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Chemosynthetic and
photosynthetic trophic support
from cold seeps in Arctic
benthic communities

Emmelie K. L. Åström1*, Bodil A. Bluhm1

and Tine L. Rasmussen2

1Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway,
2CAGE, Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences,
UiT-The Arctic University of Norway, Tromsø, Norway
Benthic communities below the photic zone are largely reliant on the export of

surface-water primary production and the flux of partially degraded organic

matter to the seabed, i.e. pelagic−benthic coupling. Over the past decades,

however, the role of chemosynthetically produced carbon in food webs has

been recognized in various habitats. Cold seeps are now known to be

widespread across circumpolar Arctic shelves where natural release of

hydrocarbons occurs at the seabed. Here, we investigated to what extent

chemosynthesis-based carbon (CBC) enters the food web in a high latitude

shelf-system. Specifically, we estimated the contributions of chemosynthesis-

based carbon to primarily benthic invertebrate taxa from seeps at both shallow

and deeper shelves and comparative non-seep areas in the Svalbard-Barents

Sea region using bulk stable isotope-analysis of carbon and nitrogen. Our

results show low d13C values (-51.3 to -32.7 ‰) in chemosymbiotic siboglinids

and several species of benthic, higher-trophic level, invertebrates (mainly

polychaetes and echinoderms; -35.0 to -26.1‰) collected at cold seeps,

consistent with assimilation of chemosynthesis-based carbon into the Arctic

benthic food web. Using a two-component mixing equation, we demonstrate

that certain species could derive more than 50% of their carbon from

chemosynthesis-based carbon. These findings show that autochthonous

chemosynthetic energy sources can contribute to supporting distinct groups

of ‘background’ benthic taxa at these Arctic seep-habitats beyond microbial

associations and chemosymbiotic species. Furthermore, we found a higher

degree of chemosynthesis-based carbon in benthos at the deeper Barents Sea

shelf seeps (>330 m) compared to seeps at the Western Svalbard shelf (<150 m

water-depth), and we suggest this result reflects the differences in depth range,

surface production and pelagic-benthic coupling. We detected large intra-

species variations in carbon signatures within and across geographical

locations and, combined with isotopic niche-analysis, our results show that

certain taxa that inhabits seeps, have wider trophic niches in comparison to

taxa inhabiting non-seeps. The increasing number of discovered natural seeps

in the Arctic suggests that chemosynthetic production from seeps could play a

more critical role in Arctic trophic structure than previously thought.
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Seep-derived carbon should, hence, be accounted for as an additional carbon source

and included in food-web and energy-flow models in future work.
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Introduction

Large-scale spatial and seasonal variations in marine

primary production combined with water-depth gradients and

vertical transport of particulate organic matter largely regulate

the composition and function of benthic communities (Ambrose

and Renaud, 1995; Wassmann et al., 2006). Heterotrophic

benthic communities are dependent on an export of surface-

water photosynthetic production to the seafloor at depths below

the euphotic zone and beyond the coasts (i.e. pelagic-benthic

coupling) (Graf, 1989; Grebmeier and Barry, 1991; Wiedmann

et al., 2020). Depending on latitude, surface primary production

is strongly linked to seasonal environmental cycles and, in the

high-Arctic, primary production occurs during an intense

growth period and short time-interval. In addition to the

surface-water phytoplankton production, sea-ice algae are an

important photosynthetic carbon source in Arctic ice-covered

waters, especially in the early growth season (Syvertsen, 1991;

Hegseth and Quillfeldt, 2022). Ice-algae can contribute to large

algae-falls to benthic systems (Boetius et al., 2013). The view of

vertical transport of carbon sources to seafloor communities,

however, is based on carbon originating solely from

photosynthesis and produced in ocean surface-waters.

Conversely, at cold seeps, where hydrocarbons such as

methane emanate from the seafloor, chemosynthesis can serve

as an alternative energy source to photosynthesis (Childress

et al., 1986; Levin and Michener, 2002; Boetius and Suess, 2004).

The coupled anaerobic oxidation of methane (AOM) and

sulphate reduction in the sediment by microbial consortia

allow organisms to utilize hydrocarbon sources directly via

chemosynthes i s and symbio t i c a s soc i a t i ons wi th

methanotrophs or thiotrophs, or indirectly via trophic

predator-prey interactions (Boetius and Suess, 2004; Decker

and Olu, 2012; Higgs et al., 2016). These symbiotic

relationships and trophic interactions can result in unique

habitats consisting of specialized chemosymbiotic faunal

communities and associated macrofauna (Childress et al.,

1986; Levin et al., 2016).

