pollution Research, 2021  p. 1-32. 

74. Dev, N.K., R. Shankar, and F.H. Qaiser, Industry 4.0 and circular economy: Operational 

excellence for sustainable reverse supply chain performance. Resources, Conservation and 

Recycling, 2020. 153  p. 104583. 

75. Sun, X., et al., A Two-Level Decision-Support Framework for Smart and Sustainable Reverse 

Logistics Network Design. In Press. 2022. 

76. Sun X, Y.H., Solvang WD, Towards the Smart and Sustainable Transformation of  Reverse 

Logistics 4.0: A Conceptualization and Research Agenda. 2022  In Press. 

http://www3.weforum.org/docs/WEF_Technology_and_Innovation_The_Next_Economic_Growth_Engine.pdf
http://www3.weforum.org/docs/WEF_Technology_and_Innovation_The_Next_Economic_Growth_Engine.pdf


References 

55 | P a g e  

77. WEF, Technology and Innovation for the Future of Production: Accelerating Value Creation. 

Accessed on: 

https://www3.weforum.org/docs/WEF_White_Paper_Technology_Innovation_Future_of_Pro

duction_2017.pdf [10.02.2022]. 2017. 

78. Symons, K., Green-tech and Industry 4.0: supporting a sustainable future. Accessed on: 

https://www.orange-business.com/en/blogs/green-tech-and-industry-40-supporting-

sustainable-future [09.02.2022]. 2021. 

79. Chen, Z. and L. Huang, Digital twins for information-sharing in remanufacturing supply chain: 

A review. Energy, 2021. 220  p. 119712. 

80. ACEA, Reducing CO2 emissions from heavy-duty vehicles. Accessed on: 

https://reducingco2together.eu/assets/pdf/trucks.pdf [09.02.2022]. 2017. 

81. Zhang, L., et al., Fuel economy in truck platooning: A literature overview and directions for 

future research. Journal of Advanced Transportation, 2020. 2020. 

82. Govindan, K. and H. Gholizadeh, Robust network design for sustainable-resilient reverse 

logistics network using big data: A case study of end-of-life vehicles. Transportation Research 

Part E: Logistics and Transportation Review, 2021. 149  p. 102279. 

83. Tosarkani, B.M., S.H. Amin, and H. Zolfagharinia, A scenario-based robust possibilistic model 

for a multi-objective electronic reverse logistics network. International Journal of Production 

Economics, 2020. 224. 

84. Tuzkaya, G., B. Gulsun, and S. Onsel, A methodology for the strategic design of reverse 

logistics networks and its application in the Turkish white goods industry. International Journal 

of Production Research, 2011. 49(15)  p. 4543-4571. 

85. Kannan, D., et al., A carbon footprint based reverse logistics network design model. Resources, 

conservation and recycling, 2012. 67  p. 75-79. 

86. Li, S., et al., Design of a Multiobjective Reverse Logistics Network Considering the Cost and 

Service Level. Mathematical Problems in Engineering, 2012. 2012. 

87. Lieckens, K. and N. Vandaele, Multi-level reverse logistics network design under uncertainty. 

International Journal of Production Research, 2012. 50(1)  p. 23-40. 

88. Eskandarpour, M., S.H. Zegordi, and E. Nikbakhsh, A parallel variable neighborhood search 

for the multi-objective sustainable post-sales network design problem. International Journal of 

Production Economics, 2013. 145(1)  p. 117-131. 

89. Keyvanshokooh, E., et al., A dynamic pricing approach for returned products in integrated 

forward/reverse logistics network design. Applied Mathematical Modelling, 2013. 37(24)  p. 

10182-10202. 

90. Alumur, S.A. and I. Tari, Collection Center Location with Equity Considerations in Reverse 

Logistics Networks. INFOR, 2014. 52(4)  p. 157-173. 

91. Bing, X.Y., J.M. Bloemhof-Ruwaard, and J. van der Vorst, Sustainable reverse logistics 

network design for household plastic waste. Flexible Services and Manufacturing Journal, 

2014. 26(1-2)  p. 119-142. 

92. Hatefi, S.M. and F. Jolai, Robust and reliable forward-reverse logistics network design under 

demand uncertainty and facility disruptions. Applied Mathematical Modelling, 2014. 38(9-10)  

p. 2630-2647. 

93. Litvinchev, I., et al., Multiperiod and stochastic formulations for a closed loop supply chain 

with incentives. Journal of  Computer and Systems Sciences International, 2014. 53(2)  p. 201-

211. 

https://www3.weforum.org/docs/WEF_White_Paper_Technology_Innovation_Future_of_Production_2017.pdf
https://www3.weforum.org/docs/WEF_White_Paper_Technology_Innovation_Future_of_Production_2017.pdf
https://www.orange-business.com/en/blogs/green-tech-and-industry-40-supporting-sustainable-future
https://www.orange-business.com/en/blogs/green-tech-and-industry-40-supporting-sustainable-future
https://reducingco2together.eu/assets/pdf/trucks.pdf


A Decision-Support Framework for Smart and Sustainable Reverse 

Logistics Network Design by Xu Sun 

56 | P a g e  

94. Mirakhorli, A., Fuzzy multi-objective optimization for closed loop logistics network design in 

bread-producing industries. International Journal of Advanced Manufacturing Technology, 

2014. 70(1-4)  p. 349-362. 

95. Ramos, T.R.P., M.I. Gomes, and A.P. Barbosa-Póvoa, Planning a sustainable reverse logistics 

system: Balancing costs with environmental and social concerns. Omega, 2014. 48  p. 60-74. 

96. Suyabatmaz, A.C., F.T. Altekin, and G. Sahin, Hybrid simulation-analytical modeling 

approaches for the reverse logistics network design of a third-party logistics provider. 

Computers & Industrial Engineering, 2014. 70  p. 74-89. 

97. Alshamsi, A. and A. Diabat, A reverse logistics network design. Journal of Manufacturing 

Systems, 2015. 37  p. 589-598. 

98. Aras, N., et al., Locating recycling facilities for IT-based electronic waste in Turkey. Journal of 

Cleaner Production, 2015. 105  p. 324-336. 

99. Ayvaz, B., B. Bolat, and N. Aydın, Stochastic reverse logistics network design for waste of 

electrical and electronic equipment. Resources, conservation and recycling, 2015. 104  p. 391-

404. 

100. Baykasoglu, A. and K. Subulan, An analysis of fully fuzzy linear programming with fuzzy 

decision variables through logistics network design problem. Knowledge-Based Systems, 2015. 

90  p. 165-184. 

101. Galvez, D., et al., Reverse logistics network design for a biogas plant: An approach based on 

MILP optimization and Analytical Hierarchical Process (AHP). Journal of Manufacturing 

Systems, 2015. 37  p. 616-623. 

102. Hatefi, S.M., et al., A credibility-constrained programming for reliable forward-reverse logistics 

network design under uncertainty and facility disruptions. International Journal of Computer 

Integrated Manufacturing, 2015. 28(6)  p. 664-678. 

103. Hatefi, S.M., et al., Reliable design of an integrated forward-revere logistics network under 

uncertainty and facility disruptions: A fuzzy possibilistic programing model. KSCE Journal of 

Civil Engineering, 2015. 19(4)  p. 1117-1128. 

104. Yanik, S., Reverse Logistics Network Design under the Risk of Hazardous Materials 

Transportation. Human and Ecological Risk Assessment, 2015. 21(5)  p. 1277-1298. 

105. Chari, N., U. Venkatadri, and C. Diallo, Design of a reverse logistics network for recyclable 

collection in Nova Scotia using compaction trailers. INFOR, 2016. 54(1)  p. 1-18. 

106. Govindan, K., P. Paam, and A.-R. Abtahi, A fuzzy multi-objective optimization model for 

sustainable reverse logistics network design. Ecological indicators, 2016. 67  p. 753-768. 

107. Hatefi, S.M., et al., Integrated forward-reverse logistics network design under uncertainty and 

reliability consideration. Scientia Iranica, 2016. 23(2)  p. 721-735. 

108. Li, S., et al., Multiobjective Optimization for Multiperiod Reverse Logistics Network Design. 

IEEE Transactions on Engineering Management, 2016. 63(2)  p. 223-236. 

109. Qiang, S. and X.Z. Zhou, Robust reverse logistics network design for the waste of electrical and 

electronic equipment (WEEE) under recovery uncertainty. Journal of Environmental Biology, 

2016. 37(5)  p. 1153-1165. 

110. Yu, H. and W.D. Solvang, A general reverse logistics network design model for product reuse 

and recycling with environmental considerations. International Journal of Advanced 

Manufacturing Technology, 2016. 87(9-12)  p. 2693-2711. 

111. Yu, H. and W.D. Solvang, A Stochastic Programming Approach with Improved Multi-Criteria 

Scenario-Based Solution Method for Sustainable Reverse Logistics Design of Waste Electrical 

and Electronic Equipment (WEEE). Sustainability, 2016. 8(12). 



References 

57 | P a g e  

112. Yuchi, Q.L., et al., A Location-Inventory-Routing Problem in Forward and Reverse Logistics 

Network Design. Discrete Dynamics in Nature and Society, 2016. 2016. 

113. Zohal, M. and H. Soleimani, Developing an ant colony approach for green closed-loop supply 

chain network design: a case study in gold industry. Journal of Cleaner Production, 2016. 133  

p. 314-337. 

114. de Souza, V., M. Borsato, and J. Bloemhof, Designing Eco-Effective Reverse Logistics 

Networks. Journal of Industrial Integration and Management-Innovation and 

Entrepreneurship, 2017. 2(1). 

115. Fattahi, M. and K. Govindan, Integrated forward/reverse logistics network design under 

uncertainty with pricing for collection of used products. Annals of Operations Research, 2017. 

253(1)  p. 193-225. 

116. John, S.T., R. Sridharan, and P.N.R. Kumar, Multi-period reverse logistics network design with 

emission cost. International Journal of Logistics Management, 2017. 28(1)  p. 127-149. 

117. Temur, G.T. and B. Bolat, Evaluating efforts to build sustainable WEEE reverse logistics 

network design: comparison of regulatory and non-regulatory approaches. International 

Journal of  Sustainable Engineering, 2017. 10(6)  p. 358-383. 

118. Temur, G.T. and S. Yanik, A Novel Approach for Multi-Period Reverse Logistics Network 

Design under High Uncertainty. International Journal of Computational Intelligence Systems, 

2017. 10(1)  p. 1168-1185. 

119. Yu, H. and W.D. Solvang, A carbon-constrained stochastic optimization model with augmented 

multi-criteria scenario-based risk-averse solution for reverse logistics network design under 

uncertainty. Journal of Cleaner Production, 2017. 164  p. 1248-1267. 

120. Banguera, L.A., et al., Reverse logistics network design under extended producer responsibility: 

The case of out-of-use tires in the Gran Santiago city of Chile. International Journal of 

Production Economics, 2018. 205  p. 193-200. 

121. John, S.T., R. Sridharan, and P.N.R. Kumar, Reverse logistics network design: a case of mobile 

phones and digital cameras. International Journal of Advanced Manufacturing Technology, 

2018. 94(1-4)  p. 615-631. 

122. John, S.T., et al., Multi-period reverse logistics network design for used refrigerators. Applied 

Mathematical Modelling, 2018. 54  p. 311-331. 

123. Liao, T.Y., Reverse logistics network design for product recovery and remanufacturing. Applied 

Mathematical Modelling, 2018. 60  p. 145-163. 

124. Rahimi, M. and V. Ghezavati, Sustainable multi-period reverse logistics network design and 

planning under uncertainty utilizing conditional value at risk (CVaR) for recycling construction 

and demolition waste. Journal of Cleaner Production, 2018. 172  p. 1567-1581. 

125. Yu, H. and W.D. Solvang, Incorporating flexible capacity in the planning of a multi-product 

multi-echelon sustainable reverse logistics network under uncertainty. Journal of cleaner 

production, 2018. 198  p. 285-303. 

126. Farrokh, M., et al., A novel robust fuzzy stochastic programming for closed loop supply chain 

network design under hybrid uncertainty. Fuzzy Sets and Systems, 2018. 341  p. 69-91. 

127. Gao, X.H., A Novel Reverse Logistics Network Design Considering Multi-Level Investments 

for Facility Reconstruction with Environmental Considerations. Sustainability, 2019. 11(9). 

128. Oyola-Cervantes, J. and R. Amaya-Mier, Reverse logistics network design for large off-the-

road scrap tires from mining sites with a single shredding resource scheduling application. 

Waste Management, 2019. 100  p. 219-229. 



A Decision-Support Framework for Smart and Sustainable Reverse 

Logistics Network Design by Xu Sun 

58 | P a g e  

129. Reddy, K.N., A. Kumar, and E.E.F. Ballantyne, A three-phase heuristic approach for reverse 

logistics network design incorporating carbon footprint. International Journal of Production 

Research, 2019. 57(19)  p. 6090-6114. 

130. Trochu, J., A. Chaabane, and M. Ouhimmou, A two-stage stochastic optimization model for 

reverse logistics network design under dynamic suppliers' locations. Waste Management, 2019. 

95  p. 569-583. 

131. Yuchi, Q.L., et al., A Bi-Objective Reverse Logistics Network Design Under the Emission 

Trading Scheme. IEEE ACCESS, 2019. 7  p. 105072-105085. 

132. Zarbakhshnia, N., et al., A novel multi-objective model for green forward and reverse logistics 

network design. Journal of Cleaner Production, 2019. 208  p. 1304-1316. 

133. Xiao, Z., et al., Location-allocation problem of reverse logistics for end-of-life vehicles based 

on the measurement of carbon emissions. Computers & Industrial Engineering, 2019. 127  p. 

169-181. 

134. Kuşakcı, A.O., et al., Optimization of reverse logistics network of End of Life Vehicles under 

fuzzy supply: A case study for Istanbul Metropolitan Area. Journal of cleaner production, 2019. 

215  p. 1036-1051. 

135. Gonçalves, A.T.T., et al., Discrete event simulation as a decision-making tool for end-of-life 

tire reverse logistics in a Brazilian city consortium. Environmental Science and Pollution 

Research, 2019. 26(23)  p. 23994-24009. 

136. de Oliveira, R.L., et al., Discrete event simulation to aid decision-making and mitigation in solid 

waste management. Mitigation and Adaptation Strategies for Global Change, 2019  p. 1-19. 

137. Elia, V., M.G. Gnoni, and F. Tornese, Designing a sustainable dynamic collection service for 

WEEE: an economic and environmental analysis through simulation. Waste Management & 

Research, 2019. 37(4)  p. 402-411. 

138. Ameli, M., S. Mansour, and A. Ahmadi-Javid, A simulation-optimization model for sustainable 

product design and efficient end-of-life management based on individual producer 

responsibility. Resources, Conservation and Recycling, 2019. 140  p. 246-258. 

139. Azizi, V., G.P. Hu, and M. Mokari, A two-stage stochastic programming model for multi-period 

reverse logistics network design with lot-sizing. Computers & Industrial Engineering, 2020. 

143. 

140. Kargar, S., M. Pourmehdi, and M.M. Paydar, Reverse logistics network design for medical 

waste management in the epidemic outbreak of the novel coronavirus (COVID-19). Science of 

the Total Environment, 2020. 746. 

141. Lu, S., et al., Integrated forward and reverse logistics network design for a hybrid assembly-

recycling system under uncertain return and waste flows: A fuzzy multi-objective programming. 

Journal of Cleaner Production, 2020. 243. 

142. Pan, X.Y., Q. Xie, and Y.B. Feng, Designing recycling networks for construction and 

demolition waste based on reserve logistics research field. Journal of Cleaner Production, 2020. 

260. 

143. Reddy, K.N., et al., Effect of carbon tax on reverse logistics network design. Computers & 

Industrial Engineering, 2020. 139. 

144. Ren, Y.J., et al., A genetic algorithm for fuzzy random and low-carbon integrated 

forward/reverse logistics network design. Neural Computing & Applicatioins, 2020. 32(7)  p. 

2005-2025. 

145. Safdar, N., et al., Reverse logistics network design of e-waste management under the triple 

bottom line approach. Journal of Cleaner Production, 2020. 272  p. 122662. 



References 

59 | P a g e  

146. Temucin, T. and G. Tuzkaya, A multi-objective reverse logistics network design model for 

after-sale services and a tabu search based methodology. Journal of Intelligent & Fuzzy Systems, 

2020. 38(4)  p. 4139-4157. 

147. Trochu, J., A. Chaabane, and M. Ouhimmou, A carbon-constrained stochastic model for eco-

efficient reverse logistics network design under environmental regulations in the CRD industry. 

Journal of Cleaner Production, 2020. 245. 

148. Yang, C.X. and J.G. Chen, Robust design for a multi-echelon regional construction and 

demolition waste reverse logistics network based on decision Maker's conservative attitude. 

Journal of Cleaner Production, 2020. 273. 

149. Yu, H., et al., A stochastic network design problem for hazardous waste management. Journal 

of cleaner production, 2020. 277  p. 123566. 

150. Budak, A., Sustainable reverse logistics optimization with triple bottom line approach: An 

integration of disassembly line balancing. Journal of Cleaner Production, 2020. 270  p. 122475. 

151. Gao, X. and C. Cao, A novel multi-objective scenario-based optimization model for sustainable 

reverse logistics supply chain network redesign considering facility reconstruction. Journal of 

Cleaner Production, 2020. 270  p. 122405. 

152. Tosarkani, B.M., S.H. Amin, and H. Zolfagharinia, A scenario-based robust possibilistic model 

for a multi-objective electronic reverse logistics network. International Journal of Production 

Economics, 2020. 224  p. 107557. 

153. Yu, H. and W.D. Solvang, A fuzzy-stochastic multi-objective model for sustainable planning 

of a closed-loop supply chain considering mixed uncertainty and network flexibility. Journal of 

Cleaner Production, 2020. 266  p. 121702. 

154. Nayeri, S., et al., Multi-objective fuzzy robust optimization approach to sustainable closed-loop 

supply chain network design. Computers & Industrial Engineering, 2020. 148  p. 106716. 

155. Zarbakhshnia, N., et al., A novel sustainable multi-objective optimization model for forward 

and reverse logistics system under demand uncertainty. Annals of Operations Research, 2020. 

295(2)  p. 843-880. 

156. Hao, H., et al., Reverse Logistics Network Design of Electric Vehicle Batteries considering 

Recall Risk. Mathematical Problems in Engineering, 2021. 2021. 

157. Hashemi, S.E., A fuzzy multi-objective optimization model for a sustainable reverse logistics 

network design of municipal waste-collecting considering the reduction of emissions. Journal 

of Cleaner Production, 2021. 318. 

158. Islam, M.T., et al., Reverse logistics network design for waste solar photovoltaic panels: A case 

study of New South Wales councils in Australia. Waste Management & Research, 2021. 39(2)  

p. 386-395. 

159. Roudbari, E.S., S.F. Ghomi, and M.S. Sajadieh, Reverse logistics network design for product 

reuse, remanufacturing, recycling and refurbishing under uncertainty. Journal of Manufacturing 

Systems, 2021. 60  p. 473-486. 

160. Song, S.X., Y.T. Tian, and D. Zhou, Reverse Logistics Network Design and Simulation for 

Automatic Teller Machines Based on Carbon Emission and Economic Benefits: A Study of the 

Anhui Province ATMs Industry. Sustainability, 2021. 13(20). 

161. Wang, Z.G., L.F. Huang, and C.X. He, A multi-objective and multi-period optimization model 

for urban healthcare waste's reverse logistics network design. Journal of Combinatorial 

Optimizaiton, 2021. 42(4)  p. 785-812. 

162. Shahparvari, S., et al., Closing the loop: Redesigning sustainable reverse logistics network in 

uncertain supply chains. Computers & Industrial Engineering, 2021. 157  p. 107093. 



A Decision-Support Framework for Smart and Sustainable Reverse 

Logistics Network Design by Xu Sun 

60 | P a g e  

163. Che, A., J. Lei, and Z. Jiang, Optimised redesign of reverse logistics network with multi-level 

capacity choices for household appliances. International Journal of Production Research, 2021  

p. 1-18. 

164. Oliveira, J.B., et al., The role of simulation and optimization methods in supply chain risk 

management: Performance and review standpoints. Simulation Modelling Practice and Theory, 

2019. 92  p. 17-44. 

165. OERservices, Research Methods for the Social Sciences Chapter 5 Research Design. Accessed 

on: https://courses.lumenlearning.com/suny-hccc-research-methods/chapter/chapter-5-

research-design/ [03.03.2022]. 2022. 

166. Maxwell, J.A., Qualitative research design: An interactive approach2012  Sage publications. 

167. Costa, Y., A. Duarte, and W. Sarache, A decisional simulation-optimization framework for 

sustainable facility location of a biodiesel plant in Colombia. Journal of Cleaner Production, 

2017. 167  p. 174-191. 

168. Yu, H., et al., Solving a Real-World Urban Postal Service System Redesign Problem. Scientific 

Programming, 2021. 2021. 

169. Lee, J., B. Bagheri, and H.-A. Kao, A cyber-physical systems architecture for industry 4.0-based 

manufacturing systems. Manufacturing Letters, 2015. 3  p. 18-23. 

170. Azarian, M., et al. An introduction of the role of virtual technologies and digital twin in industry 

4.0. in International Workshop of Advanced Manufacturing and Automation. 2019. Springer. 

171. SoftwareTestingHelp, Exact Difference Between Verification And Validation With Examples. 

Accessed on: https://www.softwaretestinghelp.com/what-is-verification-and-validation/ 

[12.06.2022]. 2022. 

172. Min, H. and H.-J. Ko, The dynamic design of a reverse logistics network from the perspective 

of third-party logistics service providers. International Journal of Production Economics, 2008. 

113(1)  p. 176-192. 

173. Nayak, S., Fundamentals of Optimization Techniques with Algorithms2020  Academic Press. 

174. Censor, Y., Pareto optimality in multiobjective problems. Applied Mathematics and 

Optimization, 1977. 4(1)  p. 41-59. 

175. Lee, J.-E., et al., A multi-objective hybrid genetic algorithm to minimize the total cost and 

delivery tardiness in a reverse logistics. Multimedia Tools and Applications, 2015. 74(20)  p. 

9067-9085. 

176. Conforti, M., G. Cornuéjols, and G. Zambelli, Integer programming. 271. 2014  Springer. 

177. Sakawa, M., et al., Linear and multiobjective programming with fuzzy stochastic 

extensions2013  Springer. 

178. Zhao, J., et al., Improved approaches to the network design problem in regional hazardous waste 

management systems. Transportation Research Part E: Logistics and Transportation Review, 

2016. 88  p. 52-75. 

179. Mavrotas, G., Effective implementation of the ε-constraint method in multi-objective 

mathematical programming problems. Applied Mathematics and Computation, 2009. 213(2)  p. 

455-465. 

180. Harrison, R.L. Introduction to monte carlo simulation. in AIP conference proceedings. 2010. 

American Institute of Physics. 

181. Goldsman, D. and P. Goldsman, Discrete-Event Simulation, in Modeling and Simulation in the 

Systems Engineering Life Cycle: Core Concepts and Accompanying Lectures, M.L. Loper, 

Editor. 2015, Springer London  London. p. 103-109. 

https://courses.lumenlearning.com/suny-hccc-research-methods/chapter/chapter-5-research-design/
https://courses.lumenlearning.com/suny-hccc-research-methods/chapter/chapter-5-research-design/
https://www.softwaretestinghelp.com/what-is-verification-and-validation/


References 

61 | P a g e  

182. Rachih, H., F. Mhada, and R. Chiheb, Simulation optimization of an inventory control model 

for a reverse logistics system. Decision Science Letters, 2022. 11(1)  p. 43-54. 

183. Barlas, Y., System dynamics: systemic feedback modeling for policy analysis. System, 2007. 

1(59)  p. 1-68. 

184. Georgiadis, P. and D. Vlachos, Decision making in reverse logistics using system dynamics. 

Yugoslav Journal of Operations Research, 2004. 14(2)  p. 259-272. 

185. Qingli, D., S. Hao, and Z. Hui. Simulation of remanufacturing in reverse supply chain based on 

system dynamics. in 2008 International conference on service systems and service management. 

2008. IEEE. 

186. Dimitrov, N.B. and L.A. Meyers, Mathematical approaches to infectious disease prediction and 

control, in Risk and optimization in an uncertain world. 2010, INFORMS. p. 1-25. 

187. Abid, S., S. Radji, and F.Z. Mhada. Simulation techniques applied in reverse logistic: A review. 

in 2019 International Colloquium on Logistics and Supply Chain Management 

(LOGISTIQUA). 2019. IEEE. 

188. Zheng, H., et al., A Primer for Agent-Based Simulation and Modeling in Transportation 

Applications. 2013. 

189. Schoenharl, T. and G. Madey, Design and implementation of an agent-based simulation for 

emergency response and crisis management. Journal of Algorithms & Computational 

Technology, 2011. 5(4)  p. 601-622. 

190. Yu, H., et al., Reverse Logistics Network Design for Effective Management of Medical Waste 

in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in 

Wuhan (China). International Journal of Environmental Research and Public Health, 2020. 

17(5)  p. 1770. 

191. Sun, X., H. Yu, and W.D. Solvang, A Digital Reverse Logistics Twin for Improving 

Sustainability in Industry 5.0. 2022: In Press. 

192. Sun, X., H. Yu, and W.D. Solvang, A Digital Reverse Logistics Twin for Improving 

Sustainability in Industry 5.0. In Press. 2022. 

193. Jafari, N., M. Azarian, and H. Yu, Moving from Industry 4.0 to Industry 5.0: What Are the 

Implications for Smart Logistics? Logistics, 2022. 6(2)  p. 26. 

 



 

 

 

 



Paper 1 The Application of Industry 4.0 Technologies in Sustainable 

Logistics: A Systematic Literature Review (2012—2020) to Explore Future 

Research Opportunities 

 

PAPER 1 

 

 

The Application of Industry 4.0 Technologies in Sustainable 

Logistics: A Systematic Literature Review (2012—2020) to Explore 

Future Research Opportunities 

 

 

 

Xu Sun, Hao Yu, Wei Deng Solvang, Yi Wang, and Kesheng Wang 

Environmental Science and Pollution Research, 2022, 29, 9560–9591. 

Doi: 10.1007/s11356-021-17693-y 

 

 

 

 

 

 

 

 

Author’s Contribution 

Xu Sun is the main contribution of conceptualization, methodology, data curation, formal 

analysis, writhing-original draft, and writing-review and editing of the paper. 



Paper 1 The Application of Industry 4.0 Technologies in Sustainable 

Logistics: A Systematic Literature Review (2012—2020) to Explore Future 

Research Opportunities 

1 | P a g e  

 

The Application of Industry 4.0 Technologies in Sustainable 

Logistics: A Systematic Literature Review (2012—2020) to Explore 

Future Research Opportunities 

 

Xu Sun1, Hao Yu1, Wei Deng Solvang1, Yi Wang2, Kesheng Wang3 

1 Department of Industrial Engineering, UiT-The Arctic University of Norway, Narvik, Norway 

2 School of Business, University of Plymouth, Drake Circus, PL4 12LY Plymouth, UK 

3 Department of Mechanical and Industrial Engineering, Norwegian University of Science and 

Technology, Trondheim, Norway 

 

 

Abstract: Nowadays, the market competition becomes increasingly fierce due to 

diversified customer needs, stringent environmental requirements, and global 

competitors. One of the most important factors for companies to not only survive 

but also thrive in today’s competitive market is their logistics performance. This 

paper aims, through a systematic literature analysis of 115 papers from 2012 to 

2020, at presenting quantitative insights and comprehensive overviews of the 

current and future research landscapes of sustainable logistics in the Industry 4.0 

era. The results show that Industry 4.0 technologies provide opportunities for 

improving the economic efficiency, environmental performance, and social impact 

of logistics sectors. However, several challenges arise with this technological 

transformation, i.e., trade-offs among different sustainability indicators, unclear 

benefits, lifecycle environmental impact, inequity issues, technology maturity, etc. 

Thus, to better tackle the current research gaps, future suggestions are given to 

focus on the balance among different sustainability indicators through the entire 

lifecycle, human-centric technological transformation, system integration and 

digital twin, semi-autonomous transportation solutions, smart reverse logistics, and 

so forth.    

Keywords: sustainable logistics; green logistics; Industry 4.0; smart technology; 

literature review; bibliometric analysis 

 



Paper 1 The Application of Industry 4.0 Technologies in Sustainable 

Logistics: A Systematic Literature Review (2012—2020) to Explore Future 

Research Opportunities 

2 | P a g e  

 

1 Introduction 

With the increasing concerns on environmental pollution, resource depletion, and climate change 

from the whole society, enterprises must transform their businesses and operations into more 

sustainable ways [1]. Recent studies have shown that more focus and investments on enterprises’ 

sustainable practices not only help them to build up a socially responsible image but also improve 

their overall sustainable performance in economic and environmental dimensions [2]. Logistics 

links different operations and players within a supply chain and is a vital part that largely 

determines a company’s overall effectiveness and resource efficiency [3]. Managing a logistics 

system involves several related activities, i.e., warehousing, inventory handling, information 

services, and transportation, and any decisions may influence a large number of stakeholders in 

either positive or negative ways [4]. The effectiveness and sustainability of a logistics system 

determine the long-term competitiveness and the success of an enterprise. Therefore, new 

methods are investigated by both academia and industrial practitioners to improve the economic, 

environmental, and social sustainability of logistics activities.   

The recent technological advancement and innovation of Industry 4.0 have provided new 

opportunities for enterprises to achieve value creation and proposition through satisfying 

individualized customer demands responsively and cost-effectively [5]. This has not only led to 

a shift of the manufacturing paradigm but also drastically affected the way of logistics operations 

toward a high level of digitalization, connectivity, intelligence, integration, and responsiveness 

[6]. Even though Industry 4.0 provides new opportunities for enterprises to enhance their 

sustainable logistics practices, the operational transformation by adopting these new technologies 

has, however, never been a painless endeavor, which may also encounter structural resistance at 

both intra- and inter-enterprise levels [7]. Thus, a systematic literature analysis is important to 

provide useful implications into the advantages and challenges of adopting new technologies in 

sustainable logistics, which can help with a successful transformation of a company in the coming 

digital era.   

Previous literature reviews have provided comprehensive insights into sustainable logistics 

planning [3, 8], green and sustainable logistics practices [9-11], sustainable freight transport [12, 

13], and knowledge management in sustainable logistics [14]. To improve the intelligence, agility, 

and efficiency of logistics activities, recent studies have put predominant emphasis on the 

adoption of new technologies, e.g., big data analytics [15], blockchain [16], artificial intelligence 

(AI) [17, 18], internet of things (IoT) [19], and additive manufacturing (AM) [20]. This trend has 

led to the new architecture of Logistics 4.0 [21]. Besides, several recent reviews have discussed 

the connection between Industry 4.0 and general sustainable practices [22].  

Table 1 shows the comparison of recent literature reviews related to Industry 4.0, sustainability, 

and logistics. As shown, the research focus has been predominantly given to the general 

sustainability and supply chain issues related to Industry 4.0. However, there is still a lack of 

systematic analyses focusing on linking sustainable logistics practices with different Industry 4.0 

technologies. Logistics is traditionally a labor-intensive industry, which experiences significant 

changes in this digital transformation, and both positive and negative impacts on the economic, 

environmental, and social sustainability need thus to be better understood. Besides, the use of 
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both bibliometric analysis and content analysis has not been fully exploited. Bibliometric analysis 

is a quantitative method that shows the network data visualization of the inter-connections of 

different literature in several dimensions, but it has been rarely used in the literature reviews of 

Industry 4.0 and sustainability, particularly in combination with content analysis.  

 

Figure 1 Schematic of the research focus of this paper.  

Therefore, as shown in Figure 1, this paper aims at filling the literature gap by conducting a 

systematic literature review to illustrate the current and future research landscapes of sustainable 

logistics in the Industry 4.0 era. The contributions are summarized as follows: 

1. Using both bibliometric analysis and content analysis, we thoroughly explore the current 

research landscape that links sustainable logistics practices with various Industry 4.0 

technologies. 

2. We analyze both opportunities and challenges of adopting Industry 4.0 technologies in 

logistics sectors related to economic, environmental, and social sustainability.  

3. We suggest nine future research directions to fill the current research gaps. 

4. From the practical perspective, the discussions provide some successful examples of 

Industry 4.0 enabled transformation of logistics systems.  

Following the introduction, Section 2 gives the theoretical background of sustainable logistics 

and Industry 4.0. Section 3 presents the research method. Sections 4 and 5 provide the 

bibliometric analysis and the content analysis. The opportunities, challenges, and future research 

suggestions are discussed in Section 6. Finally, Section 7 concludes the paper. 
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Table 1 Relevant literature reviews related to Industry 4.0, sustainability, and logistics. 

