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Abstract

In marine science, there is a need for tools for population counting of species.
Through this thesis we aim to achieve the follow three objectives: first, briefly
discuss the state-of-the-art object detectors that can be used for the detection
of porpoises in drone images/videos. Second, test and compare a few state-
of-the-art object detectors in both quantitative and qualitative manner. Third,
based on our results propose a set of suggestions that can be used for future
studies associated with population counting. To answer the second question
we compared three state-of-the-art object detection models, two single-stage
detectors, and one two-shot detector. The models chosen were the Faster R-
CNN, YOLOv4 and EfficientDet models, and they were trained and tested on a
custom data-set consisting of 7300 labeled images of porpoises, where as 2300
of these were included in the test data set.

Through our experiments, we have discovered that YOLOv4 outperforms Faster
R-CNN and EfficientDet D1 with detection, where YOLO achieves a recall of
97%, compared to 80% recall with EfficientDet D1 and 75% recall with Faster
R-CNN. We also find the average precision AP@50 values of YOLOv4 to be
0.778, which is greater than EfficientDet D1 with 0.695 and Faster R-CNN with
0.686. Through both qualitative and quantitative methods we discover that
both EfficientDet D1 and Faster R-CNN suffers from poor recall especially when
porpoises overlap in the images. In the case of Faster R-CNN it misses nearly all
detections when the porpoises overlap, but rarely non-overlapping detections.
EfficientDet misses a significant portion of the overlapping detections, but
also misses a few of the singular. Through examination of the COCO detection
metrics, which favor bounding box accuracy, we also show that Faster R-CNN has
more precise bounding boxes than YOLOv4 and EfficientDet D1 by comparing
the less strict AP@so values, with the stricter AP@75 and AP[.50 : .05 : .95]
values.

These results imply that a one-stage detection model in YOLOv4 could be used
for object detection of porpoises from drone images. Based on the results, a
few important areas for further investigation is outlined in the discussion, and
a framework was developed which allows marine researches to easily perform
porpoise detection from images and videos.
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Introduction

1.1 Population Surveys of marine mammals

Investigating changes in biological, physiological, and demographic effects
and their consequences on marine mammals is a vital issue for marine biol-
ogists [10]. Usually, marine mammal populations are monitored via surveys
conducted by onboard observers (typically marine biologists) utilising ships
or aircraft [10]. An example of this can be seen in figure 1.2, which shows a
boat performing a line transect survey [30] in Balsfjord, Troms. Such surveys
could provide imprecise estimates, as marine mammal populations are often
spread over broad areas, and mammals are often submerged, i.e., they cannot
be sighted [10]. Furthermore, the surveys are done repeatedly across several lo-
cations over time, making the task of conducting marine surveys quite resource
intensive due to significant labour and equipment costs. These drawbacks make
current population data of poor quality, as it can only detect significant pop-
ulation changes [28]. Access to frequent and more precise population count
estimates could enable earlier enactment of measures to combat population
declines.

For this thesis, we will focus on harbour porpoise detection. Harbour porpoises
(figure 1.1) are a species of fully aquatic toothed whales. They are small in size,
usually between 1-2m long. They need to surface to breathe and are commonly
found along the coasts of the North Pacific Ocean, the North Atlantic Ocean,
and the Black Sea [40].
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Figure 1.1: Harbour porpoise example image. (Ecomare, Netherlands, Michael Brun-
Vis)

Figure 1.2: Ship-based line transect survey for harbour porpoises (Balsfjord, Troms,
UiT).

One disadvantage of ship surveys when counting animals such as porpoises
is that they can only see the porpoises when surfacing. Depending on ocean
conditions, we hypothesise that drone images can capture and spot the ani-
mals even when slightly below the surfaces, possibly leading to fewer missed
detections. Figure 1.3 shows a drone image captured by the University of South
Denmark in the waters around Denmark and is a part of the data set used
in this project. As we can see, the conditions can be pretty challenging, with
background objects making it difficult to differentiate between porpoises and
background. The yellow bounding box in the image marks one of these difficult
decisions, where it could be noise or a porpoise.
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Figure 1.3: Example dataset image. The drawn boxes illustrate porpoises (red) and
complex background resembling a porpoise (yellow).

1.2 Automated Object detection using Deep
Learning

This thesis will explore deep learning options to utilise drone imaging to enable
better and more accurate surveying of porpoises over a large area. We will
attempt this by comparing the performance of three state-of-the-art object
detection algorithms on drone images of porpoises collected by the University
of South Denmark. We will explore three architectures: one Faster R-CNN[50]
ResNet[23] variant, EfficientDet D1 [56], and YOLOv4[9]. Current publicised
material rank models based on inference speed and mean average precision
(mAP) [44]. This project will compare and contrast the three object detectors
for the task of counting porpoises utilising metrics outlined in chapter 3 and
section 6.1.1.

1.3 Contributions

Through this thesis, we aim to achieve the following three objectives: first,
briefly discuss some state-of-the-art object detectors that can be used to detect
porpoises in drone images/videos. Second, test and compare three state-of-the-
art object detectors in both quantitative and qualitative manner. Third, based
on our results propose a set of suggestions that can be used for future studies
on population counting of marine animals.
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1.4 Outline

This thesis starts by exploring the basics of convolutional neural networks and
some essential techniques that these networks use. We consider it necessary
to understand the theory behind the advanced architectures used later in the
thesis. We then examine important terminologies and techniques for comparing
object detection models in chapter 3. Chapter 4 first explains some networks
used for image classification, as these are used as backbones in the three object
detection networks we will discuss. We then review the three object detection
methods used in this thesis: Faster R-CNN, EfficientDet and YOLO. We then
explain how we processed the data set, which frameworks were used, and how
the models were trained in chapter 5. Our experimental setup, results and the
following performance discussion is located in chapter 6. We then propose
some ideas for future research, and conclude based on our results in chapter
7. Note that some of the chapters, in particular chapters 1, 2 and 4, have been
re-used from my unpublished pre-project thesis with permission from the UiT
administration.



Convolutional Neural
Networks

In this chapter, we will briefly describe some base operations behind state-of-
the-art object detection models.

We can detect and recognize several objects in our environment using our visual
system. Recent advances in hardware in the form of Graphical Processing
Units (GPUs) have enabled complex algorithms to perform these tasks as
well. The ability for computers to process images/videos enables systems to
communicate and work with its surrounding in a new way. These technical
improvements, along with the re-emergence of the convolution operation within
image processing, have allowed significant advancements in the field.

2.1 The 2D convolution

The large advancements in image classification, and later object detection was
made possible with the 2D convolution operation. The convolution of a kernel
w of size m x n with an image f(x, y) is defined as:
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a b
(w * f)(x,y) = Z Z w(s, t)f(x—s,y—t). (2.1)

s=—a t=-b

Convolution is a spatial processing technique using spatial filters. These filters
replace each pixel value with a function of the pixel values and their neighbors.
It is apparent from equation 2.1 that all elements of w visit every pixel of f
[21, p.322]. This operation drastically decreases the number of parameters of a
network compared to the use of fully connected layers [7], where every feature
in one layer influences every feature in the next.

Stacking layers utilising the convolutional operation is the basis of convolutional
neural networks. For a networks output to yield a desirable result, we need to
set the weights and biases of each separate layer. To do this we will need a
performance measurement that summarizes the goals of the network.

2.2 Objective functions

Objective functions, also known as cost functions [64], measure how close a
network’s output is to the ground truth. The choice of cost function depends
on the task at hand, like image classification, object detection, or image seg-
mentation. In the object detection domain, it is common to use an optimized
loss for combining the two tasks of classification and localization. We will cover
this in section 4.

2.3 Regularization

A central problem in machine learning is how to make an algorithm that will
perform well on not just training data, but also on new inputs it has never seen
before. [21, p.221] The ability to perform well on previously unobserved inputs
is called generalization [21, p.107]. When training a deep learning network we
compute some error measure (loss function) on the training set, and end up
with an optimization problem. However for the network to be generalized we
also want the network to perform well on the test data. So to determine if a
machine learning algorithm is good we need to evaluate both that its training
error is small, and that the gap between the training and test error is small.
An example of this can be seen in Figure 2.1. To the left of the green line, the
network both training error and test error are high, called the underfitting
zone [21, p.112], while to the right we have the overfitting zone, where the
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generalization gap increases with step size.

To achieve achieve a good generalized result, deep learning networks are
heavily regularized through different techniques explained later in this re-
port.

Loss

{5l Underfitting Zone | Overfitting Zone === Training Error

Validation Error

de-d

35e-3

Generalization gap

Optimal capacity Steps
10k W W 0 S0k 0K 0k B0k 90 100k

Figure 2.1: Shows an example from a typical neural network training situation.

2.4 Forward Pass

In a convolutional neural network (CNN), each layer will produce m feature
representations of the image, where m is the number of filters in the layer.
During the forward pass of the network each filter is convolved with the input
volume, producing an activation map of that filter. As a result, the network will
learn filters that activate when it detects some specific type of feature in that
spatial position of the input. When stacking layer after layer, this becomes an
approach to regularization in the network, where one could for example use
smaller, and therefore less complex, filters to find patterns. [21, ch. 9]

2.5 Backpropogation

From the forward pass, each layer will contain m kernels, which will contain
all m x n separate parameters. These kernels are randomly generated (or
pseudo-randomly) to remove any bias from the search of optimal values for
these weights. But how are these optimal weights found? CNNs is a supervised
learning process. The dataset used for training is labeled with, in our case,
bounding boxes containing the object of interest. This ground-truth is used to
optimize the weights of each parameter, to tweak the network to predict the



8 CHAPTER 2 / CONVOLUTIONAL NEURAL NETWORKS

correct values. This process is called backpropogation, and consists of sending
the gradient of the end-output of the network back through the entire network.
The basic iteration step for updating the weights will be

w)(new) =w} + Aw; (2.2)

where w]r. is the filter matrix of the j-th neuron in the rth layer. The computation
of the gradients is done through the chain rule, and from results in [58, p.166]
we can show that the gradient can be written as:

N
Aw]r- =—u Z S;yr_l(i) (2.3)
i=1

where: 11 s the learning rate of the network, 3"~ is the output of the layer before
layer r, and 5]’. is the gradient of the cost function used in the network.

2.6 Activation functions

To further regularize the network, an activation function is applied to each
filter output from the convolutional layers. The most commonly used activation
function in modern networks is the Rectified Linear Unit (ReLU) [21, p.168],
which is defined as:

f(x) = max(0, x) (2.4)

One of the great advantages of ReLU has, is that it does not activate all neurons
in the backward pass. All negative inputs will be set equal to zero, which will
simplify and make it very computationally efficient, as much fewer neurons
are activated at the same time. The gradient of the ReLU is defined as:

d 1 ifx>0
Ef (x) = { (2.5)

0 otherwise

Equation 2.5 shows that if the gradient is negative, the weights for that neuron
will not be updated in the backpropagation. One issue with this is if the
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randomly initialized weights are very bad, then we might end up in a situation
where none of the weights update. If this happens using leaky ReLU is an
option:

x ifx>0

fx) = {O.le ifx < 0 (2.6)

In addition we have activation functions used like the sigmoid function [41]

X

e
f(x) - ex + 1> (27)

and the linear activation function
f(x) = ax. (2.8)

Softmax is an activation function commonly used in the last layer (prediction),
since it maps the output of all neurons to an output x € {0, 1}, which could
be interpreted as a probability for the neuron to be the correct prediction. The
formula is

eri

flx) = <7 (2.9)

S e

Some new activation functions have emerged, which we will discuss in later
chapters.

2.7 Pooling Layers

The function of pooling layers is to replace the output of the network at a
certain location with a summary statistic of the nearby outputs. This both
decreases the computational complexity of the model by reducing the number
of parameters in the subsequent layers, as well as helps make the model less
invariant to small translations of the input [21, p.330].