Carbon acquires specific isotopic values depending on the

carbon fixation pathways and it produces a distinct imprint of

the surrounding environment. Combining the analyses of

stable isotope ratios of carbon (d13C) and nitrogen (d15N) to
02
assess the nature of carbon sources and the trophic structure, it

is possible to document ecosystem characteristics and

predator-prey interactions, and generate insight on resource

utilization (Childress et al., 1986; Zanden and Rasmussen,

2 001 ; Po s t , 2 002 ) . Ca rbon a s s im i l a t ed th rough

chemosynthesis can get, via Rubisco I catalyst in the Calvin

Benson Bassam Cycle, distinct 13C-depleted values, typically

d13C < -30‰ (Robinson and Cavanaugh, 1995; Hügler and

Sievert, 2011) compared to photosynthesized organic carbon

(d13C typically ~ -25‰ to -20‰) and used as a tracer in marine

food webs (Childress et al., 1986; Levin and Michener, 2002).

The energetic pathway of chemosynthesis to marine organisms

has been documented from cold seeps globally (Levin and

Michener, 2002; Niemann et al., 2013; Zapata-Hernández et al.,

2014). In deep-sea seeps, carbon produced via chemosynthesis

is seen to be highly integrated in marine benthos, contributing

to food resources and specialization of organisms (Levin et al.,

2016; Toone and Washburn, 2020; Feng et al., 2021). The

integration of chemosynthetic carbon in shallow cold-seep

habitats, however, is not as apparent as for deep-sea systems

and it is assumed that photosynthetic resources and vertical

transport of organic matter play a more important role in

shallow chemosynthetic-based systems (Tarasov et al., 2005;

Stevens et al., 2015).

Cold seeps have been discovered in all world oceans,

including the polar regions (Domack et al., 2005; Decker and

Olu, 2012). In the Arctic, a common feature at seeps is the high

degree of so called ‘background fauna’ and the absence of large

chemosymbiotic species and specialized taxa beyond small

siboglinids (Åström et al., 2016; Sen et al., 2019; Vedenin

et al., 2020). Even though there are several descriptions of

habitat characteristics and species composition, the knowledge

of trophic structure and chemosynthesis-based carbon at Arctic

seeps is inadequate, as are its pathways to ambient fauna. This

gap in knowledge stands in contrast to other carbon sources that

nowadays are recognized to contribute to benthic communities

and marine Arctic food webs (Wiedmann et al., 2020). Several

studies have focused on the input of photosynthetic sources

including phytoplankton and ice algae (McMahon et al., 2006;

Søreide et al., 2006) and in recent times, there has been an

increased attention to examine the potential contribution of

other carbon sources such as food falls (Dunlop et al., 2018), and
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terrestrial and riverine organic matter (Bell et al., 2016;

McGovern et al., 2020).

The Barents Sea region is considered a hotspot of marine

productivity (Wassmann et al., 2006), and supports one of the

world’s most important commercial fisheries (Kjesbu et al.,

2014). This region is also exposed to large-scale environmental

changes because of rising temperatures (Fossheim et al., 2015)

and is predicted to undergo extensive and concomitant changes

in ocean circulation and reductions in sea ice (Onarheim and

Årthun, 2017). These physical and oceanographical changes are

expected to drive large-scale shifts in carbon cycling, trophic

interactions and biological productivity (Wassmann et al., 2020;

Ingvaldsen et al., 2021). To date, food web interactions at Arctic

cold seeps have mainly been studied at the Håkon Mosby mud

volcano (located at 1200 m water-depth at the Norwegian

continental margin) (Gebruk et al., 2003; Decker and Olu,

2012; Georgieva et al., 2015). Here, chemosymbiotic fauna

(two species of siboglinids Sclerolinum contortum and

Oligobrachia cf. haakonmosbiensis) and microbial mats form a

base for further trophic interactions with benthic organisms. As

examples, depleted 13C values (-49 to -45‰) were recorded in

gastropods, sea spiders, and a few polychaetes associated with

microbial mats (Decker and Olu, 2012). In adjacent sediment,

zoarcid fishes also showed 13C depleted values (-52 to -49‰)

(Gebruk et al., 2003; Decker and Olu, 2012) and Gebruk et al.