Papers Research Method Sample selection Research focus and perspectives Keywords 

 Bibliometric 

analysis 

Content 

analysis 

Horizon Sample 

size 

 Industry 4.0 Sustainability Logistics Supply 

chain 

Davarzani, Fahimnia 

[23] 

√  1975- 2014 338 Green and sustainable maritime 

logistics 

 √ √  

Bag, Telukdarie [24]  √ 1998-2017 53 Industry 4.0 enablers of supply 

chain sustainability 

√ √  √ 

Ranieri, Digiesi [25]  √ 2012-2016 24 Innovative last-mile delivery 

systems 

  √  

Kazemi, Modak [26] √ √ 2000-2017 94 Reverse logistics and closed-loop 

supply chain 

  √ √ 

Nenni, Sforza [12]  √ 1997-2018 93 Sustainability of urban freight 

transport 

 √   

Tijan, Aksentijević 

[19] 

 √ Until 2018 -- Blockchain technology in logistics   √  

Manavalan and 

Jayakrishna [27] 

 √ 2009-2018 -- IoT embedded sustainable supply 

chain 

√   √ 

Martins, Anholon [11]  √ Until 2019 45 Sustainable logistics considering 

TBL 

 √ √  

Ren, Hu [9] √ √ 1999-2019 306 Green and sustainable logistics  √ √ √ 

Chalmeta and Santos-

deLeon [15] 

√  2009-2019 87 Industry 4.0 and big data in 

sustainable supply chain practices 

√ √  √ 
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Winkelhaus and 

Grosse [6] 

 √ 2005-2018 114 Industry 4.0 and logistics √  √  

Roblek, Thorpe [22]  √ 2010-2020 173 Industry 4.0 and sustainability √ √   

Ejsmont, Gladysz [28] √  2011-2020 162 Sustainability and Industry 4.0 √ √   

Ghobakhloo [29]  √ 2012-2019 72 Industry 4.0 and sustainability √ √   

Furstenau, Sott [30] √  2010-2019 894 Industry 4.0 and sustainability √ √   

Birkel and Müller [31]  √ 2011-2019 55 Industry 4.0 for sustainable supply 

chain management  

√ √  √ 

Margherita and 

Braccini [32] 

 √ 2009-2019 18 Industry 4.0 organizational 

impacts on sustainability 

√ √   

Beier, Ullrich [33]  √ 2013-2021 51 Industry 4.0 and socio-technical 

sustainability 

√ √   

Grzybowska and 

Awasthi [34] 

√  1991–2018 892 Sustainable production and 

logistics 

 √ √  

Abdirad and Krishnan 

[35] 

 √ 2014-2018 56 Industry 4.0 in supply chain 

management 

√  √ √ 

Jahani, Sepehri [36]  √ 2015-2020 70 Industry 4.0 in the procurement 

processes of supply chains 

√ √  √ 

Beltrami, Orzes [37]  √ 2011-2020 117 Industry 4.0 and sustainability √ √   

This paper √ √ 2011-2020 115 Sustainable logistics enabled by 

Industry 4.0 

√ √ √  
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2 Theoretical Background 

2.1 Sustainable logistics 

The word logistics appeared more than a century ago and was originally associated with the movement 

of troops and military supplies [38]. Over time, this word has been widely used to broadly describe the 

movement of physical goods among different locations [39]. Logistics deals with the entire cycle 

including pre-production, in-production, and post-production activities [40]. To fulfill customer needs 

at a satisfactory level, logistics aims at implementing a set of decisions including the purchase of raw 

materials, parts, and components, the handling and storage of inventories, and the transportation of 

goods from one location to another. The effectiveness and efficiency of the logistics system largely 

determine an enterprise’s performance in cost, customer satisfaction, and profitability. Recently, a 

concept called supply chain management has been used interchangeably to depict several logistics 

activities, but the scopes of the two words are not overlapped with each other [41]. Several researchers 

suggest that supply chain management focuses more on forming strategies to manage the relationships 

and coordination among different partners [6, 42], while logistics, on the other hand, emphasizes the 

implementation of these strategies to connect different companies with physical flows [39]. In this 

regard, logistics can be considered a subset of supply chain management [6], which focuses on the 

physical movement of goods and the relevant information flow.  

Sustainable development has been focused on due to the concerns of increasingly severe environmental 

and social challenges. The widely accepted definition of sustainable development is “to meet the needs 

of the present without compromising the ability of future generations to meet their own needs” [43]. 

Sustainable development is driven by three dimensions, namely, economic prosperity, environmental 

friendliness, and social fairness and equity, which are also known as the triple bottom line. The objective 

of a sustainable development society is to achieve harmony among these three dimensions. For tackling 

the global challenges related to hunger and poverty, health and well-being, environmental pollution, 

climate change, and global warming, the United Nations (UN) has recently set up 17 sustainable 

development goals, which are the call for actions to achieve a better future for all human beings by 2030 

[44].  

A drastic increase of companies has started to incorporate sustainability into logistics operations to 

enhance their social image and competitive advantage [45]. Sustainable logistics was initially focused 

on from the environmental perspective of lowering the ecological footprint related to logistics activities 

[46]. The concept of green logistics was first proposed to reduce environmental impacts, e.g., GHG 

emissions [47], energy consumption [48], etc., through better strategic designs and operational planning. 

Reverse logistics and closed-loop supply chain (CLSC) have been increasingly focused to achieve 

sustainable value re-creation from end-of-life (EOL) products [49] and minimizing the environmental 

pollution from waste management [50, 51]. However, improper disposal activities lead to risk exposure 

to both humans and the environment [52, 53]. Thus, recent research efforts have been given to minimize 

the ecological footprint of both forward and reverse logistics [54]. Furthermore, not only the economic 

and environmental dimensions but also the social sustainability indicators, i.e., job creation and working 

environments, have been holistically considered in sustainable logistics. Therefore, sustainable logistics 

aims at balancing the socio-economic performance of a logistics system with its eco-environmental 
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robustness in managing system activities. This balance embodies in making decisions by considering 

the interplay of different logistics functions, i.e., network configuration, transportation, purchasing, 

demand allocation, and resource management. The optimization of a sustainable logistics system is 

highly dependent on the ability to balance the trade-offs among the three dimensions of sustainability.  

2.2 Industry 4.0 

Industry 4.0, or the fourth industrial revolution, was put forward at the Hannover Fair of Industrial 

Technologies in 2011 to enhance the competitiveness of the German manufacturing industry [55]. At 

the global level, several countries have also launched their strategies, e.g., United States’s National 

Network for Manufacturing Innovation, Japan’s New Robot Strategy, and China’s Made in China 2025, 

to strengthen their manufacturing industries by taking advantage of technological innovations [56]. 

While the past three industrial revolutions in history were the major results of mechanization, mass-

production, and automated production [55], Industry 4.0 puts predominant focus on combining Internet-

based communication technologies, digitalization, and future-oriented intelligent manufacturing 

technologies to build smart machines and systems, implement smart processes, and provide smart 

products and services [56]. Empowered by Industry 4.0 technologies, a smart production network can 

achieve real-time monitoring, responsive communications, autonomous operations, and smooth material 

flows. Technological advancement has provided opportunities and new business models for value 

creation and proposition from individualized customizations and service innovations [57]. Based on 

previous studies [58-60], the 12 most important Industry 4.0 technologies are introduced as follows: 

• Internet of Things (IoT): IoT refers to the network interconnection that possibly connects 

millions of physical objects with the Internet [61]. It allows different smart devices can be 

interconnected, monitored, communicated, and controlled based on standard communication 

protocols to facilitate the transition of goods, services, and information [60].  

• Cyber-Physical System (CPS): CPS is the system integration of computational intelligence and 

physical elements, which enables effective interactions between the system and humans [62]. 

CPS aims at achieving a high level of connectivity, intelligence, and automation by integrating 

both cyber and physical components [63]. Thus, the level of CPS largely determines the 

successful implementation of Industry 4.0 [64].   

• Big Data Analytics: Big data analytics is the state-of-the-art analytical capability to process a 

large volume of dynamic data with high velocity, high complexity, and high variety. The 

strategies and operations of a company or a system can be continuously evaluated through 

massive data analytics to obtain critical insights for better business planning and decision 

making [65]. 

• Artificial Intelligence (AI): AI refers to the computer systems and applications that perform 

tasks needing human intelligence [66], and it also has the capacity of learning and improving 

the thinking, perception, and action through training from data and algorithms [67]. AI 

algorithms are widely used in many areas, e.g., routing, traffic management, maintenance, and 

security [68]. 

• Cloud Technologies: Cloud technologies provide a central platform for the storage and 

integration of configurable information technology (IT) resources, which enable the 

accessibility of data and resources from decentralized locations. Cloud technologies form the 
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service-oriented architecture that links the concepts of Platform-as-a-Service (PaaS), Software-

as-a-Service (SaaS), and Information-as-a-Service (IaaS) [69]. 

• Blockchain: Blockchain is an innovative way for implementing distributed ledger technologies 

that can be programmed to record and track any data by anyone without a central authority, and 

it is a peer-to-peer network and a nondestructive way to track data changes over time [70]. 

• Autonomous Robots: Autonomous robots are highly intelligent and capable of self-organization, 

self-evaluation, and decision making for executing several tasks without human instructions 

[71]. An autonomous robot can be in various sizes and shapes, and with different levels of 

autonomy, mobility, and intelligence [71].  

• Unmanned Aerial Vehicle (UAV): UAV, or commonly referred to as drone, is a flying device 

that does not require a human pilot onboard. It is typically piloted by remote control or by a 

combined control with computer programming [72]. 

• Additive Manufacturing (AM): AM, or 3D printing, is a layer-wised production or generative 

manufacturing. By adding material layer upon layer, it provides opportunities for the accurate 

production of items at the required size, shape, and material without any wastes [73]. With 

technological maturity and the growing awareness of sustainability, AM has been increasingly 

used as the main element in both production and logistics processes. 

• Augmented Reality (AR): AR in the overlaying of computer-generated digital information, e.g., 

texts, images, and effects, in the real world, which can interact with users and give real-time 

instructions in a user-friendly way [74]. 

• Virtual technologies and simulation: Virtual technologies are powerful tools, which can 

mimic, evaluate, optimize, and control a real-world entity or a system in its digital representation 

under a risk-free and cost-efficient environment.  

• Cybersecurity: Cybersecurity refers to the protection and defense of critical data, servers and 

computers, software, and other IT resources from cyber-attacks [75]. 

3 Research Method 

A systematic literature review aims at identifying, evaluating, interpreting, and categorizing all relevant 

articles engaging one or more research questions and topics [25, 76]. Compared with a narrative 

literature study whose results mainly focus on the descriptive findings of a specific domain of knowledge 

and may suffer from selection bias, a systematic literature review can present a comprehensive overview 

of the research landscapes [14]. Based on Kazemi, Modak [26] and Ren, Hu [9], a systematic literature 

review consists of the following steps: 

1. Identification of Research questions: Formulating the research questions to be answered. 

2. Literature search and selection: Developing a document search strategy with a broad 

combination of keywords to have a comprehensive overview of the area under investigation. 

Then, proper filters are set up so that the most relevant sample of articles is solicited. 

3. Bibliometric analysis: Presenting a quantitative analysis and data visualization of the selected 

sample of articles to understand the key characteristics of the topic, e.g., publication trend, 

journals and citations, collaborations, keyword focus, etc. 
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4. Content analysis: Performing a detailed content analysis of the selected articles to summarize 

the contributions of several related topical areas. Based on this, the current research landscape 

can be understood, and future research opportunities can be identified. 

The research questions are formulated to reflect the aim and scope. This paper links two concepts: 

sustainable logistics and Industry 4.0, and their interactions in literature are thus focused on. Concerning 

these concepts, the following three research questions are proposed to understand the state of knowledge 

of adopting Industry 4.0 technologies in sustainable logistics:   

• RQ1: What literatures exist on sustainable logistics enabled by Industry 4.0 and how can they 

be categorized?  

• RQ2: What are the implications of sustainable logistics in the Industry 4.0 era?  

• RQ3: What are the future research directions to fill the gaps? 

Based on the research questions above, Figure 2 formulates the document search strategy, which 

includes five steps: 1) keyword search, 2) setting of the filters, 3) investigation of the titles and abstracts, 

4) investigation of the full text, and 5) result analysis, respectively.  

1. Keyword search: In this paper, we performed a keyword search using two electronic databases: 

Scopus and Web of Science core collection. The literature search was conducted in November 

2020, and two main sets of keywords related to sustainable logistics and Industry 4.0 were used. 

The first set of keywords is associated with sustainable and smart logistics, which consist of 

“sustainable logistics”, “smart logistics”, and “logistics 4.0”. Besides, since many logistics 

issues were discussed in the context of supply chains, “sustainable supply chain” was added to 

this group. The other set of keywords related to Industry 4.0 includes “Industry 4.0”, “I4.0”, 

“smart manufacturing”, “smart production”, “the fourth industrial revolution”, “IoT”, “CPS”, 

“big data analytics”, “augmented reality”, “cloud computing”, “additive manufacturing”, 

“autonomous robots”, “smart robot”, “simulation”, “cybersecurity”, “virtual technology”, 

“artificial intelligence”, “unmanned aerial vehicle”, and “blockchain”. The Boolean operator 

“OR” was used to combine the keywords within the same group, and “AND” was used to 

combine the two main groups of keywords related to both sustainable logistics and Industry 4.0. 

The initial search yielded 512 results in Scopus and 245 in Web of Science. 

 

2. The setting of the filters: The second step is to set up several filters to select the most relevant 

articles, and the papers are excluded if they are not within the research scope or are irrelevant 

for answering the research questions. First, since the concept of Industry 4.0 was originally 

presented at the Hannover fair in 2011 [55], the search horizon was re-set to 2011—present. 

Considering the quality and rigor of selected papers, the search results were also limited to 

journal articles that had passed the peer-review stage. The publishing language was restricted 

to English. Thus, conference proceedings, book chapters, pre-prints, and papers published in 

another language were excluded in this study. After implementing these new filters, the search 

resulted in 211 and 126 qualified articles in Scopus and Web of Science, respectively. We 

combined the search results from the two databases and removed the duplicated ones, which 

resulted in 229 articles. 
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3. Investigation of the titles and abstracts: First, we investigated the type of paper in the filtered 

sample, 8 bibliometric analysis papers, editorial and review articles were excluded. Then, we 

investigated the thematic relevance of these articles, papers that have little relevance of using 

Industry 4.0 and smart technologies in sustainable logistics were excluded. Besides, papers 

dealing with behavior supply chain issues, e.g., customer relations management, but without a 

logistics focus, were also excluded. In total, 101 papers were excluded in this stage. 

 

4. Investigation of the full text: In the next step, we conducted a full-text reading in the second-

round paper selection. In this stage, special emphasis was paid to the papers that lack direct 

implications for the proposed research questions. Even though these papers have both keywords 

of Industry 4.0 and logistics or sustainability, the application of Industry 4.0 technologies in 

sustainable logistics is not thoroughly discussed, so these papers are considered irrelevant to 

answer the research questions. In this stage, another 13 papers were considered not to fit well 

with the topic and were thus removed. Then, a total of 115 papers were selected. 

 

5. Result analysis: Based on the selected sample, the bibliometric analysis was conducted to 

provide the results of publication trend, source distribution, co-authorship analysis, citation 

analysis, and keyword co-occurrence analysis. Next, the content analysis was performed to 

discuss how different logistics operations can be improved by Industry 4.0 technologies and 

present the opportunities, challenges, and future research directions. 

 

Figure 2 Research method.  
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4 Bibliometric Analysis 

4.1 Publication trend  

Figure 3 illustrates the number of articles published between 2012 and 2020. It can be seen that 

increasing focuses have been given to adopting Industry 4.0 technologies in sustainable logistics 

planning and operations, and this trend has experienced a significant acceleration since 2017. In 2020 

alone, 48 papers have been published in international journals, which amounts for 41.7% of the total 

publications in the last decade. The publication trend shows that the recent rise of Industry 4.0 related 

research has presented new opportunities for achieving sustainable value creation, environmental 

friendliness, and improved social responsibility in logistics activities, which have been noted by both 

industry professionals and academia.   

 

Figure 3 Publication trend of sustainable logistics enabled by Industry 4.0. 

4.2 Source distribution, influences, and interactions 

Table 2 presents the source distribution of the selected 115 articles, which are published in 73 journals. 

The most popular 15 journals in this field published 57 articles, accounting for nearly 50% of the total 

amount. With 9 papers published, Journal of Cleaner Production has the highest number of publications, 

and it is followed by Sustainability with 8 papers. Both are multidisciplinary with the primary focus on 

theoretical advancements and practices in sustainable development and circular economy. The next 

three most popular journals are International Journal of Production Research, Resources Conservation 

and Recycling, and IEEE Access, contributing to 7, 5, and 5 papers, respectively. Followed by Industrial 

Management and Data Systems, International Journal of Production Economics, and Journal of Self 

Governance and Management Economics with 3 articles each. Among the most popular 15 journals, 

Sustainability, IEEE Access, and Applied Sciences are open access journals, while the others are hybrid 

journals with both subscriptions only and paid open access options. These 15 journals cover various 

topics, i.e., sustainable development, production and economics, engineering, computer and data 

sciences, and logistics and transportation, which shows the cross-disciplinary nature of combining 

Industry 4.0 and sustainable logistics.  
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Table 2 Source distribution. 

Publication source (Journal) Number of papers 

Journal of Cleaner Production  9 

Sustainability Switzerland  8 

International Journal of Production Research  7 

Resources Conservation and Recycling  5 

IEEE Access  5 

Industrial Management and Data Systems  3 

International Journal of Production Economics  3 

Journal of Self Governance and Management Economics  3 

Applied Sciences Switzerland  2 

Chemical Engineering Transactions  2 

Computers and Electronics in Agriculture  2 

Economics Management and Financial Markets  2 

International Journal of Logistics Management  2 

International Journal of Logistics Research and Applications  2 

Transportation Research Part E Logistics and Transportation Review  2 

Others (1 per Journal) 58 

We conducted a co-citation analysis to understand the interactions among the most influential journals 

in this field. The minimum number of citations per journal was set to 20 in VOSviewer, which led to 16 

qualified sources for the co-citation analysis. Compared with the list of journals in Table 2, six new 

journals were selected including Computers & Industrial Engineering, Expert Systems and Applications, 

Omega, Journal of Operations Management, International Journal of Physical Distribution & Logistics 

Management, and Procedia CIRP. The result is shown in Figure 4. The size of each node shows the 

number of citations received by the relevant papers published in each journal, and the arc linking two 

journals illustrates the co-citation strength between them.   

 

Figure 4 The journal co-citation network. 

Three general clusters of journals are identified based on their co-citation activities. The first cluster 

focuses on operations research and operations management. Besides, two inter-disciplinary journals 

(Sustainability and IEEE Access) are also assigned to this cluster. The second cluster relates to 

production technologies and management, while the third cluster emphasizes industrial applications. 
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The journals in the second cluster, particularly Journal of Cleaner Production, International Journal of 

Production Economics, and International Journal of Production Research, have yielded the most 

significant impact and the most active interactions with others in the contemporary research associated 

with sustainable logistics and Industry 4.0. In addition, the active interactions between clusters 1 and 2, 

and between clusters 2 and 3 indicate that production-related journals become a bridge to connect the 

theoretically focused operations research and management methods with real-world industrial 

applications.  

4.3 Influential research, co-authorship network, and co-citation 

map 

Table 3 presents the authors, technologies, applications, and the number of citations of the top ten most 

influential papers by the time of this research. The most cited article is given by Saberi, Kouhizadeh 

[77], in which the relationship between blockchain and sustainable logistics is thoroughly investigated. 

Followed by Barreto, Amaral [60] and Luthra and Mangla [45], the implications and challenges of 

Industry 4.0 on logistics activities are discussed. The fourth and fifth highly cited papers are from Prause 

[78] and Prause and Atari [79], which focus on Industry 4.0 enabled architectures of sustainable business 

models and sustainable manufacturing networks related to logistics operations. In addition, the other 

papers give comprehensive discussions on the use of several emerging technologies to achieve smart 

and sustainable logistics, i.e., cloud-enabled product-service system [80], IoT-based smart warehouse 

management [81, 82], smart technology-enabled innovative and sustainable business models [59], smart 

decision making of sustainable logistics [83], and sustainable logistics practices [84, 85]. The results 

show that, in sustainable logistics systems, the application of several Industry 4.0 technologies, i.e., 

blockchain, IoT, and cloud-based technologies, has enjoyed tremendous popularity among recent 

research.  

Table 3 The top 10 highly cited articles. 

Papers Technological 

keywords 

Application focuses Citations 

Saberi, Kouhizadeh [77] Blockchain Sustainable logistics and supply chain 225 

Barreto, Amaral [60] Industry 4.0 Logistics operations  132 

Luthra and Mangla [45] Industry 4.0 Sustainable logistics and supply chain 

challenges in developing countries  

106 

Prause [78] Industry 4.0 Sustainable business models  60 

Prause and Atari [79] Industry 4.0 Sustainable production networks and 

logistics 

52 

Zhang, Liu [80] Cloud technology Product-service oriented cloud logistics 52 

Lee, Lv [81] IoT Smart warehouse management 47 

Strandhagen, 

Vallandingham [59] 

Industry 4.0 Sustainable business innovations for 

Logistics 4.0 

43 

Cole, Stevenson [86] Blockchain Logistics and supply chain 40 

Li, Fang [83] Cloud technology Sustainable logistics and supply chain 34 
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To identify the most fruitful collaborations and active interactions among different researchers in this 

field, co-authorship mapping and co-citation mapping are given in Figures 5 and 6. With the help of 

VOSviewer, a comprehensive co-authorship network analysis of 363 authors was performed, whose 

result illustrated the 16 most collaborative authors and their collaborations on the time horizon. The 

nodes are identified by the authors’ names, whose sizes show the levels of collaborations of different 

authors. The arcs link these authors with the number of co-authored papers and the time of publications, 

which are represented by the width and the color of an arc. The total link strength (TLS) of an author is 

determined by both the number of connecting links and the number of co-authored documents. As shown 

in Figure 5, these 16 authors are divided into five clusters with a different number of co-authored papers 

and citations. The co-citation map in Figure 6 evaluates the influence of the key researchers and the 

impacts of their papers on other researchers’ works in sustainable logistics enabled by Industry 4.0. In 

this analysis, the minimum number of citations per author was set to 20 to identify the most influential 

researchers who drove the advancement of this field. The results have shown the 21 most influential 

researchers and their co-citation networks.  

 

 

Figure 5 Co-authorship mapping of collaboration. 
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Figure 6 Co-citation map. 

Through the comparison between the co-authorship map and the co-citation map, two interesting 

findings are obtained. First, even though the combination between sustainable logistics and Industry 4.0 

has been extensively focused on by worldwide researchers, the collaboration network has not become 

extensive compared with other well-established fields. This is because this emerging and cross-

disciplinary research topic is still at its initial stage. Another reason may be explained by the time from 

cooperation to publication is usually very long, which may also significantly affect the results of the co-

authorship analysis. The second finding is that, even if the collaboration potential has not been fully 

exploited, several influential researchers and works have led the research and drastically push forward 

the knowledge accumulation, which forms the foundation to promote fruitful collaboration in the future. 

4.4 Research highlights and keywords 

To identify the research highlights, a co-occurrence analysis of the highly used keywords related to 

Industry 4.0 and sustainable logistics was performed. For presenting a complete overview of the current 

research landscape, we used “all keywords” and “full counting” options to enumerate all the keywords 

that appeared in previous studies and calculate the total co-occurrence. With the minimum threshold of 

three times of co-occurrence, Figure 7 shows the mapping and interactions of the 78 qualified ones out 

of the total 1006 keywords.  The clusters, occurrences, and TLSs of these keywords are given in 

Appendix A.  

The 10 mostly used keywords in the selected literatures consist of supply chain management 

(Occurrence = 39, TSL = 264), Industry 4.0 (Occurrence = 34, TSL = 151), sustainability (Occurrence 

= 29, TSL = 191), sustainable development (Occurrence = 28, TSL = 220), sustainable supply chains 

(Occurrence = 28, TSL = 235), internet of things (Occurrence = 21, TSL = 117), decision making 

(Occurrence = 19, TSL = 115), smart logistics (Occurrence = 17, TSL = 52), logistics (Occurrence = 

14, TSL = 59), and supply chains (Occurrence = 13, TSL = 94). Clearly, these mostly used keywords 

have critical impact and define the general nature of smart and sustainable logistics systems. Besides, it 
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is noted that even if supply chain management and logistics are two concepts, they are not mutually 

exclusive. Since logistics is considered an important element of supply chain, many relevant studies 

discuss the sustainable logistics enabled by Industry 4.0 in the context of supply chain management and 

sustainable supply chain. 

 

Figure 7 Keyword co-occurrence map. 

The 78 frequently appeared keywords are grouped into six clusters, with which the mainstream research 

directions on Industry 4.0 enabled sustainable logistics can be pinpointed. The six keywords clusters 

have identified the different research focuses. Cluster 1 comprises 23 keywords focusing mainly on the 

application of new technologies, e.g., IoT, cloud computing, etc., in smart warehousing, smart 

information systems, and other logistics operations. Cluster 2 contains 16 items that predominantly 

emphasize the use of big data analytics and blockchain to improve sustainable logistics and circular 

economy. Cluster 3 covers 16 nodes focusing on sustainable logistics operations with optimization and 

simulation methods. Cluster 4 consists of 11 keywords, which engage in the economic, environmental, 

and social sustainability of hazardous material management. Cluster 5 includes 8 nodes that focus on 

improved decision making with AI and other smart technologies. Cluster 6 consists of 4 keywords 

related to literature studies, which show efforts have been spent to summarize the recent research results. 

5 Content Analysis 

The keyword co-occurrence analysis has shown the importance of technology and data in sustainable 

logistics, and the content analysis is performed to understand how smart technologies and data analytics 

will affect the paradigm of logistics operations and the system’s sustainability. Content analysis is an 

important step to systematically analyze the research development of several topical areas [26]. In this 

section, we present a detailed content analysis of four main topics related to sustainable logistics 
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operations throughout the pre-production, in-production, and post-production stages. First, smart 

production drives new demand patterns and changes the way of how demands are satisfied, and it 

consequently changes the demands of purchasing and logistics services. Thus, Industry 4.0 enabled 

sustainable production and purchasing was first discussed. The smart solutions for the two most 

important logistics operations, namely, warehousing and transportation, were then introduced. Last but 

not least, the general digitalization and system integration issues for streamlining different operations 

within a sustainable logistics system were given. Figure 8 shows the article distribution over the four 

topics, and it is noted 22.6% of papers focus on two or more topical areas. A summary of relevant papers, 

technologies, and sustainability dimensions (environmental or social) of logistics systems in each topic 

is given in Appendix B.  

 

Figure 8 Article distribution over different topical areas. 

5.1 Industry 4.0 enabled sustainable production and purchasing  

In an increasingly globalized and dynamic market, Industry 4.0 technologies play vital roles in 

improving the sustainability of production operations, purchasing decisions, and resource planning. 

These technologies can enable efficient commodity flow and information flow from raw material 

purchasing to product delivery through an open, dynamic, smart, and sustainable production-logistics 

network [79]. Besides, they can affect the capabilities of dynamic remanufacturing, green production, 

waste reduction, and recycling in a sustainable logistics system [87, 88].  

IoT and autonomous robots are the fundamental parts of a smart production system, which allow for a 

high level of connectivity and automation. IoT-embedded systems can provide better tracking and 

traceability, which help products move faster and provide customers with real-time information about 

the deliveries [89]. The integration of IoT-enabled devices, autonomous robots, cloud-based data 

analytics form a connected, digitalized, and smart production CPS. This smart networking of both 

physical devices and cyber intelligence enables effective machine-to-machine communications and 

human-machine interactions [57], which pave the way for an autonomous production system with high 

flexibility and agility. 
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Big data analysis has gained increasing focus in production and logistics. Advanced analytical tools, 

i.e., AI and machine learning, have been used to treat a large amount of complex data collected from 

different sources [65]. The results can be used to analyze market trends, purchasing patterns, potential 

risks, equipment maintenance cycles [90], delivery reliability and responsiveness [89], and other 

important performance indicators [65], based on which production activities can be planned more 

sustainably.  

AM can be used for on-demand and decentralized production, which allows customers to be actively 

involved in product design. AM can help to reduce size-related resource constraints [91], to minimize 

waste of materials, and to support low-volume and highly customized production, e.g., spare parts [73]. 

The open design architecture of AM facilitates market growth, promotes localized production, generates 

value-differentiated consumer demands, changes the market leaders’ practices, and supports and 

diffuses social sustainability in their daily activities [91]. 

Cloud technologies provide a platform for centralized storage and decentralized access of various data 

analytics and computing tools to fulfill the growing demands of mass individualization, improve the 

responsiveness to customers and market change, and enable broader global cooperation [59]. The 

maturity of supplier selection and purchasing strategy can be affected by the effectiveness and timeliness 

of data exchange with partners [92]. In this regard, Ma, Wang [93] presented a sustainable make-to-

order apparel supply chain model with a collaborative cloud service platform. The key information, i.e., 

the order queue of the supplier, the raw material status, and the production capacity can be accessed in 

real-time, which are used for making sustainable production and purchasing decisions in the apparel 

industry.  

With the high reliability and transparency, blockchain is another highly focused Industry 4.0 technology 

for the effective integration of information flow and material flow [77]. Blockchain can change the way 

of obtaining, managing, and using the critical product data through the entire product lifecycle, which 

enables a better product design, more effective production and sales planning, and responsible recovery 

at the EOL stage [57]. From the environmental perspective, blockchain can help to reduce waste and 

promote recycling. In addition, blockchain traceability can improve social sustainability through a better 

assurance of human rights, equity, and safety aspects [77]. For example, the traceable record of product 

history allows buyers and producers to trade with high confidence.  

5.2 Industry 4.0 enabled sustainable warehousing 

Warehouses are the important storage and hub facilities in a logistics network, which provide protection 

of goods and bridge the gap between different logistics activities, e.g., purchasing and production. 

Warehouse management consists of four operations, namely, receiving and recording of goods from 

different suppliers, storing goods at appropriate locations, retrieving and picking goods when they are 

needed, and shipment to customers [94]. Industry 4.0 technologies have brought opportunities for smart 

and sustainable warehousing solutions with enhanced capability of information and communication-

based decision making [95]. The use of IoT, CPS, AI, and autonomous robots has been investigated in 

various operations [81], e.g., product receiving, identification, storing and allocation [96], and product 

picking [97] and shipping with autonomous robots [95, 98].  
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IoT-enabled devices have been widely used in smart warehouse management by several large 

companies, i.e., DHL, Amazon, and JD.com. The combination of both IoT and CPS provides a quick 

interconnection of smart assets in a warehouse, e.g., pallets, forklifts, machines, and robots. This enables 

real-time data collection and system monitoring of goods, equipment, and personnel, which improves 

warehousing operations, decision making, safety, and resource utilization [99, 100]. Besides, by using 

IoT, cloud technologies, and blockchain [101], traceability and transparency can be facilitated, and the 

errors and delays of warehousing operations can be minimized [81]. 

Combining cloud-based data collection, analytics, and optimization enables better communication and 

positioning of transport vehicles and more accurate prediction of their arrival time in order to optimize 

the docking slot and achieve just-in-sequence delivery [60, 102], through which good handing costs, 

greenhouse gas (GHG) emissions, and truck drivers’ working hours can be reduced. Lv, Xiang [103] 

investigated a data-driven optimization framework for improving the operational efficiency of yard 

management in steel logistics parks. With the help of smart sensors, AI-supported optimization can 

adjust the allocations and e-routes of goods and optimize the work assignments with real-time 

information of available spaces and resources [104]. Besides, these technologies can provide better 

visibility of inventory levels, enhanced inventory accuracy and space usage [81], reduced inventory 

costs, improved process management and safety [95], and better customer services.  

Smart robots consist of various sensors and powerful processors that allow them to sense extensively, 

decide intelligently, and behave precisely [105]. Smart robots have been increasingly used to replace 

manual operations, minimize errors, and improve effectiveness and safety. The use of UAVs for picking, 

data collection, and process monitoring has also been discussed [106]. AM is another emerging 

technology that has been increasingly used in warehouse management, and it provides an inexpensive 

solution for holding digital inventory of a large variety of products with low and irregular demands.  

Virtual technologies have been extensively adopted to improve the effectiveness and training of 

warehousing operations. For instance, virtual reality (VR) can be used for the training of new employees 

without interrupting warehouse operations [105], and under minimum risks, it can also be used for 

providing the training of some dangerous operations, e.g., hazardous materials handling. Simulation has 

been widely used for visualization, testing, and performance evaluation of new technologies and 

processes [107]. Several logistics companies, e.g., DHL, use AR to manage and control the warehousing 

processes [98], where real-time instructions and task visualizations can be given to the operators in order 

to provide better assistance and maximize their effectiveness.  