An example of a pooling operation is the max pooling operation [72] which
reports the maximum output within a rectangular neighborhood.
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2.8 Batch Normalization

Batch normalization [27] is a method of adaptive reparametrization. This
reparametrization significantly reduces the problem of coordinating updates
across many layers, and can be applied to any input or hidden layer in a
network. If we let H be a minibatch of activations of the layer to normalize,
arranged as a design matrix, with the activations for each example appearing
in a row of the matrix. To normalize H we replace it with

H = | (2.10)

where p is a vector containing the mean of each unit, and o is a vector
containing the standard deviation of each unit. The calculation of these depends
on the model, where some calculate it across the entire mini-batch, and some
use a running average that were collected during training time [21, p.309-
311]



Evaluation Metrics

This chapter will describe the evaluation metrics used to evaluate object de-
tection models. Object detection has two specific problems that need to be
solved: localization and classification. The evaluation metrics must consider
both sides of the problem, particularly the model’s goals. The most common
way to evaluate models is using average precision AP [44]. To understand AP,
we first need to review some basic concepts.

3.1 Main Performance Metrics

One of the core concepts of evaluating machine learning models is using a
confusion matrix. A confusion matrix contains the total number of the following
values:

True Positive (TP): Valid detection.

False Positive (FP): An incorrect detection of a nonexistent object or a
misplaced detection of an existing object.

* False Negative (FN): Undetected ground truth bounding box.

* True Negative (TN): Correct misdetection.

11
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For object detection using bounding boxes, a true negative (TN) would repre-
sent all possible bounding boxes not detected, which becomes a vast number
of bounding boxes within an image. For this reason, TN is not a metric used
for object detection. For the other metrics in the confusion matrix, we need
to establish what is defined as true and false positives. Here we introduce
intersection over union (JOU). In the object detection scope, the IOU measures
the overlapping area between a predicted bounding box Bbox,, and the ground-
truth bounding box Bboxgt divided by the area of union between them[44].
That is

Area of overlap  area(gt N pd)

Area of union area(gt U pd) (3.)

IoU =

where the area of overlap and area of union is illustrated in figure 3.1.

(a) Area of Overlap

(b) Area of Union

Figure 3.1: [llustrates the area of overlap and area of union where the area is marked
using blue between a predicted bounding box (red) and a ground truth
bounding box (red).

We can determine if the classification is correct by setting a minimum IoU
threshold 7. If IoU > 7 we label the prediction as a true positive, and if
IoU < 7, we consider the prediction a false positive.
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Now that we have established how to sort the predictions, we can introduce
the precision P and recall R concepts. These are defined as

p__ TP _ TP ()
TP+ FP all detections 3
TP TP
(3.3)

R = =
TP+ FN  all ground truths

Precision is a measurement of how well the classifier identifies relevant objects
only. It is the percentage of correct detections. Recall is the percentage of true
positives detected in all relevant ground truths, meaning the ability to find all
relevant objects in an image.

An object detector’s prediction contains, in addition to bounding box coor-
dinates and class name, a confidence number that can be interpreted as a
probability of a correct prediction [56]. A precision x recall curve can be used
to visualize the precision and recall at different confidence values [44]. Adjust-
ing the confidence threshold for detections to yield a higher recall commonly
leads to a lower precision. Conversely, if one accepts fewer detections, the FP
number decreases, causing a higher precision. A prediction x recall curve can
be found by plotting the model’s precision and recall for each prediction. We
want a measurement that summarizes the precision x recall curve; however,
they are often in a zig-zag shape, as seen by the non-interpolated precision
values in figure 3.2 [46]. This poses issues with calculating values like area
under the curve (AUC) and is commonly solved by interpolating the precision
values for different recall thresholds. The new interpolated AUC values are
called average precision AP and summarize the precision and recall in a single
value.

3.2 Average Precision

To interpolate the precision x recall graph, we have two commonly used
techniques: the 11-point interpolation and all-point interpolation.

In 11-point interpolation, the shape of the precision x recall curve is summarized
by averaging the curve at each maximum precision value at a set of 11 equally
spaced recall levels i = [0,0.1,...,1], given by
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1
APy = E Z Pinterp(R), (3.4)
Re{i}
where
Pinterp(R) = max P(R). (3.5)
R:R>R

Here AP is obtained by using the maximum precision Pipterp(R) Whose recall
value is greater than R, instead of using the precision P(R) at each recall
level.

In all-point interpolation, we interpolate through all points such that

APy = Z(Rn+1 - Rn)Pinterp (Rn+1) (3.6)
n
where
Pinterp(Rn+1) =  max P(R) (3.7)
R:R>Rp41

Here, instead of the precision being observed at only 11 points, the AP is
obtained by interpolating the precision at each level, taking the maximum
precision whose recall value is greater or equal than R,+1 [43].

Since AP is calculated per class, we also need a measurement for the multi-class
case. Here the mean AP (mAP) is the average AP over all classes

N
1
AP = — E AP; .8
m N 2 i (3.8)

with AP; being the AP in the ith class and N is the total number of categories
evaluated by the model.
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The different measurements, interpolations techniques, etc., can make it chal-
lenging to compare object detection models directly. For this reason, comparing
models using a standard data set and a standard metric became common.

3.3 Object detection challenges

Through the years, three object-detection challenges have been the most widely
used: PASCAL VOC (2005-2012) [16], Open Images [31], and the Microsoft
COCO (COCO) detection challenge [33]. All these challenges introduce their
own data sets; however, in this thesis, we will focus on the metrics used for
evaluation.

Both Open Images and PASCAL VOC ! uses the all-point interpolated mAP
value at IoU threshold o.5 (AP@50) as the primary evaluation metric of the
challenge.

However, the Microsoft COCO detection challenge introduced new metrics
used for evaluation. Here, the primary challenge metric was set to AP[.50 :
.05 : .95], which is the averaged AP values at the 10 IoU thresholds in
[0.50,0.55,...,0.95]. This new metric rewards detectors with better local-
ization [33]. In addition, COCO used 11 other metrics, for a total of 12, listed
below.
* Average Precision:
— AP[.50 : .05 : .95]
- AP@50 (PASCAL VOCQ)
- AP@75
* AP Across Scales:
— APsmall
- APmedium

- APlarge

1. PASCAL VOC used 11-point interpolation to calculate AP until 2010, when it switched
to all-point interpolation. In this thesis, when we mention PASCAL VOC AP, we will be
referring to the post-2010 version that uses all-point interpolation.
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* Average Recall (AR):
_ ARmale
_ ARmaleO
_ ARmaleOO
* AR Across Scales:
— ARsmall
— ARmedium
- ARlarge
Except for the AP@50 and AP@?75 values, all AP and AR values are averaged
across the 10 IoU thresholds [0.50,0.55,...,0.95]. The AP and AR across
scales values are also thresholded based on the ground truth bounding box
area (measured in image pixels), whereas the categories are: small < 322,
322 < medium < 962 and large > 962. In addition, AR is the maximum recall

given a fixed number of detections per image, averaged over categories and
I0Us [33].
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Figure 3.2: Illustration of a typical precision x recall curve with 11-point interpolation
(a) and all-point interpolation (b). Figure by Padilla et al. [44].






Network Architecture

The architecture of deep convolutional networks (DCNN) consists of multiple
chaining building blocks [6]. An ordinary object detector usually consists of a
backbone network like VGG [52], ResNet [23] or CSPDarknets3 [61] followed
by a head used for class prediction and bounding box generation. It is common
to categorize object detectors whether they have a region of interest proposal
step (two-stage) or a single network for both region proposal and object
detection (one-stage) [56]. Some popular approaches to one-stage detection
include the You Only Look Once YOLO [9], Single Shot Detector (SSD) [36]
and EfficientDet architectures. For two-stage detectors some of the model
architectures are Feature Pyramid Networks (FPN) [34] and different variants
of region-based convolutional networks (R-CNN) [50]. This report will focus
on YOLO, Faster R-CNN, and EfficientDet.

This chapter will first focus on the different backbone structures used and how
they have been modified over the last few years. We then look at two-stage
detectors, specifically how Faster R-CNN [50] was developed from R-CNN [20]
and Fast R-CNN [19]. We then focus on One-stage detectors, first with the
YOLO versions and then on the EfficientDet model family.

19
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4.1 Backbone Networks

Most object detection-oriented DCNNs were initially designed for classification
tasks before being adapted for object detection. These are now most commonly
used as backbones for modern head structures. The backbones are used to
generate features which are then sent to the head.

The backbone networks are usually pre-trained on image classification data
sets (most commonly the Image Net data set, which contains millions of images
of different categories). Pre-training can, in most cases, reduce training time on
custom data sets by a large margin and play a major role in the performance
of some architectures like Faster R-CNN, especially when the images resemble
those in the dataset. [50]. Huang et al. [25] noted that as the classification
accuracy of the backbone network increased on ImageNet classification tasks,
the object detector performance based on those backbones also increased. How-
ever, as the best classifiers are most commonly very deep networks, the training
time and inference become slower and more data-demanding. [6]

(d)

Figure 4.1: Figure 4 Illustrates how the backbones can be modified to give predictions
at multiple scales and through fusion of features. (a) An unmodified
backbone. (b) Predictions obtained from different scales of image. (c)
Feature maps added to the backbone to get predictions at different scales.
(d) A top-down network added in parallel to backbone. (e) Top-down
network along with predictions at different scales. Figure from Agarwal et
al.[6].
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4.1.1 ResNet

Residual Nets (ResNet) is a variant of the HighwayNet [1] architectures, which
are very deep convolutional networks with hundreds of layers. As shown in
figure 4.2, the number of floating-point operations (FLOPS), especially on the
deepest models, becomes very large. As the number of layers in a model in-
creases, its training and inference time also increase. In addition to slower
model performance, a degradation problem was observed with the deep mod-
els. As the network depth increases, the accuracy becomes saturated, and the
accuracy starts declining rapidly. He et al. [23] showed that this degradation
was not caused by overfitting since the added layers should be identity map-
ping, where the added layers are copied from the learned shallower layers.
However, their experiments proved that this does not happen, and the training
and test accuracy decrease with added layers. Residual Nets is their attempt
to address this degradation problem, allowing deeper networks with higher
accuracy.

Instead of hoping each new stacked layer directly fit a desired underlying
mapping H(x), they let the stacked layers fit another mapping F(x) = H(x)—x,
and then let the original mapping be recast into F(x) + x[23]. These residuals
can be found in a feedforward neural network using skip connections. The
skip connections will perform identity mapping, and the output is added to
the outputs of stacked layers [23]. The shortcut connections do not add to
computational complexity and can still be trained with stochastic gradient
descent (SGD) with back-propagation.

These results allowed ResNet to achieve convergence in much deeper networks
than previous models and, in turn, improve accuracy. The architecture of the
networks is based on the philosophy of VGG nets [52]: mostly 3 x 3 filters, and
follows two rules:

1. For the same output feature map size, the layers have the same number
of filters

2. If the feature map size is halved, the number of filters is doubled to
preserve the time complexity per layer

The down-sampling happens directly by convolutional layers with stride of
2. The network ends with a global average pooling layer, followed by a 1000-
neuron fully connected layer with a softmax activation function. The shortcut
connections are used directly where the input and output are of the exact
dimensions (identity mapping), and for the other layers, projection mapping,
as defined in the study by He et al. [23] is used to increase dimensions for
the residual. The number of layers depends on which model is used. The
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most common are 50-layer, 101-layer,
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complexity increase with more layers.

and 152-layer, where speed and model

layer name | output size 18-layer | 34-layer ‘ 50-layer 101-layer 152-layer
convl 112x112 Tx7, 64, stride 2
33 max pool, stride 2
2 [ 1x1,64 ] [ 1x1,64 ] [ 1x1,64 ]
conv2_x 56256 3x%3, 64 3x3.64 i : :
[3i3{}4]x2 [3;3 (4] x3 3x3,64 | x3 3x3,64 | %3 3x%3,64 | %3
S * 1x1,256 | | 1x1,256 | | 1x1,256 |
| Ll 128 [ 1x1,128 ] [ 1x1,128 ]
convi_x 28x28 { g:;’ :%z } [ :5: ] 4 Ix3, 128 | x4 3x3, 128 | x4 3Ix3,128 | x8
i | 1x1,512 | | 1x1,512 ] | 1x1,512 ]
1x1, 256 [ 1x1,256 ] 1x1,256 ]
i
convd_x 14x14 { ;:;ig }x.. [ ,,2{(: ] *6 3x3,256 | x6 3x3,256 | %23 3x3,256 | =36
: | 1x1,1024 | 1x1,1024 | 11,1024 |
1x1,512 ] [ 131,512 [ 1x1,512
. !
convs x 7xT { g"iiﬁ } 2 [ ;xi 2;7 ] 3%3,512 | %3 3x%3,512 | =3 3%3,512 | =3
i & 1x1,2048 | | 1x1,2048 | | 1x1,2048 |
Ix1 average pool, 1000-d fc, softmax
FLOPs 1L8x10° | 3.6x10" | 3.8x107 | 7.6x10° | 11.3x10"

Figure 4.2: Baseline network by He et al. [23]. Downsampling is performed by convs 1,
conv4_1, and convs_1 with a stride of 2. (Image source:[23])

For the deep (50+ layers) architectures, ResNet introduces a bottleneck design
to reduce training+inference times. These are explained in He et al. [23] as:
"For each residual function F, we use a stack of 3 layers instead of 2 (Fig. 4.3).
The three layers are 1X1, 3X3, and 1X1 convolutions, where the 1X1 layers are
responsible for reducing and then increasing (restoring) dimensions, leaving the
3% 3 layer a bottleneck with smaller input/output dimensions.".