(2003) suggested that the zoarcids possibly had preyed on

siboglinid polychaetes to acquire such low d13C values. The

high occurrence of natural methane seep sites at the circumpolar

Arctic shelves and margins (Stranne et al., 2016; Shakhova et al.,

2019) constitutes a potential carbon source for organisms

inhabiting or passing through such habitats. However, to what

extent such carbon source is exploited beyond the microbial

communities is poorly investigated yet may provide critical

information in food web and energy flow models that

contribute to resource management.

Our aim with this study was, therefore, to quantify the

potential use of chemosynthesis-based carbon from cold seeps

to the general macro-benthic faunal community in a

productive Arctic shelf in the south-west Barents Sea. We

used stable isotope analyses of nitrogen and carbon of

organism and known food-web baselines in the investigated

systems to test the hypothesis that chemosynthesis-based

carbon is used as a carbon source for a variety of non-

chemosymbiotic taxa of the faunal community at seeps.

Fu r the rmore , we t e s t ed i f th e in co rpo ra t i on o f

chemosynthesis-based carbon differed between organisms

sampled at shallow seeps (<150 m deep) and deeper seeps

(>330–400m), including a recently discovered seep-site north

of Svalbard. At the shallow seeps, we hypothesize that the

influence of chemosynthesis-based carbon to the seep-

community is diminished because of high photosynthetic

primary-production and strong benthic-pelagic coupling.
Frontiers in Marine Science 03
Material and methods

Study area

Marine environments in the high-Arctic are characterized by

intense seasonality of light, sea-ice cover, temperature, and

productivity. At the continental margin of Svalbard and in the

Barents Sea, the interaction and mixing of cold Arctic and warm

Atlantic water-masses creates a productive shelf ecosystem with

strong coupling of pelagic and benthic processes (Loeng, 1991;

Wassmann et al., 2006). The climate in Svalbard and

northwestern Barents Sea is relatively mild compared to other

regions in the high-Arctic. This area is strongly affected by the

West Spitsbergen Current and the transport of warm and saline

Atlantic Water northwards into the Arctic Ocean (Figure 1). The

western Svalbard margin consists of a shallow (<200 m) shelf off

the island of Prins Karls Forland. The Barents Sea, a marginal sea

to the Arctic Ocean is a shelf-sea with an average water-depth of

approximately 230 m and the bathymetry is characterized by

shallow banks and deeper troughs. The Barents Sea shelf is

influenced by both warm and saline Atlantic water from

southwest and cold Arctic water-masses from northeast,

flowing in from the Arctic Ocean (Figure 1). The oceanic

boundary of the polar front is formed where these two water-

masses meet (Loeng, 1991). Along the western Svalbard margin

and in the Barents Sea troughs, several natural hydrocarbon

seeps occur near the predicted upper depth limit of the gas

hydrate stability-zone, and where sub-seabed gas reservoirs

release methane (Sahling et al., 2014; Mau et al., 2017). The

targeted cold seep-locations in this study have all been covered

by the Barents Sea Ice Sheet during the last glacial maximum.

Present-day hydrocarbon emissions at the Svalbard shelf and

margin is likely a result from dissolution of gas hydrate

reservoirs in the sub-seabed caused by post-glacial isostatic

rebound and sub-seabed migration of gas through faults and

fracture zones (Portnov et al., 2016; Serov et al., 2017). At the

western shelf and slope of Svalbard, extensive gas emission and

elevated concentrations of methane in the water-column are

reported in water-depths ranging from ~ 80–400 m (e.g. Sahling

et al., 2014; Pohlman et al., 2017). In this study, we refer to this

area as the Western Svalbard and Prins Karls Forland seeps

(Figure 1, Table 1). In the western Barents Sea, south of Svalbard,

two locations have been identified in the outer part of

Storfjordrenna with sub-surface gas deposits and hydrocarbon

seepage (Figure 1) referred to in this study as Storfjordrenna

seeps and Gas Hydrate Mounds. Further east, an area of gas-

seeping crater-mound complexes exist in the central Barents Sea

at the rim of Bjørnøyrenna (Bear Island Trough) (Solheim and

Elverhøi, 1993) (Figure 1, Table 1). See summarized descriptions

of these study sites in Åström et al. (2020).