5.3 Industry 4.0 enabled sustainable transportation 

The transportation of goods among different locations largely determines the sustainability of a logistics 

system, and Industry 4.0 technologies can be used for improving sustainability in different transportation 

activities [108], e.g., intelligent transportation systems [109], vehicle routing, emission reduction [110], 

green-fleet management [90], and pick-up and delivery services [111]. The integration of IoT and AI in 

a cloud-based platform enables real-time data processing and analysis of traffic conditions, vehicle 

information, dynamic demands, and recourse availability and usage. Combining advanced optimization 

algorithms, e.g., genetic algorithm, simulated annealing algorithm [63], etc., the real-time information 

can be used for better transportation planning and timely decision making to minimize transport delays 
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[112], increase accident responses, reduce fuel consumption and costs, and minimize GHG emissions, 

noise [109] and the population exposure to risks and hazards [113]. 

Big data analytics and AI provide computational powers for processing a large amount of multi-sourced 

data collected from IoT sensors and selecting the right quality and quantity of data for different decision-

support tools, and this has led to an increasing focus on data-driven sustainable transportation planning 

and logistics optimization. Su and Fan [114] investigated a green vehicle routing system embedded with 

big data analytics and AI for better transportation of a smart logistics system, where the performances 

of costs, energy consumption, GHG emissions, and customer services were improved. Data-driven 

optimization has also been used in the sustainable planning of multimodal transportation [115]. Through 

the data-driven capacity balancing and optimization of different transportation modes, the use of low-

carbon and environmentally friendly transportation modes has been drastically increased, e.g., a shift 

from road to rail transport [116], without a significant compromise on cost-effectiveness. 

Virtual technologies provide powerful modules to include sustainability in the modeling and analysis of 

real-world logistics systems [117]. Sun, Zhang [115] presented a simulation-based analysis for the 

planning, decision making, and control of a CPS-enabled logistics network. By minimizing the number 

of trucks with low or empty loads, the simulation improves transportation strategies with reduced fuel 

consumption, costs, GHG emissions, and truck drivers’ working hours. Simulation models have also 

been used to show the benefits of resource sharing in sustainable logistics systems [117]. Besides, 

combined optimization and simulation have been increasingly used in sustainable logistics, e.g., 

infrastructure design [118] and network optimization [119], to take advantage of the strengths of both 

methods. 

Industry 4.0 technologies have changed the ways of the goods delivery. The focus on smart and self-

driving vehicles, i.e., autonomous trucks and lorries, has shown the potential to reduce the costs, accident 

rates, and CO2 emissions [120]. Another game-changing technology is the UAV, which has been used 

in many countries for the delivery of parcels, foods, medicines, vaccines, and blood samples [72]. The 

UAV or combined vehicle-and-drone system becomes appealing for highly agile last-mile delivery 

services, which has been practiced by several large companies, e.g., Amazon and Walmart [121]. 

Besides, it also provides a cost-effective solution for the delivery of low-quantity and emergency goods, 

e.g., medical supplies, to remote areas [122].  

Blockchain-based platforms have been used for helping companies track and measure carbon emissions 

related to their logistics activities [77]. Deep learning and AI technologies have shown the value of using 

digital voice assistance and intelligent information support system in transportation and logistics 

services, which improve the deliverymen’s working experiences, service levels, and operational 

efficiency [123].  

5.4 Digitalization and system integration for sustainable logistics 

In general, digitalization is the most important characteristic of an Industry 4.0 enabled logistics system, 

which aims at the transformation toward fully data-driven operations [124]. This digital transformation 

requires a high-level integration of different smart technologies and systems, which will promote 

operational excellence and create sustainable value-added opportunities [125]. In this regard, many 
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studies have been conducted for enhancing the digitalization and system integration of the entire 

logistics system.  

Many believe IoT-based platforms, which establish the connection between the physical world and the 

digital world [100], are the initial step to achieve a high-level digitalization and system integration of 

different logistics operations. Big data analytics and AI are digital elements for trend analysis, facility 

control, risk management, and other logistics operations [126]. The cloud-based integration of IoT and 

AI enables real-time data analytics and optimal decision support. Besides, advanced controlling and 

autonomous technologies improve the operational efficiency, accuracy, and safety of various logistics 

activities. Trappey, Trappey [82] investigated an IoT- and AI-enabled intelligent logistics system, which 

improved logistics services by integrating several operations, i.e., machine-loading control, production 

flow monitoring, vehicle routing, delivery schedules, and vehicle movement tracking.  

The multi-sourced real-time information flow not only improves the operations within the border of a 

company but also paves the way for better resource sharing and demand matching among different 

companies. Gebresenbet, Bosona [127] developed a web-based smart platform for quality control, 

traceability, and demand matching and optimization of farmers, transporters, and customers in a reverse 

logistics system for biomass recovery and trading. Liu [128] investigated a data-driven logistics 

information system for smart collaborations among different stakeholders, e.g., governments, banks, 

facilities, service providers, and customers, to achieve rapid decision making, cost reduction, and high-

quality services. To evaluate the effectiveness of Industry 4.0 enabled sustainable logistics systems, 

simulation models can be used to provide quantitative insights. By using simulation models, Zissis, 

Aktas [129] analyzed the cost reduction and service level of the smart collaborations for the home 

delivery of online groceries.  

Considering both economic and environmental sustainability, Mastos, Nizamis [130] proposed an 

Industry 4.0 enabled forward-reverse logistics system for effective treatment of hazardous chemicals. 

At the intra-company level, this system enables effective logistics operations including the data-driven 

collection of hazardous chemicals, proactive maintenance of equipment, vehicle monitoring, data 

visualization, and decision optimization. At the inter-company level, a cloud-based collaborative 

ecosystem is established for effective demand matching and cooperation. From the corporate social 

sustainability perspective, Daú, Scavarda [131] discussed the application of IoT and other smart 

technologies to improve the sustainable practices of healthcare logistics. 

Blockchain is another important technology for the digitalization of a logistics system and the 

integration of smart devices and platforms for data sharing and virtual currency transactions. It improves 

transparency, traceability, and security at every stage of logistics operations [132] through the tracking 

of information, physical components, transactions, and participants’ actions and behaviors [133], which 

facilitates the capability of conflict management [134] and risk mitigation [135] in the entire logistics 

system. This also paves the way for sustainable collaboration among different stakeholders in a 

trustworthy business environment [86]. Besides, the opportunities for using blockchain-based digital 

systems to improve the environmental performance of logistics operations through life cycle assessment 

have also been discussed [136].  
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6 Discussions 

In this section, the opportunities and challenges for sustainable logistics in the Industry 4.0 era are first 

discussed, and the suggestions for future research are then given.  

6.1 Opportunities  

Increasing attention has been paid to improve the sustainability of logistics systems with Industry 4.0 

technologies, and worldwide efforts have been spent to advance theoretical development, technology 

transfer, business model innovation, and industrial applications. Based on the content analysis, Figure 

9 summarizes the impacts of Industry 4.0 technologies on the economic, environmental, and social 

dimensions of sustainable logistics. The technological revolution provides companies with opportunities 

to transform their logistics operations to become more responsive to external market changes, while 

simultaneously being efficient with internal operations. On the one hand, through small-scale localized 

production with AM and autonomous robots, new business opportunities arise with increasing demands 

of individualized customizations and product-related services [137], and this requires service innovation 

and improvement of logistics operations. Furthermore, the web-based information-sharing systems 

improve service level and customers’ experiences by a high level of customer involvement throughout 

the design, production, and delivery processes. On the other hand, the integration of IoT, big data 

analytics, and AI algorithms via cloud-based platforms provides computing power to handle multi-

sourced large volume data, which can be used for better visualization and analysis of some key 

parameters [138, 139], i.e., demand trends, maintenance requirements [140], etc. Furthermore, using 

better data as inputs to optimization and simulation models, important logistics decisions [118], e.g., 

production planning, inventory management, routing, delivery schedules, etc., can be made in a timely 

and more accurate manner [63]. 
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Figure 9 Sustainable logistics enabled by Industry 4.0 technologies. 

The most important characteristic of an Industry 4.0 enabled sustainable logistics system is data-driven 

proactive planning, real-time decision making, and autonomous operations. This high-level 

digitalization and system integration have led to the conceptual architecture of the digital twin of 

logistics systems  [141]. The digital twin of a logistics system is fully driven by the data collected from 

both cyber and physical sources [142], e.g., smart sensors, enterprise resource planning [143], etc., and 

it is capable of proactive planning with better analytics of historical data and reactive decision making 

and scenario analysis with real-time data. From the socio-economic perspective, information sharing 

among companies in a logistics system and the use of data analytics provide opportunities for better 

demand matching, resource sharing, and facility usage. The use of autonomous robots and UAV 

minimizes errors, risks, and labor costs of production, warehousing, and transportation while, 

simultaneously, provides innovative and environmentally friendly ways of goods delivery [109]. For 

instance, logistics information sharing and autonomous equipment are particularly important during the 

COVID-19 outbreak, which can help to minimize the shortage of emergency medical supplies and to 

effectively allocate and deliver them to the demand regions. 

Better resource planning reduces waste generation and environmental footprints at different stages of a 

logistics system. Besides, the cloud-based information system provides opportunities to monitor the 

entire product life cycle and promote effective cloud-based remanufacturing and recycling when they 

become EOL products [142]. From the social sustainability perspective, the adoption of blockchain 

technologies provides better traceability and more trustworthy business environments in logistics 

systems. The increased use of autonomous devices improves the safety and working environment of 

various logistics operations. AI-enabled virtual technologies and AR provide logistics operators with 

risk-free training, virtual assistance, and real-time task instructions and visualization to improve their 
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working experiences and effectiveness [125, 144]. In addition, with the requirements of increased 

digitalization, hardware and software development, and system integration, new job opportunities can 

be created in the logistics sector as well as in the other related industries.  

6.2 Challenges and gaps 

Most articles focus on how Industry 4.0 supports sustainable logistics, but less effort has been paid to 

understand the challenges of this digital transformation. Even though the new technologies have 

provided many opportunities, it also brings several challenges for sustainable logistics. One example is 

shown by China’s rapidly developing express delivery and food delivery systems due to the booming of 

e-commerce. On the one hand, thanks to the better demand allocation and order tracking system 

empowered by AI, IoT, and advanced optimization, customers can now enjoy cheaper and faster 

delivery services of their foods and merchandise ordered online. However, on the other hand, these 

responsive logistics services require much more frequent last-mile deliveries, which lead to more traffic 

congestions and carbon emissions. Furthermore, the online platform assigns strict requirements to 

ensure on-time delivery, which raises concerns about the safety issues and job satisfaction of the 

deliverymen. Thus, we discuss several main challenges and gaps of sustainable logistics in the Industry 

4.0 era:  

• Lack of a holistic consideration of multiple sustainable indicators: A sustainable logistics 

system balances the trade-off among the economic, environmental, and social dimensions. 

However, this has not been holistically considered in the adoption of Industry 4.0. For instance, 

the delivery allocation algorithm of the online food ordering platforms is designed to maximize 

the service level so that customer satisfaction and economic sustainability can be enhanced, but 

more environmental and safety issues are not considered holistically. 

 

• Unclear economic benefits and the impacts of other sustainability indicators: Compared with 

the development of technologies, less effort has been spent on the development of quantitative 

and analytical methods [145] to evaluate the economic benefits and the impacts of other 

sustainability indicators by adopting Industry 4.0 in logistics systems. For example, using robots 

to replace manual operations in a warehouse not only affects a single activity but also largely 

influences other operations and the performance of the whole logistics system. Several studies 

show that the lack of concrete evidence on performance improvement has become a major 

hindrance to confirming companies to adopt Industry 4.0 in their logistics operations [45]. 

 

• Lifecycle energy consumption and environmental footprint: Even if Industry 4.0 shows the 

potential to reduce waste generation and improve resource utilization, from the lifecycle 

analysis perspective, the use of a large number of sensors, robots, and other smart devices in 

various logistics operations has inevitably lead to higher energy consumption and potential 

environmental footprints. For example, UAV is believed an environmentally friendly way to 

provide responsive and low-carbon delivery service. However, the recent research by Stolaroff, 

Samaras [146] has shown that the environmental footprints of UAV delivery may be higher than 

the traditional road delivery due to its limited capacity.  
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• Job loss and difficulties for workers: Logistics is a labor-intensive industry, and there is not a 

high requirement of knowledge and education for first-line operators. On the one hand, the 

human-centered technological revolution improves logistics operations, efficiency, agility, 

safety, and working environment. However, on the other hand, from the social sustainability 

perspective, it will inevitably cause job losses, the anxiety of employees who worry about their 

careers, and difficulties especially for aging workers both technically and psychologically to 

adapt to this new transformation.  

 

• Inequity issues: the paradigm change of sustainable logistics is led by the market leaders like 

DHL, Amazon, JD.COM, etc., who spent large investments for developing smart and 

autonomous logistics solutions [147]. However, the lack of financial and technological 

resources of small and medium-sized enterprises (SMEs) significantly hinder the adoption of 

smart technologies and sustainable practices in their logistics systems, which results in an 

unequal position in the competition with large companies. In addition, studies also reveal that 

some Industry 4.0 technologies, e.g., big data analytics, can be used for unfair price 

discrimination and dynamic pricing throughout different players in a logistics system [148].  

 

• Lack of a general guideline: The current research focuses on the adoption of an individual or 

several Industry 4.0 technologies in sustainable logistics. However, the practices are ad-hoc 

endeavors, and there is a lack of systematic guidelines to link different Industry 4.0 technologies 

and sustainable logistics operations at various stages. 

 

• System integration and interoperability: The meaning of interoperability is that different smart 

devices and systems can independently communicate and access each other’s functions [149]. 

Implementing Industry 4.0 in a sustainable logistics system that has many devices for different 

operations requires not only technological upgrades but also system integration with existing 

equipment. The communication protocols and control methods of the existing equipment and 

the new devices or system are by no means identical, so large efforts and upfront costs are 

required to make the existing logistics system more autonomous, smart, and sustainable.  

 

• Data quality and cybersecurity concerns: Industry 4.0 requires effective data sharing 

horizontally among different facilities and companies in a logistics system and vertically 

throughout different functions and operations within a company [150]. However, the maturity 

and quality of data processing at different companies may not be at the same level, so this 

technological transformation requires collaborative efforts from various stakeholders in a 

logistics network. Besides, the concerns of cybersecurity and data safety also hinder the 

adoption of Industry 4.0 in logistics operations [149]. 

In addition, there exist knowledge siloing of current research. Industry 4.0 enabled sustainable logistics 

is a topic related to several subjects, e.g., computer and data sciences, automation and control, robotics, 

operations research, and social science. However, from the bibliometric analysis, it is evident that there 

is still a lack of effective research cooperation among researchers and groups with different backgrounds 

and geographical locations. This limits the generation of a general guideline and solution that can be 

widely applicable in different regions.  
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6.3 Future research suggestions 

Several research directions are recommended to fill the literature gaps and better support this smart 

transformation of sustainable logistics: 

1. Human-centric smart logistics transformation needs to be focused on. The latest concept of 

Industry 5.0 extends the technology-centric transformation of Industry 4.0 to a more socially 

sustainable human-centric transformation, and future research is thus needed to understand how 

human-centric smart transformation can be achieved in logistics sectors. Besides, several social 

impacts such as the demographic change and the impacts to aging workers for adopting these 

smart technologies in logistics sectors need to be better understood. 

 

2. Multi-objective balanced system design for sustainable logistics operations. This requires new 

algorithms and systems that are designed to help with decision making considering multiple 

objectives. For example, in the order allocation algorithm for food delivery assignment, a 

balance needs to be achieved among the service level, the environmental footprints, and the 

deliverymen’s safety issues in the real-time traffic condition.  

 

3. The lifecycle environmental impact of Industry 4.0 enabled logistics systems needs to be better 

analyzed. Future studies are needed to provide deeper insights into the environmental footprints 

through lifecycle analysis. For instance, the system boundary of the analysis should be extended 

to the energy consumption and resource usage related to the production and recycling of the 

smart devices used in sustainable logistics.  

 

4. Analytical models and optimization for adopting Industry 4.0 technologies in smart ways in 

different logistics operations and for providing quantitative implications of the cost benefits, 

different sustainability indicators, and overall system performance. Besides, in the Industry 4.0 

era, the logistics system’s effectiveness, efficiency, flexibility, agility, and environmental 

footprints need probably to be re-balanced [147], which requires better-designed analytical tools 

and optimization algorithms.  

 

5. The digital twin of sustainable logistics systems needs to be focused to provide end-to-end 

solutions to various logistics operations. Via a cloud-based system, the predictive analytics with 

AI and the real-time data from IoT sensors as well as other cyber and physical portals need to 

be seamlessly connected with analytical optimization and simulation tools to improve both 

proactive and real-time decision making in sustainable logistics operations. Besides, future 

research is also suggested to develop the bi-directional control architecture to achieve highly 

autonomous logistics operations, e.g., warehousing. 

 

6. Semi-autonomous sustainable transportation solutions: Even if autonomous driving vehicles 

have been extensively focused on in recent years, the realization of a fully autonomous 

transportation system faces many challenges and uncertainties, i.e., legal restrictions, 

technological maturity, and safety issues. Thus, the use of semi-autonomous solutions is an 

attractive alternative for sustainable logistics solutions. For example, truck platooning is a semi-
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autonomous system that has several benefits, e.g., improved efficiency, reduced labor costs, and 

reduced fuel consumption and carbon emissions due to the reduction of the aerodynamic 

resistance of the following trucks.  

 

7. Broad and diversified technology focus should be given not only to IoT, CPS, AI, and 

autonomous robots but also to others, e.g., AR and AM, which receive much less attention in 

the literature related to sustainable logistics. Thus, future research is needed to provide a better 

understanding of how those Industry 4.0 can be used to enhance sustainable logistics operations. 

 

8. Sustainable reverse logistics enabled by Industry 4.0 is another opportunity for future research. 

Less focus has been given to the smart transformation of reverse logistics, which faces 

challenges related to the uncertainty of the market demands and the quantity and quality of the 

returned products. Smart technologies provide opportunities for minimizing the impact of 

uncertainty with better prediction and for more effective resource sharing among different 

companies. Besides, the use of AI-enabled autonomous robots has shown potentials to replace 

human workers from harsh working environments, e.g., manual sorting of waste. In addition, 

the terms “demand individualization” and “individualized customization” need to be redefined 

in reverse logistics. 

 

9. The smart and sustainable logistics solutions for the COVID-19 need to be focused on. Due 

to the rapidly increased demand, strict border control and city lockdown, and reduced 

transportation capacity, the COVID-19 pandemic has hindered the flows of goods, increased 

logistics costs, and imposed a higher risk on vulnerable groups related to the shortage of medical 

supplies, foods, and other necessities. In this regard, the role of Industry 4.0 technologies needs 

to be highlighted to tackle the logistics challenges during the pandemic. For example, the use 

of robots to collect infectious waste at healthcare facilities may reduce the infection risks.   

7 Conclusions 

The concepts of sustainable logistics and Industry 4.0 have been focused on by many researchers due to 

the increasing need for technology-driven smart and sustainable logistics. This paper provides a 

systematic literature review focusing on the recent development and adoption of various Industry 4.0 

technologies in sustainable logistics at both intra- and inter-company levels. First, a bibliometric 

analysis was conducted to identify the publication trend, the most influential journals and research, the 

co-citation networks, and the most frequently used keywords. Then, a content analysis was performed 

to understand the current research landscape on how Industry 4.0 technologies can be used to improve 

sustainable logistics activities, namely, production and purchasing, warehousing, transportation, and 

general system integration. Finally, current research developments were summarized, and the 

challenges, literature gaps, and future research opportunities were discussed. To answer the proposed 

research questions: 

• RQ1, we systematically analyze the state-of-the-knowledge of Industry 4.0 and sustainable 

logistics with both bibliometric analysis and content analysis in Sections 4 and 5. 
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• RQ2, we thoroughly discuss both the opportunities and the challenges of sustainable logistics 

in the Industry 4.0 era in sections 6.1 and 6.2.  

 

• RQ3, we identify 9 future research directions in section 6.3. 

From the research perspective, the results show an increasing focus has been given to Industry 4.0 

enabled sustainable logistics, which is an area attracting worldwide researchers and practitioners. The 

results suggest that cooperation among researchers should be enhanced in the future. In addition, the 

paper analyses the current research landscape and how the paradigm shift of various logistics activities 

is driven by technological advancements, and their implications on improving economic, environmental, 

and social sustainability are discussed. Based on this, the gaps and opportunities are identified to guide 

future research.  

From the practical perspective, the results provide insights for the potential application of Industry 4.0 

technologies to enhance sustainable logistics practices, which will promote knowledge transfer from 

academic research to industrial applications. In particular, the use of data-driven decision-support 

platforms may provide cost-effective, safe, and reliable tools for a better understanding and analysis of 

the effectiveness and challenges of adopting new technologies, digital solutions, and business models 

in sustainable logistics systems. From a broader perspective, these discussions also provide other 

companies with implications and some successful examples for guiding their logistics transformations 

in the Industry 4.0 era. Besides, the challenges of Industry 4.0 to sustainable logistics systems need to 

be noticed in this technological and operational transformation. One should bear in mind that the benefits 

should never be overestimated, and the challenges and commitments required should never be 

underestimated. 

The paper inevitably has several limitations regarding the filters used in the sample selection, which 

only account for the journal articles published in English with respect to the selected keywords, the two 

databases, and the time of the search. Sustainable logistics and Industry 4.0 are extensively focused by 

worldwide researchers, and some important publications may be published in different languages. 

Besides, both concepts are currently getting fast-growing attention, and relevant papers may be 

published in different forms, i.e., conference papers, book chapters, magazines, industrial reports, or 

under the peer-review stage as pre-prints. Therefore, the results presented in this paper are not 

exhaustive, and future improvements are needed to present a more comprehensive analysis with an 

extended sample selection.  
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Appendix I 

Table A1 The clusters, the occurrences, and the TLSs of the highly used keywords (The maximum number of 

keywords included from each cluster is 10). 

Clusters Keywords Occurrences TLS 

Cluster 1 
 

Internet of things 21 117 

Decision making 19 115 

Smart logistics 17 52 

Cloud computing 5 18 

Logistics industry 5 18 

Warehouses 5 21 

Carbon 4 24 

Embedded systems 4 29 

Information platform 4 8 

IoT 4 21 

Cluster 2 

 

Article 8 100 

Big data 8 61 

Blockchain 8 75 

Human 8 100 

Circular economy 7 68 

Information management 6 50 

Sustainable supply chain management 6 36 

Economic aspect 5 58 

Data analytics 4 50 

Environmental sustainability 4 46 

Cluster 3 

 

Supply chain management 39 264 

Sustainability 29 191 

Sustainable development 28 220 

Sustainable supply chains 28 235 

Supply chains 13 94 

Optimization 10 51 

Supply chain 8 56 

Simulation 7 32 

Sustainable supply chain 7 46 

Environmental impact 5 43 

Cluster 4 

 

Cost reduction 3 16 

Design/methodology/approach 4 32 

Economic and social effects 3 28 

Environmental pollutions 3 20 

Hazardous chemicals 3 13 
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 Hazardous materials 3 13 

Hazards 3 13 

Industrial economics 4 35 

Industrial research 3 21 

Internet of things (iot) 9 68 

Cluster 5 

 

Industry 4.0 34 151 

Logistics 14 59 

Logistics 4.0 10 18 

Artificial intelligence 9 53 

Decision support systems 9 57 

Decision support system 4 29 

Bibliometric analysis 3 16 

Food supply 3 17 

Industrial revolutions 3 14 

Manufacturing 3 14 

Cluster 6 

 

Surveys 5 37 

Analytic hierarchy process 3 27 

Analytical hierarchy process 3 27 

Analytic hierarchy process (ahp) 3 21 

Accident prevention 3 16 
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Appendix B 

Table B1 Industry 4.0 enabled sustainable manufacturing and purchasing.  

Author/Year Industry 4.0 technology Sustainable logistics 

dimension 

IoT CPS Big 

data 

Cloud 

tech. 

AR AM Virtual 

tech. 

Cyber-

security 

Autonomous 

robots 

UAV AI Block-

chain 

Environm

ental 

Social 

Strandhagen, Vallandingham 

[59] 

√ √ √ √ √ √ 
  

√ 
 

√ 
 

√ √ 

Barreto, Amaral [60] √ √ √ √ 
        

√ √ 

Facchini, Olésków-Szłapka 

[92] 

√ √ √ √ √ 
   

√ 
     

Chong, Low [151] √ √ 
            

Sutawijaya and Nawangsari 

[58] 

√ 
 

√ 
     

√ 
 

√ 
 

√ 
 

Motevalli-Taher, Paydar 

[152] 

      
√ 

     
√ √ 

Saberi, Kouhizadeh [77] 
           

√ √ √ 

Bag, Yadav [89] √ 
 

√ 
       

√ 
 

√ √ 

Beltagui, Kunz [91] 
     

√ 
       

√ 

Esmaeilian, Sarkis [57] √ √ 
 

√ √ √ 
 

√ √ 
 

√ √ √ √ 

Prause and Atari [79] 
 

√ 
            

Samir, Abdelsamad [90] √ 
 

√ √ 
 

√ 
     

√ 
  

Isasi-Sanchez, Morcillo-

Bellido [73] 

 
√ 

   
√ 

      
√ √ 

Wang, Gunasekaran [65] 
            

√ √ 

Björklund and Forslund [88] 
            

√ √ 
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Tuffnell, Kral [153] √ √ √ √ √ 
       

√ 
 

Sheares [154] √ √ √ 
 

√ √ 
  

√ 
 

√ √ 
 

√ 

Nica [155] √ √ 
        

√ 
  

√ 

Felstead [144] √ √ 
        

√ 
   

Li, Fang [83] 
            

√ √ 

Bourke [138] √ 
         

√ 
  

√ 

Gonzalez, Sarkis [87] 
            

√ √ 

Ma, Wang [93] 
      

√ 
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Table B2 Industry4.0 enabled sustainable warehousing. 

Author/Year Industry 4.0 technology Sustainable logistics 

dimension 

IoT CPS Big 

data 

Cloud 

tech. 

AR AM Virtual 

tech. 

Cyber-

security 

Autonomous 

robots 

UAV AI Block-

chain 

Environm

ental 

Social 

Barreto, Amaral [60] √ √ √ √ 
        

√ √ 

Ding, Jin [102] √ 
 

√ √ 
      

√ 
   

Abbas and Marwat [139] √ √ 
    

√ 
       

Yavas and Ozkan-Ozen [98] √ √ 
  

√ 
       

√ 
 

Munsamy, Telukdarie [104] √ √ √ √ √ √ √ √ √ √ 
  

√ 
 

Issaoui, Khiat [121] √ √ √ √ 
      

√ √ √ √ 

Lv, Xiang [103] √ 
 

√ 
          

√ 

Shoaib, Lim [101] √ 
          

√ 
 

√ 

Rakyta, Fusko [97] 
  

√ 
         

√ √ 

Sciortino, Micale [156] 
  

√ 
         

√ 
 

Wen, He [109] √ 
 

√ 
     

√ √ √ 
 

√ √ 

Trab, Bajic [95] √ 
             

Jabbar, Khan [99] √ 
             

Lee, Lv [81] √ √ 
            

Samir, Abdelsamad [90] √ 
 

√ √ 
 

√ 
     

√ 
  

Wang, Gunasekaran [65] 
            

√ √ 

Zhou, Piramuthu [96] 
              

Cui [157] √ 
       

√ 
     

Tang, Liu [100] 
      

√ 
     

√ √ 
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Table B3 Industry 4.0 enabled sustainable transportation. 

Author/Year Industry 4.0 technology Sustainable 

logistics dimension 

IoT CPS Big 

data 

Cloud 

tech. 

AR AM Virtual 

tech. 

Cyber-

security 

Autonomous 

robots 

UAV AI Block-

chain 

Environ

mental 

Social 

Barreto, Amaral [60] √ √ √ √ 
        

√ √ 

Facchini, Olésków-Szłapka [92] √ √ √ √ √ 
   

√ 
     

Ding, Jin [102] √ 
 

√ √ 
      

√ 
   

Liu [128] 
  

√ 
          

√ 

Yavas and Ozkan-Ozen [98] √ √ 
          

√ 
 

Munsamy, Telukdarie [104] √ √ √ √ √ √ √ √ √ √ 
  

√ 
 

Issaoui, Khiat [121] √ √ √ √ 
      

√ √ √ √ 

Sutawijaya and Nawangsari [58] √ 
 

√ 
     

√ 
 

√ 
 

√ 
 

Su and Fan [114] 
  

√ 
       

√ 
 

√ √ 

Mehmann and Teuteberg [158] 
      

√ 
     

√ √ 

Saberi, Kouhizadeh [77]  
         

 √ √ √ 

Pan, Li [110] 
            

√ √ 

Zhao, Zhang [112] √ 
           

√ 
 

Greif, Stein [159] √ 
     

√ 
       

Yang, Guizani [72] 
        

√ √ √ 
 

√ √ 

Frontoni, Rosetti [111] 
              

Hoffa-Dabrowska and 

Grzybowska [117] 

            
√ 

 

Dong and Boute [116] 
            

√ 
 

Esmaeilian, Sarkis [57] √ √ 
 

√ √ √ 
 

√ √ 
 

√ √ √ √ 
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da Silva, Rangel [118] 
      

√ 
     

√ 
 

Hilpert, Kranz [85] 
            

√ 
 

Sciortino, Micale [156] 
  

√ 
         

√ 
 

Sivamani, Kwak [160] √ 
            

√ 

Zhang [63] √ √ √ √ 
          

Wen, He [109] √ 
 

√ 
     

√ √ √ 
 

√ √ 

Teucke, Broda [161] √ 
     

√ 
       

Hong, Alzaman [119] 
      

√ 
     

√ √ 

Sundarakani, Lai [162] 
             

√ 

Luo and Fu [163] 
            

√ √ 

Anandhi, Anitha [113] √ 
            

√ 

Hsiao and Chang [123] 
          

√ 
  

√ 

Samir, Abdelsamad [90] √ 
 

√ √ 
 

√ 
     

√ 
  

Wang, Gunasekaran [65] 
            

√ √ 

Yu, Jung [164] 
              

Björklund and Forslund [88] 
            

√ √ 

Cho and Kim [165] √ 
            

√ 

Benotmane, Belalem [69] 
   

√ 
          

Tatham, Stadler [122] 
         

√ 
   

√ 

Gružauskas, Baskutis [120] √ √ √ √ 
  

√ 
     

√ 
 

Sun, Zhang [115] 
      

√ 
     

√ √ 

Lin, Shi [166] √ 
     

√ 
       

Wanke, Correa [167] 
      

√ 
     

√ 
 

Tang, Liu [100] 
      

√ 
     

√ √ 
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Table B4 Industry 4.0 enabled digitalization and system integration for sustainable logistics.  

Author/Year Industry 4.0 technology Sustainable 

logistics dimension 

IoT CPS Big 

data 

Cloud 

tech. 

AR AM Virtual 

tech. 