256-d

1x1, 64

1x1, 256

Figure 4.3: A deeper residual function F for ImageNet. Left: a building block (on
56x56 feature maps) (ResNet-34). Right: a "bottleneck” building block for
ResNet-50/101/152. [23]
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4.1.2 DarkNets3

Darknet was originally developed for YOLOv3[48] as an alternative to the
ResNet architectures. This feature extractor is an attempt to keep as much of
the accuracy of the ResNet architectures while increasing inference speed. The
architecture of the network can be seen in figure 4.4, and as we can see it only
has convolutions of 3 x 3 and 1 x 1, and is utilizing ResNet’s[23] bottleneck
skip connections mentioned in 4.1.1.

From the results in table 4.1 we see that DarkNet53 performs better than
ResNet-101, equally to ResNet-152, while keeping the number of operations per
second (FLOPS/s) much higher.

Backbone Top-1 Top-1 Bn Ops BFLOP/s FPS
Darknet-19[47] 74.1 91.8 7.29 1246 171
ResNet-101[52] 77.1 93.7 19.7 1039 53
ResNet-152[52]  77.6 93.8 29.4 1090 37
Darknet-53[48] 77.2 93.8 18.7 1457 78

Table 4.1: Accuracy, billions of operations, billion floating operations per second, and
FPS for various backbone networks on ImageNet classification tasks. Table
by Redmon et al. [48].
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Type Filters Size Output
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1x1

1x| Convolutional 64 3x3

Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1

2x| Convolutional 128 3x3

Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1x1

8x| Convolutional 256 3x3

Residual 32 x 32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1 x1

8x| Convolutional 512 3x3

Residual 16 x 16
Convolutional 1024 3 x3/2 8x8
Convolutional 512 1 x1

4x| Convolutional 1024 3 x 3

Residual 8x8
Avgpool Global
Connected 1000

Softmax

Figure 4.4: Architecture of the Darknet-53 backbone network. Figure by Redmon et
al. [48].

4.1.3 EfficientNet

When choosing a model for a project, one big constraint is budget/computing
power. With this in mind, Tan. et al. released the EfficientNet [54] scaleable
architecture. The most common ways to increase accuracy on a DCNN was to
either increase: the depth[23], the width [68], or the image-resolution [26].
The choice of scaling in these three parameters was made arbitrarily, often
leading to sub-optimal results in accuracy and efficiency.

Problem formulation
A DCNN Layer i, was defined by Tan et al. [54] as a function Y; = %;(X;),

where ; is the operator, Y; is the output tensor, X; is the input tensor with
shape (H;, W;, C;)1, where H; and W; are the spatial dimensions, and C; is the

1. Batch dimension has been omitted for the sake of simplicity



4.1 / BACKBONE NETWORKS 25

channel dimension. Then a DCNN can be represented by the a list composed
of layers: N = 7 ()--- (O F () F(Xq) = @j:l...k F;(X1). Since a DCNN
generally are partitioned in so called ’stages’, where as the first layer of each
stage performs the downsampling. As an example we can see that ResNet [23]
as seen in figure 4.2 consists of 5 stages. A DCNN can then formally be defined
as:

N = @ F (X wichy) (4.1)

i=1...s

where TiL" is the layer F; repeated L; times in stage i, (H;, W;, C;) is the shape
of input tensor X of layer i. Using this notation, maximizing model accuracy
given resource constraints can be formulated as:

max Accuracy(N(d, w,r)

d,w,r

s.it. N(d,w,r) = @ fid'i" (X(r-ﬁi,eri,W'éﬂ) (4.2)

Memory(/N) < Target memory
FLOPS(N) < Target FLOPS

where w, d, r are the scaling network parameters of width, depth and resolution,
and 5%-, ﬁi, H, i W,-, éi are predefined parameters in a baseline network. The
optimization of each of these proves to be difficult due to the parameters w, d, r
being dependent on each other and the optimized value change under different
resource constraints.

Scaling Dimensions

depth (d): Depth has been the traditional way of increasing accuracy on image
classification tasks. Deeper networks, as explained in section 4.1.1, are said to
capture more complex features and generalize well; however, large amounts
of layers come with a high computational cost [23]. Figure 4.5 (middle) shows
how accuracy increases with network depth and a diminishing return on this
effect as depth increases.

Width(w): Scaling of network width (number of channels per layer) became
especially popular in small-scale models, like MobileNet [24], MobileNetV2 [51],
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Figure 4.5: Scaling a baseline model with network width (w), depth (d) and resolution
(r). This shows how accuracy quickly increases but also rapidly saturates
when increasing a single parameter. Image from Tan et al. [54]

and MnasNet [55]. Wide networks are tend to be able to capture more fine-
grained features, and are easier to train [54], but as discussed by Zagoruyko
et al. [68], low-depth extremely wide networks struggles with higher level
features. Figure 4.5 (left) shows the accuracy saturating with larger w.

Resolution(r): Higher resolution input images allows the capture of more fine-
grained patterns [54]. As hardware, such as GPU’s, come with higher memory,
training of deep networks on high resolution images have also become more
common [62]. Figure 4.5 shows the accuracy increasing from r = 1: (224 x 224)
resolution, up to r = 2.5: (560 x 560) resolution. However we can also see here
the diminishing returns effect present in the width and depth parameters.

Evident from the experiments in figure 4.5, increasing any of the three pa-
rameters does increase accuracy, however Tan et al. [54] proposed a method
called Compound Scaling to uniformly scale the parameters simultaneously in
a structured manner:

depth: d = af
width: w = %
resolution: r = y? (4.3)

st.a-fryPx2
a<l,p<ly<1

where a, f, y are grid search determined constants. This means ¢ becomes a
user-specified coefficient allowing accuracy control depending on the number
of resources available. Since FLOPS of a convolution operation is proportional
to d, w?,r?, scaling a DCNN using equation 4.3, FLOPS will approximately
increase by (a - f*- y2)¢.
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Stage Operator Resolution # Channels # Layers
i 7,\:1 I‘AII' X I/Vl CAi f/i
1 Conv3x3 224 x 224 32 1
2 MBConvi, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, ksxs 56 x 56 40 2
5 MBConv6, k3x3 28 x 28 80 3
6 MBConv6, ksxs5 28 x 28 112 3
7 MBConvé6, ksxs 14 x 14 192 4
8 MBConv6, k3x3 7x7 320 1
9 Convixi & Pooling & FC 7 x 7 1280 1

Table 4.2: EfficientNet-Bo baseline network. Each row describes a stage i with L;
layers with input resolution {H;, W;) and output channels C;. Table is from
Tan et al. [54].

EfficientNet Architecture

For the architecture, Tan et al. [54] developed a baseline model (table 4.2)
using methods developed by Tan et al. on MnasNet [55]. This includes inverted
residual blocks [51], which first widens the feature map with a 1 x 1 convo-
lution, then applies 3 x 3 depthwise convolution [2] to reduce the number of
parameters, before using a new 1 x 1 convolution to reduce the number of
channels so the residuals can be added. In contrast to a regular convolution,
a depthwise convolution keeps each channel separate without mixing them,
thus leading to fewer parameters for a full feature map.

The full architecture can be seen in table 4.2. Through experimentation Tan et
al. [54] found the optimal parameters: « = 1.2, f = 1.1 and y = 1.15. These
parameters were then used in equation 4.3 to obtain the EfficientNet B1-B7
models, where each new model increased FLOPS by 29.

The compound scaling is proven to improve both MobileNet and ResNet, and
the EfficientNet network outperforms these backbones in image classification
with much fewer parameters [54].

Now that we have explained the backbone networks used for our chosen object
detection models, we will start discussing two-stage detectors, specifically
R-CNN.
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4.2 Two-Stage Detector

The process of object detection can be divided into two parts: 1) proposing
regions and 2) classifying and bounding box regression. [6]. Hence there are
two parts: a proposal generator that presents the classifier with features that
contain objects in the ground truth, and the classifier which assigns a class to
each of the proposals and fine-tunes the coordinates of the boxes.

4.2.1 R-CNN and Fast R-CNN

The Region-based CNN (R-CNN) [20] and fast R-CNN [19] architectures were
significant breakthroughs for object detection models, although both have
been abandoned now in favor of faster models. R-CNN proposes regions using
selective search [59], which proposes 2000 regions for each image, and then
narrows it down. The resolution of these regions is then warped to match a
CNN classifier’s resolution. The output of the CNN classifier is then run through
an SVM [13] to further fine-tune coordinates. This method, while not bad for
accuracy, was incredibly slow compared to modern networks [19].

Fast R-CNN [19] was then built upon the previous work in the study by Girschick
et al. [20]. Here both the full input image and the proposed regions (from
selective search [59]) are fed into a deep CNN. These were further sent to a
region of interest (Rol) pooling layer, which after a sequence of fully connected
(fc) layers, extracts a fixed-length feature vector from the feature map. This
feature vector is called an Rol feature vector [19], and was used as an input
to two different fully connected layers: one using SoftMax (equation 2.9) to
output the probability of each class, and one using a bounding box regressor to
output the four bounding box coordinates. An illustration of this can be seen
in figure 4.6.
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softmax regressor
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Figure 4.6: Fast R-CNN architecture. An input image and multiple regions of interest
(Rols) are input into a fully convolutional network. Each Rol is pooled
into a fixed-size feature map and then mapped to a feature vector by
fully connected layers (FCs). The network has two output vectors per Rol:
softmax probabilities and per-class bounding-box regression offsets. The
architecture is trained end-to-end with a multi-task loss. [19]

This network model also needed a new loss function for the back-propagation
since it contains two different outputs. A multi-task loss L was decided on,
which takes the classification loss L.;; and bounding-box regression loss L;,¢
into account. For each training Rol labeled with ground-truth class u and a
ground-truth bounding-box regression target v, it calculates:

L(p,u, t",0) = Legs(p, u) + Alu > 1]Ljpe (%, 0) (4.4)

where the classification loss is the log loss for true class u:

Les(p,u) = —logp,,. (4.5)

[u > 1] is the Iverson bracket indicator function, which evaluates to 1 when
u > 1, and 0 otherwise. The hyper-parameter A controls the balance between
the two task losses. However, it is usually left at 1. The background of the
images is by convention labeled u = 0, meaning that for the Rols L;,. will be
ignored for bounding boxes only containing background. For the bounding-box
regression loss Girschik et al. [50] decided to use:

LlOC(tu’ U) = Z SmOOthL1 (t:l - Ui)’ (4-6)
ie{x,y,wh}

where
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0.5x2 iflx] <1

|x| — 0.5 otherwise - (4.7)

smoothy, (¢ —v;)(x) = {

The Rol pooling layer is a special case of the spatial pyramid pooling layers used
in SPPnets [22], with only one pyramid level. It works by using max-pooling
to convert the features inside a region of interest into feature maps with a
fixed spatial extent of H x W, where H and W are layer hyperparameters
independent of the Rol. In Fast R-CNN [19] each Rol is defined by the tuple
(r, ¢, h, w) that specifies coordinates of the top-left corner (r, ¢) and its height
and width (h, w). Rol max-pooling divides the h x w window into a grid
of H x W sub-windows of size h/H x w/W, then uses max-pooling on these
sub-windows and applies this value to the corresponding output grid cell.