A previously undescribed seep area was found in the

northern Svalbard area, north of the Hinlopen Strait
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(Figure 1). Here, relatively warm, saline water of Atlantic origin

is transported southwards through the strait and cold Arctic

water flows northwards (Figure 1) (Loeng, 1991). At the outer

part of Hinlopen Strait, geophysical investigations and sediment

analyses indicate thermogenic sources of methane in the seabed
Frontiers in Marine Science 04
(Blumenberg et al., 2016), where these authors suggest that

methane and possibly heavier hydrocarbons stems from

deeper source rocks and ice-rafted organic matter from nearby

locations. Furthermore, geophysical investigations by Geissler

et al. (2016) recorded clusters of acoustic flares in an area south
TABLE 1 Areas where samples and organisms for stable isotope analyses in this study have been collected.

Area Station Characteristics Latitude N Longitude E Salinity (psu) T (°C) Depth (m)

Bjørnøyrenna BR C Non-seep 75°09’ 28°35’ 35.1 1.4 334

Bjørnøyrenna Crater field BR Seep 74°54’ 27°33’ 35.1 1.7 337

Central Barents Sea P1 Non-seep 75°60’ 31°13’ 35.0 1.3 325

Central Barents Sea P2 Non-seep 77°50’ 34°00’ 34.9 0.8 190

Central Barents Sea P3 Non-seep 78°75’ 34°00’ 34.9 0.8 305

Northern Barents Sea P4 Non-seep 79°45’ 33°59’ 34.8 -0.2 334

Northern Barents Sea P5 Non-seep 80°50’ 34°00’ 34.6 -0.2 163

Hinlopen North HLF Seep 80°29’ 16°10’ 35.0 3.5 339

Prins Karls Forland PKF Shallow Seeps 78°33’ 10°10’ 35.1 3.8 85-157

Prins Karls Forland PKF C Non-seep 78°34’ 10°09’ 35.1 1.4 88

Storfjordrenna GHM C Non-seep 76°05’ 15°58’ 35.0 2.4 385

Storfjordrenna SR C Non-seep 75°52’ 16°39’ 35.1 2.4 350

Storfjordrenna Gas Hydrate Mounds GHM Seep 76°06’ 16°00’ 34.9 2.0 383

Storfjordrenna seep field SR 1 Seep 75°50’ 16°35’ 35.1 2.4 353
fr
Temperature (T) and salinity is given for bottom water.
FIGURE 1

Svalbard-Barents Sea study area with sampling locations. Arrows show overriding surface currents; Atlantic water mass (solid/red) and Arctic
water mass (dashed/blue) (modified from (Loeng, 1991). Sampling locations are marked as black circles, and stations at cold seeps are indicated
by a star. For more information about sampling locations, see Table 1. Map was produced using package ggOceanMaps in R (Vihtakari, 2021).
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of the site described in Blumenberg et al. (2016). During a

research cruise to the outer Hinlopen Strait in July 2018, hydro-

acoustic flares from the seabed were detected with the ship echo-

sounder from the same area as investigated by Geissler et al.

(2016) in water-depths of ~330–350 m. A flare was recorded at

the crest of a small ridge on the eastern flank of Hinlopen

Trough (Rasmussen et al., 2018b) and gravity coring revealed

sediment consisting of glaciomarine deposits on till. The coring

site was revisited during a cruise with R/V Helmer Hanssen (UiT

– The Arctic University of Norway, Tromsø) in September 2018

and hydro-acoustic flares were again detected with the ship

echo-sounder. Onsite, box core-samples were retrieved from the

area with flares and used for faunal and sediment analyses in this

study (Rasmussen et al., 2018a) (Figure 2).
Sampling

Samples from the five above mentioned methane seep

locations were sampled with R/V Helmer Hansen and

additional non-seepage stations P1 to P5 were sampled with

R/V Kronprins Haakon (The Norwegian Polar Institute,

Norway). Samples were collected during Arctic summer 2014–

2018, i.e. late May-June for W. Svalbard seeps, late June-July for
Frontiers in Marine Science 05
SW. Barents Sea seeps and mid-late August to 2nd of September

for N. Barents Sea seeps (Figure 1). Some temporal variation in

seepage (Ferré et al., 2020) and uptake of chemosynthesis-based

carbon between sampling events cannot be excluded, however,

all sampling took place in the post-spring bloom period.