Cyber-

security 

Autonomous 

robots 

UAV AI Block-

chain 

Environ

mental 

Social 

Strandhagen, Vallandingham [59] √ √ √ √ √ √ 
  

√ 
 

√ 
 

√ √ 

Barreto, Amaral [60] √ √ √ √ 
        

√ √ 

Kucukaltan, Saatcioglu [168] 
  

√ √ 
 

√ 
  

√ √ 
   

√ 

Abbas and Marwat [139] √ √ 
    

√ 
       

Liu [128] 
  

√ 
          

√ 

Luthra and Mangla [45] √ √ √ 
         

√ √ 

Yavas and Ozkan-Ozen [98] √ √ 
          

√ 
 

Allaoui, Guo [2] 
            

√ √ 

Tseng, Wu [169] 
  

√ 
         

√ √ 

Kumar, Singh [170] √ √ 
 

√ 
 

√ 
      

√ √ 

Sutawijaya and Nawangsari [58] √ 
 

√ 
     

√ 
 

√ 
 

√ 
 

Motevalli-Taher, Paydar [152] 
      

√ 
     

√ √ 

Cole, Stevenson [86] 
           

√ 
 

√ 

Zhang, Liu [80] √ √ 
 

√ 
        

√ 
 

Tang [171] √ 
 

√ √ 
          

Greif, Stein [159] √ 
     

√ 
       

Correa, Sampaio [172] √ 
 

√ 
          

√ 

Kodym, Kubáč [135] √ √ √ √ 
 

√ 
 

√ 
   

√ √ √ 

Bag, Yadav [89] √ 
 

√ 
       

√ 
 

√ √ 

Cui, Gao [173] √ 
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Ebinger and Omondi [125] √ 
 

√ √ 
      

√ √ √ √ 

Mastos, Nizamis [130] √ √ √ 
 

√ 
       

√ 
 

Chiappetta Jabbour, Fiorini [174] 
  

√ 
         

√ √ 

Morella, Lambán [175] √ √ √ √ √ √ √ √ √ 
   

√ 
 

Bag, Wood [126] 
  

√ 
          

√ 

Yadav and Singh [176] 
           

√ 
 

√ 

Esmaeilian, Sarkis [57] √ √ 
 

√ √ √ 
 

√ √ 
 

√ √ √ √ 

Yadav, Luthra [177] 
            

√ √ 

Manupati, Schoenherr [134] 
           

√ √ 
 

Shoaib, Lim [101] √ 
          

√ 
 

√ 

Bai and Sarkis [133] 
           

√ 
 

√ 

Rejeb and Rejeb [178] 
           

√ √ √ 

Rakyta, Fusko [97] 
  

√ 
         

√ √ 

Daú, Scavarda [131] √ 
           

√ √ 

Krykavskyy, Pokhylchenko [124] 
             

√ 

Hasan, Jiang [179] 
              

Xie [180] √ 
            

√ 

Trappey, Trappey [82] √ 
 

√ √ 
          

Anandhi, Anitha [113] √ 
            

√ 

Gebresenbet, Bosona [127] 
              

Bosona, Gebresenbet [181] 
              

Liu, Zhang [182] √ 
 

√ 
         

√ 
 

Bag, Gupta [183] √ √ √ √ 
          

Liu, Wei [184] 
  

√ 
         

√ √ 

Lee, Kang [185] 
            

√ 
 



Paper 1 The Application of Industry 4.0 Technologies in Sustainable Logistics: A Systematic Literature Review (2012—2020) to 

Explore Future Research Opportunities 

38 | P a g e  

 

Sahay and Ierapetritou [186] 
      

√ 
       

Byun, Nasridinov [187] √ 
            

√ 

La Scalia, Nasca [188] 
      

√ 
     

√ 
 

Zhang, Zhong [136] √ 
 

√ 
        

√ √ √ 

Ma, Wang [189] 
            

√ 
 

Bricher and Müller [190] 
          

√ 
  

√ 

Cimini, Lagorio [191] √ √ √ √ 
         

√ 

Prause [78] √ √ √ 
  

√ 
      

√ √ 

Dai [192] √ 
 

√ 
          

√ 

Dominguez, Cannella [193] 
      

√ 
     

√ 
 

Gružauskas, Baskutis [120] √ √ √ √ 
  

√ 
     

√ 
 

Tseng, Wee [194] 
            

√ 
 

Xu, Jiao [195] √ 
 

√ 
           

Bukowski [196] √ 
 

√ √ 
          

Ma, Wang [93] 
      

√ 
       

Zissis, Aktas [129] 
      

√ 
     

√ √ 
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Abstract: The recent advancement of digitalization and information and communication 

technology (ICT) has not only shifted the manufacturing paradigm towards the Fourth 

Industrial Revolution, namely Industry 4.0, but also provided opportunities for a smart 

logistics transformation. Despite studies have focused on improving the smartness, 

connectivity, and autonomy of isolated logistics operations with a primary focus on the 

forward channels, there is still a lack of a systematic conceptualization to guide the 

coming paradigm shift of reverse logistics, for instance, how “individualization” and 

“service innovation” should be interpreted in a smart reverse logistics context? To fill this 

gap, Reverse logistics 4.0 is defined, from a holistic perspective, in this paper to offer a 

systematic analysis of the technological impact of Industry 4.0 on reverse logistics. Based 

on the reported research and case studies from the literature, the conceptual framework 

of smart reverse logistics transformation is proposed to link Industry 4.0 enablers, smart 

service and operation transformation, and targeted sustainability goals. A smart reverse 

logistics architecture is also given to allow a high level of system integration enabled by 

intelligent devices and smart portals, autonomous robots, and advanced analytical tools, 

where the value of technological innovations can be exploited to solve various reverse 

logistics problems. Thus, the contribution of this research lies, through conceptual 

development, in presenting a clear roadmap and research agenda for the reverse logistics 

transformation in Industry 4.0. 

Keywords: Industry 4.0; technological transformation; smart technologies; reverse 

supply chain; waste management; sustainability 

 

1 Introduction 

Recently, the increasing focus on sustainable development and circular economy from the whole society 

and the more stringent environmental regulations have required companies to take responsibility for the 

entire lifecycle of their products. The primary aim of reverse logistics is to maximize the recovery of 

the remaining value from end-of-life (EOL) products through the proper design, operating, controlling, 

and maintaining effective and economic-efficient flows starting from customers towards initial suppliers 

and manufacturers [1], and the non-recyclables should be appropriately disposed of. Designing and 

operating a reverse logistics system need to balance the trade-off between economic, environmental, 
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and social sustainability [2]. However, this is not an easy endeavor due to the complexity of effectively 

managing several stakeholders to perform various operations including collection, sorting, distribution, 

disassembling, repair, reuse, remanufacturing, recycling, energy recovery, and proper waste disposal 

[3]. Furthermore, the increased system operating costs [4], the high uncertainty related to the quantity 

and the quality of EOL products in the reverse flows [5], the lack of relevant and real-time information 

for decision making [6, 7], and the lack of coordination among different partners [4] have become some 

major obstacles for sustainable reverse logistics management. 

These challenges may be better tackled today with the emerging concept of Industry 4.0 as well as its 

enabling technologies, which provide new opportunities for achieving improved internet-based 

connectivity, smartness, intelligence, and autonomous operations of not only manufacturing processes 

but also logistics systems [8, 9]. Taking advantage of the technological innovation of the Fourth 

Industrial Revolution, the concept of Logistics 4.0 has also been proposed in recent years [10, 11]. 

Combining several cutting-edge technologies, e.g., internet of things (IoT), big data analytics, artificial 

intelligence (AI), etc., in a cyber-physical system (CPS) that integrates both computational intelligence 

and smart physical assets, a Logistics 4.0 system can achieve real-time monitoring and decision making, 

responsive communications, better resource allocation, and smoother material flows. These smart 

technologies can also be used to improve the economic, environmental, and social sustainability of 

reverse logistics systems.  

The changing demands and the integration of different Industry 4.0 technologies will together lead to a 

paradigm shift of reverse logistics, where the former is the driver and the latter is the enabler of this 

smart and sustainable transformation. The increased data availability can improve the prediction and 

traceability of EOL products, which minimizes the uncertainty of the reverse flows and improves the 

planning of different operations, e.g., collection [12] and remanufacturing [7, 13]. The high-quality data 

also improves the outputs of the model-based optimization and simulation approaches for critical 

decisions [6], i.e., scheduling of collection, routing, inventory management, distribution, etc. In addition, 

the increased use of AI-enabled smart robots can replace human workers in the harsh working 

environment, and the enhanced interaction between different partners and stakeholders via a highly 

connected digital platform may improve inter-company information sharing and resource utilization.  

Even though recent studies have been conducted to show the application of several Industry 4.0 

technologies in isolated reverse logistics operations, there is still a lack of a systematic conceptual 

framework to better understand the potential and implications of these technological innovations for the 

entire reverse logistics system, particularly from the service innovation perspective. For example, how 

“individualization” should be interpreted in a smart reverse logistics context? Furthermore, most studies 

only emphasize the benefits of implementing Industry 4.0, but much less effort has been paid to 

discussing the challenges of technological adoption in reverse logistics systems. Therefore, by analyzing 

the state-of-the-art research and case studies in a comprehensive and cross-disciplinary manner, this 

paper aims at filling these gaps by answering the following three research questions (RQs): 

RQ1: What are the definition and the key features of Reverse Logistics 4.0? 

RQ2: What is the smart and sustainable transformation of Reverse Logistics 4.0? 

RQ3: What is the future research agenda of Reverse Logistics 4.0? 
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By answering these questions, we define the concept of Reverse Logistics 4.0 in comparison with the 

four Industrial Revolutions in history, where the technology-enabled innovation in both service and 

operations are systematically analyzed in the reverse logistics context. Moreover, based on the reported 

research and case studies from the literature, we present a roadmap for both researchers and practitioners 

in the smart and sustainable reverse logistics transformation. Finally, we also present a research agenda 

in four directions: 1) smart and innovative reverse logistics services; 2) quantitative models for smart 

and sustainable reverse logistics management; 3) digital reverse logistics twin, and 4) human-centricity 

and Reverse Logistics 5.0. 

The rest of the paper is organized as follows. Section 2 provides state-of-the-art developments in both 

reverse logistics and Industry 4.0. Section 3 conceptualizes Reverse Logistics 4.0 and discusses its main 

features. Section 4 investigates the smart and sustainable reverse logistics transformation enabled by 

disruptive technologies. Section 5 identifies a future research agenda. Section 6 concludes the paper.  

2 State of the Art 

2.1 Reverse Logistics  

Reverse logistics focuses on the value recovery from EOL products and on the proper treatment of non-

recyclables [1]. The reuse and recycling practices can be dated back to a long time ago, for example, 

after proper cleaning and treatment, the returned bottles can be reused many times by beverage 

manufacturers for their new products. In the early 1990s, the concept of reverse logistics was first put 

forward to depict all relevant activities and logistics flows from the end customers to different producers, 

recyclers as well as other actors [14]. The main operations of a reverse logistics system consist of the 

collection of EOL products from customers and end-users, the appropriate inspection, sorting, 

disassembling and/or pre-processing, the distribution of different products, parts and components to 

respective facilities for proper treatment, and the planning and scheduling of facility operations and 

transportation [15, 16]. Configuring a reverse logistics system for effective management of these 

operations requires proper decision-making at strategic, tactical, and operational levels. During the past 

three decades, extensive research efforts have been spent to improve conceptual development [17, 18], 

formulate advanced mathematical models and algorithms [19, 20], provide empirical studies and 

implications [21], and develop other qualitative and quantitative methods for supporting various 

decisions in reverse logistics [22].   
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Figure 1 Keyword co-occurrence analysis of reverse logistics. 

The motivation of reverse logistics comes initially from two aspects [15]. From the ecological 

perspective, reverse logistics improves the utilization of different materials and helps thus to solve the 

global resource depletion problems. Besides, it may provide companies with opportunities to improve 

their cost reduction and profitability through product recovery. However, in practice, the value recovery 

through reverse logistics may be drastically hindered by several factors, i.e., the low-profit margin [23], 

the possible competition with new products or market cannibalization [24], the uncertainty related to 

market acceptance [25], and the complexity of managing reverse flows. Moreover, even though reverse 

logistics has been considered a fundamental part of sustainable development and circular economy, 

improper recycling activities may result in negative environmental and social impacts [26]. For example, 

the large export volume of waste electrical and electronic equipment (WEEE) from developed countries, 

i.e., the US, EU, Japan, etc., to the developing countries in southeast Asia not only causes increased 

greenhouse gas (GHG) emissions related to maritime transportation but also poses significant threats to 

the workers and the environment due to the primitive and low-tech recycling methods used. Thus, the 

effective design of a reverse logistics system will help to promote more sustainable practices of different 

activities.  

Figure 1 presents a keyword co-occurrence analysis of the latest publications on reverse logistics. The 

web of science (WOS) database was used for searching the relevant papers to generate the visualization. 

The recent research on reverse logistics has focused on managing various types of EOL products through 

different options considering economic, social, and environmental performances. Several important 

decisions, i.e., facility location, transportation, vehicle routing, etc., have been predominantly tackled 

by using advanced quantitative methods, i.e., mathematical models [27], multi-criteria decision support 

methods [28], and simulation [29-31]. Among these, optimization is the most extensively used technique 

to solve complex decision-making problems in reverse logistics. Early research focuses on developing 

deterministic single objective optimization models for either minimizing the system operating cost or 

maximizing the total profit [27]. However, recent studies emphasize the balance among different 
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sustainable indicators with multi-objective optimization models [19, 32], the proper formulation and 

treatment of uncertainties [33-35], the improvement of the models’ computational efficiency [36, 37], 

and the management of different stakeholders [38].   

2.2 Industry 4.0 

Industry 4.0, also known as the Fourth Industrial Revolution, was put forward by German researchers 

and industrial practitioners in 2011 [39], which presented the blueprint of the next-generation 

manufacturing systems with the adoption of state-of-the-art manufacturing technologies and ICT. Even 

if it is a new concept, Industry 4.0 has been widely discussed by worldwide researchers during the last 

decade due to its potential to dramatically change today’s paradigms of almost all industries and 

businesses through digital transformation. On the one hand, the current change of the industrial paradigm 

is driven by new demands for increased individualization on both products and services, shortened time-

to-market, small-scale decentralized customer segments, and so forth. On the other hand, these new 

demand patterns can be better addressed with recent technological advancements that have provided 

companies with opportunities to achieve a highly flexible, agile, responsive, and resource-efficient 

manufacturing process through digitalization and various smart technologies [40]. Compared with the 

Third Industry Revolution starting from the early 1970s, where industrial robots, advanced machine 

tools, computer-aided manufacturing (CAM), and lean production were used to achieve mass 

customization through increased automation, reconfigurability, and flexibility, Industry 4.0 has several 

new features. From the technological perspective, an Industry 4.0 manufacturing system emphasizes the 

internet/5G-based communication and connectivity of different smart devices and cyber elements, 

which enable real-time data collection, autonomous system control, and effective human-machine 

interaction [41]. Another significant feature is the computational intelligence brought by AI, big data 

analytics, and improved optimization and simulation tools, which enables better prediction and real-time 

data-driven decision making. From the commercial perspective, these Industry 4.0 technologies pave 

the way for new business models, individualized customization, better resource sharing, and sustainable 

production [8, 42]. 

 

Figure 2 Industry 4.0 enabled smart manufacturing. 
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Based on Salkin, Oner [41], Bai, Dallasega [8], Frank, Dalenogare [39], and Phuyal, Bista [43], Figure 

2 summarizes the key Industry 4.0 technologies into three categories, namely, physical layer, cyber 

layer, and cyber-physical layer. The drastically increased use of connected devices has driven a rapid 

digital transformation. Recent research has shown that the total amount of connected devices in the 

world has increased by nearly 99 times during the past two decades, and the average number of 

connected devices per person has reached approximately 6.58 in 2020 [43]. An Industry 4.0 enabled 

manufacturing system comprises a large amount of various smart and connected robots and devices, 

which are communicated with each other and interacted with cyber intelligence in real-time. The level 

of integration of both physical elements and cyber technologies within a CPS determines the system’s 

sophistication, connectivity, intelligence, and autonomy. Lee, Bagheri [44] defined five levels of 

technological integration in a CPS, which are machine-level connection, data transmission and 

conversion, system-level connectivity, system cognition, and system intelligence and self-configuration. 

With the highest level of CPS, a smart manufacturing system can make self-decisions based upon 

individual customer orders, generate production procedures, test different scenarios in virtual 

environments, and control intelligent robots and machines for an autonomous and highly responsive 

production process.  

Figure 3 illustrates the keyword co-occurrence analysis of the recent research related to Industry 4.0. 

The research focuses have been predominantly given to the technological development of CPS, IoT, AI, 

big data analytics, blockchain, additive manufacturing, etc., to achieve predictive maintenance, real-

time decision making, smart manufacturing, and better production control and planning. Besides, these 

technologies are not only used to improve manufacturing processes but are also applied to enhance 

supply chain management [45], innovation [46], and sustainable development [47]. Particularly, recent 

research has shown great opportunities to improve sustainability and circular economy with the help of 

Industry 4.0 [8, 48]. For example, reducing waste generation and improving material utilization by 

adopting a demand-driven small-scale intelligent production process with additive manufacturing [49]. 

  

Figure 3 Keyword co-occurrence analysis of Industry 4.0. 
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2.3 The contributions of this research 

Table 1 shows the search information of the top 60 keywords related to reverse logistics and Industry 

4.0, and the top keywords related to both reverse logistics and Industry 4.0 are “sustainability”, “circular 

economy”, “model”, “impact”, “challenges”, “systems”, “design”, “sustainable development”, 

respectively. Through a comparison of these keywords, it is noteworthy that even if Industry 4.0 has 

provided new opportunities for improving decision-making and operations with better use of smart 

devices, data analytics, and computational intelligence, their adoption in reverse logistics is still in its 

infancy and has not been widely discussed in the literature. For example, many optimization models 

have been developed for supporting decision-making in reverse logistics, whose results are heavily 

dependent on the availability and the quality of input data. The high uncertainty related to the input 

parameters will make these models computationally expensive to solve within polynomial time. 

Moreover, the reliability of the models’ outputs and the decisions obtained may also be drastically 

influenced. Due to these, the adoption of Industry 4.0 technologies is well justified for their impacts on 

improving the data quality, computational intelligence, and operations in reverse logistics.  

Table 1 Literation analysis of the recent publications.  

Search criteria Keywords   

 “Reverse logistics” “Industry 4.0” “Reverse logistics” 

AND “Industry 4.0” 

Database Web of Science Web of Science Web of Science 

Source Journal Journal Journal 

Language English English English 

Total articles 1282 5135 21 

Total keywords 4704 16575 174 

Co-occurrence threshold 35 70 3 

Selected keywords 62 63 16 

 

Based on both theoretical and practical insights related to different reverse logistics activities, this paper 

aims at providing a systematic conceptual development and research agenda for the smart and 

sustainable transformation of reverse logistics in Industry 4.0, namely Reverse Logistics 4.0. The 

contributions of this paper can be summarized as follows: 

• The concept of Reverse Logistics 4.0 is defined considering both technological advancement 

and service innovation. 

• The conceptual framework for smart and sustainable Reverse Logistics 4.0 transformation is 

formulated. 

• The research agenda for smart and sustainable Reverse Logistics 4.0 transformation is given.     



Paper 2 Towards the smart and sustainable transformation of Reverse Logistics 

4.0: a conceptualization and research agenda 

8 | P a g e  

  
 

3 Reverse Logistics 4.0 

This section first introduces the conceptual development of Logistics 4.0, based on which the concept 

of Reverse Logistics 4.0 is defined.  

3.1 Logistics 4.0  

Today, the phrase “4.0” has been widely used not only in the manufacturing industry but also in many 

other fields to describe the future paradigm shifts brought by digitalization and advanced ICT. By 

adopting the technological innovations from Industry 4.0, the concept of Logistics 4.0 was first put 

forward in 2014 [50], which emphasized the real-time ability, fast decision supports, and convertibility 

of a new IT system empowered by CPS for supporting logistics decisions. Concerning the four Industrial 

Revolutions in history, Wang [10] systematically summarized the four logistics evolution stages 

featured with the mechanization of transportation (Logistics 1.0), the automation of logistics operations 

(Logistics 2.0), the advancement of logistics management systems (Logistics 3.0), and the smart and 

autonomous logistics systems (Logistics 4.0), respectively. Several researchers argue that Logistics 4.0 

is to digitize and automize the logistics processes and operations with the help of CPS [51], whose 

technological architecture requires six layers, namely, the physical asset layer, the data acquisition layer 

with sensors and middleware, the control layer, the database layer, the analytical and decision-support 

layer, and the management layer [10]. From the business innovation perspective, Logistics 4.0 is viewed 

as a conceptual extension of Industry 4.0, whose main features are discussed in several studies (e.g., Yu 

and Solvang [52]): 

• Demand-driven individualization and personalization: Value proposition by satisfying highly 

individualized customer demands with CPS, customer-involved design, additive manufacturing, 

and pull production and logistics. 

• Product-service system: Transforming towards the increased selling of services instead of the 

selling of products, for example, Rolls-Royce’s TotalCare® program, also known as Powered-

by-the-hours, has helped to achieve a win-win solution for both the airlines and the jet engine 

manufacturer [53].  

• Digitalization: Increased digitalization enables effective communication between humans and 

machines, and it helps to converge the physical and virtual worlds.  

• Autonomous operations: Different logistics operations, e.g., material handling, transportation, 

etc., will become increasingly autonomous with the help of IoT, CPS, AI, UAV, and smart 

robots.   

• Resource sharing: The real-time data collection and analytical power enabled by IoT, AI and 

advanced optimization improve the level of resource sharing among different stakeholders in a 

logistics system, which may offset the increased cost and environmental impacts to satisfying 

small-scale individualized and geographically dispersed customer demands with a high service 

level.   
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• Green and sustainable logistics: The waste generation can be reduced with on-demand and 

additive manufacturing, and the environmental impacts of various logistics operations can be 

better tracked and minimized with blockchains.  

To achieve these goals, increased digitalization and system integration at both intra- and inter-enterprise 

levels are required to facilitate effective interactions among stakeholders, better use of data, real-time 

decision making, streamlined operations, and improved resource utilization in a logistics system. 

Recently, the conceptual development of Logistics 4.0 trends to synchronize business innovations with 

technological advancements, where business innovations are considered the goals of the next generation 

of smart logistic systems and technological advancements are believed to be the enablers to realize these 

goals. As defined by Winkelhaus and Grosse [11], Logistics 4.0 refers to cost-affordable and highly 

responsive logistics services for individualization and personalization empowered by smart 

technologies. To further facilitate the adoption of the concept of Logistics 4.0, studies have been 

conducted to provide implications on the use of different Industry 4.0 technologies in various logistics 

operations [54], to establish models for measuring the maturity level of Logistics 4.0 [55, 56], and to 

understand the relevant human factors and learning effects [57]. 

3.2 Reverse Logistics 4.0  

Even though Logistics 4.0 has been increasingly discussed in recent years, not as much research focus 

has been given to reverse logistics [54]. On the one hand, several Industry 4.0 technologies can benefit 

reverse logistics operations in the same way as they do in forward logistics. However, on the other hand, 

there are significant differences between forward logistics and reverse logistics in terms of their purposes 

and operations. For instance, the business objective of a Logistics 4.0 system is to achieve the value 

proposition through providing highly individualized products and responsive services, but for a reverse 

logistics system, the purpose may be different or the meaning of individualization may need to be 

interpreted in another way, for example, an individualized collection schedule in a smart waste 

management system. Thus, it is important to provide a thorough understanding of Reverse Logistics 4.0.  

Recently, increasing efforts have been spent to improve the sustainability and the operations of reverse 

logistics with Industry 4.0 technologies, for example, through real-time information sharing and 

diffusion of green products [58, 59]. From the conceptual development perspective, Figure 5 presents a 

systematic paradigm change of reverse logistics with respect to the four industrial revolutions. Even 

though reverse logistics was not conceptualized before the early1990s, its activities were widely 

practiced, e.g., part recycling, waste disposal, etc. The modern industrialization from the early 19 

century led to an increase in population and rapid urbanization, which created the market for second-

hand products and raised the need for modernized reverse logistics systems. An early organized material 

recycling and waste management system was established in London, UK, to maintain sanitation and the 

general quality of urban life [60]. Similar to the impacts in other industries, the first two industrial 

revolutions changed the means of collection, transportation, and disposal of waste with mass 

mechanization and the use of steam power and electricity. However, the main destinations of used 

products were either second-hand markets or dumpsites, and well-organized recycling activities were 

not widely practiced at that time. With the increased concerns on environmental pollution and resource 

depletion, the focus of reverse logistics shifted from waste landfill to resource recovery through better 

source separation and increased reuse, remanufacturing, and recycling activities. The advancements of 
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computers and robotics in Industry 3.0 helped to better support decision making with advanced 

optimization, simulation, and geographical information system (GIS) and to automize various reverse 

logistics operations. Besides, the drastically increased reconfigurability and flexibility of manufacturing 

systems not only realize mass customization but also pave the way for flexible remanufacturing in 

reverse logistics [61]. In this period, diverting the EOL product flows from landfills to other value 

recovery alternatives was the focus, and reverse logistics was conceptualized to depict all relevant 

activities and flows related to the effective management of EOL products [15].    

  

Figure 5 Reverse logistics evolution compared to the four Industrial Revolutions. 

During the last decade, not only the economic benefits from product recovery but also the environmental 

and social performances of the entire reverse logistics system have been increasingly focused on through 

a holistic trade-off analysis [19]. Besides, the technological advancements have provided digital and 

smart solutions to change the paradigms of reverse logistics mainly in three ways: data, services, and 

operations. The value of data has been unprecedently uncovered by adopting IoT, smart devices, AI, 

and big data analytics, which enable better and real-time planning of different resources and operations. 

The cloud-based interactive and intelligent digital platform connects different service providers and 

customers to achieve optimal resource sharing and provide innovative services. Consumers’ 

involvement in reverse logistics has become increasingly important [4], which provides better 

information on the quality, quantity, and the time and location of return of different EOL products [7, 

62]. Furthermore, reverse logistics activities become increasingly autonomous with the use of AI-

supported smart robots and vehicles. Thus, based on these characteristics, the concept of Reverse 

Logistics 4.0 is defined as follows: 

Reverse Logistics 4.0 is the sustainable management of all relevant flows and activities for value 

recovery and/or proper disposal of EOL products by using data-driven and smart technologies enabled 

individualization and innovative services. 
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Compared with the current definitional elements, Reverse Logistics 4.0 emphasizes the use of data and 

smart technologies to realize innovative reverse logistics services and to achieve harmony among the 

three pillars of sustainable development including economic effectiveness, environment friendliness, 

and social responsibility. In the context of Reverse Logistics 4.0, the phrase “individualization” 

represents service smartness and innovations, whose demands are either pulled by customers, e.g., 

individualized collection [12], or driven by product and data, e.g., data-driven remanufacturing of 

WEEE [7]. For example, an individual collection and remanufacturing process can be planned and 

optimized based on the real-time information of the EOL product flows, e.g., type of product, material, 

structure, and quality level, and the available resources of the company.  

4 Smart and Sustainable Reverse Logistics Transformation 

Based on the definition of Reverse Logistics 4.0, Figure 6 presents a conceptual framework for smart 

reverse logistics transformation, where the role of Industry 4.0 technologies in shaping the reverse 

logistics service and operations and the three pillars of sustainable development are focused on. The 

conceptual framework consists of four fundamental elements that drive the paradigm transition in 

Reverse Logistics 4.0: 

1. The key Industry 4.0 technologies, e.g., IoT, CPS, AI, autonomous robots, etc., are enablers to 

support the smart reverse logistics transformation. 

2. The five main reverse logistics processes, i.e., collection of EOL products, sorting and pre-

processing, transportation, value recovery through remanufacturing and recycling, and disposal, 

are affected by adopting disruptive technologies.  

3. The improvement in the reverse logistics service and operations is centered on the reverse 

logistics transformation. 

4. The targeted areas in the triple-bottom-line for improving the economic, environmental, and 

social sustainability in reverse logistics.     



Paper 2 Towards the smart and sustainable transformation of Reverse Logistics 

4.0: a conceptualization and research agenda 

12 | P a g e  

  
 

 

Figure 6 A conceptual framework of smart and sustainable reverse logistics transformation in Reverse 

Logistics 4.0. 

This conceptual framework explicitly illustrates the connections between technological enablers, reverse 

logistics processes and transformations, and sustainability goals. With the increasing adoption of 

Industry 4.0 technologies, the transformation of reverse logistics service and operations is centered on 

Reverse Logistics 4.0: 

• Smart service transformation: Demand-driven and service-oriented transformation is the key 

driver of Reverse Logistics 4.0. For example, individualized collection services of used products 

can be provided to maximize the customer value and service. However, providing such kind of 

service in a traditional reverse logistic system is usually expensive and requires much more 

resource commitments. Thus, a digitalized platform may enhance better communication and 

information sharing among different stakeholders in real-time, and a data-driven intelligent 

decision-support system may help to improve resource planning and utilization, based on which 

individualized services can be performed in an efficient manner.  

• Smart operation transformation: Data-driven and autonomous operations are the key enablers 

of Reverse Logistics 4.0 to offset the increased costs of providing a high level of individualized 

service, improve the operational effectiveness and resource efficiency, minimize the downtime, 

and reduce the risks and harshnesses in the working environment, and so forth. For example, 

the collection, transportation, and remanufacturing of used products can be better planned with 

both predictive data and real-time data. Besides, the operations and working environment of 

various reverse logistics activities can be potentially improved, e.g., autonomous and highly 

accurate waste sorting with AI-enabled smart robots.   
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Table 2 Technological framework for supporting smart and sustainable reverse logistics transformation.  

Industry 4.0 
technology 

Smart reverse logistics transformation References 

 Smart collection Smart sorting 
and process 
management 

Smart 
remanufacturing and 
recycling 

Smart transportation 
and distribution 

Smart disposal  

IoT/CPS • IoT-embedded 

smart bins 
• Smart 
monitoring 

• Balanced 
inventory and 
process 
management 
through smart 
sorting 

• Digitized the 
entire product life 
cycle 

• Dynamic 
optimization and 
data-driven fleet 
management and 
vehicle routing 
• Improved 
traceability 

• Intelligent 
remote-control 
operations 

[6, 7, 63-68],  

Big data • Smart prediction 
and monitoring 
• Real-time 
routing of 
collection vehicles 

 • Predictive 
planning and real-
time decision 
makings 

  [69-71] 
 

Cloud 
technology 

• Cloud-based 
autonomous waste 
collection system 

  • Effective 
collaboration, better 
resource sharing, 
and demand 
matching through 
cloud-based 
digitalization  

• Cloud-based 
leachate 
monitoring and 
management 

[66, 72, 73] 

AR   • Effective 
functionality 
restoration and 
individualized 
maintenance 
services 

  [74]. 

AM   • Flexible product 
redesign and data-
driven 
remanufacturing 
planning 

  [13] 

Virtual 
technology 

• Dynamic web 
data dashboard 

 • Better working 
procedures through 
real-time 
instructions and task 
visualizations 
 
• Predictive 
planning and real-
time and effective 
decision makings 

• Effective 
collaboration, better 
resource sharing, 
and demand 
matching through 
system integration 

 
 

[66, 68, 75, 

76] 

Autonomous 
robots 

• Smart robots for 
autonomous waste 
collection 

• AI-enabled 
intelligent robot-
based 
autonomous 
sorting system 
 

• Better working 
procedures and 
effective 
functionality 
restoration 

  [77-81]  

 

AI • Digital and 
individualized 
collection services 

• Smart sorting 
multicriteria 
analysis  
 

•  • Self-driving trucks 
and automated 
driving support 
systems 

• Garbage 
disposal EVs 

[12, 79, 82]  

The logic of this conceptual framework indicates that, essentially, the smart service and operation 

transformations across all stages of a reverse logistics system are driven by the better meeting of the 

targeted sustainability goals, while on the other hand, Industry 4.0 technologies are the most important 

enablers. It is noteworthy that, in this smart paradigm transition, adopting new and disruptive 

technologies is not the goal but rather the means to enable responsive services and efficient processes. 

Meanwhile, technology itself will not lead to the better system performance of a reverse logistics system, 



Paper 2 Towards the smart and sustainable transformation of Reverse Logistics 

4.0: a conceptualization and research agenda 

14 | P a g e  

  
 

but the transformation and redesign of service and operations may potentially improve sustainability in 

economic, environmental, and social dimensions. In this regard, this conceptual framework helps to 

better understand the adoption of Industry 4.0 technologies in various smart reverse logistics operations. 

Based on the analysis of the existing literature and case studies, Table 2 presents a technological 

framework for supporting smart and sustainable reverse logistics transformation. The subsequent sub-

sections discuss the potential paradigm changes with respect to the five main reverse logistics processes: 

1) smart collection; 2) smart sorting and process management; 3) smart remanufacturing and recycling; 

4) smart transportation and distribution; 5) smart disposal. 

4.1 Smart Collection  

Even though the routes can be regularly optimized in a traditional collection system of EOL products, 

the inherent uncertainty may lead to a resource allocation dilemma, which requires a balance between 

operating costs and service levels. For instance, the collection of EOL products and other types of waste 

on fixed schedule and routes usually lead to inefficient use of resources, high fuel consumption [84], 

and low service level. To make it worse, the low service level of biodegrade waste may result in an 

accumulation of bacteria from bad odors and the spread of diseases [68]. To tackle this problem, smart 

bins embedded with IoT sensors are increasingly used to monitor and provide real-time information 

about their fill levels and locations [63], based on which the collection routes can be dynamically 

optimized and digitally updated. An IoT-driven Kanban system was designed by Thürer, Pan [76] for 

the collection of EOL products. Another IoT-enabled prediction and monitoring system was proposed 

by John, Varkey [68], which could be installed in the existing collection bins of different sizes. 

Empowered by an intelligent neural network, it can learn and predict the waste generation patterns and 

send timely notifications to appropriate personnel via a firebase cloud messaging system with a dynamic 

web data dashboard.  