To explain the back-propagation through the Rol pooling layer, let us first let
batch number N = 1 to simplify notations2. Girshick et al. then explained
the results for back-propagation [19] as: "Let x; € R be the i-th activation
input into the Rol pooling layer and let y,; be the layer’s j-th output from the
r-th Rol. The Rol pooling layer computes y,; = Xj.(» ;) in which i * (r, j) =
argmaxy cg(, j*r * R(r, j) is the index set of inputs in the sub-window over
which the output unit y,; max pools. A single x; may be assigned to several
different outputs y,;." The backward-pass is then calculated by the following
partial derivative of the loss with respect to input variable x;:

oL o oL
a_xiz,:;["’ (”’J”ay,j- (4.8)

This network achieves inference speeds 200 times faster than the original R-
CNN and, if ignoring the feature extraction, reaches close to real-time speeds
in inference, all while improving precision. However, the feature extraction is
still time-consuming, hence the emergence of Faster R-CNN [50].

4.2.2 Faster R-CNN

Faster R-CNN [50] aimed to lower the inference speeds even more by improv-
ing the speeds of the region proposals. With the rise of ’attention’[12][60]
mechanisms, it was proposed to use this for a convolutional region proposal
network (RPN)[50]. This RPN takes an image as input and outputs a set of

2. Each image is treated independently in the forward pass, so this will not affect cases of
N>1.
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rectangular object proposals with an objectness score. The ultimate goal was to
have the RPN share computation (layer-parameters) with the fast R-CNN[19]
object detection network.

The RPN feeds an input image into the backbone CNN. On the output features
from the backbone, a set of ’anchors’ are placed on the input image for each
location on the output feature map, where each anchor represents a possible
object. All these anchors are then checked by running a 3 x 3 convolution with
512 filters to the feature map. This is followed by two sibling layers, similar to
those mentioned in 4.2.1, however fully convolutional instead of fully connected.
The two sibling layers were:

* 1 x 1 convolution with 18 filters to output detection scores (classification
branch)

* 1 x 1 convolution with 36 filters for bounding box regression (regression
branch)

The 18 filters in the classification branch will output two coordinates, (H, W),
that will be used to calculate the probability of whether or not each point in
the backbone feature map contains an object within all anchors. The 36 filters
in the regression branch will output four regression coefficients for each anchor
in the backbone feature map, which is used to improve further the coordinates
of the anchors that contain objects.

For each anchor, the following conditions are checked on whether the anchor
should be labeled a positive sample or not:

* Positive:

e If the anchor has the highest IoU with a ground truth box.
* The IoU is greater than 0.7 with any ground truth box.

* Negative:

* If the anchor has IoU < 0.3 with all ground truth boxes.

If neither condition is met, the anchor is disregarded for the training of the
RPN.

During the training of the RPN, the network performs sampling of anchors to
form mini-batches. Each mini-batch contains the same negative and positive
samples, padding with additional negative samples when there are not enough
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positive samples. This process means the loss function (equation 4.4) must be
modified with a normalization factor for each mini-batch N, Nyey. The new
loss function is then defined by Ren et al. [50] to be:

1 1
L(p,u, t",0) = mLcls(P’ u) + N, Alu > 1] Lo (t%,0). (4.9)

The sharing of features between the RPN and Fast R-CNN [19] is done using
4-step alternating training [50].

1. The RPN is trained independently using a pre-trained backbone network.
The weights will be fine-tuned for region proposals.

2. The Fast R-CNN detector is trained independently using a pre-trained
backbone network and the region proposals from the RPN. The RPN
weights will not be updated during this training process. Only the back-
bone, the Rol pooling, and the following FCN layers will be tuned for
object detection.

3. The RPN is trained independently again, this time with weights from the
Fast R-CNN. All weights in common between the RPN and the detector
remain fixed.

4. The fast-RCNN detector is then fine-tuned, also here with the common
layers being fixed.

This allows the Faster R-CNN network to share the parameters in the backbone
and convolutional layers, allowing inference speeds up to 10x faster [50]
than the Selective Search [59] method mentioned in section 4.2.1, as well as
improving mAP and on the MS COCO competition dataset [50].

4.3 Single Stage Detector

In this section, we will discuss single-stage detectors. We will start with dis-
cussing the evolution of the "you only look once" (YOLO) models before dis-
cussing the EfficientDet model family. To fully understand all the features of
YOLOv4 which we used for the experiments, the previous versions of YOLO will
also be described.
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4.3.1 You only look Once (YOLO)

YOLO is an algorithm proposed by Redmon et al. [49] as an alternative to
the Double Stage Detectors. In short, YOLOv1 is a method where raw image
pixels are converted to bounding-box coordinates and class probabilities by
convolutional layers, which meant it could be optimized (differentiable) end-
to-end directly. This allowed a proposal-free single feedforward pass when
running inference, which allows great speed in the detections.

4.3.2 YOLOv1

In YOLOV1 [49] the feature extraction is done by dividing the input image into
an S x S grid. If the center of an object falls into a grid cell, that cell will be
responsible for detecting that object. B bounding boxes and confidence scores
are predicted for each grid cell. The confidence is defined as [49]:

Confidence = P(object) - IoUgr“etC}l1 (4.10)

This equation should evaluate to zero if no object exists in the cell. Furthermore,
it should be equal to the IoU between the prediction and the ground truth. Each
bounding box contains five predictions: x, y, w, h, and confidence, where (x, y)
represents the center of the bounding box relative to the bounds of the grid
cell, and (w, h) the width and height of the bounding box. For each bounding
box B, a score is calculated using

P(Class;|Object) - P(Object) - IoUgr‘é? = P(Class;) - IoUgr‘f;d}l1 (4.11)

which are class-specific confidence scores that encode the probability of that
class appearing in the box and how well the ground truth object box matches
the predicted box.

The architecture was kept simple for YOLO(v1). The entire network only consists
of 24 convolutional layers, followed by 2 FCNs. The architecture can be seen in
figure 4.7. The final layer predicts both class probabilities and bounding box
coordinates. The bounding box width and height are normalized by image
width and height. The coordinates are also parameterized to be offsets of
a particular grid cell location bounded between o and 1. The final layer is
encodedasa S x S x (B- 5+ C) tensor, where C is the number of classes in the
dataset.
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For activation functions, the linear activation function is used in the final layer,
while all other layers use the leaky rectified linear activation:

0.1x otherwise

b(x) = {x ifx>0 (412)

The loss function is set to be a multi-part loss given as:

s> B
L= /Icoord Z Z 1?].b] [(xi - fi)z + (yl - }A/i)z]

i=0 j=0
S2 B ‘
ey, D 0|V 0P+ (=]
i=0 j=0
S B .
+ Z Z 1?;” (Ci+C)?
i=0 j=0
s B :
+ Anoobj Z Z 1?;)0 ](Ci + Ci)z
i=0 j=0
52
3N (pile) - pile))? (413)
i=0 ceclasses

where 1?bj denotes if an object appears in cell i and 1;’.bj denotes that the jth
bounding box predictor in cell i is responsible for that prediction. When the
prediction is close to the border of multiple cells, non-maximum suppression
(NMS) [8] is used to fix the issue where multiple prediction boxes exist for
the same object.

The first version of YOLO was ground-breaking in speed. However, the precision
was not great, especially on smaller objects that appeared in groups [47]. Each
grid cell can only predict two boxes and can only have one class. It also utilizes
very coarse features to predict classes, as multiple down-sampling layers are

from the input image. Some of these are addressed in the newer versions of
YOLO.
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Figure 4.7: The architecture of YOLOv1. Contains a total of 24 convolutional layers,
followed by two fully connected layers. Alternating between 3 x 3 and
1 x 1 layers similar to Lin et al. in [32], reduces the feature space from
preceding layers which also reduces computational complexity.

4.3.3 YOLOv2

In a study by Redmond et al. [47] YOLOv2 was introduced with multiple
improvements to the original structure.

Batch Normalization[27] is added to regularize the model training, allowing
the Dropout layers to be removed without overfitting as easily.

Convolutional with anchor boxes. Instead of dividing the image into grids
as described in section 4.3.2, YOLOv2 took two ideas from faster R-CNN [50]:
replacing the fully connected layers with 1 x 1 convolutions, and using anchor
boxes to predict the bounding boxes as described in section 4.2.2. However,
directly implemented, the anchor boxes does not work well in the YOLO archi-
tecture. The box dimensions has to be hand-picked, which means the network
might have to adjust these dimensions a lot during training. With better pri-
ors for the box dimensions, the training speed would improve. To automate
choosing good priors, YOLOv2 uses k-means clustering [39] on the training set
bounding boxes (named Dimension clusters[47]). As a distance measurement
in the k-means, the formula used was [47]:

d(box, centroid) = 1 — IoU(box, centroid (4.14)

which is independent of the size of the box (object), meaning larger boxes do
not generate more errors than smaller boxes.

Another issue with the anchor boxes was model instability. Most of this instabil-
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ity came from predicting the box’s (x,y) coordinates. In the RPN from section
4.2.2 the network predicts values t, and t,, and then the center coordinates
used in YOLO is calculated as

x:(tx'wa)_xa

y= (ty'ha) ~Ya-

This formulation allows any anchor box to end at any point in the image. With
random initialization, it takes a long time for the model to stabilize and give
sensible offsets. To solve this Direct location prediction is introduced, where
instead of prediction offsets, they predict location coordinates relative to the
location of the grid cell. The network predicts 5 coordinates for every bounding
box ty, ty, tw, ty and t,. Then if the cell is offset from the top left corner (cy, cy)
and the bounding box prior has width and height p,,, pp, then the predictions
become

by = U(tx) + Cx
by =o(ty) +cy

by = pwe'™
b, = pre™
P(Object) - IoU(b, Object) = o (t,) (4.15)

This will restrain the location prediction, and the parametrization is much
easier to learn, stabilizing the network’s training.

Further, one of the issues with the original YOLO was scaling issues. The
performance on small objects was poor, and a few improvements were made.
The original YOLO ran classification on a feature map of 13 x 13 resolution. Now
a shortcut connection, similar to the ResNet[23] identity mappings mentioned
in section 4.1.1 was added to the network, allowing the network to have access
to more fine-grained features. In addition the training process was updated to
use Multi-scale training[47]. Here for every ten batches during training, the
resolution of the network was changed. As an example, if the first 10 batches
were trained on the original resolution of 416 x 416, then the next 10 batches
would be trained with a random resolution between the following multiples
of 32: {320,352,...,608}. This forced the network to learn to predict across
various input dimensions while not affecting training speed much.



4.3 / SINGLE STAGE DETECTOR 37

Redmond et al. [47] implemented improvements in the backbone network. The
new backbone network, called Darknet-19, can be seen in table 4.3. This new
backbone utilized tricks from VGG-16[52], Network In Network (NIN)[32], and
the GoogleNet [53] architectures, to achieve high accuracy as well as speed in
detection tasks.

Type Filters Stride Output
Convolutional 32 3X3 224X224
Maxpool 2X2/2  112X112
Convolutional 64 3X3 112X112
Maxpool 2X2/2  56X56
Convolutional 128 3X3 56x56
Convolutional 64 1X1 56x56
Convolutional 128 3X3 56X56
Maxpool 2x2/2  28x28
Convolutional 256 3X3 28x28
Convolutional 128 1X1 28x28
Convolutional 256 3X3 28x28
Maxpool 2X2/2  14X14
Convolutional 512 3X3 14X14
Convolutional 256 1X1 14X14
Convolutional 512 3X3 14X14
Convolutional 256 1X1 14X14
Convolutional 512 3X3 14X14
Maxpool 2X2/2  7X7
Convolutional 1024 3X3 7X7
Convolutional 512 1X1 7X7
Convolutional 1024 3X3 7X7
Convolutional 512 1X1 7X7
Convolutional 1024 3X3 7X7
Convolutional 1000  1x1 7X7
Avgpool Global 1000
Softmax

Table 4.3: Darknet-19 Architecture.