Furthermore, long isotopic turnover (Kaufman et al., 2008;

Weems et al., 2012) and high longevity of Arctic invertebrates

(Bluhm et al., 1998; Ravelo et al., 2017) will dampen temporal

variations. Our results were combined for all samples.

Seabed bathymetry mapping was conducted with ship-

mounted multi-beam and 2D seismic surveys. Locations of active

hydrocarbon seepage were selected based on acoustic signals from

flares detected on a keel mounted single beam echo sounder

(Simrad EK 60 frequencies 18 KHz and 38 KHz) and from

previous surveys at the different sites (Åström et al., 2016; Serov

et al., 2017). Benthic sampling in 2014 was conducted where

acoustic reflections from flares where observed [see detailed

description in Åström et al. (2016)]. During 2015, samples were

collected where characteristic seep features such as bubble streams,

microbial mats and methane-derived authigenic carbonates

(hereafter referred to as carbonate outcrops) were identified

through seafloor imagery. Images were obtained with a towed

camera, mounted on a camera guided multi corer (cores diameter

10 cm) (see details in Åström et al. (2018). In 2016, benthic
FIGURE 2

Echo-sonar image of seabed and acoustic flares from Hinlopen seep (HLF), north of Svalbard, recorded with a Simrad EK 60 single-beam echo
sounder. Note that the bubble flares rise more than 150 m vertically from the seabed into the water-column. Elongated shapes indicate fish
(and possible other larger organisms in the water column). Vertical scale to the left represents water depth (m).
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sampling and seafloor imaging were carried out using the remotely

operated vehicle 30K, operated by the Norwegian University for

Science and Technology. Video recording and a pair of stereo

cameras (image resolution 1360 x 1024 pixels) allowed to pinpoint

areas of active gas bubbling, detailed studies of the seafloor

structures including carbonate outcrops and microbial mats, and

precise sampling at these features, see details in Åström et al. (2019).

In 2018, a box corer (50x50x50 cm) was used to sample previously

known seeps in the Barents Sea as well as the newly discovered seep

site at outer Hinlopen Trough on the northern shelf of Svalbard.

Along with sampling at active seep-sites, we also conducted

sampling at paired non-seep controls in 2014–2018. In 2018,

sampling with benthic trawls and box corer (50x50x50) was also

carried out onboard R/V Kronprins Haakon along the South-North

transect of the Norwegian project “Nansen Legacy” at latitude ~31–

34°E from the central Barents Sea, moving northwards into the

marginal ice-zone (Figure 1).

Vertical CTD (Conductivity, Temperature, Depth; SBE 9

plus sensor) profiles of seawater hydrography were taken at all

stations prior to sampling and water was taken from attached

Niskin bottles for analysis of pelagic particulate organic matter

(POM). Moreover, sediment samples were obtained to analyze

sediment characteristics such as porosity, grain size, total

organic carbon, composition of isotopes (13C and 15N) and

benthic pigments (Chlorophyll a and phaeopigments). At each

location, qualitative faunal samples were collected from grabs,

cores, manual remotely operated vehicle-Sampling or dredges

for bulk stable isotope (d13C and d15N) analyses of tissue to

assess food web and trophic level interactions (Hobson and

Welch, 1992; Post, 2002; Søreide et al., 2006). After sieving, to

separate sediment from fauna, animals for isotopic analysis were

sorted and identified to lowest possible taxonomic level

immediately after collection, and we hereafter follow the

names according to world register of marine Species (WoRMS

Editorial Board, 2022). For some taxa (primarily for mud-

dwelling echinoderms), we added a 1–2 day period of

depuration in a dark cold-room onboard the vessel. Organisms

were stored frozen (-20 ˚C) prior to laboratory analysis.