Combining with GIS and data-driven optimization models, the routing of collection vehicles can be 

individualized and dynamically optimized with real-time data [69], based on which the collection service 

can be drastically improved without an increase in resource needs. To guarantee the real-time capability 

of data transmission, Cotet, Deac [72] developed a cloud-based automated system for innovative waste 

collection services. The combination of smart sensors, data, and optimization algorithms forms a smart 

CPS for EOL product collection in reverse logistics [85]. With increasing customers’ involvement via 

digital platforms, the collection service can be provided based on individualized customer demands [12]. 

This provides a new business model for improved policy-making and value proposition, e.g., pricing-

by-service, and for better interactions among different stakeholders. In addition, the use of smart robots 

for autonomous waste collection has recently been focused on during the COVID-19 pandemic due to 

their potential impacts on reducing infection risks of health workers.  

4.2 Smart Sorting and Process Management 

Due to the complex composition and quality of EOL products in the reverse flows, sorting is traditionally 

a semi-automated and labor-intensive process, where different recyclables need to be manually picked 

up and separated by human workers. However, the hazardous substances and the harsh working 

environment have put significant threats to the health of these workers. The recent developments of AI 
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and vision-based systems have empowered smart robots with the capability of recognizing and 

automatically separating different types of recyclables [80, 81], which has shown great potential to 

become the gamechanger in reverse logistics operations [82]. An automated AI-enabled intelligent 

robot-based sorting system has been investigated for separating hazardous materials from WEEE [77] 

For some types of EOL products, i.e., aluminum cans and plastic bottles, recent research shows that the 

separation accuracy by robot-based smart systems can be up to 90% [86]. To support the separate 

collection of different types of EOL products at the sources, e.g., home and office, etc., a prototype of 

small-scale automatic sorting bins is developed by Ismail, Jayakumar [87], which used smart sensors 

and material classification technologies. 

Industry 4.0 technologies can also help to better manage different processes and facilities. The end-to-

end integration of radio-frequency identification (RFID), Bluetooth low energy (BLE), smart sensors, 

smart containers, and hybrid gateway in a networked CPS allows real-time information collected from 

various reverse logistics processes, i.e., returned product identification, classification, local information 

and global information, which can be used for better inventory control and environmental management 

of the whole process [88]. Another reverse logistics challenge is caused by the increased generation of 

infectious waste during the COVID-19 pandemic [89, 90], and a large proportion is mixed with 

conventional waste especially in the developing countries [79]. Thus, an AI-based automated system is 

established by [79], which provides an integrated solution for more accurate sorting of COVID-19 

related medical waste streams from other waste types to support data-driven recycling planning.  

4.3 Smart Remanufacturing and Recycling 

From cloud-based systems to digital twins [7], Industry 4.0 paves the way for a data-driven smart 

remanufacturing process. The high uncertainty related to the quality, quantity, and the time and locations 

of return of EOL products, e.g., WEEE, used vehicles, etc., are the most significant hindrance in a 

traditional remanufacturing process. To tackle this, a product-based digital twin that integrates IoT and 

cloud technologies enables smart data collection and condition monitoring throughout the whole product 

life cycle [7]. Besides, consumers can also easily provide relevant product-related information via 

several digital platforms, e.g., smartphone apps, websites, etc. Based on the generic architecture 

proposed by Wang and Wang [7], a personalized digital twin can be developed for tracking the relevant 

data of specific products, which will be used for better identification, classification, and sorting for 

further processing.  

Big data analytics can help to maximize the value recovery of EOL products through better information 

on specific production times and options in reverse logistics [71]. Using the real-time product 

information and system data as the dynamic inputs to the optimization models can maximize the 

effectiveness and resource utilization through improved and more flexible production planning for 

remanufacturing [70]. Besides, a data-driven intelligent dismantling may also reduce the damage during 

product dissembling and improve the quality and predictability of remanufactured products [91]. In 

addition, some other technologies can also help to improve the remanufacturing and recycling 

operations. For example, the quality and effectiveness of the maintenance service and functionality 

restoration in remanufacturing can be improved through intuitive step-by-step AR guidance to human 

operators in a product disassembling process [74]. Besides, the use of UAVs can assist in monitoring 

the remanufacturing process. Additive manufacturing provides a more flexible and cost-efficient way to 
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restore the functionalities of EOL products and dissembled components [13]. At the system level, 

computer-based simulation can provide deep and visualized insights into the system behaviors in a smart 

remanufacturing process. In this regard, hybrid simulation techniques, i.e., system dynamics, discrete 

event simulation, and agent-based modeling are used to investigate the impact of smart technologies as 

well as the economic viability of remanufacturing [75]. 

4.4 Smart Transportation and Distribution 

The effective sharing of information and resources is one of the most important features of Industry 4.0, 

and this provides different stakeholders in a reverse logistics system with the opportunities to better 

utilize their resources. IoT-based smart platforms have been used for dynamic optimization of demand 

allocation and routing of transport vehicles [6]. The real-time vehicle data is collected from GIS, IoT 

sensors, 4G/5G devices, RFID, and GPS devices, which are then processed to match the task data from 

different companies. Finally, the assignments and routing decisions are optimized to achieve the most 

efficient use of available vehicles for multiple assignments from different companies. The system can 

be further optimized with real-time traffic data for dynamic routing to minimize fuel consumption, 

greenhouse gas (GHG) emissions, and traffic congestion. A web-based information sharing system is 

developed by Gebresenbet, Bosona [66] for the reverse logistics management of agricultural biomass. 

The real-time information is collected via both smart devices and end-users, through which the demands 

and the supplies can be better matched to achieve a high level of inter-company resource utilization. The 

improved traceability can help to reduce product losses and logistics costs, while at the same time, 

improving market opportunity and product quality [66]. In addition, by connecting cameras, smart 

sensors, and radar equipment to the network of AI-enabled onboard computers, self-driving trucks have 

shown a great potential to realize autonomous driving [82]. In some tasks, smart AI has already 

overtaken human competence levels, and with the continuous maturity of autonomous vehicle 

technology, the paradigm of reverse logistics will also be largely changed in the near future [83]. 

4.5 Smart Disposal 

The problem of waste disposal is not only related to dealing with the disposal of waste in the proper 

place but is also associated with reducing the volume of waste disposal [92], safety issues, and 

cleanliness [93]. Even though an increasing amount of EOL products are recycled, incineration plants 

and landfills are still the final destinations of the non-recyclables in reverse logistics systems, where 

smart robots can be used to replace human workers in harsh working environments. IoT-enabled smart 

systems can help to monitor the key performance indicators and remotely control different operations 

[64, 65]. The landfill of solid waste generates landfill gas and high-density hazardous liquid, called 

leachate, both of which have significant environmental impacts and need thus to be properly treated. To 

better manage the leachate problems, a cloud-based IoT system can play an important role in connecting 

the relevant field data with respective mathematical models to analyze several key parameters, i.e., 

turbidity, suspended solids, dissolved oxygen, etc., for smart disposal [73].  Besides, the smart bin is a 

solution for convenient waste disposal without the need to touch the lid, which avoids the spread of 

disease especially during the pandemic [93].  



Paper 2 Towards the smart and sustainable transformation of Reverse Logistics 

4.0: a conceptualization and research agenda 

17 | P a g e  

  
 

5 A Future Research Agenda 

By analyzing the potential impacts of Industry 4.0 technologies on reverse logistics processes, Table 7 

illustrates the architecture that enables the smart and sustainable transformation in Reverse Logistics 4.0.  

The smart and sustainable reverse logistics transformation concisely presents the union of both physical 

and digital value chains. On the one hand, a physical value chain illustrates the application and impacts 

of these disruptive technologies at both inter-and intra-organizational levels. On the other hand, a digital 

value chain assesses the long-term impacts on value-adding and value recovery patterns from a 

technological standpoint [94]. The proposed architecture explicitly links reverse logistics activities, 

Industry 4.0-enabled cyber-physical connection and interaction, and technological enablers for the smart 

transformation of collection, sorting and process management, remanufacturing and recycling, 

transportation and distribution, and waste disposal. It is noteworthy that the targeted sustainability goals 

are centered on the architecture of smart reverse logistics transformation, which further reflects the 

ultimate goal of Reverse Logistics 4.0 is not to adopt technology but to improve sustainability through 

service and operation transformation by using technology, as shown in Figure 6. In this regard, Industry 

4.0 technologies can provide more data, more connectivity, more intelligence, more flexible automation, 

and better resource sharing, through which the sustainable goals can be better archived through the 

improvement of various reverse logistics activities and processes. In addition, based on the analysis of 

reported research and cases in the literature, Figure 7 illustrates a mapping between the smart reverse 

logistics transformation and the proper Industry 4.0 enablers. 

 

Figure 7 The architecture of the smart reverse logistics system enabled by Industry 4.0. 

Even though recent research efforts have been increasingly given to Industry 4.0-enabled smart and 

sustainable reverse logistics [58, 59], there are still several gaps, e.g., a lack of comprehension and 
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understanding of Industry 4.0 [95], unclear benefits and lack of quantitative approach for performance 

evaluation [54], etc., need to be filled. Thus, we identified four directions for guiding future research: 

• Smart and Innovative Reverse Logistics Services: Service innovation is the most important 

driver for the paradigm shift in Reverse Logistics 4.0 to better meet the sustainability goals. 

However, the current research puts a predominant focus on the smart operations of isolated 

reverse logistics activities but not on the service innovation, which consequently hinders the 

real-world adoption of Industry 4.0 technologies due to the unclear benefits on customer value. 

Furthermore, the role of customers in the smart reverse logistics transformation has not been 

well investigated. Even though digital platforms are widely used today for better information 

sharing between customers and collection companies, for example, on the collection schedules 

of different types of EOL products and waste, they are mainly a one-way information flow and 

customers cannot require individualized collection service based on their actual needs. Thus, 

research needs to be carried out to better understand how Industry 4.0 technologies can be used 

to effectively and efficiently meet individualized demands in reverse logistics, which opens 

several research possibilities, e.g., demand/data-driven collection service systems, new business 

models and pricing strategies for the value proposition through demand individualization and  

service diversification, etc. In addition, a cloud-based system can provide a platform for end-

users to register the relevant information of the returned EOL products, but the supporting 

policies and mechanisms have not been well in place to promote the customers’ active 

participation in reverse logistics. In this regard, future research is invited to focus on service 

innovation, smartness, as well as the customers’ role and active involvement in Reverse 

Logistics 4.0, through which the “service-based individualization” can be better interpreted to 

show clearer customer value and benefits to the companies. It will eventually help to promote 

the smart and sustainable transformation of Reverse Logistics 4.0.    

• Quantitative Models for Smart and Sustainable Reverse Logistics Management: The Industry 

4.0-enabled smart reverse logistics services will lead to a transformation of traditional reverse 

logistics operations by increasing connectivity, smartness, and autonomous operations. Thus, 

there is a need for new quantitative models or new ways of using and integrating existing models 

to deal with new challenges, e.g., predictive operational planning with AI, real-time data 

integration, etc., and to better support strategic, tactical, and operational decisions for smart and 

sustainable reverse logistics management. For example, Reverse logistics network design is one 

of the most important strategic designs, which may yield long-term impacts on sustainable 

performance. The smart transformation in Reverse Logistics 4.0 may dramatically change the 

operations and the key parameters within the planning horizon, which makes the initial network 

design becoming much more complex. In addition, implementing Industry 4.0 technologies to 

reduce internal operating costs through digital end-to-end integration are complex and requires 

a large initial investment [8], so a holistic analysis is needed to understand the long-term impacts 

of this smart transformation. In this regard, new quantitative models and methods are needed 

for better decision-support and comprehensive scenario analyses of the potential impact of smart 

reverse logistics transformation in the strategic network design, which can provide holistic 

insights to the decision-makers.  
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• Digital Reverse Logistics Twin: As shown in Figure 7, the combination of the physical world 

and the cyber world in a smart digital twin is a promising research direction in Reverse Logistics 

4.0, where, for example, AI-enabled data prediction and real-time data collected from both cyber 

and physical sources can be collaboratively used with mathematical models and computer-based 

simulation to better predict the key parameters or the parameter distributions for the quantitative 

decision-support models, which will help to minimize the impact of uncertainty in the reverse 

flows and to yield robust decisions e.g., scheduling and vehicle routing, [70]. The high-quality 

visualization of the reverse logistics system can help decision-makers to better analyze different 

operations. Furthermore, developing bi-directional control and interactions of the smart digital 

twin provides opportunities for autonomous reverse logistics operations. A smart digital reverse 

logistics twin requires an in-depth methodological integration and a high-level system 

integration, where various smart robots and devices, software, data, analytical models, 

visualization tools, etc., need to be effectively and seamlessly connected and interacted [96]. 

Furthermore, due to the complex flows and the involvement of several stakeholders, the system 

boundary of the smart transformation needs to be clearly defined, which helps to better interact 

with different reverse logistics players. In addition, multiple sustainability indicators need to be 

measured with both cyber and physical sources and be accounted for in the quantitative models 

for decision support. For example, the real-time routing may be dynamically optimized 

considering several objectives to balance economic costs, truck utilization, GHG emissions, and 

driver’s working time.  

• Human-centricity and Reverse Logistics 5.0: Even though the opportunities for improving 

sustainability and circular economy have been discussed, Industry 4.0 is primarily a technology-

driven paradigm shift. The recently proposed concept of Industry 5.0 has led to a changing focus 

from technology to human-centricity, resilience, and sustainability in the transition of many 

sectors [97, 98], which may result in new research directions for smart reverse logistics 

transformation. For instance, Industry 4.0 focuses on the development of autonomous solutions 

to replace human workers. However, on the other hand, Industry 5.0 emphasizes the harmony 

between humans and technology, where technologies are used not to replace humans but to 

better help human workers and create new job opportunities [97]. In this regard, future research 

is invited to further investigate the human-centric, resilient, and sustainable transformation of 

Reverse Logistics 5.0. Some specific topics are, for example, the updated sustainability goals in 

Reverse Logistics 5.0, especially from the social and environmental perspectives, human-

machine collaboration in reverse logistics, the use of AR and collaborative robots (Cobot) for 

various operations, and so forth.   

Table 3 presents several promising topics to better guide future research in each direction. 

Table 3 Future research agenda. 

Research directions Specific topics 

Smart and innovative reverse 

logistics services 

• Demand/data-driven waste collection service 

• New business models for value proposition through 

individualized and diversified services 

• Pricing strategies for individualized collection service 
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• Customers’role in smart and sustainable reverse logistics 

transformation 

• Supporting mechanisms for promoting end users’ participation 

in reverse logistics  

Quantitative models for smart and 

sustainable reverse logistics 

management 

• Quantitative methods for evaluating the impacts of Industry 

4.0 technologies, e.g., IoT, AI, additive manufacturing, smart 

robots, etc., on smart reverse logistics operations 

• Smart and sustainable reverse logistics network design 

• Data-driven proactive reverse logistics operational planning 

with AI and optimization (e.g., remanufacturing and recycling) 

• Data-driven dynamic and real-time vehicle routing for 

collection and transportation of EOL products (traffic data, fill 

level, etc.) 

Digital reverse logistics twin • Product-based digital twin with IoT and cloud technologies for 

data collection in the EOL stage 

• Methodological integration (predictive analytics, prescriptive 

analytics, and descriptive analytics) 

• Cyber-physical system integration (IoT sensors, smart devices, 

data, analytical models, and algorithms) 

• Real-time decision support and optimization under multiple 

sustainability goals 

Human-centricity and Reverse 

Logistics 5.0 

• Definition and conceptualization of the human-centric smart 

transformation of Reverse Logistics 5.0 and the updated 

sustainability goals 

• The role of humans in the paradigm transition of reverse 

logistics  

• The development and use of collaborative technologies in 

smart reverse logistics systems 

• The impacts of adopting collaborative technologies in smart 

reverse logistics service and operations 

6 Conclusion 

Today, Industry 4.0 provides new opportunities and solutions to combine physical elements and data, 

autonomous technologies, internet- and cloud-based connectivity, data-driven analytics, and model-

based analytics in highly digitalized and smart reverse logistics systems. However, there is still a lack 

of a systematic conceptualization to guide the paradigm transition of reverse logistics in Industry 4.0. 

Therefore, based on the reported research and case studies from the literature, this paper aims at 

contributing to the definition and conceptual development of Reverse Logistics 4.0 and providing a 

general framework of the smart reverse logistics transformation to better achieve the sustainability goals 

in the triple-bottom-line by answering the three research questions: 

• To answer RQ1, the theoretical and practical evolvement of the concept of reverse logistics is 

discussed in comparison with the four Industrial Revolutions in history. Reverse Logistics 4.0 

is then defined based on the paradigm shift brought by Industry 4.0. 
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• To answer RQ2, the general conceptual framework for the smart reverse logistics transformation 

is proposed considering technological enablers, smart service transformation, smart operation 

transformation, and sustainability goals. Moreover, the implications of adopting Industry 4.0 

technologies in smart collection, smart sorting and process management, smart remanufacturing 

and recycling, smart transportation and distribution, and smart disposal are thoroughly analyzed. 

• To answer RQ3, a research agenda with four research directions is given to show the roadmap 

towards Reverse Logistics 4.0 through the smart and sustainable transformation, and several 

specific topics are also suggested for each research direction. 

Research implications. This paper provides a systematic definition, conceptualization, and research 

agenda of Reverse Logistics 4.0 to thoroughly link the Industry 4.0, reverse logistics, and sustainability 

goals in the smart paradigm transition. Furthermore, research opportunities are clearly identified to guide 

future theoretical and methodological developments related to smart reverse logistics service innovation, 

quantitative models for smart and sustainable reverse logistics management, digital reverse logistics 

twin, and human-centricity and Reverse Logistics 5.0. 

Managerial implications. This paper provides a conceptual framework that can help decision-makers 

and practitioners to understand how these sustainability goals can be better met through the technology-

driven smart service and operation transformations of a reverse logistics system. Furthermore, it also 

presents a mapping between the technological enablers in Industry 4.0 and the smart transformation of 

different reverse logistics processes, and this provides a guide for the technology adoption of reverse 

logistics companies.    

Future works. Even though research efforts have been spent to develop smart reverse logistics planning, 

especially with the application of real-time data in several operations. There is still a need for a better 

understanding of service innovation, customer participation, the role of humans, as well as other key 

influencing factors in Reverse Logistics 4.0. The impacts of smart reverse logistics transformation need 

to be holistically and comprehensively taken into account in the initial planning stage, e.g., network 

design. Besides, increased methodological integration and system integration are needed to realize the 

concept of a highly integrated and intelligent digital reverse logistics twin. Future research is thus invited 

to tackle these challenges.  
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Abstract: Reverse logistics aims at the value recovery from end-of-life (EOL) products 

through reuse, repair, refabrication, remanufacturing, and recycling. However, reverse 

logistics network design is a complex decision-making problem, which needs to balance 

the tradeoff among different objectives. Besides, the cutting-edge technologies in 

Industry 4.0 provide opportunities for technological upgrades and smart transformation 

within the planning horizon, which further complicates the initial network design 

problem. In this paper, a two-level decision-support framework is proposed for smart and 

sustainable reverse logistics network design. While optimization models dominate this 

field, the combination with simulation methods remains still under-explored. Thus, with 

a two-level structure, the behavior of the optimized networks can be comprehensively 

evaluated by dynamic simulation models that incorporate both discrete events and Monte 

Carlo simulation. The results of a real-world case study in Norway show that the two-

level decision-support framework can yield robust strategic decisions and holistic 

performance analyses under dynamic, realistic, and uncertain environments. 

Keywords: reverse logistics, network design, decision support system, simulation, smart 

technology, waste electrical and electronic equipment (WEEE) 

 

1 Introduction 

Today, technological innovations have not only improved people’s living standards and changed 

consumption patterns, but also significantly shortened product lifecycles and therefore accelerated the 

generation of end-of-life (EOL) products. The generation of waste electrical and electronic equipment 

(WEEE) has become one of the fastest-growing waste streams in Europe [1]. According to Eurostat [2], 

the annual generation of end-of-life vehicles (ELVs) in the EU-27 countries has increased by 22% from 

5.54 million tons in 2011 to 6.732 million tons in 2018. To tackle this challenge from the increasing 

EOL products, much attention has been given to the development of effective regional and international 
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reverse logistics systems, with the special aim of increased value recovery from EOL products. Reverse 

logistics refers to activities of planning, operating, and managing the reverse material, information, and 

capital flows starting from the end-customers toward the initial manufacturers and suppliers [3]. 

Effective reverse logistics is considered a crucial countermeasure for sustainable development and 

circular economy [4]. Network design is the first step in managing reverse logistics and is considered 

the most important strategic decision that affects the system’s long-term performance [5]. Compared 

with forward logistics networks, a reverse logistics network has embedded intricates due to its 

inhomogeneous items and complex flows with high uncertainties. Adding on the involvement of many 

more different types of stakeholders with often contradictive objectives, reverse logistics network design 

is a complex decision-making problem that needs advanced decision-support methods to properly 

manage the interactions among various influencing factors. During the last two decades, extensive 

research efforts have been given to the development of analytical methods for reverse logistics network 

design [6] to improve economic effectiveness and reduce carbon emissions while complying with 

stricter environmental legislation and social development.  

Recently, with the rapid development of disruptive technologies in the Fourth Industrial Revolution, 

namely, Industry 4.0, logistics performances have been improved with better data analytics, autonomous 

and intelligent robots, virtual technologies, and additive manufacturing [7]. In parallel, the paradigm of 

traditional reverse logistics has inevitably been shifting [8], and the increasing use of Industry 4.0 

technologies, i.e., internet of things (IoT), cyber-physical systems (CPS), artificial intelligence (AI), 

smart robots, etc., provides new opportunities for a smart and sustainable reverse logistics 

transformation. Smart transformation refers to a paradigm shift driven by innovation and the increasing 

use of smart technologies in reverse logistics, which may lead to a higher level of predictiveness, 

intelligence, autonomousity, and sustainability, as shown in Figure 1. Compared with traditional 

operations, one notable feature of a smart reverse logistics system is that the tactical and operational 

uncertainties can be drastically reduced with AI- and big data-enabled predictive analytics [9] and IoT-

enabled real-time data. For example, a product-based digital twin can be used to monitor the product 

information through its whole lifecycle [10]. When a product comes to the EOL phase, its information 

can be captured via a cloud-based system and be shared with the companies in reverse logistics. Besides, 

the end-users can also be easily involved via digital platforms, e.g., mobile apps, to provide information 

of the quality level and the time and location of return of their EOL products. The data collected from 

both cyber and physical environments can help companies to effectively achieve proactive planning and 

real-time decision making in various reverse logistics operations, i.e., vehicle routing and 

remanufacturing scheduling [11, 12].  
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Figure 1 Smart reverse logistics transformation. 

From the planning perspective, the value of data and information are predominately emphasized in smart 

reverse logistics systems to minimize the impact of uncertainty. On the other hand, various reverse 

logistics operations can become autonomous, which may reduce operating costs, environmental impacts, 

and safety concerns. For instance, AI-enabled robots can be used to perform an initial inspection and 

sorting at regional collection/disassembly centers, which may improve efficiency and replace human 

workers from the harsh working environment. Besides, additive manufacturing is also considered one 

of the most attractive solutions for remanufacturing. In addition, the increasing use of cleaner fuel and 

energy helps to reduce the carbon emissions of different reverse logistics activities.  

However, the smart transformation by gradual but steady adoption of these new technologies will change 

the operational conditions over different periods and thus introduce new challenges to reverse logistics 

network design. In this regard, not only the uncertainty from the external environment but also the 

configurational change within the lifespan of a reverse logistics system and the disruption during the 

facility upgrades need to be holistically considered. To solve the planning challenges related to these 

uncertainties, a two-level decision-support framework combining both mathematical optimization and 

dynamic simulation is proposed for smart and sustainable reverse logistics network design. Through this 

approach, the impact of the smart transformation with highly intelligent and effective reverse logistics 

operations can be evaluated to better analyze the system behaviors of different network alternatives. A 

bi-objective optimization model is first used to determine a set of candidate network configurations for 

the reverse logistics system considering both economic and environmental performances. Then, the 

selected candidate networks are evaluated by a dynamic simulation model using both discrete events 

and Monte Carlo simulation. This decision-support framework uses the strengths of both optimization 

and simulation, and the analytical results are obtained under realistic environments with a dynamic 

planning horizon, stochastic parameters, real-world GIS, practical operational policies, and 

technological upgrades. Through the quantitative analysis of a case study in Norway, we aim at 

answering the following research questions:  
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RQ1: How to design a smart and sustainable reverse logistics system considering dynamic 

configurations under realistic environments? 

RQ2: What are the impacts of smart transformation on the reverse logistics network design? 

The rest of the paper is organized as follows. Section 2 presents a literature review and identifies the 

research gaps and contributions of this research. Section 3 describes the problem under investigation. 

The two-level decision-support framework is introduced in Section 4. Sections 5 and 6 present the case 

study and discuss the experimental results. Finally, conclusions are given in Section 7. 

2 Literature Review 

Reverse logistics network design has been focused on since the beginning of the 2000s [13]. In 

connection with the focus of this paper, we reviewed relevant quantitative models in three groups: (1) 

mathematical optimization; (2) simulation; and (3) smart reverse logistics.  

2.1   Mathematical Optimization 

Mathematical optimization is the most extensively used method for reverse logistics network design 

[14]. Using mixed-integer program (MIP), both strategic facility location and tactical demand allocation 

can be determined in either cost minimization or profit maximization manner [15]. During the last 

decade, extensive research efforts have been spent to model multiple objectives and tackle the 

uncertainty and computational issues.  

2.2.1  Multi-Objective Optimization 

The sustainability of reverse logistics network design has been increasingly modeled by using multi-

objective optimization [16]. Carbon emissions and other environmental impacts were considered 

holistically alongside the economic objective [17, 18]. Different carbon policies, e.g., carbon tax [19], 

carbon cap [20], were formulated by multi-objective models. Recently, the triple bottom line has been 

increasingly incorporated in reverse logistics network design [21, 22], which aims at balancing the 

tradeoff among economic, environmental, and social sustainability. To model the social sustainability, 

various performance indicators, e.g., job creation [21], working conditions [23], GDP level [22], and 

hybrid social indicators [24], etc., were employed. Several operational indicators have also been 

considered. Zarbakhshnia, Soleimani [25] maximized the number of machines in reverse logistics 

operations. Xiao, Sun [26] modeled the facility utilization rate as an objective function. Yu and Solvang 

[27] focused on the impact of network flexibility in the reverse logistics system. Considering the 

integration of product recovery into the existing supply chain, Gao and Cao [28] investigated a multi-

objective reverse logistics network redesign problem.  

2.2.2  Uncertainty 

Uncertainty is a crucial factor. If uncertainty is not considered in the initial design stage, it will be 

difficult to impose major changes without excessive resources when the network is implemented. Many 
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parameters cannot be predicted accurately over the entire planning horizon, and various modeling 

techniques have been applied to manage the uncertainty. To deal with randomness, stochastic 

programming has been extensively applied in reverse logistics network design [29]. Trochu, Chaabane 

[30] developed a two-stage stochastic program to design a reverse logistics system under uncertainty. 

Rahimi and Ghezavati [24] proposed a multi-period stochastic model for sustainable management of 

construction waste, where the conditional value at risk (CVaR) was employed for risk aversion. To 

reduce the high data-dependency of stochastic models, fuzzy programming and robust optimization have 

been increasingly used. Kuşakcı, Ayvaz [31] investigated a fuzzy MIP to minimize the total costs of 

end-of-life vehicles (ELVs) recycling in Turkey. Govindan, Paam [23] proposed a fuzzy multi-objective 

model for reverse logistics network design considering the balance among costs, environmental impacts, 

and social responsibility. Tosarkani, Amin [32] developed a robust probabilistic optimization model for 

designing a sustainable WEEE reverse logistics system in Canada. Recently, the research focus has been 

given to the model development with hybrid techniques, i.e., robust-stochastic programming [33], fuzzy-

stochastic programming [34], fuzzy-robust programming [35], and robust-fuzzy-stochastic 

programming [36], to tackle mixed uncertainty. 

2.2.3  Computational Efficiency  

The inclusion of multiple objectives and uncertain parameters has led to increased computational 

complexity. The computational issues were tackled by developing approximation methods, e.g., 

heuristics and metaheuristics, to find near-optimal solutions. The most extensively used metaheuristics 

include genetic algorithm (GA), swarm intelligence (SI), relaxation and decomposition methods. For 

instance, Afra and Behnamian [37] investigated a Lagrangian relaxation method to effectively solve a 

multi-product production-routing problem in the reverse logistics system considering both costs and 

environmental impacts. Roudbari, Ghomi [38] developed a hybrid algorithm combining both GA and 

branch-and-cut to improve the computational efficiency of reverse logistics network design. 

Zarbakhshnia, Kannan [39] Investigated a sustainable network design problem for an integrated 

forward/reverse logistics system under uncertainty, where a non-dominated sorting genetic algorithm 

(NSGA-II) was used to solve the complex optimization problem. 

2.2   Simulation 

Computer-based simulation has gained increasing momentum in reverse logistics due to its capability 

to model uncertainties, system complexity, and dynamic features. Simulation can reproduce the 

operations of real-world systems and can help to compare several what-if scenarios [40]. Simulation has 

been used for the performance evaluation of reverse logistics operations [41]. For example, Elia, Gnoni 

[42] developed a simulation model to evaluate three different schemes for WEEE collection, i.e., the 

fixed schedule, the pure dynamic schedule, and the mixed schedule. Ghisolfi, Chaves [43] studied the 

impacts of the legal incentives and the bargaining power obtained by waste collection volume on a 

reverse logistics system of EOL PCs and laptops. The simulation methods used for logistics planning 

include discrete event simulation, Monte Carlo simulation, and simulation-based optimization.  

2.2.1  Discrete event simulation 
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Discrete event simulation depicts a system and its behavior with a series of discrete events sequentially 

organized, and these events trigger the change of the system’s states autonomously over a dynamic test 

horizon. With minimum simplifications, it is a powerful tool to model the real-world features of reverse 

logistics systems. Gonçalves, Fagundes [44] investigated a discrete event simulation to evaluate 11 

scenarios of a reverse logistics system for recycling EOL tires in Brazil. de Oliveira, Fagundes [45] 

developed a discrete event simulation in ProModel. With three waste disposal options, i.e., landfills, 

recycling, and incineration with energy recovery, 16 scenarios were evaluated to promote sustainability 

and eco-efficiency in municipal solid waste (MSW) management. Alamerew and Brissaud [46] 

developed a simulation model for a revere logistics system of battery recovery from e-vehicles, which 

explored the interplay among the main pillars of the circular economy. Elia, Gnoni [47] investigated a 

discrete event simulation for the sustainable WEEE collection in Italy. Their results reveal that the hub-

and-spoke network has better economic and environmental performances than the traditional WEEE 

collection system. 

2.2.2  Simulation-based Optimization and Monte Carlo Simulation 

Simulation-based optimization has been focused on in reverse logistics, where simulation is used as a 

part of the optimization algorithm to either accelerate the converging speed toward the near-optimal 

solutions or validate the solutions in stochastic environments. Fu, Fu [48] defined simulation-based 

optimization is essentially an optimization problem with stochastic features in either parameters or 

solution procedures, e.g., a two-stage stochastic optimization with recourse decisions. In this regard, 

Monte Carlo simulation has been extensively used to incorporate with an optimization model. Monte 

Carlo simulation is a wide category of numerical methods that calculate results through repeatedly 

solving a large number of random samples [49], which aims at ensuring a high level of statistical stability 

of a stochastic process.  

Ameli, Mansour [50] proposed a simulation-based optimization model to evaluate the performance of 

manufacturers by considering both product design alternatives and EOL options, where simulation was 

used to reduce the computational complexity. Yang and Chen [51] performed a Monte Carlo simulation 

to approximate the robustness of a regional reverse logistics system for construction and demolition 

wastes. Yu, Sun [52] investigated a two-stage stochastic optimization model for the reverse logistics 

network design of hazardous materials, where a Monte Carlo simulation-based sampling method was 

used to analyze the impact of uncertainty. 

2.3   Smart Reverse Logistics 

The implementation of Industry 4.0 technologies provides new opportunities for smart and sustainable 

reverse logistics by the increasing use of data analytics and autonomous technologies [8]. For example, 

big data supported logistics [9], cloud-based and 3D printing-assisted remanufacturing [53, 54], IoT-

based data-driven transportation planning [11], and digital twin for product recovery [10], have been 

increasingly investigated. These features may yield great impacts on reverse logistics operations. From 

the strategic network design perspective, these may change the parameter settings of decision-support 

models. In this regard, Govindan and Gholizadeh [55] recently proposed a scenario-based robust 

optimization model for the network design of a sustainable and resilient reverse logistics system by 
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considering the big data’s 3V features (volume, velocity, and variety), which were represented by the 

uncertainty related to some key input parameters of the model, e.g., return volume, quality, etc. A cross-

entropy algorithm was developed to solve the optimization problem.  