These improvements drastically increased the precision and recall on the COCO
datasets [47] compared to the original YOLO version, and the performances
were closing in on the much slower double-stage detectors.
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4.3.4 YOLOv3

YOLOv3 was proposed in a study by Redmon et al. [48]. The first improvement
came in the form of adding an objectness score for each bounding box using
logistic regression, similar to the method described in section 4.2.2, however,
with a threshold of o.5 instead of 0.7. This system only assigns one bounding
box prior to each ground truth object. If a bounding box prior is not assigned
to a ground truth object, it incurs no loss for coordinate or class predictions,
only objectness [48]. During training, the sum of squared error loss is used.
Using the equations in 4.15, the gradient of the squared error will be calculated
from £, — t., where f, is the coordinate ground truth, and t, is the coordinate
prediction.

Class Prediction was also generalized for use on more complex data-sets. The
softmax function assumes that each box has exactly one class, which is often not
the case. Instead, independent logistic classifiers (sigmoid) were used, as well
as binary cross-entropy [70] loss for the class predictions. Binary cross-entropy
is given as

N
Lagg = —— > ui-Tog(p(y) + (1= y) -Tog(1=p(y))  (416)

In addition, a new backbone network was introduced with the Darknet-53, as
described in section 4.1. This allowed the network to predict across scales.
Similar to the concept of feature pyramid networks [34], in addition to the
new backbone, several convolutional layers were added, with the last of these
predicting a 3-d tensor encoding bounding box, objectness, and class predic-
tions. For each scale output from the backbone, 3 boxes are predicted, meaning
the tensor is of N x N x [3 - (4 + 1 + C)] for the 4 bounding box offsets,
1 objectness predictions, and C class predictions. To have the same dimen-
sions during prediction, the feature map is always up-sampled 2x to stay at
the same dimension as the largest feature map from the network (total of 3
scales). The k-means method described in 4.3.3 is still used, but the 9 clusters
are evenly divided across the scales. During testing on the COCO dataset the
clusters were set to (10 x 13), (16 x 30), (33 x 23), (30 x 61), (62 x 45),
(59 x 119), (116 x 90), (156 x 198), (373 x 326).

4.3.5 YOLO v4

A study by Bochkovskiy et al. [9] offered multiple improvements to the YOLO
architecture. This improved architecture was named YOLOv4. The improve-
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ments were categorized by Bochkovskiy et al. as: Bag of Freebies (BoF), and
Bag of Specials (BoS) [9].

Bag of freebies consists of a collection of architectural improvements that do
not affect inference speed. These methods only change the training method or
are improvements that increase training cost. Bag of Specials are techniques
that increase inference cost but can significantly improve the model’s accuracy.
This can be done by mechanisms such as enlarging receptive field, introducing
attention [60] mechanisms, or strengthening the feature integration capability
of the model. In YOLOv4, the following BoFs and BoSs are introduced:

Bag of Freebies used for backbone network:

* CutMix[67], which is a data augmentation method that combines two
training samples by cutting out an object from one image and placing it
close to other objects in another image.

* Mosaic is a new data augmentation proposed by Bochovskiy et al. in
[9]. It mixes 4 different training images, thus similarly providing 4 dif-
ferent contexts as CutMix. Mosaic, however, also adds a calculation of
batch normalization [27] statistics from 4 different images on each layer,
significantly reducing the need for a large mini-batch size.

* DropBlock regularization[17], which is a Dropout technique designed
for convolutional neural networks. Instead of dropping random weights,
it will drop correlated parts of the input, forcing the detector to look
elsewhere in the image for features.

* class label smoothing [69], which applies a weighted average between
the uniform distribution and the hard label on the classification layer in
classification tasks to prevent over-fitting.

Bag of freebies used for detector:

* Complete IoU-loss(CIloU-loss)[71], is a loss function for the bounding
box (BBox) regression problem that considers the overlapping area, the
distance between center points, and the aspect ratio of the predictions.
CIoU can achieve better convergence speed and accuracy on the BBox
regression problem.

* CmBN is a batch normalization technique that only collects statistics
between the mini-batches within a single batch.

* DropBlock regularization[17].
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Mosaic data augmentation[9].

Self-adversarial training (SAT)[45] is a data augmentation technique
that has 2 forward backward stages. The 1st stage alters the original
image instead of the network weights, which creates the deception that
there is no object on the image. In the 2nd stage the network is trained
on this modified image.

Eliminate grid sensitivity. Grid sensitivity was a problem that arose in
YOLOv2 in equation 4.15. Since ¢, and c, are always whole numbers,
extremely high t, and t, absolute values are required for the by, by
values to approach cy and ¢, + 1 values. This is solved by multiplying the
accompanying sigmoid function with a factor larger than 1, eliminating
the effect on the grid when an object is undetectable.

Using multiple anchors for a single ground truth and keeping the ones
passing the test IoU(truth, anchor) > IoU-threshold.

Cosine annealing scheduler[37], which alters the learning rate dynam-
ically in a sinusoidal fashion during training.

Random training shapes which automatically increases the mini-batch
size during small resolution training.

Bag of Specials (BoS) used for backbone network:

* Mish activation[38], as explained in section 2.6, helps to solve the van-

ishing gradient problem prevalent in YOLOv3[48].

Cross-stage partial connections (CSP)[61] is a modification added to
backbone networks which partitions the feature map of the base layer
into two parts and then merges them through a cross-stage hierarchy.
Each previous layer will undergo a transition layer and be concatenated
to the output of the next layer, which increases the difference of gradient
combination. In turn, accuracy, with very little cost added.

Bag of Specials (BoS) used for detector:

e Mish activation[38]

* SPP-block [22] is a pooling layer that removes the fixed-size constraint

of a network. It pools the features and generates a fixed-length output
for the prediction head.



4.3 / SINGLE STAGE DETECTOR A1

* SAM-block, the spatial attention map proposed by Woo et al.[65], se-
quentially infers attention in the spatial dimension from an input feature
map, to refine the next feature.

* PAN path-aggregation block[35] boosts information flow in from feature
proposals by enhancing the hierarchy with accurate localization signals
in lower layers by bottom-up path augmentation. This shortens the
information path between the lower layers and the topmost feature.
Additionally, adaptive feature pooling [35] is employed, which links
feature grid and all feature levels to make useful information in each
feature level propagate directly to following proposal sub-networks.

* DIoU-NMS (Distance IoU-loss with non-maximum suppression) [71]
is the same as CloU-loss without considering the aspect ratio. Non-
maximum suppression is used to suppress the extra bounding boxes for
the same object.

The main architecture of the YOLOv4 network then consists of a CSP-modified
Darknet-53 backbone[61], with SPP[22] and PANet path-aggregation blocks[35]
before an anchor based YOLOv3[48] prediction head. All these improvements
to YOLOv3 increased the average precision on the MS COCO [33] dataset by
over 10%, while inference speed remained around the same.

We will now discuss the features of the EfficientDet model family.

4.3.6 EfficientDet
Utilizing previous works on EfficientNet, which is described in section 4.1.3,
Tan et al. proposed a new family of object detectors called EfficientDet [56].

In this section, we will explain the main features of this detector family.

EfficientDet attempts to tackle the following two challenges in object detec-
tion:

1. Efficient multi-scale feature fusion
2. Model scaling for object detection

We will start by explaining the solution to efficient multi-scale feature fusion
proposed by Tan et al. [56].

To effectively represent and process the multi-scale feature representations
output by the backbone remains a difficulty in object detection. Previous works
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often directly execute predictions based on the pyramidal feature hierarchy
extracted from the backbone networks [11]. To improve efficiency compared to
direct predictions on the feature maps, feature pyramid networks (FPN), as pro-
posed by Lin et al.[34], introduce top-down pathways to combine the multi-scale
features as shown in figure 4.8(a). PANet [63], following this idea, introduced
an extra bottom-up path aggregation network on top of FPN, as seen in figure
4.8(b). Ghiasi et al. [18] then proposed using neural architecture search [15]
to automatically design a feature network topology (NAS-FPN).

P O n—(f > Pr O_’?_’
Ps O—»?—»
e S A o

Py O—»?—»
e OO8

(a) FPN (b) PANet () NAS-FPN (d) BiFPN

repeated blocks repeated blocks

Figure 4.8: Comparison between multi-scale feature fusion methods. (a) FPN [34]
shows the top-down pathway to fuse multi-scale features from level 3
to 7 P3 — P7; (b) PANet [35] has an additional bottom-up pathway; (c)
NAS-FPN [18] use ; (d) BiFPN [56]. (Figure from Tan et al. [56].)

Tan et al. [56] attempt to optimize the ideas from FPN, PANet, and NAS-FPN
in a weighted bi-directional feature pyramid network (BiFPN), which enables
information flow in both the top-down and bottom-up directions. Compared
with PANet, BiFPN also optimize these bottom-up connections by removing
nodes with a single input edge [56]. BiFPN also uses each bi-directional path as
a one-feature network layer, which repeats multiple times for higher-level fea-
ture fusion, similarily to NAS-FPN [18]; however, as neural architecture search
has large hardware requirements, weighted feature fusion was introduced
instead. Weighted feature fusion utilizes fast normalized fusion which allows
the network to learn an additional weight; specifically, as to how important
each resolution is in the output feature map. A visualization of the operation
can be seen in figure 4.8(d). Fast normalized fusion is found as

Wi
Output = Z m I (4.17)

i

where w; > 0 is ensured by applying ReLu after each w;, and € = 0.0001 to
avoid numerical instability. The output will, similarly to the SoftMax operation,
be a value between o and 1.
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Figure 4.9: EfficientDet architecture - Utilises EfficientNet [54] as the backbone net-
work, BiFPN as the feature network, and a shared class/box prediction
network. BiFPN and class/box layers are repeated multiple times based
on resource constraints shown in table 4.4. Figure by Tan et al. [56]

In addition to multi-scale feature fusion, Tan et al. [56] utilizes the idea of
compound scaling, as explained in section 4.1.3, to jointly scale all dimensions
of the network depending on resource constrictions. We let ¢ € N be the
scaling factor.

BiFPN depth Dy;fp, (number of layers) is scaled linearly, as depth needs to
be a small integer. The BiFPN width W,ifpn (number of channels) was scaled
exponentially, where the scaling factor was found using grid search.

Whifpn = 64+ (1.35%),  Dpifpn =3 +¢ (4.18)

For the box- and class-prediction net, the width is fixed to be the same as BiFPN
Wprea = Whifpn, and depth is increased linearly using

Dpox = Delass =3 + [¢/3] (4.19)

For the input image resolution R;,p,,, the input resolution has to be dividable
by 27 = 128, so the resolution is also increased linearly by

Rinput = 512+ ¢ - 128. (4.20)

A pre-trained EfficientNet backbone uses the same scaling as explained in
section 4.1.3.
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Figure 4.9 shows the overall architecture of EfficientDet. An ImageNet pre-
trained EfficientNet serves as a feature network, takes features at multiple
resolutions into the BiFPN layers, which repeatedly (Dp;fp, times) applies
top-down and bottom-up bidirectional feature fusion. These fused features
are fed to a class and box network, which uses the same weights repeated
depending on Dy,, to output bounding box predictions and class.

In our own experiments in section 6.2 we will be utilizing EfficientDet with
¢ =1 (EfficientDet D1) which can be seen in table 4.4.

Igip;l;t ]?\Iaectkv]vj(())?ke BiFPN Box/class

. #Channels #layers #layers

R_{input} W_{bifpn} D_{}l;ifpn} D_c}l’ass
Do | 512 Bo 64 3 3
D1 | 640 B1 88 4 3
D2 | 768 B2 112 5 3
D3 | 896 B3 160 6 4
D4 | 1024 B4 224 7 4
D5 | 1280 Bs 288 7 4
D6 | 1280 B6 384 8 5
D7 | 1536 B7 384 8 5

Table 4.4: Scaling configurations for EfficientDet. ¢ is the compound coefficient that
controls all the scaling dimensions according to equations 4.18, 4.19, 4.20
respectively. The backbone networks is EfficientNet Bo-B7 as explained in
section 4.1.3.



Methodology

In this chapter, we first show the key features of our data set and the pre-
processing performed, then demonstrate how the object detection architectures
discussed in section 4 can be used to detect the porpoises in the data set.

5.1 Data Set
5.1.1 Original Data Set

The original data provided consists of 23 compilation videos, whereas 18 videos
are of resolution 1980 by 1080, and 5 videos are 1280 by 720. An expert labeled
samples from two videos, one 1980 by 1080 and 1280 by 720. In addition to
the video files, we have access to the log files of the imaging drone containing
flight information. This includes the GPS coordinates and height of the drone
every 10oms; however, this data was not used for this thesis. The videos were
collected by the University of South Denmark and labeled by an expert at the
Norwegian Polar Institute (NPI).

The two videos were sampled into 11964 labeled images and split into training,
evaluation, and test data in a 60/25/15% split. This split was done randomly;
which might cause some issues in assessing the models; since the images are
sampled from a video, the test and validation data might contain frames very
close in time-stamp to the training data, which might risk over-fitting the

45
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model.

When we started doing experiments, we noticed some issues in the labeling.
In the original project proposal, the idea was to have a 2-class object detector
separating porpoises and mother-calf. The mother-calf is recognized as two
porpoises swimming very close, often with one right underneath the other. Al-
though consistent within the marine sciences field, these labels are inconsistent
for typical object detectors.

We also noticed that quite a few porpoises were not labeled. We believe the
missing labels were from issues with the exporter app written to convert the
original Matlab labels to Comma separated values (CSV).

Another observation from the original dataset is that the bounding boxes are
not very precise and contain unnecessary background information. For this
reason, the AP score, especially for the larger ToU values, would be affected.
Since the labels have noise, the validation metrics could contain noise.

5.1.2 Pre-processing

To fix the issues mentioned in section 5.1 we re-labelled parts of the data-set
using Labellmg [14] to add the missing porpoises to the fold. In total, we
re-labeled 7327 out of the original 11964 images. We also tuned most bounding
boxes to be more precise around the object.

To tune the mother-calf label, we had three choices: 1) Choose criteria to decide
how close two porpoises should be for it to be labeled as a mother-calf and keep
the second class. 2) Attempt to label each separate porpoise when they are
overlapping. This proved difficult due to object detection algorithms utilizing
Non-maximum Suppression (NMS) [8] to prune overlapping bounding boxes.
3) Choose criteria for the amount of overlap for us to label two porpoises
as a single porpoise, and make this a 1-class problem where we only detect
porpoises.

We decided to try 1), and we refined the labels so every time two porpoises touch,
we label them as a mother-calf. We agreed on this threshold for consistency in
the labeling, as well as to not cause any issues with the IoU thresholds in NMS.
Figure 5.1 shows an example of this.

Initial experiments utilizing these labels yielded poor results, as neither YOLO
nor Faster R-CNN was able to separate the two classes, leading to low precision.
This led us to the decision to combine the mother-calf label and porpoise label
into a single category.
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(@) Shows how two nearby porpoises are labeled.

(b) Shows how two touching porpoises are labeled.

Figure 5.1: Shows how labeling was handled with nearby porpoises.

We split the data set into training/evaluation/test data. We avoided random
sampling in the split since the labeled images are subsequently sampled from
a video, meaning images can be very similar. This could lead to the detec-
tor having seen an almost identical shot in all three data set partitions. In-
stead, we choose images from different video clips as training/test/evaluation
data.

5.2 Model training frameworks

5.2.1 TensorFlow models

The faster R-CNN and EfficientDet D1 models were implemented using Ten-
sorFlow’s Model Garden API [66]. Due to limited amounts of memory on the
GPUs used for training, as well as the reported inference speeds of the models
[66] the choice of models fell the on the two following models:

1. Faster R-CNN [50] with 640 x 640 resolution and a ResNet-101 backbone.

2. EfficientDet D1 [56], with 640 x 640 resolution and the EfficientNet D1
backbone.

The Faster R-CNN model chosen reportedly achieves a 31.8 COCO mAP score
with a speed of 55ms per image, whereas EfficientDet D1 achieves a 38.4 COCO
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mAP with a speed of 54ms per image [66]. There are models tested to be
more accurate, but due to hardware limitations and a requirement of decent
inference speeds, these were the considered models.

Another consideration was keeping the resolution of the networks the same
to reduce the number of parameters to consider when comparing models.
This allows the comparison between the models without accounting for the
resolution of the training images. All three models used in this thesis were
trained using a pre-trained backbone trained on ImageNet.

5.2.2 Faster-RCNN

The Faster-RCNN network was trained on the Springfield GPU cluster provided
by the Machine Learning group at the University of Tromsg. We trained the
model with a batch size of 4, for a total of 5000 steps?, with 1000 warm-up
steps. The validation loss converged as seen in figure 5.2. For training, the IoU-
threshold for the second stage post-processing was lowered to 0.3 to match
YOLOv4[9] and get comparable results. Dropout was also enabled with a value
of 0.5. The rest of the hyper-parameters were left as the default values, as
specified in section 8.2 of the appendix.

The weights were saved every 1000 steps, and from figure 5.2, the weights
from step 3,000 were chosen as the weights in the final model, as here the
evaluation loss converges. Any further training could lead to over-fitting and
poor regularization. As we can see from figure 5.3, step 3000 is also when the
precision and recall of the model converges, which further confirms stopping
training.

Once training was completed, the model was frozen and exported as a Tensor-
Flow .pb model for inference on the test data.

5.2.3 EfficientDet D1

The EfficientDet D1 model was trained using the same TensorFlow Model Zoo
API [66], and was trained using the exact same method as described in section

5.2.2, except for different hyper-parameters.

A bug in the API led to the log files of the loss functions exceeding 100GB of

1. A common notation for training object detections models is number of steps instead of
epochs. Steps is the number of images ran through the training process. In other words: 1
epoch is when number of steps is equal to the number of training images.
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Figure 5.2: Total loss (equation 4.9) at each training step of faster R-CNN. Orange is
here the training loss, while blue is the evaluation loss calculated every
1000 steps.

data and crashed Tensorboard. For this reason, the saving of information from
the loss functions was disabled, and we used AP@so0and AR™*=10 to decide
on when to stop training. Due to the behavior of Faster R-CNN, where the loss
and AP/AR values seem to converge around the same step, we will assume this
to be ok for testing purposes.

Another issue was exploding gradients during training. The default model was
configured to be trained on hardware far exceeding the available hardware.
This led to a decrease in batch size from 256 to 4 and caused issues with
exploding gradients. This issue was fixed by significantly reducing the learning
rate, leading to the model training very slowly compared to Faster R-CNN. The
problems mentioned with the source code could lead to the EfficientDet D1
results not being optimal during inference.

From figure 5.4 we see that both the precision and recall values converge
around step 40000. We therefore choose to stop training here and freeze the
graph to use for inference.
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Figure 5.3: AP@50 (a) and AR™*=10(b) metric on evaluation data over number of
steps during training for the Faster R-CNN model. This was calculated
every 1000 steps.

5.2.4 Darknet

Darknet is a C+ + library by Bochkovskiy et al.[9] developed to train and run
the various YOLOv4 [9] models.
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Figure 5.4: AP@50 (a) and AR™**=10(b) metric on evaluation data over number of
steps during training for the EfficientDet D1 model. This was calculated
every 1000 steps.

It was trained with a batch size of 64, with mini-batches of size 4 (subdivision
16). Network resolution was set to 640 x 640. All the techniques mentioned
in 4.3.5 were left enabled. The number of filters in the last convolutional layer
before each YOLO layer was also changed to (C +5) - 3 to match the number of
classes C = 1 in the YOLO prediction layers. The changes in the configuration
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can be seen in appendix 8.3 The weights from step 6800 were the final trained
weights for this detector, as it had the best AP@s5o0 on the validation data.

Due to issues getting Darknet to run on local hardware, this model was trained
on Google Colab. However, due to time constraints on runtimes when using
Colab and the training plot resetting when training was restarted, the entire
training loss was not saved, as seen in figure 5.5. However, this Darknet model
automatically saves the weights where it achieves the highest AP@s5o0 score. In
our case, this was at step 6800.

mMAP%
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€:0.0%
Loss
18.
s6% ————86% O7% 867 87% |
83%
16.
14.
12.
10.
8.0
6.0
4.0
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0.0
0 1200 2400 3600 4800 6000 7200 8400 9600 10800 12

current avg loss = 1.1035 iteration = 7100 approx. time left = 6.52 hours
Press 's' to save : chart.png Iteration number in cfg max_batches=12000

Figure 5.5: Training loss with validation mAP@50 on YOLOv4. Some data is missing
due to the chart getting deleted after resuming training on Google Colab.

This model was then exported as a Tensorflow model, using theAIGuy’s open
source code [57] to be available in the same Tensorflow framework as used for
Faster R-CNN and EfficientDet D1.



Results & Discussion

In this chapter, we will, in section 6.1 discuss the experimental setup. Section
6.2 shows our results from the three object detection models on our test data
set and discusses these results. Finally, in section 6.3 we show the key features
of the framework developed for the NPI.

6.1 Experimental Setup

This section will explain which evaluation metrics we weigh and the hyper-
parameters used.

6.1.1 Evaluation metrics

To evaluate the three models quantitatively, we need a measurable metric that
best describes the end goal of our application. Previously, the most common
metrics for comparing object detectors used to be the AP@50 metric, included
in the PASCAL VOC challenge [16]. This metric, as explained in section 3,
is AUC(Area Under Curve) of the interpolated precision-recall curve, which
incorporates both Recall and precision into one metric, without favoring either,
at IoU threshold 0.5.

This has now mostly been replaced by the COCO detection metrics [33], where

53
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the main metric is the interpolated average precision AP[:.5,:50,:95] (AP) as
explained in chapter 3.3. The COCO metrics heavily favor localization [44]
compared to the AP@50 metric. In addition, the COCO challenge introduced
size-dependent metrics, which filter the AP and AR values on the size of the
ground-truth bounding box, allowing comparison on different scales.

For this thesis, our primary goal is not to miss any detections, and exact
bounding boxes are not our primary goal. For this reason, we will favor AP@50
as the primary metric while also favoring Recall with an IOU threshold of 0.5.
However, to truly analyze the performance of the models, we will also utilize
the COCO detection metrics and use the COCO bounding box size threshold
on other metrics like Recall and precision. This is to do error analysis without
including the IoU interpolation of COCO that has the significant localization
component. In short, we use the following metrics:

1. AP@50 (PASCAL VOCQ) Average precision and average recall of all classes
with at least 50% IoU overlap between ground-truth and prediction
bounding boxes [16].

2. Precision/Recall (small / medium / Large): Precision and recall with
the same IoU threshold, but also thresholded on bounding box area
measured in pixels. In this case we let the size thresholds be the same as
in the COCO metrics [33]: [Small > 322, 322 < Medium < 962, Large
> 962].

3. COCO detection metrics (see section 3.3).

One parameter that could be tweaked is the IoU threshold for the AP@50 and
precision/recall metrics. Lowering the IoU threshold reduces the demand for
precision in the bounding box placements, which could have been helpful for
this problem. However, for consistency and for allowing comparisons of results
with previous works, we let this threshold stay on the industry standard IoU
Threshold= 0.5.

Another critical parameter when viewing results is the confidence thresh-
old.

6.1.2 Confidence Threshold r

Since the models have very different structures, the confidence threshold
could massively change the result in evaluation depending on the model.
This parameter filters out the detections with a lower confidence score than
7. Depending on the model, this parameter could tweak both the precision
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and recall of the model, whereas intuitively: increasing 7 leads to increasing
precision and lowering Recall while decreasing 7 leads to decreasing precision
and achieving higher Recall.

To find the best confidence threshold r we evaluate all 3 models using 7 =
[0.1,0.2,...,0.9]. The results can be seen in figure 6.1. From this figure, we
can see the effect mentioned in section 6.1; for both EfficientDet D1 (figure
6.1b) and YOLOv4 (figure 6.1a), the precision increases and recall decreases as
the confidence threshold increases since one of the main goals of this model is
to minimize missed detections, which leads us to set the confidence threshold
by tefpectauyoro = 0.1 for both the YOLOv4 and EfficientDet D1 models. This
maximizes the Recall without too high of a penalty in precision.