2.4   Literature gaps 

While mathematical optimization dominates the research in logistics network design, the combination 

of both optimization and simulation, especially discrete event simulation, remains still under-explored 

in both forward and reverse logistics channels [56]. Table 1 compares the relevant studies. Most research 

employs a single method either mathematical optimization or simulation. Even though several 

mathematical models employ Monte Carlo simulation to validate uncertain parameters and scenarios 

[32], they can only deal with the parametric uncertainty and find the statistically optimum with a static 

and oversimplified representation of real-world problems [57]. To tackle this, discrete event simulation 

is capable of thoroughly depicting the dynamic features and analyzing different operational scenarios of 

a complex reverse logistics system. Due to this reason, combing mathematical optimization with discrete 

event simulation has recently been emphasized in forward logistics network design [57, 58]. However, 

as shown in Table 1, discrete event simulation is only used as a single method to compare predefined 

configurations and strategies, and it has not been combined with mathematical optimization in reverse 

logistics network design due to several reasons, e.g., the complexity of building respective models, the 

requirement of different software, the conversion of data with different levels of aggregation, the setting 

up of realistic operational policies, and so forth. Besides, none of the previous research considers both 

sustainability and the potential impacts of smart transformation on reverse logistics network design 

under a dynamic environment with real-world case studies.  
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Table 1 Overview of relevant literature. 

Authors Sustainability Smartness Uncertainty Method Experiment 

   Technique Type Optimization Simulation  

     Objectives Solution Discrete event Monte Carlo  

Pishvaee, Kianfar 

[15] 

- - - - Single Approximation - - Numerical 

Kannan, Diabat 

[17] 

√ - - - Single Exact - - Numerical 

Ramos, Gomes 

[18] 

√ - - - Multiple Exact - - Case 

Govindan, Paam 

[23] 

√ - Fuzzy Dynamic Multiple Exact and 

approximation 

- - Numerical 

Rahimi and 

Ghezavati [24] 

√ - - - Multiple Exact - - Numerical 

Yu and Solvang 

[27] 

√ - Stochastic Static Multiple Exact - - Numerical 

Farrokh, Azar 

[36] 

- - Robust-fuzzy-

stochastic 

Dynamic Single Exact - - Numerical 

Wang, Goh [59] - - - - - - √ - Numerical 

Xiao, Sun [26] √ - - - Single Exact - - Case 

Trochu, Chaabane 

[30] 

- - Stochastic Dynamic Single Approximation - √ Case 

Zarbakhshnia, 

Soleimani [25] 

√ - - - Multiple Approximation - - Numerical 

Kuşakcı, Ayvaz 

[31] 

- - Fuzzy Static Single Exact - - Case 

Gonçalves, 

Fagundes [44] 

√ - - - - - √ - Case 

de Oliveira, 

Fagundes [45] 

√ - - - - - √ - Case 

Elia, Gnoni [47] √ - - - - - √ - Case 
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Ameli, Mansour 

[50] 

√ - Simulation Static Multiple Approximation - √ Case 

Safdar, Khalid 

[21] 

√ - - - Multiple Exact - - Numerical 

Budak [22] √ - - - Multiple Exact - - Case 

Gao and Cao [28] √ - Stochastic Static Multiple Exact - - Numerical 

Tosarkani, Amin 

[32] 

√ - Robust  Dynamic Multiple Exact - √ Case 

Yu and Solvang 

[34] 

√ - Fuzzy-

stochastic 

Static Multiple Approximation - √ Numerical 

Nayeri, Paydar 

[35] 

√ - Fuzzy-robust Static Multiple Exact - - Case 

Zarbakhshnia, 

Kannan [39] 

√ - - - Multiple Approximation - - Numerical 

Yang and Chen 

[51] 

- - Robust Static Single Exact - √ Case 

Yu, Sun [52] - - Stochastic Static Multiple Approximation - √ Numerical 

and case 

Shahparvari, 

Soleimani [33] 

√ - Stochastic Static Single Approximation - - Numerical 

and case 

Afra and 

Behnamian [37] 

- - - - Single Approximation - - Numerical 

Roudbari, Ghomi 

[38] 

- - Stochastic Static Single Approximation - - Case 

Che, Lei [14] - - - - Single Approximation - - Case 

Govindan and 

Gholizadeh [55] 

√ √ Fuzzy-robust Dynamic Single Approximation - - Numerical 

This paper √ √ Simulation Dynamic Multiple Exact √ √ Case 
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2.5 Contributions 

This paper aims at filling the research gaps by developing a two-level decision-support framework 

combining both optimization models and dynamic simulation for smart and sustainable reverse logistics 

network design. Herein, dynamic simulation refers to the combination of both discrete events and Monte 

Carlo simulation to depict the dynamic features of a reverse logistics system.  

Specifically, we aim at bringing the following contributions: 

• Methodologically, we illustrate how multi-objective optimization, discrete event simulation, 

and Monte Carlo simulation can be effectively combined to better model the practical features 

and analyze the dynamic system behaviors of a reverse logistics system.  

 

• We provide a decision-support framework with holistic supports for reverse logistics network 

design with high visualization and comprehensive performance analyses for smart 

technological upgrades through the entire planning horizon.  

 

• We demonstrate the practical relevance and applicability of the proposed method with a real-

world case study in Norway to discuss the impacts of the smart transformation through 

scenario analyses of various operational parameters, configuration changes, and disruptions. 

3 Problem Description  

A reverse logistics network consists of different facilities, i.e., local collection points, regional 

collection/disassembly centers, remanufacturing plants, recycling plants, and disposal sites. The EOL 

products are first collected at local collection points and then transported to regional collection centers, 

where these EOL products are inspected and disassembled to different components. At the regional 

collection center, the disassembled components can be categorized into three classes based on their 

product residual value (PRV), namely, high-PRV, low-PRV, and non-recyclable. The high-PRV 

components will be distributed to remanufacturing plants for refurbishing and function restoration based 

on the type of products. After that, they can be sold to manufacturers at lower prices [60]. The Low-

PRV components are sent to recycling plants, where they are degraded into new materials and then sold 

to the suppliers. The non-recyclable components and hazardous materials are sent for proper disposal.  

Reverse logistics network design is a strategic decision that has long-term impacts on the system 

performance. The smart transformation in Industry 4.0 may affect the reverse logistics operations and 

some key parameters over the planning horizon. For example, the low-carbon equipment and transport 

vehicles will likely become cheaper with technological advancement and be increasingly used in reverse 

logistics operations, but the adoption of new technologies is a dynamic process, and the change of system 

configurations occurs gradually over several periods. Thus, we aim at providing a decision-support 

framework to help with strategic decisions and evaluate the impacts of smart transformation on reverse 

logistics network design. On the other hand, the methodological integration between mathematical 

optimization and dynamic simulation forms the initial step of a highly intelligent, visualized, and 

interactive digital reverse logistics twin [61].  
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4 Methodology 

A two-level decision-support framework is developed, as shown in Figure 2. First, the candidate network 

configurations are determined by a bi-objective MIP. The augmented 𝜀-constraint method is used to 

solve the optimization problem and generate a set of efficient Pareto optimal solutions. Then, dynamic 

simulation is used to further evaluate the selected network configurations in a more complex and realistic 

environment [62, 63]. In this step, discrete event simulation models are built upon the selected networks 

to depict the dynamic features, operations, and upgrades of facilities and transportation over the planning 

horizon. Due to the stochastic nature of the simulation process, Monte Carlo simulation is performed to 

ensure a high level of confidence in the analytical results. This means the experiment needs to be 

executed for several repetitions. The purpose is to guarantee that the outputs of the simulation model are 

stable and are not affected by the scenario generation process. Finally, the performance indicators need 

to be measured to rank the selected networks and output the analytical results. In case of pre-defined 

performance indicators are used, new candidate network configurations and/or new operational policies 

may be tested to ensure all the performance indicators are met. 

The combination of simulation and optimization in a two-level decision-support framework can explore 

the strengths of both methods [57]. For example, in a simulation-optimization cycle, simulation can 

provide predictions of some critical inputs for optimization models. On the other hand, in an 

optimization-simulation cycle, simulation can be used to better evaluate the solutions obtained from the 

mathematical model [57]. More detailed introductions of the respective optimization and simulation 

processes in this two-level decision-support framework are given in the following subsections. 

 

Figure 2  The two-level decision-support framework. 
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4.1   Mathematical Model 

In this paper, we consider the selection and operations of the regional collection centers, 

remanufacturing plants, recycling plants, and disposal sites, as well as the transportation of EOL 

products and disassembled components among these facilities. A bi-objective MIP model is formulated 

considering both cost-effectiveness and carbon emissions, and the model has the following assumptions: 

• The demand and locations of the generation points of EOL products are known. 

• The candidate locations and planned capacities of the respective facilities for regional 

collection, remanufacturing, recycling, and disposal are known. 

• The relevant cost and emission parameters are known. 

The sets, parameters, and variables are first given as follows: 

Sets  

P Set of EOL product p 

Q Set of disassembled component q  

E Set of local collection center e 

R Set of potential location for regional collection center r 

I Set of potential location for remanufacturing/refurbishing plant i 

J Set of potential location for recycling plant j 

K Set of potential location for disposal site k 

  

Parameters  

𝐹𝑥𝑟𝑟  Fixed opening and operating cost of regional collection center opened at r 

𝐹𝑥𝑖𝑖  Fixed opening and operating cost of remanufacturing plant opened at i 

𝐹𝑥𝑗𝑗 Fixed opening and operating cost of recycling plant opened at j 

𝐹𝑥𝑘𝑘 Fixed opening and operating cost of disposal site opened at k 

𝑂𝐶𝑟𝑟𝑝 Unit processing cost of EOL product p at regional collection center r 

𝑂𝐶𝑖𝑖𝑞  Unit remanufacturing cost of component q at i 

𝑂𝐶𝑗𝑗𝑞 Unit material recycling cost of component q at j 

𝑂𝐶𝑘𝑘 Unit disposal cost of unrecyclable at k 

𝑇𝐶𝑎𝑒𝑟𝑝 Unit transportation cost of EOL product p on arc(e, r) 

𝑇𝐶𝑏𝑟𝑖𝑞  Unit transportation cost of component q on arc(r, i) 

𝑇𝐶𝑐𝑟𝑗𝑞  Unit transportation cost of component q on arc(r, j) 

𝑇𝐶𝑑𝑟𝑘𝑞 Unit transportation cost of component q on arc(r, k) 

𝐹𝑙𝑒𝑥𝑒𝑝 Unit flexible capacity cost 

𝐸𝑠𝑟𝑟𝑝 Unit carbon emissions of EOL product p processed at r 

𝐸𝑠𝑖𝑖𝑞  Unit carbon emissions of component q remanufactured at i 

𝐸𝑠𝑗𝑗𝑞  Unit carbon emissions of component q recycled at j 

𝐸𝑠𝑘𝑘 Unit carbon emissions at disposal site k 

𝑇𝐸𝑠𝑎𝑒𝑟𝑝 Unit carbon emissions of EOL product p transported on arc(e, r) 

𝑇𝐸𝑠𝑏𝑟𝑖𝑞  Unit carbon emissions of component q transported on arc(r, i) 
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𝑇𝐸𝑠𝑐𝑟𝑗𝑞  Unit carbon emissions of component q transported on arc(r, j) 

𝑇𝐸𝑠𝑑𝑟𝑘𝑞  Unit carbon emissions of component q transported on arc(r, k) 

𝐹𝑙𝑒𝑠𝑒𝑝 Unit carbon emissions of flexible capacity 

𝐸𝑂𝐿𝑒𝑝 Amount of EOL product p collected at location e 

𝐶𝑅𝑀𝑝𝑞 Conversion rate from EOL product p to component q for remanufacturing 

𝐶𝑅𝐶𝑝𝑞 Conversion rate from EOL product p to component q for material recycling 

𝐶𝐷𝑃𝑝𝑞 Conversion rate from EOL product p to component q for disposal 

𝐶𝑎𝑝𝑟𝑟𝑝 Capacity of regional collection plant r for EOL product p 

𝐶𝑎𝑝𝑖𝑖𝑞  Capacity of remanufacturing plant i for component q 

𝐶𝑎𝑝𝑗𝑗𝑞 Capacity of recycling plant j for component q 

𝐶𝑎𝑝𝑘𝑘 Capacity of disposal site k  

𝑈𝑃𝐹𝐿𝑋𝑝 Upper limit of flexible capacity for EOL product p 

Variables  

𝐷𝑟𝑟  
{
𝐷𝑟𝑟=1 Potential location for regional collection center 𝑟 is selected  

𝐷𝑟𝑟=0 Otherwise
 

𝐷𝑖𝑖  {
𝐷𝑖𝑖=1 Potential location for remanufacturing plant 𝑖 is selected  

𝐷𝑖𝑖=0 Otherwise
 

𝐷𝑗𝑗  
{
𝐷𝑗𝑗=1 Potential location from recycling plant 𝑗 is selected  

𝐷𝑗𝑗=0 Otherwise
 

𝐷𝑘𝑘 
{
𝐷𝑘𝑘=1 Potential location for disposal site 𝑘 is selected  

𝐷𝑘𝑘=0 Otherwise
 

𝑈𝑟𝑟𝑝 Amount of EOL product p processed at r 

𝑈𝑖𝑖𝑞  Amount of component q remanufactured at i 

𝑈𝑗𝑗𝑞  Amount of component q recycled at j 

𝑈𝑘𝑘 Amount of disposed component at k 

𝑈𝑇𝑎𝑒𝑟𝑝 Amount of EOL product p transported via arc(e, r) for collection, inspection, and 

disassembly 

𝑈𝑇𝑏𝑟𝑖𝑞  Amount of component q transported via arc(r, i) for remanufacturing 

𝑈𝑇𝑐𝑟𝑗𝑞  Amount of component q transported via arc(r, j) for material recycling 

𝑈𝑇𝑑𝑟𝑘𝑞  Amount of component q transported via arc(r, k) for disposal 

𝑈𝐹𝑒𝑝 Amount of EOL product p sent for flexible options from location e 

𝑈𝑅𝑀𝑟𝑞 Amount of disassembled component q for remanufacturing from regional collection 

center r 

𝑈𝑅𝐶𝑟𝑞 Amount of disassembled component q for material recycling from regional collection 

center r 

𝑈𝐷𝑃𝑟𝑃 Amount of EOL product sent for disposal from regional collection center r 

The mathematical model consists of two objectives. The first objective Eq. (1) minimizes the total costs 

for operating this reverse logistics system, which includes fixed facility cost FX, facility operating cost 

OX, transportation cost TX, and flexible capacity cost FLX. It is noteworthy that the inclusion of FLX 

is considered a soft constraint to allow a small violation of the capacity constraints, which improves the 

model’s flexibility and helps to yield robust strategic decisions. In practice, it means the excessive 

customer demands can be fulfilled by various temporary solutions, i.e., outsourcing, seasonal workers, 

etc. These flexible solutions are usually more expensive, but they can effectively avoid redundant facility 

configurations at the strategic level and improve long-term sustainability [34]. 
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Min 𝑍1 = 𝐹𝑋 + 𝑂𝑋 + 𝑇𝑋 + 𝐹𝐿𝑋 (1) 

The respective cost components in the objective function are calculated by Eqs. (2-5). 

𝐹𝑋 = ∑ 𝐹𝑥𝑟𝑟
𝑟∈𝑅

𝐷𝑟𝑟 + ∑ 𝐹𝑥𝑖𝑖
𝑖∈𝐼

𝐷𝑖𝑖 + ∑ 𝐹𝑥𝑗𝑗
𝑗∈𝐽

𝐷𝑗𝑗 + ∑ 𝐹𝑥𝑘𝑘
𝑘∈𝐾

𝐷𝑘𝑘 (2) 

𝑂𝑋 = ∑ ∑ 𝑂𝐶𝑟𝑟𝑝𝑈𝑟𝑟𝑝
𝑝∈𝑃𝑟∈𝑅

+ ∑ ∑ 𝑂𝐶𝑖𝑖𝑞𝑈𝑖𝑖𝑞
𝑞∈𝑄𝑖∈𝐼

+ ∑ ∑ 𝑂𝐶𝑗𝑗𝑞𝑈𝑗𝑗𝑞
𝑞∈𝑄𝑗∈𝐽

+ ∑ 𝐷𝐶𝑘𝑘𝑈𝑘𝑘
𝑘∈𝐾

 

(3) 

𝑇𝑋 = ∑ ∑ ∑ 𝑇𝐶𝑎𝑒𝑟𝑝𝑈𝑇𝑎𝑒𝑟𝑝
𝑝∈𝑃𝑟∈𝑅𝑒∈𝐸

+ ∑ ∑ ∑ 𝑇𝐶𝑏𝑟𝑖𝑞𝑈𝑇𝑏𝑟𝑖𝑞
𝑞∈𝑄𝑖∈𝐼𝑟∈𝑅

+ ∑ ∑ ∑ 𝑇𝐶𝑐𝑟𝑗𝑞𝑈𝑇𝑐𝑟𝑗𝑞
𝑞∈𝑄𝑗∈𝐽𝑟∈𝑅

+ ∑ ∑ ∑ 𝑇𝐶𝑑𝑟𝑘𝑞𝑈𝑇𝑑𝑟𝑘𝑞
𝑞∈𝑄𝑘∈𝐾𝑟∈𝑅

 

(4) 

𝐹𝐿𝑋 = ∑ ∑ 𝐹𝑙𝑒𝑥𝑒𝑝
𝑝∈𝑃

𝑈𝐹𝑒𝑝
𝑒∈𝐸

 
(5) 

The second objective Eq. (6) minimizes the carbon emissions of the reverse logistics system, which 

consists of the carbon emissions related to facility operation FES, transportation TES, and flexible 

capacity FLES. 

Min 𝑍2 = 𝐹𝐸𝑆 + 𝑇𝐸𝑆 + 𝐹𝐿𝐸𝑆              (6) 

Eqs. (7-9) calculate the respective carbon emissions. 

𝐹𝐸𝑆 = ∑ ∑ 𝐸𝑠𝑟𝑟𝑝𝑈𝑟𝑟𝑝
𝑝∈𝑃𝑟∈𝑅

+ ∑ ∑ 𝐸𝑠𝑖𝑖𝑞𝑈𝑖𝑖𝑞
𝑞∈𝑄𝑖∈𝐼

+ ∑ ∑ 𝐸𝑠𝑗𝑗𝑞𝑈𝑗𝑗𝑞
𝑞∈𝑄𝑗∈𝐽

+ ∑ 𝐸𝑠𝑘𝑘𝑈𝑘𝑘
𝑘∈𝐾

 

(7) 

𝑇𝐸𝑆 = ∑ ∑ ∑ 𝑇𝐸𝑠𝑎𝑒𝑟𝑝𝑈𝑇𝑎𝑒𝑟𝑝
𝑝∈𝑃𝑟∈𝑅𝑒∈𝐸

+ ∑ ∑ ∑ 𝑇𝐸𝑠𝑏𝑟𝑖𝑞𝑈𝑇𝑏𝑟𝑖𝑞
𝑞∈𝑄𝑖∈𝐼𝑟∈𝑅

+ ∑ ∑ ∑ 𝑇𝐸𝑠𝑐𝑟𝑗𝑞𝑈𝑇𝑐𝑟𝑗𝑞
𝑞∈𝑄𝑗∈𝐽𝑟∈𝑅

+ ∑ ∑ ∑ 𝑇𝐸𝑠𝑑𝑟𝑘𝑞𝑈𝑇𝑑𝑟𝑘𝑞
𝑞∈𝑄𝑘∈𝐾𝑟∈𝑅

 

(8) 

𝐹𝐿𝐸𝑆 = ∑ ∑ 𝐹𝑙𝑒𝑠𝑒𝑝
𝑝∈𝑃

𝑈𝐹𝑒𝑝
𝑒∈𝐸

 
(9) 

The model has six sets of constraints to satisfy the logistical flow requirements associated with the 

facilities and the transportation. The first set of constraints depicts the relationship between local 

collection and regional collection. Constraint (10) ensures that all the local collection points will be 

served by the regional collection centers or by the flexible capacity. Constraint (11) calculates the types 

and the number of EOL products received by each regional collection center. 
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𝐸𝑂𝐿𝑒𝑝 ≤ ∑ 𝑈𝑇𝑎𝑒𝑟𝑝
𝑟∈𝑅

+ 𝑈𝐹𝑒𝑝, ∀𝑒 ∈ 𝐸, 𝑝 ∈ 𝑃 (10) 

∑ 𝑈𝑇𝑎𝑒𝑟𝑝
𝑒∈𝐸

= 𝑈𝑟𝑟𝑝, ∀𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃 
(11) 

Based on the composition and the quality level of different EOL products, constraints (12-14) convert 

the EOL products to respective components for remanufacturing/refurbish, material recycling, and waste 

disposal, respectively. Herein, the sum of the conversation rates 𝐶𝑅𝑀𝑝𝑞 , 𝐶𝑅𝐶𝑝𝑞  and 𝐶𝐷𝑃𝑝𝑞  for one 

EOL product equals to 1. 

∑ 𝑈𝑟𝑟𝑝𝐶𝑅𝑀𝑝𝑞
𝑝∈𝑃

= 𝑈𝑅𝑀𝑟𝑞 , ∀𝑟 ∈ 𝑅, 𝑞 ∈ 𝑄 
(12) 

∑ 𝑈𝑟𝑟𝑝𝐶𝑅𝐶𝑝𝑞
𝑝∈𝑃

= 𝑈𝑅𝐶𝑟𝑞 , ∀𝑟 ∈ 𝑅, 𝑞 ∈ 𝑄 
(13) 

∑ 𝑈𝑟𝑟𝑝𝐶𝐷𝑃𝑝𝑞
𝑝∈𝑃

= 𝑈𝐷𝑃𝑟𝑞 , ∀𝑟 ∈ 𝑅, 𝑞 ∈ 𝑄 
(14) 

Constraints (15-17) calculate the output flows of different EOL products from regional collection centers 

to remanufacturing plants, recycling plants, and disposal sites. 

𝑈𝑅𝑀𝑟𝑞 = ∑ 𝑈𝑇𝑏𝑟𝑖𝑞
𝑖∈𝐼

, ∀𝑟 ∈ 𝑅, 𝑞 ∈ 𝑄 
(15) 

𝑈𝑅𝐶𝑟𝑞 = ∑ 𝑈𝑇𝑐𝑟𝑗𝑞
𝑗∈𝐽

, ∀𝑟 ∈ 𝑅, 𝑞 ∈ 𝑄 (16) 

𝑈𝐷𝑃𝑟𝑞 = ∑ 𝑈𝑇𝑑𝑟𝑘𝑞
𝑘∈𝐾

, ∀𝑟 ∈ 𝑅, 𝑞 ∈ 𝑄 
(17) 

Constraints (18) and (19) calculate the types and the number of components received at remanufacturing 

plants and at recycling plants. Constraint (20) calculates the total amount of different unrecyclable 

received at each disposal site. 

∑ 𝑈𝑇𝑏𝑟𝑖𝑞
𝑟∈𝑅

= 𝑈𝑖𝑖𝑞 , ∀𝑖 ∈ 𝐼, 𝑞 ∈ 𝑄 (18) 

∑ 𝑈𝑇𝑐𝑟𝑗𝑞
𝑟∈𝑅

= 𝑈𝑗𝑗𝑞 , ∀𝑗 ∈ 𝐽, 𝑞 ∈ 𝑄 (19) 

∑ ∑ 𝑈𝑇𝑑𝑟𝑘𝑞
𝑞∈𝑄𝑟∈𝑅

= 𝑈𝑘𝑘 , ∀𝑘 ∈ 𝐾 
(20) 

Constraints (21-24) set up the maximal capacity of respective facilities. Meanwhile, the use of un-

selected facilities is also restricted by this set of constraints.  

𝑈𝑟𝑟𝑝 ≤ 𝐶𝑎𝑝𝑟𝑟𝑝𝐷𝑟𝑟, ∀𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃 (21) 

𝑈𝑖𝑖𝑞 ≤ 𝐶𝑎𝑝𝑖𝑖𝑞𝐷𝑖𝑖, ∀𝑖 ∈ 𝐼, 𝑞 ∈ 𝑄 (22) 

𝑈𝑗𝑗𝑞 ≤ 𝐶𝑎𝑝𝑗𝑗𝑞𝐷𝑗𝑗, ∀𝑗 ∈ 𝐽, 𝑞 ∈ 𝑄 (23) 
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𝑈𝑘𝑘 ≤ 𝐶𝑎𝑝𝑘𝑘𝐷𝑘𝑘, ∀𝑘 ∈ 𝐾 (24) 

Constraint (25) is the upper limit of flexible capacity allowed in the reverse logistics system. In addition, 

the decision variables for facility locations need to fulfill the binary requirements, and the continuous 

variables need to be non-negative. 

∑ 𝑈𝐹𝑒𝑝
𝑒∈𝐸

≤ 𝑈𝑃𝐹𝐿𝑋𝑒𝑝, ∀e ∈ E, 𝑝 ∈ 𝑃 
(25) 

4.2   Solution approach 

The augmented 𝜀-constraint method is used to solve this bi-objective MIP, and it can solve the pitfalls 

of the traditional 𝜀-constraint method by employing a lexicographic method in determining the payoff 

matrix. Besides, compared with other scalarization methods for multi-objective optimization, e.g., 

weighted sum, it has a much better chance to yield evenly distributed Pareto Optimal solutions. For 

more details, Mavrotas [64] can be referred to.  

Based on our model, the algorithmic procedures are described as follows. 

Algorithmic procedures 

Step 1 The priority level of the objective functions is determined based on the inputs of 

decision-makers. For example, in this model, 𝑍1 has a higher priority level. 

Step 2 The payoff matrix is calculated with the Lexicographic method. 

 2.1 Calculate the individual optimal solutions 𝑍1𝑜𝑝𝑡 and 𝑍2𝑜𝑝𝑡 by solving the 

single objective functions 𝑍1 and 𝑍2. 

 2.2 Calculate the nadir values of the two objective functions 𝑍1𝑛𝑎𝑑 and 𝑍2𝑛𝑎𝑑 

with the lexicographic method. For example, optimize 𝑍2 by adding an 

additional constraint 𝑍1 ≤ 𝑍1𝑜𝑝𝑡. 

Step 3 The ranges of the objective functions can be calculated by 𝑍1𝑛𝑎𝑑 − 𝑍1𝑜𝑝𝑡  and 

𝑍2𝑛𝑎𝑑 − 𝑍2𝑜𝑝𝑡. 

Step 4 The value of 𝜺 is determined based on the priority level and the number of divided 

grids (NG). For example, 𝑍1 has a higher priority, and Z2 can be converted to a set of 

additional constraints with ∆𝜀𝑍2 =
 𝑍2𝑛𝑎𝑑 − 𝑍2𝑜𝑝𝑡

𝑁𝐺
⁄  

Step 5 Conversion of the multi-objective optimization problem into a single-objective 

optimization problem based on the priority level and the value of 𝜀. For example, the 

proposed model can be converted to: 

min (𝑍1(𝒙) + 𝑒𝑝𝑠 × 𝑠𝑍2) 

                                          S.t. 

𝑍2(𝒙) + 𝑠𝑍2 = 𝜀𝑍2 

𝒙 ∈ 𝑋 and 𝜀𝑍2 ∈ ℝ+ 

Herein, sZ2 is a slack variable and 𝑒𝑝𝑠 is a sufficiently small adjustment parameter 

ranging normally from 10-6 to 10-3 [64] 

Step 6 Optimization of the single-objective problem and generating a set of efficient Pareto 

solutions 
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4.3 Dynamic Simulation 

Due to the limitation of mathematical optimization, e.g., over-simplified real-world problems, many 

assumptions, etc, the analytical results from the bi-objective MIP may be significantly compromised. 

Thus, these optimal solutions cannot be automatically converted into managerial decisions. Instead, they 

need to be further evaluated with management expertise and be better interpreted through the analysis 

of different alternatives. Thus, in the second level, a dynamic simulation that combines with both 

discrete event and Monte Carlo simulation is needed to provide a comprehensive performance analysis 

of the candidate networks considering realistic operations, parametric uncertainties, and scenario 

analyses of the impact from smart transformation.  

To perform the dynamic simulation, a state-of-the-art simulation package called anyLogistix is used, 

which can effectively set up and perform experiments related to multi-stage logistics networks, 

production control, inventory control, transportation and shipping control, and sourcing analysis [58, 

65]. To build the simulation model, the planning horizon is first decided, and the selected networks are 

used to configure the reverse logistics systems. Discrete events need to be specified to create the 

operations of both facilities and transportation, and the operational parameters are converted to a lower 

level of data aggregation. Stochastic parameters can be used to provide insights into the key parameters 

concerning random uncertainty. Besides, simulation explores the system performance in a more detailed 

manner, so the operational policies and conditions over different periods need to be determined by the 

decision-makers to better model the real-world behaviors of a reverse logistics system. The following 

operational policies can be configurated:  

• Demand generation: Stochastic demands can be set up in both local collection points and 

the markets for recovered products. Periodic demands can be placed on customer-defined 

intervals, e.g., weekly or monthly. Besides, seasonal factors may be added if needed [58].  

 

• Inventory policy: Different inventory control policies, e.g., periodic review, continuous 

review, etc., can be implemented to control the inventory level. A backorder policy is 

allowed so that the order is pending until the required amount is available for delivery.  

 

• Production policy: Individual BOMs and different production policies, e.g., simple 

production, partial production, etc., can be used in different facilities. Stochastic and 

dynamic parameters can be set up to evaluate the influences from smart transformation.  

 

• Sourcing policy: Different sourcing policies, e.g., closest source, multiple sources, fixed 

source, etc., can be defined at different stages of the reverse logistics system.  

 

• Transportation policy: Various operational parameters, e.g., vehicle type, vehicle capacity, 

speed, loading policy, etc., can be defined to model the real-life situation.  

In addition, discrete event simulation can also be used to test the impacts of operational uncertainty, 

configuration upgrades over different periods, and network disruption. For example, the temporary 

closure or capacity reduction during the facility upgrades, the improvement of productivity and 

environmental performance after the upgrades, and so forth. These test scenarios can be set up in this 
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stage, and the possible impacts and strategies can be evaluated. Finally, the number of repetitions of the 

simulation experiment needs to be defined. 

5 Case Study 

Considering the smart transformation during the planning horizon, we investigated a reverse logistics 

network design problem for sustainable WEEE management in Norway. With a population density of 

15 people/km2, Norway is one of the most sparsely populated countries in Europe. The low population 

density and the geographically dispersed municipalities result in complex logistics planning problems 

to simultaneously balance the economic performance, environmental impact, and service level, due to 

the loss of economy of scale. Thus, the use of new technological solutions becomes attractive and needs 

to be considered in long-term strategic planning. With a focus on sustainable development and a low-

carbon economy, Norway has a long history in the reuse and recycling of WEEE [66]. The first 

regulatory system for WEEE management in Norway was implemented in 1999. The relevant WEEE 

regulations require that all the manufacturers of EEE joining in the collective compliance systems for 

the EOL recovery of their products, which are operated by third parties. The European Recycling 

Platform [67] Norway is a nationwide compliance scheme, which ensures the environmentally friendly 

treatment of WEEE. As a part of the regulatory system, the two major ERP service providers (El-Retur 

and RENAS) take 94% of the total share of the WEEE collection and recycling in Norway. In addition, 

there is another smaller compliance scheme called Eurovironment, which is operated by 14 

manufacturers of IT equipment [68]. Even though the relevant regulations for WEEE recovery have 

been well formulated and implemented in Norway, the reverse logistics system has, however, not been 

optimized since most of the facilities are located near Oslo. This requires frequent and long-distance 

transportations of WEEE from the northern parts to the southern parts of the country [66], which results 

in increased transportation costs and carbon emissions. Thus, the optimization of the WEEE reverse 

logistics network is investigated.  

In Norway, the total collection rate of WEEE, the households collection rate of WEEE, and the collection 

rate of large household appliances in 2018 are 18.16 kg/capita/year, 11.32 kg/capita/year, and 8.45 

kg/capita/year, respectively [69]. The EU Directive [70] categorizes ten types of EEE, i.e., large 

household appliances, small household appliances, IT and telecommunications equipment, consumer 

equipment and photovoltaic panels, lighting equipment, etc., where the large household appliances 

account for 47% of the total WEEE in Norway [69]. In this experiment, we selected 7 types of large 

household appliances based on the EU Directive [70], which were then divided into three groups, 

namely, refrigerators/freezers (P1), washing machines/dishwashers/clothes dryers (P2), and 

stoves/cookers (P3). These three groups constitute approximately 80% of the total large household 

appliances [71]. The proportions of the WEEE generation of P1, P2, and P3 were assumed to be 40%, 

40%, and 20%. The collection and recovery of the three groups of WEEE from the 60 largest 

municipalities in Norway were considered, and the name, the number, and the population of these 

municipalities are given in Appendix A. The WEEE generation was assumed to be proportional to the 

population of the municipalities, obtained from Statistics Norway [72]. The average generation per 

capita was obtained from the database of the European Commission [69]. 
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 Local collection point  Regional collection center 

 Remanufacturing plant  Recycling plant 

 Disposal plant  

Figure 3 The locations of the local collection centers and the candidate locations of respective facilities. 

To improve the effectiveness and efficiency of the reverse logistics system, 15 candidate locations were 

selected for opening the regional collection centers, which are Oslo (R1), Bergen (R2), Trondheim (R3), 

Stavanger (R4), Drammen (R5), Kristiansand (R6), Tromsø (R7), Skien (R8), Ålesund (R9), Tønsberg 

(R10), Moss (R11), Bodø (R12), Hamar (R13), Rana (R14), and Narvik (R15). Several candidate 

locations for the EOL recovery were chosen considering the fair geographical access. In total, the 

candidate locations for remanufacturing plants, recycling plants, and disposal sites are 5, 5, and 5, 

respectively. Figure 3 illustrates the locations of the municipalities and the candidate locations for 

respective facilities. Table 2 shows the disassembly BOMs of P1, P2, and P3. The main components are 

compressors (q1), metal components (q2), plastics (q3), pump/motor components (q4), and non-

recyclables (qw), where q1 and q4 can be remanufactured and q2 and q3 are for material recycling.  

Table 2 The disassembly BOMs of the selected WEEE groups. 

 
CRMpq 

 
CRCpq 

 
CRDpq 

BOM q1 q4 q2 q3 qw 

P1 0.0947 0 0.7895 0.0737 0.0421 

P2 0 0.0500 0.5750 0.1000 0.2750 

P3 0 0 0.9500 0.0357 0.0143 
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Table 3 Parameter generation intervals of respective facilities. 

Facility Fixed cost 

(103NOK/Year) 

 

 

 

Product/Components  Variable cost 

(NOK/kg) 

Carbon emissions 

(kg/kg) 

Capacity  

(103 kg) 

Regional 

collection center 

[21400, 21800] P1 [13, 16] [0.16, 0.17] [2000, 

2220] P2 [13, 16] [0.161, 0.17] [2000, 

2200] P3 [13, 16] [0.163, 0.17] [820, 950] 

Remanufacturin

g plant 

[38200, 40160] q1 [9, 11] [1.161, 1.165] [875, 900] 

q4 [13, 14] [1.16, 1.169] 

 

[580, 610] 

Recycling plant [26107, 21800] q2 [4, 5] [0.161, 0.169] [810, 950] 

q3 [9, 10] [0.16, 0.17] [850, 900] 

Disposal plant [18595, 20475] qw [10, 12] [0.243, 0.25] [1395, 

1550] 

Based on relevant research, the fixed facility operating costs [73, 74], the capacities of different 

facilities, the unit processing costs of EOL products or components [75], the unit carbon emissions [76-

79] were estimated. Considering the generality, we randomly generated these parameters from the 

respective parameter intervals, as shown in Table 3. The transportation costs and carbon emissions are 

directly proportional to the travel distances. Thus, the distance matrixes of the respective links between 

two locations were first established. In this experiment, we considered two types of vehicles with 

truckloads of 6.3 tons and 13.4 tons [80]. The first type is used for transportation from the local collection 

centers to the regional collection centers, and the second type is used for transportation from the regional 

collection centers to the other facilities. Besides, the unit transportation cost and unit carbon emissions 

are also affected by the loading rate of the vehicles. The loading rates of the transportation at the first 

and the second stages of the reverse logistics were generated from the intervals [0.7, 0.75] and [0.8, 

0.85], respectively. The unit transportation costs were estimated based on Delgado, Rodríguez [81], and 

the unit carbon emissions were given based on the report of freight transportation and logistics from the 

European Automobile Manufacturer Association [80]. Table 4 presents the unit transportation costs and 

carbon emissions.  

Table 4 Unit transportation costs and carbon emissions between different facilities.  

Links Product/Components Transportation cost 

(NOK/km/kg) 

Carbon emissions 

(kg/km/kg) 

LCP → RCC P1 0.014286 0.000159 

 

 

 

P2 0.012444 0.000148 

 P3 0.012037 0.000154 

RCC → RM q1 0.008750 0.000081 

 q4 0.008000 0.000081 

RCC → RC q2 0.008235 0.000076 

 q3 0.008000 0.000081 

RCC → DS qw 0.011765 0.000076 

Finally, to avoid facility redundancy from the decision model, the costs and unit carbon emissions for 

using flexible capacities were set for approximately 1.5 times higher than using an opened facility [34], 
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and the upper limit of flexible capacity was set to 10% of the total generation of EOL products at each 

municipality. The full set of the parameters in the experiment is given in Appendix B. 

6 Experiments, Results, and Discussions 

6.1  Optimization experiment  

The optimization problems with changing values of 𝜀  were first solved to generate a set of Pareto 

optimal solutions. The optimization problems were solved by Lingo 19.0, and the maximum 

computational time was approximately 3 minutes. Figure 4 illustrates the Pareto optimal frontier formed 

by 11 points. The points 1 and 11 are the cost-minimization solution and the emission-minimization 

solution, and the ranges of the two objectives are [761,527,290 NOK, 1,253,751,898 NOK] and 

[9,839,252 kg, 9,234,054 kg], respectively. 

 

Figure 4 Pareto Frontier. 

For comparison purposes, the Pareto frontier is divided into 10 segments. For example, segment 1 is 

between points 1 and 2. The cost increments and the carbon emission decrements of each segment 

between two adjacent Pareto optimal solutions can be calculated by 𝐶𝑜𝑠𝑡 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠𝑛
𝑥 = 𝐶𝑜𝑠𝑡𝑛+1

𝑥 −

𝐶𝑜𝑠𝑡𝑛
𝑥  and 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠𝑛

𝑥 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛
𝑥 − 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛+1

𝑥 , where 𝑥 ∈

{𝑇𝑜𝑡𝑎𝑙, 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦, 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛} and 𝑛 ∈ {1, … ,10}. Figure 5 compares the cost increments and the 

emission increments related to facility operations and transportation. The facility operations 

predominantly determine the overall system costs. Even though the transportation costs vary drastically 

with the change of the network configurations, the impacts on the overall system costs are relatively 

insignificant compared with that incurred from facility operations. However, facility operations yield 

relatively small impacts on total carbon emissions, and the reduction is primarily led by the reduced 

carbon emissions from transportation. Therefore, the minimum number of facilities were opened in 

points 1 and 2 to minimize the total system costs, and the exceeded EOL generations were treated using 

flexible capacities. On the other hand, more facilities were opened when the emphasis was given to the 

minimization of carbon emissions to shorten the overall transportation distance in the reverse logistics 

network. 
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Figure 5 Comparison of the cost increments and the emission decrements over the 10 segments. 

Table 5 The facility selections in the five chosen Pareto optimal solutions. 

Scenario Regional collection center Remanufacturing plant Recycling plant Disposal plant 

1 (1), (2), (3), (5), (8) (5) (4), (5) (1), (4) 

2 (1), (2), (3), (5), (8) (5) (4), (5) (1), (2) 

4 (1), (2), (3), (5), (8) (5) (3), (4), (5) (1), (4) 

5 (1), (2), (3), (5), (8) (5) (3), (4), (5) (1), (2) 

7 (1), (2), (3), (5), (6), (13), (15) (5) (3), (4), (5) (1), (2) 

It is noteworthy that the cost increments for reducing one unit of carbon emissions at each Pareto optimal 

solution are by no means identical. Based on this, five candidate Pareto optimal solutions were chosen 

for the simulation experiment. Exempt from the cost-minimization solution, the selected solutions are 

points 2, 4, 5, and 7, which show better cost-effectiveness in the carbon emission reduction. The 

respective reverse logistics network configurations are given in Table 5. In the first four networks, five 

regional collection centers are opened in Oslo, Bergen, Trondheim, Drammen, and Skien. While in 

network 7, instead of opening the regional collection center in Skien, another three candidate locations 

in Kristiansand, Hamar, and Narvik are selected. Besides, remanufacturing plant 5, recycling plants 4 

and 5, and disposal site 1 are selected in all solutions. 

6.2   Simulation experiment 

6.2.1 Parameter conversion  

The five selected network configurations were used to build dynamic simulation models. Based on the 

same dataset, the relevant simulation parameters were generated. The simulation time was set to 10 

years, and the number of repetitions of the experiments was set to 50. It is noteworthy that several 

parameters need to be converted due to the practical requirements of dynamic simulation. For example, 

the annual generations of WEEE were disaggregated into shorter periods. Besides, the facility capacity 
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constraint was converted into the production time and was restricted by the annual working hours. The 

purpose of the reverse logistics system is to manage the WEEE generated in each period. The periodic 

demands for remanufactured products q1 and q4 and for recycled materials q2 and q3 were thus 

calculated based on the generation of WEEE. The collection cycle of WEEE at the regional collection 

centers was set to 15 days, and the customer ordering cycle for recovered items was set to 7—10 days.  

In addition, stochastic parameters were used to evaluate the impacts of uncertainty from the key 

parameters. We considered two sources of uncertainty, namely, the quantity and the quality of WEEE. 

The quality levels of different EOL products vary significantly, which leads to stochastic facility 

capacity due to the variation of the processing time. The two stochastic parameters were assumed to 

follow a uniform distribution. The lower and upper bounds of the uniform distribution can be calculated 

by [𝑝𝑑(1 − 𝜎), 𝑝𝑑(1 + 𝜎)] , where 𝑝𝑑  is the respective deterministic value and 𝜎  is the deviational 

adjustment in [0, 1] [82]. In this experiment, 𝜎 was set to 10% for the generation of WEEE and 20% for 

the processing time [83].  

6.2.2 Operational policies 

Inventory policy is important. We considered different production and inventory policies at different 

facilities to fulfill the demands and operate the reverse logistics system. For example, the continuous 

review (R, Q) policy was used by the remanufacturer to replenish the components q1 and q4 from 

regional collection centers. With this policy, an order quantity at (Q) is sent when the inventory level 

reaches the reordering point (R). The reordering point and reordering quantity can be calculated by the 

following equations [84]:  

𝑅 = 𝜇𝐷𝜇𝐿 + 𝑧𝛼√𝜇𝐿𝜎𝐷
2 + 𝜇𝐷

2 𝜎𝐿
2 

𝑄 = √
2𝜇𝐷𝑐0   

𝑐ℎ  
 

Whereas:  

𝜇𝐷 Average weekly demand                                                                                     

𝜎𝐷 Weekly standard deviation 

𝜇𝐿 Average lead time 

𝜎𝐿 Standard deviation of average lead time 

𝑐0 Fixed ordering cost 

𝑐ℎ Weekly inventory holding cost per unit 

𝑧𝛼 Value from the standard normal distribution table  

We used the same method given by Gianesello, Ivanov [85] to set up the inventory levels. First, the (R, 

Q) values were assumed, and the values of inventory were then projected backward along with the 

reverse logistics network to ensure the production capability and the available material inventory. To 

determine the inventory levels of the new products and new materials at the remanufacturing plant and 

the recycling plant, we used a Min-max policy with safety stock (s, S). The (s, S) policy requires periodic 
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checks and replenish the inventory at discrete intervals. Based on Gianesello, Ivanov [85], the safety 

stock (ss) was assumed to be equal to the mean weekly demand 𝜎𝑑, and the Min (s) and the Max (S) 

inventory levels were then calculated by the following equations, where 𝐿𝑇 is the lead time. 

𝑠 = 𝑠𝑠 + (𝜎𝑑 ∗ 𝐿𝑇) 

𝑆 = 2 ∗ 𝑠 

For the other facilities, the (R, Q) policy was implemented, and the full set of inventory policies and 

parameters is given in Appendix 3. Production policy is another important factor that is closely linked 

to the inventory policy and sourcing policy. In this paper, a simple manufacturing strategy is 

implemented, where the production pattern is driven by the requirements of replenished products defined 

by the inventory policy. In addition, stochastic production times were defined in the remanufacturing, 

recycling, and disposal processes to analyze the uncertainty related to the quality of WEEE. A fixed 

sourcing strategy was used in the first-level transportation, which means a fixed cluster of municipalities 

is served by a given regional collection center. On the other hand, multiple sourcing strategies were 

implemented by the remanufacturers and the recycling plants to optimize the recourse decisions over 

the planning horizon. Finally, to improve the service level, a partial shipment policy was used in the 

experiments, and two types of vehicles were defined accordingly with stochastic speeds.  

6.2.3 Smart transformation 

Next, we considered the smart transformation during the planning horizon. At the system level, the 

implementation of new technologies will influence the operating parameters. For example, the use of 

AI-based robots may increase the productivity in many industries by 30% by 2025, while cutting labor 

costs by 18-33% [86]. Adopting AR may achieve up to 25% improvement in operator productivity while 

providing a safe working environment [86, 87]. Recent research shows that using IoT-enabled smart 

regulate temperature technology may reduce 20% of carbon emissions and energy consumption on a 

manufacturing floor [88]. In reverse logistics, the digital twin tracks the quality level of EOL products 

through a cloud-based system, so remanufacturing can be better planned to minimize the stochasticity 

related to the processing time. Besides, technological advancement will also yield significant impacts 

on transportation through the increased use of cleaner energy and improved fuel efficiency [89]. The 

use of intelligent transport systems and truck platooning has the potential to reduce CO2 emissions by 

10-25% [89, 90]. In addition, the increased use of electric vehicles, hydrogen vehicles, and hybrid trucks 

may lead to a 10-15% reduction of CO2 emissions per vehicle basis [89].  

Table 6 Test scenarios for technological upgrades and smart transformation. 

Scenario Period Facility upgrade 

plan 

Expected impacts on facility Expected impacts on 

transportation 

   Average 

production 

time/unit 

Uniform 

distribution of 

processing time 

Productio

n cost/unit 

CO2 emissions 

from the  

facility 

Expected CO2 

reduction/unit 

Potential cost 

impact/unit 

S1 Year 4 RM for q1, q4 

RC for q3 

-10% [95%, 105%] -10% -15% -10%  
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Year 6 RC for q2 -15% [95%, 105%] -15% -15% -20%  

S2 Year 4 RM for q1, q4 -10% [95%, 105%] -10% -15% -10%  

Year 6 RC for q2, q3 -15% [95%, 105%] -15% -15% -20%  

S3 Year 6 RM for q1, q4 

RC for q3 

-10% [95%, 105%] -10% -15% -10%  

Year 8 RC for q2 -15% [95%, 105%] -15% -15% -20%  

S4 Year 6 RM for q1, q4 

RC for q3 

-15% [95%, 105%] -15% -18% -15%  

Year 8 RC for q2 -25% [95%, 105%] -20% -18% -25%  

S5 Year 8 RM for q1, q4 

RC for q2,q3 

-25% [95%, 105%] -20% -18% -25%  

S6 Year 8 RM for q1, q4 

RC for q2,q3 

-25% [95%, 105%] -25% -20% -25%  

S7  Year 4 RM for q1, q4 

RC for q3 

-10% [95%, 105%] -10% -15% -10% -8% 

Year 6 RC for q2 -15% [95%, 105%] -15% -15% -20% -15% 

S8 Year 6 RM for q1, q4 

RC for q3 

-10% [95%, 105%] -10% -15% -10% -8% 

Year 8 RC for q2 -15% [95%, 105%] -15% -15% -20% -15% 

S9 Year 8 RM for q1, q4 

RC for q2,q3 

-25% [95%, 105%] -25% -20% -25% -22% 

In this experiment, we tested 10 scenarios. S0 is the basic scenario without technological upgrades, and 

S1-S6 are scenarios with different plans for technological upgrades of remanufacturing process, 

recycling process, and transportation. Besides, S7-S9 are counterpart scenarios of S1, S3, and S6 

considering potential cost impacts on transportation. Table 6 shows the schedule and the expected 

influence on the operating parameters of the planned upgrades. The investment for facility upgrades was 

set to 2 million NOK each. The required time was set to 2 months for each facility upgrade, during 

which period the respective facility was temporarily closed.  

6.2.4 Simulation results 

Computer-based simulation can provide powerful visualization of the analytical results. Figure 6 shows 

an established reverse logistics network, and the key performance indicators (KPIs), e.g., costs, 

emissions, service levels, etc., at both the facility level and system level can be graphically presented 

and easily outputted for further analysis.  
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Figure 6 Result visualization. 

We first considered two scenarios: (1) the basic scenario without facility upgrade (S0); and (2) the 

facility upgrade scenario (S1). As shown in Figure 7(A), there are two dominated or near dominated 

solutions in the simulation results. In S0, network 2 is a dominated solution by network 1. In S1, network 

1 is a dominated solution. This result reveals that, by incorporating uncertainty, dynamic operational 

policies, and smart transformation, the performance of the optimal solutions obtained by the 

mathematical model may be drastically affected, which shows the impacts of including more real-world 

conditions on reverse logistics network design. In the simulation experiment, dominated and near 

dominated solutions may be observed, and the Pareto frontier may thus be changed. Figure 7(B) 

illustrates the non-dominated Pareto Frontiers of the two scenarios. First, it is observed that, by adopting 

new technologies in S1, both economic effectiveness and environmental performance can be 

dramatically improved. For example, in network 4, the mid-term facility upgrades will help to reduce 

the total system operating costs by 70,042,629 NOK and the total carbon emissions by 3,646,539 kg 

within the planning horizon. This shows the value of the smart transformation for the selected network 

under the given upgrade plan. Second, it is also observed that the Pareto Frontier in S1 becomes flatter 

compared with that in the basic scenario. This result implies that the difference of the carbon reductions 

per unit cost in the Pareto Frontier becomes smaller, and the network structure yields less impact on 

emission reductions. Therefore, opening more facilities for carbon reductions in S1, e.g., network 7, 

becomes less attractive. In this scenario, the carbon emissions of networks 2 and 4 can be reduced to 

better balance the tradeoff between economic and environmental sustainability by technological 

upgrades and smart transformation.  
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(A) Pareto Frontiers with dominated solutions of S0 

and S1. 

(B) Pareto Frontiers with non-dominated solutions of 

S0 and S1. 

  

(C) Pareto Frontiers with dominated solutions of S0, 

S1, S2, S3, S4, S5, and S6. 

(D) Pareto Frontiers with non-dominated solutions of 

S0, S1, S2, S3, S4, S5, and S6. 

  

(E) Pareto Frontiers with non-dominated solutions of 

S1 vs. S7 and S3 vs. S8. 

(F) Pareto Frontiers with non-dominated solutions of 

S6 vs. S9. 

Figure 7 Simulation results. 
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 Basic scenario (S0) Technological upgrades (S1) 

RM 

  

 __ Available inventory, RM5, new compressor __ Available inventory, RM5, new motor 
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Plastic 

  

 __ Available inventory RC3, 

Plastic 

__ Available inventory RC4, 

Plastic 

__ Available inventory RC5, 

Plastic 

RC/ 

Metal 

  

 __ Available inventory RC3, 

Metal 

__ Available inventory RC4, 

Metal 

__ Available inventory RC5, 

Metal 

Figure 8 The change of inventory level during facility upgrades of network 4. 

Next, we compared scenarios 1-6 with different plans for technological upgrades of facilities and 

transportation in Figures 7(C) and 7(D). As shown, both the schedule and the expected impacts yield 

significant impacts on the performance of the reverse logistics networks. For instance, if the planned 

technological upgrades for respective facilities and transportation are delayed by 2 years from S1 to S3, 

the total costs of networks 2 and 5 will increase by 24,248,178 NOK and 22,722,489 NOK, while the 

carbon emissions of these two networks will increase by 1,191,348 kg and 1,162,535 kg, respectively. 

However, the impacts from the schedule of technological upgrades may be compensated by the expected 

impacts on operational parameters. For example, compared with S3, even though the upgrades of 

facilities and transportation in S6 are delayed, the difference between the Pareto frontier in these two 

scenarios is extremely insignificant due to a higher performance improvement is expected in S6. Figures 

7(E) and 7(F) compares the scenarios with expected cost impacts on transportation. For the test 

scenarios, the improvement in cost efficiency of transportation leads to better performance of the 

selected networks, but the impacts are insignificant due to its small proportion in the total costs. The 
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results show that the schedule and expected impacts of smart transformation may dramatically affect the 

performance of a reverse logistics system and need thus to be holistically considered in the network 

design. 

Table 7 Comparison of the service levels of network 4. 

Product Order fulfillment rate Late order 

 S0 S1 S0 S1 

q1 (Compressor) 94.4% 90% 3 15 

q2 (Metal) 98.8% 97.7% 6 13 

q3 (Plastic) 98.2% 97.8% 10 9 

q4 (Motor) 96.7% 90.4% 2 13 

Finally, we observed the inventory change during the facility upgrades. Figure 8 depicts the change of 

inventory level at respective facilities of network 4 in S1. Due to the production line being temporarily 

closed during the period of facility upgrades, this disruption led to a reduction of the available inventory 

of new products. At the remanufacturing plant, it needed to take nearly 6 months after the facility 

upgrades to restore the normal inventory level of the new motor, and for the new compressor, the 

recovery time of the inventory level was approximately 10 months. At the recycling plants, the inventory 

levels of the recycled plastic began to drop when the disruption had occurred, and the recycling plants 

3 and 4 took a short time to restore their normal inventory level, while nearly 4 months were needed for 

recycling plant 5. For metal recycling, the recovery time of inventory level at all plants was 

approximately 8 months. These disruptions at the remanufacturing plant and the recycling plants may 

cause a ripple effect throughout the reverse logistics system, which may further cause the backlogs of 

customer orders and excessive inventory at regional collection centers. Thus, the service level of the 

reverse logistics system will be drastically influenced. For example, as shown in Table 7, the smart 

transformation in S1 may yield more significant impacts on the remanufacturing process, which leads 

to 4.4% and 6.3% reductions on the overall order fulfillment rates of q1 and q4. Meanwhile, the late 

orders of these two remanufactured products increase by 400% and 550%, respectively.  

6.3   Discussions 

The results illustrate that the behavior and performance of a reverse logistics network can be better 

analyzed with the proposed two-level decision-support framework. Based on the case study in Norway, 

we provide discussions to answer the proposed research questions: 

RQ1: By using the strengths of multi-objective optimization, discrete event simulation, and Monte Carlo 

simulation in a two-level decision-support framework, the technological transformation, uncertainties, 

and practical operational policies can be better modeled and analyzed in smart and sustainable reverse 

logistics network design. The case study illustrates that a mathematically optimal solution may become 

a dominated or near dominated solution under realistic and dynamic environments. In this regard, the 

dynamic simulation model is an enhanced approach for effectively eliminating these dominated Pareto 

optimal solutions, which can help to yield more robust strategic network decisions and comprehensive 

performance analyses. 
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RQ2: Smart transformation may affect both the economic and environmental performances of a reverse 

logistics system. As shown from the case study, the trend of the Pareto Frontier may be changed by 

adopting new technologies, and opening more facilities for emission reduction in the initial optimal 

solutions may become less attractive from a long-term perspective. Moreover, the schedule and the 

expected influence of technological upgrades may have significant impacts on the system performance. 

In addition, the temporary facility closure may yield a ripple effect and lead to a reduced service level 

for both the EOL product collection and the supply of recovered products and materials. Due to these 

reasons, technological upgrades need to be planned in a smart and coordinated way to maximize 

performance improvement while minimizing the disruption of the reverse flows. 

7 Conclusions 

In this paper, a two-level decision-support framework is proposed for smart and sustainable reverse 

logistics network design. A bi-objective MIP is first used to calculate a set of Pareto optimal solutions 

balancing both total operating costs and carbon emissions, which are considered candidate reverse 

logistics networks. In the second level, dynamic simulation models combining both discrete events and 

Monte Carlo simulation are built with stochastic parameters, dynamic features, operational policies, 

technological upgrades, and a realistic planning horizon. The application of the proposed decision-

support framework is shown through a case study of WEEE reverse logistics in Norway. 

The experimental results of the case study show that smart transformation within the planning horizon 

may affect both the economic and environmental performances of a reverse logistics system, and the 

carbon emissions from a more economically efficient network may be largely reduced by technological 

upgrades in the later stage at a much lower cost. Besides, the incorporation of dynamic simulation 

models can well complement the shortcomings of mathematical optimization models and can help to 

yield better performance analyses of various scenarios and robust strategic decisions under realistic 

environments.  

Managerial implications. This paper provides a hands-on decision-support framework to combine 

mathematical models and dynamic simulation, which allows policymakers, supply chain managers, 

companies in reverse logistics, etc., to optimize the strategic network decisions and to evaluate new 

technologies and new operational policies holistically. With the help of dynamic simulation, the system 

behavior and performance, e.g., inventory, service level, etc., can be analyzed more thoroughly. 

Furthermore, the analysis of the real-world case study of sustainable WEEE management in Norway 

may provide some practical insights into the smart transformation of reverse logistics systems.  

Research implications. This paper provides new methodological integration for inspiring researchers in 

reverse logistics network design, which is dominated by using a single method today. From the system 

integration perspective, the effective combination of both mathematical models and advanced computer-

based simulation is still at the beginning stage due to several technological challenges, e.g., database 

conversion, software flexibility, etc., this paper provides a generic structure for the next generation 

decision-support system that potentially integrates predictive analytics, prescriptive analytics, and 

descriptive analytics in a smart digital reverse logistics twin [61].  
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Limitations and Future Research. This paper has three main limitations. First, the parametric 

uncertainty is not considered in the bi-objective MIP model but is assessed by the dynamic simulation. 

However, uncertainty may affect the strategic location decisions in reverse logistics network design. 

Second, validating the method with a single case study may be incapable of fully demonstrating the 

impacts of smart transformation on reverse logistics network design, particularly considering the 

sparsely populated nature of Norway, and different insights may be obtained from other regions. Third, 

several assumptions are used due to data unavailability, e.g., quantitative data related to smart 

transformation.   

Therefore, future research is suggested to tackle these limitations. For example, the mathematical 

optimization model can be enhanced with uncertain parameters and constraints, e.g., robust 

optimization, chance-constraint stochastic optimization, etc., to ensure more reliable strategic decisions. 

Besides, the application and validation of the proposed method in other regions and with more 

comprehensive datasets are expected.  
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Abstract: To maximize the value and material recovery from waste products, smart 

reverse logistics aims at managing the complex flows of physical items, cash, data, and 

information. The effective management of these flows requires optimal decision making 

at strategic, tactical, and operational levels. To support the decision making, predictive, 

prescriptive, and descriptive analytics have been proved to be valuable at all three levels. 

However, because these analytical tools require different software packages, different 

coding languages, and different structures of data, the decision support for complex 

problems combining various analytical methods is usually an ad-hoc process and requires 

thus significant efforts. There is a lack of standardized solutions that comprise all the 

necessary modules for smart reverse logistics management. Thus, this paper proposes a 

conceptual framework with the purpose of guiding the next-generation system integration 

for smart reverse logistics management. It goes further with the design of six criteria for 

evaluating the integration maturity of a system. The initial concept is shown with existing 

software solutions through a case study in Norway, and several challenges are identified 

for future improvements 

Keywords: decision making; reverse logistics; system integration; data models 

 

1 Introduction 

Today, the rapid pace of technological innovation and the ever-changing consumer demands have led 

to higher requirements of customization with shortened product lifecycles. This further leads to largely 

increased waste generation. In 2019, the volume of waste electrical and electronic equipment (WEEE) 

generation has reached a record high level of 53.6 million metric tons which represented an increase of 

21% in five years [1]. This trend is expected to continue with an estimated 30% increase by 2030 [2]. 

Sustainable management of this rapidly increasing waste has become a global challenge. With the 

focuses on function restoring and material recovery from discarded products, some regional and 

international reverse logistics systems have been developed [3].  
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Reverse logistics refers to a set of activities with the aim of the value recovery from waste products 

through repair, reuse, refabrication, remanufacturing, recycling, and energy recovery as well as proper 

disposal of non-recyclables [4, 5]. To achieve sustainable competitiveness in today’s market, reverse 

logistics has become a strategic focus area for most companies due to, i.e., the growing environmental 

awareness among the general public, stricter legislation, and imposed corporate social responsibility. 

Effective decision support at strategic, tactical, and operational levels is therefore of essential 

importance for designing and operating a competitive and sustainable reverse logistics system. To do 

so, it is necessary to balance complex material and information flows, work with various stakeholders, 

and make important decisions under uncertainty. To support different decision making in reverse 

logistics management, predictive, prescriptive, and descriptive analytics must be combined to solve 

complex problems. 

The use of these analytical tools requires different data sources, software packages, different coding 

languages, and different structures as well as aggregation of data. The combination of several analytical 

methods to solve a complex decision-making problem in reverse logistics management is, at present, an 

ad-hoc process, and often requires significant efforts to engage different tools when a new scenario turns 

up. How to develop an integrated system that can connect different analytic models, data, tools, and 

other relevant elements for providing efficient decision support is, therefore, a novel question. In this 

paper, considering the technological innovations in Industry 4.0, we propose a conceptual framework 

for the next generation of system integration methods for smart and sustainable reverse logistics 

management. The initial proof-of-concept is applied to a case study design for WEEE management in 

Norway. In this model, the prescriptive and the descriptive analytics are connected through establishing 

a shared database structure. 

 The rest of the paper is organized as follows. Section II explores reverse logistics management with an 

emphasis on relevant decisions and methods. Section III presents a conceptual framework for the system 

integration of smart and sustainable reverse logistics management. In sections IV, we demonstrate an 

application of this framework through a case study, and the problems of the existing software solutions 

are also discussed. Finally, the conclusions are given in Section V. 

2 Reverse Logistics Management 

2.1 Reverse logistics management 

Reverse logistics focuses on the value recovery activities of waste products, when combining it into the 

forward logistics system, a closed-loop supply chain can be formed. As shown in Figure 1, the material 

flow in a reverse logistics system starts from the local collection of waste products from the end-users. 

The collected waste products will then be disassembled, inspected, and sorted at central collection 

centers. Based on the remaining values of the dismantled parts, they are sent for further treatment at 

different facilities. The ones with high remaining values will be sent either for repair and re-sell at 

second-hand markets or for remanufacturing and refurbishing for function restoration. The 

remanufactured and refurbished components can be sold to the manufacturers at lower prices. The other 

components with low remaining values can be sent to recycling plants, where they are degraded into 
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new materials and then sold to the raw material suppliers. The non-recyclable components can be sent 

either for energy recovery or for proper disposal. 

 

Figure 1 Reverse logistics system 

Reverse logistics management refers to orchestrating complex flows (product, capital, and information) 

among multi-layered and non-homogeneous stakeholders in a highly uncertain environment. Table I 

shows the key decisions for reverse logistics management at the strategic, tactical, and operational 

levels. Strategic decisions have long-term impacts on a reverse logistics system since they are difficult 

or extremely expensive to change. Reverse logistics network design is the most important strategic 

decision [6]. Several factors and decisions are affecting the performance of a reverse logistics network, 

i.e., the number and locations of potential facilities, capacity planning, remanufacturing and recycling 

technologies, transportation strategy, and the establishment of distribution and collaboration channels 

for recovery products and materials [7, 8]. At the tactical level, the reverse logistics system is governed 

by a set of medium-term decisions, usually from one month to one year, made under the constraints set 

by the strategic planning  [9]. The formulation of production policy, inventory policy, vehicle routing 

as well as fleet management are considered tactical decisions. At the lowest level, the short-term 

operational decisions are made for the dynamic control of product recovery operations, dynamic 

inventory control, real-time vehicle routing and scheduling problems, and risk analysis, etc. 

Table 1 Key decisions for reverse logistics management 

Level Key decisions 

Strategic level • Target market situation analysis and evaluation (coordination of reverse 

logistic network, market size, product, etc.) 

• Reverse logistic network design 

• (the number and location of facilities, capacity planning and designing of 

the remanufacturing/recycling systems) 

• Transportation strategy 

• New technology adoption 

Tactical level • Reverse logistics network re-optimization 

• Vehicle routing  

• Production planning 

• Inventory planning  

• Fleet management 
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Level Key decisions 

Operational level • Production control 

• Inventory control 

• Vehicle planning and scheduling 

• Risk analysis 

• Recovery analysis 

• Resilience analysis 

2.2 Methods for Decision Supports 

To support decision making in reverse logistics management, three advanced analytical methods: 

predictive, prescriptive, and descriptive analytics, are applied.   