Faster-RCNN behaves a bit differently compared to EfficientDet and YOLO.
The confidence numbers are almost binary, with scores around 0.98 for valid
detections, or 0.01 for the other proposed bounding boxes. This leads to the
effect seen in figure 6.1c where both the precision and Recall are horizontal
when plotted against confidence. Here the choice of threshold does not seem to
matter too much, so we set it to the same as YOLO and EfficientDet tpeny = 0.1
for consistency.
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Figure 6.1: Confidence threshold testing for all models. Shows precision@so (blue)
and recall@so (orange) over a range of confidence thresholds r as men-
tioned in section 6.1.
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6.2 Experimental Results & Discussion

In this section, we will show the different results yielded from the two detectors
when run on the validation data. All results are generated using full-resolution
test images.

6.2.1 Speed/accuracy trade-off

Model inference speed can, in some cases, affect choice of model. The processing
time of images depends on hardware, model complexity, and image resolution
[54]. Generally, more complex models achieve better results at the cost of long
inference time and training times. Usually, proposal-based detectors like Faster
R-CNN [50] tend to be more accurate, while single-shot detectors like YOLO
[9] and EfficientDet [56] tend to be faster but less accurate.

When utilizing the chosen model here, we want to reduce the time it takes
for marine biologists to perform population surveys. Currently, the NPI does
not have any GPU clusters or exceptional hardware to run the largest models,
which leads to the choice of models being limited to the faster models. Table 6.1
shows the inference times, frames per second (FPS), and what hardware this
was run on. Nvidia’s documentation [42] show that the Nvidia GTX 1080ti and
Quadro P100 are very comparable in computation speeds, and we therefore
assume this did not affect the results since they match the expected results
of YOLOv4 being the fastest and EfficientDet D1 being faster than Faster R-
CNN[66] [9] [56]. The results in table 6.1 show that YOLOv4 with 48.1 FPS is
much faster than both Faster R-CNN with 48.1 FPS and EfficientDet D1 with
19.2 FPS on the test data set. However, these results also indicate that all three
models are fast enough to be used for this project.

Model ‘ Inference Speed (s) FPS GPU

Faster R-CNN | 309.1s 7.0  Nvidia GTX 108oti
EfficientDet D1 | 112.4s 19.2 Nvidia GTX 108oti
YOLOv4 45.08 48.1 Nvidia Quadro P1oo

Table 6.1: Inference speed and Frames per Second (FPS) of the three models on the
test data (2164 images)

6.2.2 Model Performance

The studied models were Faster R-CNN, EfficientDet D1, and YOLOv4. Table
6.3 and 6.2 presents the main results from the experiments on these models.
The experiments were run on the test data, which, as explained in section 5.1.2,
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YOLOv4 EfficientDet D1 Faster R-CNN

AP (COCO) o0.304 0.278 0.313
AP@s50 0.766 0.689 0.676
AP@75 0.178 0.140 0.252
APsmall 0.141 o 0.051
APmedium 0.214 0.224 0.352
APlarge 0.349 0.303 0.298
AR™Max=1 0.215 0.188 0.225
AR™Max=10 0.423 0.328 0.422
ARsmall 0.15 o 0.05

ARmedium 0.331 0.273 0.473
ARlarge 0.469 0.356 0.397

Table 6.2: COCO metrics for EfficientDet D1, Faster R-CNN, and YOLOv4 at confidence
threshold 7 = 0.1. Calculated using open-source software from Padilla et

al. [43]
| YOLOv4  EfficientDet D1 Faster R-CNN
AP@s50 (PASCAL VOCQ) | 0.778 0.695 0.686
Precision 0.898 0.919 0.980
Recall 0.970 0.802 0.751
Precision Small 1.000 0.000 1.000
Precision Medium 0.850 0.897 0.971
Precision Large 0.919 0.931 0.987
Recall Small 0.500 0.000 0.250
Recall Medium 0.926 0.860 0.958
Recall Large 0.990 0.778 0.657

Table 6.3: Inference results on test data of the three trained models. All models were
evaluated with IoU Threshold = o.5 and confidence threshold r = 0.1.

consists of labeled video frames consisting of 100-300 sequential images for a
total of 2164 images.

We will first analyze each model separately and then select a model for our
task based on the results.

Faster R-CNN: Faster R-CNN achieves a high Precision with 98% however it has
a low recall of 75%. Using the size constraints, we can see that it is especially
on large objects that this model has sub-par performance. From figures 6.2a
and 6.4a, we can also see that the only missed detections in these example
images were situations where the porpoises are overlapping. To investigate
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this, the original labels were analyzed and can be seen in table 6.5. From
this we can see that 1007 out of the total 2775 bounding boxes classified as
'large’ were originally classified as a mother-calf. This number is 38 out of
1045 bounding boxes for the medium bounding boxes. The results from Faster
R-CNN were then analyzed to find the number of FN, FP, and TP for each size,
and these numbers can be found in table 6.4. As we can see in table 6.4, the
number of true positives and false negatives seem very similar to the respective
numbers of Porpoises and Mother-calves in the original data-set. This, along
with a qualitative evaluation of the predicted images, allows us to conclude
that Faster R-CNN misses close to every overlapping porpoise in the data set
while performing well on singular porpoises. For details, please see Figures
6.2a and 6.4a.

Another note is that Faster R-CNN is the only model to detect the seagull in Fig-
ure 6.6a. This, combined with the poor detection rate of overlapping porpoises
and the very high confidence scores for singular porpoises, could indicate poor
regularization of the model. This could be caused by the combination of a lack
of data augmentation built into the model and a low variance data set. The im-
ages in this data set contain almost no images containing other objects, mostly
some complex background that could, for humans, look like objects.

On the other hand, the Faster R-CNN model yields more accurate localization
than the other detectors used in this project. Comparing the AP@so0 values in
table 6.3 with the AP values in table 6.2, we can see that Faster R-CNN moves
from the worst model to the best model. As the COCO AP[.50 : .05 : .95] value
and all the other interpolated values will be heavily favored by well-localizing
detectors. We can assume that the bounding boxes output from the Faster
R-CNN model is more precise than YOLOv4 and EfficientDet D1.

Faster R-CNN | Total Small Medium Large

True Positives 3096 1 1238 1857
False Positives | 62 0 37 25
False Negatives | 1025 3 54 968

Table 6.4: Stochastic result analysis of test data analyzed on the Faster R-CNN model.

EfficientDet D1: EfficientDet D1 comparatively yields a better recall than Faster
R-CNN. It detects some overlapping porpoises but misses quite a few of them,
meaning it has some of the same issues as Faster R-CNN with these situations.
This is evident in figure 6.2c, where the bounding box is very imprecise around
the porpoises and has a very low confidence score of 17%. We can also see this
in figure 6.4c, where it has completely missed the detection when there was
another porpoise in the image. This could be due to the fact that a lot of the
training images have only one porpoise and that could mean that this version
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Label Any Size Small Medium Large
Porpoise 3138 4 1366 1768
Mother-calf | 1045 o) 38 1007
Total 4183 4 1404 2775

Table 6.5: Shows original ground-truth test-data information. The mother-calf label
was later discarded in favor of porpoise, so "Total’ is the number of porpoises
in the test data set.

of the trained model misses actual features pertaining to a porpoise.

Studying the medium false negatives in table 6.6 we can see that even if
EfficientDet miss-classified every overlapping porpoise, it still misses some
singular porpoises, meaning this model is more "well-balanced’ in that it misses
some objects from different original classes compared to Faster R-CNN.

In total, this model misses around 20% of all possible detections while only
achieving slightly higher precision than YOLOv4, which leads to a lower AP@50
value. We can also see from the COCO metrics in table 6.2 that the AP[.50 :
.05 : .95] and AP@7s5 values compared to the AP@so value has decreased
drastically, indicating imprecise bounding boxes. However, when evaluation
the data qualitatively, the bounding boxes on singular porpoises (Figure 6.5c,
6.6¢, 6.3c especially seem precise enough for our purposes.

EfficientDet D1 ‘ Total Small Medium Large

True Positives 3136 © 1040 2096
False Positives 275 0 119 156
False Negatives | 772 4 170 508

Table 6.6: Stochastic result analysis of test data analyzed on the EfficientDet D1 model.

YoloV4: achieves overall better results among the object detectors used in this
project. In particular, we can see the average Recall of the YOLOv4 model is
much greater than Faster R-CNN and EfficientDet, at the cost of lower precision.
As seen in table 6.3, YOLO achieves a recall of 97%. This would mean close
to all objects will be detected, and the project goals are possible using this
model.

Both EfficientDet and Faster R-CNN were having problems with the overlapping
porpoises, however, YOLO v4 has no issues here. This could be due to all the
data augmentation techniques described in section 4.3.5. This data set contains
a lot of very similar images, and a large amount of data augmentation could
have yielded a much better-regularized model.
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Similarly to EfficientDet, YOLOv4 has worse bounding box precision compared
to Faster R-CNN. This is evident by comparing the AP@5o0 value, where YOLOv4
outperforms the other models, with the much stricter AP@75 and AP[.50 : .05 :
.95] values, where Faster R-CNN outperforms YOLOv4. However, as explained
in section 6.1.1, a bounding box IOU of 50% is enough for the uses in this
project.

Choosing our model: YOLOv4 achieves an average recall score much higher
than both EfficientDet D1 and Faster R-CNN. Although the precision is lower
than the other two models, YOLOv4 makes up for it by detecting 97% of
the porpoises in the data set, and achieving the highest AP@so. All this
while also having the fastest inference speed. YOLOv4’s confidence scores
also seem to resemble probabilities in contrast to Faster R-CNN, as evident
in figure 6.1a. This could allow filtering of the predicted porpoises, where
all high confidence detections are automatically flagged as a valid detection,
and the lower probability images get flagged for manual review by a marine
biologist. For these reasons, this model is seemingly the best fit amongst our
chosen models to improve efficiency in the work of doing population surveys
of porpoises.
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Prediction - Overlapping porpoises

(@) Faster R-CNN

(b) YOLOv4

(c) EfficientDet D1

Figure 6.2: Prediction comparison of the three models on a test image with an overlap-
ping porpoise. Here we can see Faster R-CNN missing the object completely,
YOLO detecting it accurately with a 99% confidence, and EfficientDet hav-
ing an in-precise bounding box with a 17% confidence.
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Prediction - Multiple porpoises

(a) Faster-RCNN

(b) YOLOv4

(c) EfficientDet D1

Figure 6.3: Prediction comparison of the three models on a test image with multiple
porpoises. Here we can see all three models performing well and detecting
accurately.
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Prediction - Overlapping porpoise and singular porpoise,

(a) Faster-RCNN

(b) YOLOv4

(c) EfficientDet D1

Figure 6.4: Prediction compares the three models on a test image with an overlapping
porpoise and another porpoise. Here we can see both Faster R-CNN and
EfficientDet D1 missing the overlapping porpoise (left) completely, while
YOLO detects it accurately with a 96% confidence. The only porpoise
(right) is detected accurately by all three models.
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Prediction - Porpoises with background noise

(@) Faster-RCNN

(b) YOLOv4

(c) EfficientDet D1

Figure 6.5: Prediction compares the three models on a test image with an overlapping
porpoise and another porpoise.
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Prediction - Small porpoises and seagull

(a) Faster-RCNN

(b) YOLOv4

(c) EfficientDet D1

Figure 6.6: Prediction comparison of the three models on a test image of two small
porpoises and a seagull.
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6.3 Application Development
To enable this model to be used in a user-friendly way for people with limited
programming experience, it was decided to develop an application that auto-
matically uses the model. The Norwegian Polar Institute representative set a
few specifications for version 1 (V1) of the application:

1. Option to classify both images and videos.

2. A simple user interface.
V1 of the application was developed containing all these as well as:

1. Graphical user interface (GUI).

2. Option to change the ToU threshold for overlapping objects. 1

3. Option to change confidence threshold for classified objects.

4. Batch processing. Process multiple images/videos without further input
from the user.

5. Option to sample videos before classification with a customized interval.
The output for image-classification was the classified images with a bounding

box, the classification confidence, and class name. For videos, all classified
frames were put assembled in video format (slide-show).