Predictive analytics is a category of applying advanced methods to predict future trends based on 

historical data and/or real-time data. It aims to perform an exploratory analysis using several analytical 

tools. Typical techniques are, e.g., artificial intelligence (AI), data mining, machine learning (ML), 

modeling, and statistics to estimate, predict, detect future patterns [10]. Decision trees, linear/logistic 

regressions, and neural networks are the most common predictive models, which can help to clean the 

data quality for analysis [11]. In terms of reverse logistics management, predictive analytics has been 

used to reduce the impact of uncertainty so that a better prediction of reverse flows can be achieved. 

Tuylu and Eroğlu [12] used ML to estimate the product return rate in reverse logistics. In this case, 

better prediction and planning were achieved by using consumer information so that unnecessary 

production and transportation were avoided. Lickert, Wewer [13] implemented a ML method to inspect 

whether the quality levels and conditions of returned products were suitable for remanufacturing.  

Prescriptive analytics is to select the constrained and time-dependent optimal solutions with the help of 

model-based analytics, e.g., mathematical programming (linear/non-linear programming, mixed integer 

programming, multi-objective programming, etc.), evolutionary computation (genetic algorithm, greedy 

algorithm, particle swarm optimization, etc.), probabilistic models (Markov decision process, etc.), 

logic-based models (benchmark rules, fuzzy rules, etc.) [14]. Thus, prescriptive analytics aims at 

suggesting the best decision options under some preconditions [15], whose results are given, in many 

cases, based on the outputs from model-based analytics [14]. Prescriptive analytics is the most widely 

used decision-support method in reverse logistic management at different levels. For example, extensive 

research efforts have been given to develop mathematical models for sustainable reverse logistic 

network design [5, 16, 17], profit maximization [18, 19], routing optimization of recycling vehicles [20]. 

In logistics and supply chain management, descriptive analytics is used to depict the system’s behavior 

and to uncover the meaningful patterns from analyzing the system performance, and simulation is 

considered the most important descriptive tool. Simulation can be used to capture the randomness, 

dynamic system behaviors, and disruptions, which are more closed to real-world conditions. In reverse 

logistics management, simulation has become a powerful tool for decision-makers to investigate the 

system performance with a set of what-if scenarios. Pandian and Abdul-Kader [21] developed an agent-

based simulation model for the performance evaluation of a cell phone remanufacturing system. 

Gianesello, Ivanov [22] simulated a closed-loop supply chain with disruption considerations. This 

simulation model provided better illustrations of the recovery decisions.  Longo [23] used a simulation 
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method to compare different inventory control policies in reverse logistics so that an optimal solution is 

ready to be chosen when certain pre-set conditions are met. 

Despite the huge advantages the predictive, prescriptive, and descriptive analytics have, the combination 

of these methods/theories, which can benefit the multi-objective decision-making approach, has not 

been well developed. Today’s rapid advancement of information and communication technology (ICT) 

in Industry 4.0 has provided new opportunities for reverse logistics management to become more smart, 

sustainable, and simplified. On the one hand, the wide adaptation of IoT embedded devices, smart 

sensors, and radio frequency identification (RFID) have provided effective ways for real-time data 

collection and processing. On the other hand, the significant development of AI and optimization 

algorithms has improved computational effectiveness and efficiency, which drives the increasing use of 

data-driven prediction, optimization, and decision-making. However, the effective use of these new 

technologies in reverse logistics management requires a high level of system integration in a cyber-

physical environment.  

In the next session, we will propose a framework for system integration purposing smart reverse logistics 

management. 

 

Figure 2 System integration for smart reverse logistics management 

3 A Framework for System Integration 

System integration is the process that links and integrates several physical and cyber components so that 

they can work together as a whole [24]. The most significant challenge of the system integration for 
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reverse logistics management is related to the use of several analytical tools and the inclusion of a large 

amount of data from different sources and stakeholders. However, selecting the right analytical tools 

and right data to solve specific reverse logistics management problems requires domain expertise. Thus, 

this conceptual framework is proposed to explore the opportunities for the next generation of system 

integration for smart reverse logistics management. As shown in Figure 2, the integrated system 

combines various AI algorithms, optimization models, and simulations to support strategic, tactical, and 

operational decisions, and these elements form three layers, namely, data collection, data processing and 

analytics, and decision support. At the lowest data collection layer, the data can be collected from both 

physical sources, e.g., enterprise resource planning (ERP)/ advanced planning & scheduling (APS), 

smart sensors, and geographic information system (GIS), etc., and cyber sources, e.g., the information 

from the online collaboration portals, the online data from track and trace systems, and the product-

based digital twin [25], etc. The reliability of a decision-support system depends heavily on the quality, 

completeness, validity, consistency, timeliness, and availability of data [26]. The raw data collected 

from these multiple sources can be sent and stored on a cloud-based database and be cleaned. The next 

step is the core of the system integration, which is the data processing, analysis, and preparation. 

Depending on the types of decisions to be made for reverse logistics management, the respective AI 

and/or optimization models and/or simulation models need to be selected and combined, and the data 

needs thus to be prepared accordingly in order to feed these models. For example, in the proactive 

planning of a waste product collection system, the historical data can be used with AI, e.g., deep learning, 

to provide accurate predictions of the waste generation and the maintenance periods required for the 

waste collection vehicles. The prediction results can be visualized and be directly converted to the inputs 

of the respective optimization models for routing the vehicles and scheduling the waste collection 

activities and vehicle maintenance. Besides, the optimization results and relevant parameters can be 

converted seamlessly to the simulation environment to analyze the system dynamics under different 

scenarios, evaluate the impacts of disruption, and test and formulate different reactive strategies. Besides, 

the prediction needs to be dynamically updated with the real-time data collected from various smart 

devices and information portals, e.g., traffic condition, vehicle utilization, etc., and the optimization and 

simulation models need to be re-activated accordingly to update the respective analytical results and 

suggestions. In making short-term operational decisions, real-time data places a more important role in 

the optimization of reactive decisions. Smart reverse logistics management emphasizes the importance 

of effective proactive planning and reactive decisions driven by both historical data and real-time data. 

However, in some cases, the datasets are not available or not large enough for data analytics to generate 

a reliable prediction. In this regard, simulation can be used at the first stage to yield the initial scenarios 

for a data-driven learning process [27] and the parameter estimation for optimization. For instance, a 

simulation method combined with a patient allocation heuristics was used to estimate the system 

dynamics of the medical waste generation during the early stage of the COVID-19 pandemic in Wuhan, 

China, whose results were then used as the inputs to a multi-objective mixed integer program to optimize 

the locations of temporary waste incinerators [28].  

This system integration combines AI, optimization models, and computer-based simulation, which can 

support important decisions and test several alternatives in a risk-free environment [27]. The main 

features of the next generation of system integration and software development for smart reverse 

logistics management are discussed as follows: 
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• Cyber-physical structure: At the lowest level, the system integration needs to enable effective 

data collection from both physical and cyber sources. 

 

• Cloud-based system: The important data and analytical models need to be stored in a cloud-

based platform so that they can be easily accessed from decentralized locations. 

 

• Shared database and data conversion: The parameters for different analytical models are 

generated from the same database and can be easily converted to feed different models with 

different requirements on data structure and aggregation. 

 

• Flexible network structure: For different problems in reverse logistics management, the 

numbers of echelons and actors involved are by no means identical, so the integrated system 

needs to be flexible enough to adapt to different reverse logistics network structures.  

 

• Large model database: The model database needs to be broad to tackle a wide range of decision-

making problems at strategic, tactical, and operational levels. 

 

• Flexible model modification: The model can be easily modified to adapt to the change of system 

requirements in the decision-making. 

 

• User-friendly interface: The digital interface should be designed in a user-friendly way for 

practitioners and non-expert users. 

4 Maturity Evaluation of Existing Solutions 

With existing software solutions, we first present the initial proof of concept with a case study of the 

reverse logistics network design for WEEE management. Then, three existing solutions are compared 

to evaluate the maturity of system integration for smart reverse logistics management. To optimize the 

WEEE recycling network in Norway, an analysis combining with both optimization and simulation is 

given, and the data flow needs to be converted between optimization models and simulation models due 

to their different requirements. The anyLogistix, which is a cutting-edge combined optimization-

simulation software package has the functionality to convert data between the two methods in forward 

logistics. However, due to the difference of reverse logistics flows and the requirement to consider the 

carbon emission objective in decision-making, it cannot be used directly to solve this problem. Figure 

3 illustrates the data flow of the decision-support process for this reverse logistics network design 

problem. First, the data input files need to be established in Microsoft Excel. Based on the input data, a 

bi-objective optimization problem considering the balance of both costs and carbon emissions is solved 

with a professional optimization solver, whose results are written in the output file. The input parameters 

need to be converted to feed the simulation model, and a set of Pareto optimal solutions suggested by 

the optimization model are considered several candidate network configurations. Based on this 

information, the performance indicators, e.g., cost, carbon emissions, periodic inventory level, etc., can 

be obtained under a dynamic and stochastic environment. The analytical results can then be easily 

visualized for better decision supports. As can be seen, to formulate the reverse logistics flows and 
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ensure the model’s flexibility, the existing software solutions cannot realize a streamlined data flow 

conversion between different analytical models in reverse logistics.  

 

Figure 3 Data flow through the decision-support system. 

To identify the gaps related to the system integration for smart reverse logistics management, three 

existing software solutions i.e., SAP, Optimity, and anyLogistix are compared with respect to the general 

features given in the previous section. In Table II, three levels of system integration maturity for smart 

reverse logistics are defined as follows: 

• 3 is the highest maturity level, in which the process is standardized and the functionality can be 

well achieved for smart reverse logistics management.  

• 2 means the functionality has been established at the basic level, but significant efforts need to 

be done to solve reverse logistics management problems. 

• 1 is the lowest maturity level, which means the functionality has not been well established for 

reverse logistics management.  

Table 2 Evaluation of system integration  

Main features 
Three existing software solutions 

SAP Optimity anyLogistix 

Cyber-physical structure 3 2 2 

Cloud-based system 3 3 3 

Shared database and data conversion 3 3 3 

Flexible network structure 1 1 1 

Large model database 1 2 2 

Flexible model modification 1 1 2 

User-friendly interface 3 3 3 
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SAP (System Analysis Program Development) is the world's leading software provider of business 

process management, data processing, and information flow solutions across organizations. The SAP 

system has been adopted by a large number of companies in many industries. The SAP’s EPR solution 

is a comprehensive system including various modules for finance, administration, logistics, etc., with 

which a high level of cross-functional integration and cross-organizational coordination can be 

achieved. SAP is a mature system to integrate and process data from different sources and to convert 

data for different purposes via a cloud-based system. In logistics planning, SAP offers a set of embedded 

models and algorithms to solve a wide range of problems, e.g., vehicle routing problems (VRP). 

However, there is a lack of standardized solution modules and models for reverse logistics management 

problems, e.g., network design. Besides, as a commercial system, it suffers from flexibility issues.  

Both Optimity and anyLogistix focus on providing the next generation of software solutions and digital 

twin for managing logistics systems and supply chains. Optimity emphasizes data-driven optimization 

combined with both ML and a set of optimization models for better prediction and better decision 

support. On the other hand, anyLogistix focuses on the combination of mathematical optimization and 

computer-based simulation to provide solutions and analytical insights under a dynamic and realistic 

environment, and the data flow conversion between optimization models and simulation models is thus 

well developed. However, since both software packages are developed with a primary focus on forward 

logistics systems and supply chains, the network structure is not well adapted for modeling the material 

flows in the reverse logistics system, as shown in Figure 3. Besides, even though they offer model 

adjustment by adding and subtracting some elements, e.g., carbon cost, penalty, etc., the flexibility is 

extremely limited to adapt different modeling requirements, e.g., multi-objective optimization, 

stochastic programming, etc. Thus, there is still a long way to go in order to achieve the next generation 

of system integration for smart reverse logistics management. 

5 Conclusion 

The emergence and increasing use of several Industry 4.0 technologies have provided new opportunities 

for improved connectivity and intelligence of a system. The combination of both data-driven analytics 

and model-based methods is driving the paradigm change toward smart reverse logistics management. 

However, different tools and models need to be used to solve different decision-making problems, and 

these tools and models need different software packages, different inputs, and different structures and 

levels of aggregation of data. Thus, it is usually an ad-hoc process to combine different data sources and 

different models to solve complex decision-making problems in reverse logistics management, and there 

is a lack of standardized solution and software package that contains a comprehensive network structure 

and a large model collection to solve a wide range of reverse logistics management problems. 

In this paper, from the user’s perspective of reverse logistics management, we propose a conceptual 

framework for the next generation of system integration for smart reverse logistics management. Six 

primary parameters, i.e., cyber-physical structure, cloud-based system, shared database and data 

conversion, flexible network structure, large model database, flexible model modification, and user-

friendly interface, are given to evaluate the maturity of system integration of smart reverse logistics 

management. The initial proof of concept is given by a case study in Norway. Besides, three existing 

software solutions, i.e., SAP, Optimity, and anyLogistix, are compared to identify the current problems 
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and challenges of system integration. The proposed six parameters for the maturity evaluation of system 

integration are considered the general guidelines for the next generation of software development in 

order to realize smart reverse logistics management. 
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Abstract: The rapid advancement of information and communication technology (ICT) 

and digitalization in the Industry 5.0 era have opened up new opportunities for re-verse 

logistics management to become digitalized, smarter, more sustainable, and simplified 

by incorporating disruptive technologies, e.g., Internet-of-things (IoT), artificial 

intelligence (AI), big data analysis, simulation, blockchain, etc. Digital twin is one of the 

most promising concepts in Industry 5.0, which can re-create a physical object or system 

in the digital world. In this paper, different from the widely practiced product-based 

definitions, we extend this concept to a system-oriented digital reverse logistics twin. 

Based on a conceptual framework allowing for a high level of system integration, we 

present the key enabling elements for a digital reverse logistics twin that can support 

decisions in a complex and uncer-tain environment. Through an illustrative example of a 

remanufacturing network design problem in Norway, the initial proof-of-concept 

illustrates how different systems and models can be combined in a digital reverse logistics 

twin in order to support different decisions. 

Keywords: reverse logistics, digital twin, Industry 5.0, decision support system, 

simulation, optimization 

 

1 Introduction 

Today, the accelerated pace of technological innovation and development has resulted in an ever-faster 

pace of product renewal and shortened product life cycles, which, in consequence, leads to an 

exponential increase in the generation of end-of-life (EOL) and end-of-use (EOU) products [1]. 

Meanwhile, sustainable logistics and supply chains have been a major research subject in recent decades 

due to increased global awareness and concerns associated with economic, environmental, and social 

sustainability in socio-economic activities [2]. To properly manage the increased waste streams, while 

simultaneously promoting resource recovery from both EOL and EOU products, reverse logistics is 

considered to be one of the most crucial steps for moving toward sustainable development and circular 
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economy. Due to this reason, as a profitable and sustainable business strategy, reverse logistics has 

gained increasing attention by worldwide companies and organizations. 

The emerging concept of Industry 5.0 has shown a blueprint of the human-centric transition that 

predominantly focuses on social and environmental dimensions of sustainable development. Several 

disruptive technologies of Industry 5.0 are driving firms to shift business strategies to be more 

sustainable. This process requires more information involved and the integration of interconnected smart 

components, real-time monitoring and control devices across the entire manufacturing network and 

logistics systems, which potentially enables virtual product and virtual process planning in order to 

provide better and more comprehensive decision support and system control [3]. As one of the most 

important enablers of Industry 5.0, digital twin is increasingly focused on by both industrial practitioners 

and academia. 

Even though the concept of digital twin has been widely discussed in the context of different industries 

and businesses, most of them, especially in reverse logistics, are mainly defined from the product 

perspective, e.g., a data-intensive digital model that can tract the product conditions and information 

throughout its entire life cycle [4]. However, reverse logistics is a complex system, and there is a lack 

of definition and conceptualization of digital reverse logistics twin from the system-oriented 

perspective. Thus, considering smart reverse logistic features and, in particular, cyber-physical 

integration for effective system visualization and data-driven decision-making, we provide a systematic 

conceptual framework of the digital reverse logistics twin to fill the literature gaps. The initial proof-of-

concept is provided by an illustrative example of a compressor remanufacturing network design from 

EOL refrigerators in Norway. The proposed framework aims at showing a clear roadmap for future 

system integration that allows a high level of interaction between the digital and physical worlds of a 

smart reverse logistic system, with which various decision-making problems can be better supported. 

2 Theoretical Backgrounds 

2.1 Reverse Logistics Management 

Reverse logistics refers to a set of value recovery operations regarding the process of shipping EOL and 

EOU products or parts from the consumer point for possible reuse, remanufacturing, recycling, or proper 

disposal of materials, components, and products [5, 6]. The effective management of these operations 

is not an easy endeavor due to the complexity of reverse logistics systems that need the participation 

and collaboration of various stakeholders [7]. Due to the unpredictability and large variations of the 

EOL and EOU products in the reverse flow, the uncertainty related to reverse logistics operations are 

substantially larger than that in forward logistics [8], which results in greater impacts on decision-

making [9].  

Furthermore, reverse logistics operations may be affected by many unpredictive events and disruptions. 

For example, the COVID-19 pandemic has posed considerable challenges to global logistics systems 

and supply chains. The border closure, city lockdown, and reduced and limited transportation capacity 

have severely interrupted goods movements, increased logistics costs, and increased uncertainty of total 

transit time. In reverse logistics, the transborder movement of EOL and EOU products has been largely 
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affected. Thus, the resilience and flexibility of logistics systems become increasingly important [10]. 

Furthermore, in an effort to overcome and minimize the negative impacts of logistics operations, the 

pandemic has also spurred many businesses and companies to adopt new technologies and methods 

from the latest industrial revolution to increase automation and reduce the need for human resources 

[11]. Therefore, there is a need to develop new solutions for reverse logistics management considering 

the emerging sustainable development challenges in the post-pandemic era under a highly uncertain and 

fluctuating global environment.      

2.2 Industry 5.0 

The fifth Industrial Revolution, namely, Industry 5.0, has the most potential to substantially optimize 

logistics in a strategic way [11], which offers new opportunities for smart and sustainable reverse 

logistics management by building up competitive and innovative business models and better managing 

the operations. While Industry 4.0 primarily emphasizes the role of automation and digitization through 

connecting physical objects with the real world to enhance manufacturing productivity, intelligence, and 

flexibility, Industry 5.0 focuses, however, on the human-centric transformation in the age of 

augmentation [12, 13]. Enabled and empowered by disruptive technologies, the importance of 

personalization, environmental sustainability, and human-centric societal transition are simultaneously 

emphasized [14]. Compared with Industry 4.0, despite smartness, connectivity, digitalization, and 

autonomy are still the core elements of Industry 5.0, the role of the human becomes most crucial in the 

transformation, where the potential of both human and technology can be largely exploited in a human-

machine collaborative environment [11].  

Industry 5.0 empowers human intelligence to work with cognitive computing and intelligent automation 

[15], which paves the way for enabling smart logistics systems through achieving proactive planning 

with big data, real-time decision making, responsive communications, better resource allocation, and 

smoother material flows [16, 17]. However, on the other hand, there are still numerous obstacles related 

to the implementation of new technologies in reverse logistics [18], e.g., the technological maturity and 

compatibility, the life-cycle environmental footprint of new technologies [19], etc. Thus, further 

research is needed to provide comprehensive decision supports to better plan the smart reverse logistics 

transformation in the Industry 5.0 era.   

2.3 Digital Twin 

Digital twin is one of the most essential technologies in Industry 5.0 [14]. The terminology was first put 

forward as a concept practiced in the aerospace and aviation industry in the 1960s [20]. A “ twin” 

concept was developed by NASA to assess and simulate conditions onboard Apollo 13 so that the 

astronauts and the controlling center can monitor the spaceship's condition remotely and make decisions 

in the emergency event [21]. Digital twin was depicted as “digital equivalent to a physical product” by 

Michael Grieves at the University of Michigan in 2003 [22]. Digital twin has become one of the top 

strategic technology trends since 2017 with the worldwide focus on digitalization. Research activities 

on digital twin have been dramatically increased by the explosion and rapid development of machine 

learning, wireless communication, and cloud computing [20, 22, 23]. The digital twin market is 
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predicted to increase with an annual growth rate of 58 percent from USD 3.1 billion in 2020 to USD 

48.2 billion by 2026 [24]. 

The origins of digital twins describe replicating products [3]. One of the key features of digital twin is 

the capability of transmitting and providing diverse types of data and information in an interoperable 

and consistent format [23]. Digital twin has various industrial applications at different lifecycle stages 

including product design, manufacturing, service, and EOL products [22, 25]. Among others, the 

application of digital twin in manufacturing has gained predominant focuses, which can effectively help 

with production planning and control, maintenance, and layout planning [3]. It is a fundamental enabler 

of a highly integrated and collaborative smart manufacturing environment, which can effectively 

respond to the real-time customer needs and conditions in the factory [26]. For example, a simulation-

based digital twin is used to support heat monitoring and predictive maintenance of an automotive 

braking system in order to make prompt decisions and reduce accidental risks [27]. Digital twin, enabled 

by intelligent analytical tools, e.g., AI, simulation, optimization, etc., provides new opportunities for 

processing large volumes of data, achieving data-driven operation, realizing the real-time interaction, 

communication, and integration between cyber and physical worlds, and diversifying value creation.  

3 Digital Reverse Logistics Twin 

3.1 Human-centric smart reverse logistics transformation 

The increasing adoption of disruptive technologies in Industry 5.0 will eventually lead to a smart reverse 

logistics transformation in various aspects including the smart collection of EOU and EOL products, 

smart transportation, smart remanufacturing and recycling, and smart disposal [28]. As illustrated in 

Figure 1, reverse logistics has experienced paradigm shifts from unstructured isolated activities to 

today’s highly structured, automated, and connected operations that aim at sustainable value recovery 

of EOL and EOU products and materials. Enabled by new technologies, e.g., IoT, AI, CPS, etc., the 

human-centric smart reverse logistics transformation has become the emerging hotspot in the Industry 

5.0 era. For example, as an innovative business model, the collection activities of EOL and EOU 

products can be scheduled based on individual customer demands [29], where real-time truck utilization 

data and traffic data can be used to optimize routing and resource allocation. Besides, AI-enabled smart 

robots can be used in the sorting center to relieve human workers from harsh working conditions, where, 

in a collaborative environment, human workers can help the robots to categorize different types of waste 

streams. This human-centric smart reverse logistics transformation requires a high level of system 

integration to connect the physical world with the digital world. In this regard, digital twin plays an 

essential role.  
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Figure 1 Smart reverse logistics transformation. 

3.2 Digital twins for reverse logistics operations 

Currently, the application of digital twin is still in the way of exploratory development [30]. Among 

other reverse logistics activities, remanufacturing has become the most focused area of the adoption of 

digital twin [30], since it is becoming today’s mainstream practice for recovering the EOL components 

at high value [31]. In remanufacturing, the concept of digital twin is defined from the product- or 

process-oriented perspective. A product-oriented digital twin tracks the product conditions through its 

entire lifecycle and provides valuable information for remanufacturing that usually suffers from high 

uncertainties related to the quantity, quality, and demand of EOL products  [32]. In this regard, the 

primary enablers are to establish a cloud-based automatic data collection and sharing system with IoT, 

smart sensors, cloud technology, etc., as shown in Table 1.  

Table 1. Comparison between the product-oriented digital twin and the system-oriented digital twin in reverse 

logistics. 

 Product-oriented digital twin System-oriented digital twin 

Scope Management of the entire product 

lifecycle 

Management of the entire reverse logistics system 

Data  Product condition throughout the entire 

lifecycle 

System or process information at different 

locations and routes 

Applications Data and Information supports, e.g., 

EOL product quality, prediction of 

equipment failure, etc.  

Decision support at strategic, tactical, and 

operational levels, e.g., real-time routing, proactive 

maintenance and operational planning, etc.  

Key enablers Connectivity enablers Both connectivity and intelligence enablers 

A process-oriented digital twin is similar to a system-oriented digital but with a smaller scope that 

focuses on a specific reverse logistics operation or activity, e.g., equipment maintenance, demand 

forecasting, etc. For example, a big data-driven hierarchical digital twin can be used for predictive 

remanufacturing planning [33]. Market demand can be predicted using big data analytics so that rapid 

reconfiguration of sustainable products and remanufacturing processes can be achieved. Ghorbani and 

Khameneifar [34] developed a digital twin to predict the repair volume in the remanufacturing of 

damaged aero-engine blades. Simulation is a core element in a process- or system-oriented digital twin 

[35]. For instance, a simulation-based digital twin can be used to predict maintenance needs and 
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potential equipment failures in remanufacturing operations [36]. Combining real-time data simulation 

with decision evaluation, a data-driven disassembly process can be achieved [37]. 

3.3 Digital reverse logistics twin 

Even though product- and process-oriented digital twins have been investigated in reverse logistics, 

there is still a lack of conceptualization of a system-oriented digital reverse logistics twin. Thus, this 

paper investigates the concept of digital reverse logistics twin from the system perspective. A digital 

reverse logistics twin is a data-based digital avatar of the entire logistics system, which combines both 

physical smart devices, i.e., IoT-sensors and intelligent robots, and cyber intelligence, i.e., AI, big data 

analytics, advanced optimization algorithms, and simulation tools, so it can be considered a high-level 

of CPS that enables effective system visualization and data-driven decision making with better proactive 

planning and real-time reactive adjustments. To support decision-making at different levels, data-driven 

analytics and decision-support models need to be effectively combined [38], which requires a high level 

of system integration to provide comprehensive decision support in a complex and uncertain 

environment [39]. 

A digital reverse logistics twin can be used to simulate dynamic processes or behaviors of reverse 

logistics operations and comprehensively assess the impact of dynamic situations. AI and big data 

analytics can be used to build data-driven forecasting systems in the proactive phase before EOL/EOU 

products enter the value recovery phase, which helps reduce uncertainties and generate adequate and 

more accurate data as the input for optimization and simulation models for further decision supports, 

e.g., remanufacturing planning, transportation scheduling, etc. Then, based on the needs of different 

decisions, a single method or a combination of both optimization and simulation methods will be 

selected to conduct various data-driven analyses with historical data and real-time data adjustment. 

For example, in the proactive planning phase of an EOL product collection system, AI-based data 

analytics can be used at the initial step for reducing uncertainties based on historical data to accurately 

predict the generation of EOL products and the required maintenance in each period. The predicted 

results can be directly converted to the input of the corresponding optimization models for resource 

assignment, routing, collection schedule, and vehicle maintenance. Furthermore, the optimized setups 

and decisions can also be automatically converted to the simulation environment for analyzing system 

dynamics under various scenarios, e.g., traffic congestion, accidents, etc., based on which reactive 

strategies can be formulated and tested. With the help of the real-time data collected from various smart 

devices and information portals, the prediction results can be updated and the short-term operational 

decisions, e.g., routing and collection schedules, can be dynamically optimized to improve the overall 

system performance in terms of operating costs, fuel consumption, emissions, working hours, and 

service levels. Thus, based on the discussions above, a generic definition of digital reverse logistics twin 

is given from the system perspective:   

Digital Reverse Logistics Twin is a data-based digital representation of a real-world reverse logistics 

system, which forms a multi-architecture and high-level integrated information platform by integrating 

different stakeholders, data, and analytical tools to support various proactive and/or reactive decisions.  
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Figure 2 Digital reverse logistics twin. 

Figure 2 shows a generic framework of digital reverse logistics twin, which aims to digitize the physical 

entities and activities of a reverse logistics system into a cloud-based virtual environment, where smart 

devices, data, and analytical models can be used for proper needs. It requires three layers including the 

physical system layer, the cyber-physical layer, and the smart analytical layer. The first two layers link 

the physical world to the cyber world, which allows data collection, treatment, and processing from the 

physical devices, sensors, and processes, and the third layer supports the critical decisions with AI, 

optimization, and simulation models in an interactive way. In addition, the product-orient digital twin is 

also considered a key enabler for this generic framework. For example, these digital twin models 

established for individual products throughout their entire lifecycle, e.g., electronic products, vehicles, 

etc., provide key data for various reverse logistics activities. Besides, the end-users can easily provide 

updated information related to these products via digital platforms, which will be used for a better 

organization of respective value recovery activities in a sustainable reverse logistics system. 

As can be seen, data is the most essential element in the digital reverse logistics twin, which is the bridge 

connecting the physical world and the cyber world. The accuracy of data represents the fidelity of the 

digital model. Furthermore, data connects different analytical tools in the smart analytical layer, with 

which different analytical models can be seamlessly connected and implemented in the decision-making 

of specific reverse logistics planning problems. However, this is one of the major challenges of system 

integration since AI, optimization, and simulation are usually performed as ad-hoc processes and 

implemented in different environments, so further development is needed to promote a high level of 

system integration in a digital reverse logistics twin [39].   

4  Initial Proof-of-Concept 

In this section, we use an illustrative example of a remanufacturing network design problem in Norway 

to show the initial proof-of-concept and potential applications of digital reverse logistics twin. In this 

example, a compressor remanufacturing network from EOL refrigerators is planned. The compressors 

are mainly collected from 16 cities in the southern part of Norway, and 3 candidate locations are selected 

for opening the remanufacturing plant. The un-remanufactured parts and components can be treated by 

three waste management companies, and Figure 3 shows the locations of respective actors. The 

experimental data is estimated based on Statistics Norway and the European Commission's database. 
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A digital reverse logistics twin model is built to optimize the network decisions under various scenarios. 

Conventionally, formulating such a decision-making problem starts from the establishment of a 

mathematical model, based on which relevant data is collected and tested. Afterward, these network 

decisions may further be evaluated with a dynamic simulation model with more realistic operating rules. 

However, this is usually an ad-hoc process, and the re-use of the analytical models in other scenarios 

may require large efforts to modify the model’s structures, elements, and setups. Furthermore, 

implementing these models may require different software, programming languages, and data structures 

[39]. Thus, this is an inefficient process that suffers from a lack of universal applicability.  

  

 Collection center  Remanufacturing plant  Disposal plant 

Figure 3 The locations of respective reverse logistics actors. 

Establishing a digital reverse logistics twin takes an opposite perspective, where a highly integrated 

information platform is required to connect the GIS system, AI algorithms, analytical optimization 

models, dynamic simulation elements, as well as other physical and cyber components to support 

different decisions. Feeding with real-world data, the physical system can be digitized into the virtual 

world through combining with different analytical tools, where the level of data accuracy shows the 

fidelity of the digital reverse logistics twin. As shown in Figure 4, based on the physical remanufacturing 

network structure, we converted the relevant facility operating data, transportation data, collection data, 

and market data into a comprehensive data model in anyLogistix, through which the remanufacturing 

network is digitized through automatically selecting different modeling elements. The analytical 

optimization and dynamic simulation can then be seamlessly connected and interacted via the automatic 

data conversion to different levels of required aggregation. For example, the optimized remanufacturing 

network can be easily evaluated under various operational policies with a realistic planning horizon and 

lower data aggregation in the simulation environment.  
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Figure 4 Digital reverse logistics twin for remanufacturing network design. 

The successful implementation of a digital reverse logistics twin requires a high level of system 

integration of both physical and cyber components, whose maturity is evaluated by seven key indicators, 

namely, cyber-physical structure, cloud-based system, shared database, large model database, user-

friendly interface, and flexible models and networks [39]. In this example, the use of digital reverse 

logistics twin is shown through supporting strategic network decisions, where key implications can be 

obtained through combining optimization and simulation with historical data. At tactical and operational 

levels, the data model can be further developed by, for instance, connecting with the company’s business 

intelligence (BI) and smart devices to support real-time operational decisions, e.g., vehicle routing.  

5 Conclusion 

With the focus of human-centricity and sustainable development in Industry 5.0, technological enablers 

are increasingly emphasized for promoting a smart digital transition, which will shift the paradigms of 

many industries and businesses. Digital twin is one of the most promising Industry 5.0 enablers, which 

has been extensively focused on during the last decade. In reverse logistics management, the concepts 

of digital twin are mainly studied from the product- and process-oriented perspectives. Thus, in this 

paper, we extend the scope of this concept and define the digital reverse logistics twin from the system 

perspective. The generic definition and framework summarize the most essential features of digital 

reverse logistics twin, which can be adopted to a wider range of applications. For example, the product- 

and process-oriented digital twin applications can be considered important elements and enablers within 

this concept.  

In a digital reverse logistics twin, data plays the most crucial role to link different physical and cyber 

elements, with which the system performance can be monitored, and the respective decisions can be 

dynamically optimized. An initial proof-of-concept is given based on a remanufacturing network design 

problem in Norway. Through a common and shared data model, the network optimization and dynamic 

simulation can be seamlessly connected to optimize the reverse logistics network configuration and 

evaluate the performance under different scenarios. The result shows the effectiveness of integrating 
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different analytical tools via data model in a smart and sustainable digital reverse logistics twin. Future 

research is needed to provide a higher level of system integration of AI, optimization, and simulation in 

reverse logistics management. 
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