1. For nearby boxes, Non-maximum Suppression (NMS) is applied, this changes how much
the boxes overlap there should be before this is applied.
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Figure 6.7: GUI developed for NPIL

Figure 6.7 shows how the UI of v1 of the application. The elements marked
with a red number are explained as:

1. Return to the main screen. The model stays loaded. Allows classification
of both images and videos without reloading the model each time.

2. Drag and drop images to classify to this box.
3. Option to drag and drop: Can choose single images.
4. IoU Threshold: Sensitivity to overlapping objects.

5. Confidence Threshold: Adjust the model’s cut-off threshold for the prob-
ability score.

6. Option to show the classified images in real-time in a separate window
while processing.

7. Option to save the images.

8. Run classification.
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Figure 6.8: Additional features of UI for classifying video.

The video classification Ul as seen in figure 6.8 contains the same elements,
with the addition of extra options for saving the video and sampling rate:

1. The result from this classification will be a video. This sets the number
of classified images per second shown in a result video.

2. Sets the interval between each frame of the video that should be classified.
The default value is zero, which classifies every frame of the video.

V1 was compiled and given to the NPI for testing. They were very impressed

by the classification results, however, had some suggestions for possible fea-
tures:

1. Have an output in CSV format containing the Time-stamp or Image-ID,
confidence, and the number of detections.

2. Option to only run on a specified segment of a video.

3. Have the option to sort images/video frames into two different folders.
One containing the images with high confidence which can be assumed
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to be classified correctly, and one containing images with low confidence
detections which will be flagged for manual review.

These features have been implemented, and the application has been completed.
This application can also be used as a framework for the NPI. The only change
needed with the addition of a new model, even with new classes, would be to
exchange the model folder of the program.



Conclusion

7.1 Future work
Ideas for future work involving the results of this thesis include:

* Test Faster R-CNN and EfficientDet performance utilizing the same data
augmentation techniques used in YOLOv4 and compare results.

* Testing robustness of the detection models, using e.g. methods proposed
by Kang et al. [3].

* Test models on an expanded dataset using more species. Here a Few-Shot
Object Detection via Feature Reweighting model, as proposed by Kang
et al. [29], could be used. This model is said to require less training data
to detect novel classes in a data-set.

* Explore explainability of the features using e.g. the Quantus toolkit [4].

Another exciting topic made possible with faster detection algorithms that
produce good results could be to include a temporal dimension to the data.
Instead of detecting each image one by one, you could transfer the detection
information to the next frame, allowing the porpoise not just to be detected,
but tracked. This would enable a system to automatically count since por-
poises included in sequential frames would be kept track of and counted only
once.
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7.2 Conclusion

In this thesis, we have studied how three state-of-the-art object detection
models could be utilized in the detection of porpoises from drone images. The
challenging environment to perform detection makes it difficult for humans and
object detectors alike. In this thesis we compare and contrast the performance
of three object detectors, namely Faster R-CNN, EfficientDet and YOLOv4.

Through our experiments, we have discovered that YOLOv4 outperforms Faster
R-CNN and EfficientDet D1 with detection, where YOLO achieves a recall of
97%, compared to 80% recall with EfficientDet D1 and 75% recall with Faster
R-CNN. We also find the average precision AP@50 values of YOLOv4 to be
greater than EfficientDet D1 and Faster R-CNN. Through both qualitative and
quantitative methods we discover that both EfficientDet D1 and Faster R-CNN
suffers from poor recall especially when porpoises overlap in the images. In the
case of Faster R-CNN it misses nearly all detections when the porpoises overlap,
but rarely non-overlapping detections. EfficientDet misses a significant portion
of the overlapping detections, but also misses a few of the singular.

Through examination of the COCO detection metrics [33], which favor bound-
ing box accuracy, we also show that Faster R-CNN has more precise bounding
boxes than YOLOv4 and EfficientDet D1 by comparing the less strict AP@50
values, with the stricter AP@75 and AP[.50 : .05 : .95] values. However as
discussed in previous sections, the exactness of the bounding boxes is not the
primary goal of the model we choose. The primary goal is to detect all porpoises
in images.

In summary, we found YOLOv4 both more accurate and faster than Faster
R-CNN and EfficientDet D1, which led us to utilize this model to develop a
porpoise detection framework that the Norwegian Polar Institute may use for
their work.

This concludes this thesis.

Links to frameworks developed:

Porpoise detection framework:
https://github.com/SigurdRokenes/Porpoise-detection

Tools used for analysis of data:

https://github.com/SigurdRokenes/inference_tools
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Appendix

8.1 EfficientDetD1.config

Shows the configuration used for training the EfficientDet D1 model utilizing
Tensorflow Model Zoo [5].

model {

ssd {
num_classes: 1
image resizer {
keep aspect _ratio_resizer {
min_dimension: 640
max_dimension: 640
pad to max_dimension: true
¥
¥
feature extractor {
type: "ssd efficientnet—b1l bifpn keras"
conv_hyperparams {
regularizer {
12 regularizer {
weight: 3.9999998989515007e—05
}
¥

33
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}
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initializer {
truncated normal initializer {
mean: 0.0
stddev: 0.029999999329447746
b

}
activation: SWISH

batch norm {
decay: 0.9900000095367432
scale: true
epsilon: 0.0010000000474974513
b

force use bias: true

bifpn {

¥
}

min_level: 3
max_level: 7
num_iterations: 4
num _filters: 88

box coder {
faster_ rcnn_box_coder {

b
i

y_scale: 1.0
x_scale: 1.0
height scale: 1.0
width_scale: 1.0

matcher {
argmax_matcher {

}
i

matched threshold: 0.5

unmatched threshold: 0.5
ignore_thresholds: false
negatives lower than unmatched: true
force_match for_each row: true

use _matmul gather: true

similarity calculator {
iou_similarity {

¥
¥
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box predictor {
weight shared convolutional box predictor {
conv_hyperparams {
regularizer {
12 regularizer {
weight: 3.9999998989515007e—05
}
b
initializer {
random_ normal initializer {
mean: 0.0
stddev: 0.009999999776482582
¥

¥
activation: SWISH
batch norm {
decay: 0.9900000095367432
scale: true
epsilon: 0.0010000000474974513
¥
force use_bias: true
¥
depth: 88
num_layers before predictor: 3
kernel size: 3
class prediction bias _init: —4.599999904632568
use_depthwise: true
¥
¥
anchor_generator {
multiscale anchor generator {
min_level: 3
max level: 7
anchor_scale: 4.0
aspect _ratios: 1.0
aspect_ratios: 2.0
aspect _ratios: 0.5
scales_per_octave: 3
¥
¥
post_processing {
batch non max_suppression {
score_threshold: 9.99999993922529e—-09
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iou_threshold: 0.3
max_detections per_class: 100
max_total detections: 100

b

score_converter: SIGMOID
¥
normalize loss_by num_ matches: true
loss {

localization loss {
weighted smooth 11 {
}
by
classification loss {
weighted_sigmoid_focal {
gamma: 1.5
alpha: 0.25
¥
b
classification_weight: 1.0
localization_weight: 1.0
}
encode background as zeros: true
normalize loc_loss_by_codesize: true
inplace batchnorm update: true
freeze_batchnorm: false
add background class: false
b
¥
train_config {
batch size: 6
data_augmentation_options {
random_horizontal flip {
}
¥
data augmentation options {
random_scale crop_and pad to_square {
output_size: 640
scale_min: 0.1
scale max: 2.0
¥
¥
sync_replicas: true
optimizer {
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momentum_optimizer {
learning rate {
cosine_decay learning rate {
learning rate base: 0.0003
total_steps: 60000
warmup _learning rate: 0.000001
warmup_steps: 500

¥
¥
momentum_optimizer value: 0.9
by
use _moving average: false

¥
fine tune_checkpoint: "workspace/pre—trained —models/
efficientdet_d1 _cocol7_tpu—32/checkpoint/ckpt—0"
num_steps: 60000
startup_delay steps: 0.0
replicas_to_aggregate: 8
max_number_of boxes: 100
unpad_groundtruth tensors: false
fine tune checkpoint type: "detection"
use bfloatl6: true
fine_tune_checkpoint_version: V2
}
train_input_reader: {
label map path: "workspace/annotations/label map.
pbtxt"
tf record input_reader {
input_path: "workspace/annotations/porpoise train.
tfrecord"
b
¥

eval config: {
metrics set: "coco detection metrics"
use_moving averages: false
batch size: 1;

i

eval input _reader: {
label map path: "workspace/annotations/label map.
pbtxt"
shuffle: false
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num_epochs: 1
tf record input _reader {
input_path: "workspace/annotations/porpoise_test.
tfrecord"

8.2 Faster-RCNN.config

Shows the configuration used for training the Faster R-CNN model utilizing
Tensorflow Model Zoo [5].

# Faster R-CNN with Resnet—50 (v1)
# Trained on COCO, initialized from Imagenet
classification checkpoint

# Achieves — mAP on COCOl14 minival dataset.
# This config is TPU compatible.

model {
faster rcnn {
num_classes: 1
image resizer {
keep aspect ratio _resizer {
min_dimension: 640
max_dimension: 640
pad_to_max_dimension: true

¥

¥

feature extractor {
type: ’faster rcnn resnetl01 keras’
batch norm_trainable: true

}

first_stage anchor_generator {
grid anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect _ratios: [0.5, 1.0, 2.0]
height stride: 16
width stride: 16
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¥

¥

first stage box predictor_conv_hyperparams {
op: CONV

regularizer {
12 regularizer {
weight: 0.0
¥
¥
initializer {
truncated normal initializer {
stddev: 0.01
h
}
¥
first_stage_nms_score_threshold: 0.0
first_stage nms_iou_threshold: 0.7
first_stage _max_proposals: 300
first stage localization loss _weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial crop_size: 14
maxpool kernel size: 2
maxpool stride: 2
second stage box predictor {
mask_rcnn_box_predictor {
use _dropout: false
dropout_keep probability: 1.0
fc_hyperparams {
op: FC
regularizer {
12 regularizer {
weight: 0.0
b
¥
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN AVG
b
b
¥

share box across _classes: true

89
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by
¥
second_stage_post_processing {
batch non max suppression {
score_threshold: 0.0
iou _threshold: 0.3
max_detections_per_class: 100
max_total detections: 300
¥
score_converter: SOFTMAX
}
second _stage localization _loss_weight: 2.0
second stage classification loss weight: 1.0
use_static_shapes: true
use _matmul crop and resize: true
clip_anchors_to_image: true
use static_balanced label sampler: true
use_matmul gather in matcher: true
¥

train_config: {

batch size: 4
sync_replicas: true
startup_delay_steps: O
replicas_to_aggregate: 8
num_steps: 100000
optimizer {
momentum_optimizer: {
learning rate: {
cosine_decay learning rate {
learning rate base: .04
total steps: 100000
warmup_learning rate: .013333
warmup_steps: 5000
¥
b
momentum_optimizer value: 0.9
}

use_moving average: false

}

fine tune checkpoint version: V2
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fine tune_checkpoint: "workspace/pre—trained —models/
faster rcnn_resnetl01_v1l 640x640 cocol7 tpu-—8/
checkpoint/ckpt —0"
fine tune checkpoint type: "detection"
data_augmentation_options {
random_horizontal flip {
by
¥

max_number_of boxes: 100

unpad groundtruth tensors: false

use bfloatl6: true # works only on TPUs
}

train_input reader: {
label map_ path: "workspace/annotations/label map.
pbtxt"
tf record_input_reader {
input_path: "workspace/annotations/porpoise_train.
tfrecord"
¥
}

eval config: {
metrics_set: "coco_detection metrics"
use_moving averages: false
batch_size: 1;

¥

eval input_reader: {

label map_ path: "workspace/annotations/label map.
pbtxt"

shuffle: false

num_epochs: 1

tf record input reader {
input_path: "workspace/annotations/porpoise_test.

tfrecord"
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8.3 YOLOv4.config

Shows the hyperparameters used during training of the YOLOv4 on Darknet
[9].

yolov4—custom. cfg

[net]

# Testing
#batch=1
#subdivisions=1
# Training
batch=64
subdivisions=16
width=640
height=640
channels=3
momentum=0.949
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

learning rate=0.001
burn_in=1000
max_batches = 6000
policy=steps
steps=4800,5400
scales=.1,.1

#cutmix=1
mosaic=1
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