Stable isotope analyses
For stable isotopic analyses, smaller organisms were

processed whole whereas soft tissues from larger individuals

were separated from other body structures, such as shells and

guts. Tissues were freeze-dried for 24 hours, and dried tissue was

homogenized with mortar and pestle and ~1.2 mg tissue sample-

1 weighed into tin capsules (containing between 0.3 and 0.7 mg

carbon and 0.1 to 0.2 mg nitrogen). Calcareous organisms,

where no soft tissue could be dissected, were pre-treated with

1N HCl and dried at 60°C ahead of carbon isotopic analysis to

avoid contamination by eventual diagenetic carbon in the d13C
signature. For the same reason, sediment samples were acidified

with HCl and dried before the carbon analysis. 5 mg sediment
Frontiers in Marine Science 06
sample-1 was weighed into tin capsules for C-analyzes and ~20

mg for N samples. POM isotopic signature measurements were

derived from seawater filtered onto pre-combusted membrane

filters (0.22 µm pore size, 4.7 cm diameter, Merck Millipore). In

total, we use ~250 analyzed samples for this study. In addition, to

expand the data set, we also include previous data collected from

above-mentioned cold seeps reported in Åström et al. (2019).

For stable isotope analysis of bulk organic samples

(sediment, tissue, and POM), we used a Thermo Fisher

Scientific EA IsoLink IRMS System at the University of Oslo,

Norway, which consists of a Thermo Fisher Scientific Flash

Elemental Analyzer and a Thermo Fisher Scientific DeltaV

Isotope Ratio Mass Spectrometer. Quality control for the

analyses with external standards was better than ±0.16‰ for

d15N and better than 0.5‰ for d13C. Isotopic compositions are

reported in the conventional d-notation, as d15N and d13C in ‰

relative to air and Vienna Pee Dee Belemnite, respectively.

Sediment analysis
Sed iment samp le s were co l l e c t ed fo r ben th i c

chlorophyll a (Chl a) and phaeopigments, as indicators of

photosynthetically based organic material deposited on the

seafloor. Sediment chlorophyll a indicates relatively recently

produced material, whereas phaeopigments represent a

degradation product of chlorophyll a. Surface sediment

pigment concentrations (upper 0–2 cm) from grab samples

and push cores were extracted with acetone for 12–24 h in the

dark, centrifuged, decanted and measured for fluorescence in a

Turner Design Model 10 AU fluorometer before and after

acidification with 1N hydrogen chloride (HCl) in accordance

with Holm-Hansen et al. (1965) The measured concentrations

were corrected for sediment porosity. We use the term

chloroplastic pigment equivalents for the combined

concentration of Chl a and phaeopigments in this study

(Pfannkuche and Thiel, 1987).

Porosity of sediment samples was determined by using a

wet–dry method where pre-weighed vials of known volume were

filled with sediment, re-weighed, and later dried at 60° C until all

water evaporated. The density of the sediment was calculated by

using the basis from the wet weight of sediment and water

combined following Zaborska et al. (2008). Sediment grain size

(fraction of pelite <0.63 µm) and total organic carbon were

determined by subsampling surface sediments (0–2 cm). Grain

size was analyzed in a Beckman Coulter Particle Size analyzer LS

13320. Samples were pre-treated with 1N HCl and H2O2 to

remove CaCO3 and organic material. Total organic carbon was

analyzed by first determining the total carbon content in a Leco

CS744 instrument that uses infrared absorption to measure

generated CO2 under combustion. Samples were then treated

with HCl to remove inorganic carbon. The analyzed difference

between treatments is used to calculate the content of Total

Organic Carbon in the sediment.
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Data analysis

Photosynthetic particulate organic matter was used as the

isotopic baseline (nitrogen) for estimating trophic level. To

illustrate overall trophic structure the trophic level

fractionation value was set to 3.4‰ for N and 0.6‰ for C

following Zanden and Rasmussen (2001); Post (2002) and

Søreide et al. (2006) according to the formula:

Trophic Level = d 15Ncons : − d 15NPOM

� �
=3:4

� �
+ 1

Where d15Ncons. represents the nitrogen value for a given

taxon and d15NPOM represents the mean particulate organic

matter (POM) baseline nitrogen value in this study (d15N=5.1‰).

To test the hypothesis that chemosynthesis-based carbon

contributes to various fauna at seep sites, we used benthic

organisms that exhibited lower d13C values than the baseline

of POM (d13C = -24.5‰, Table S1) in a two-component

mixing equation. This analysis provided an estimate of the

contributed fraction of the two carbon sources, photosynthetic

particulate organic matter, POM and chemosynthesis-based

carbon, based on the d13C values from sampled organisms

using the formula:

Xfraction = Ccons : − CPOMð Þ= Cchemo − CPOMð Þ

Ccons.is the d13C value of a specific organism, CPOM

represents the mean baseline value of photosynthetic carbon

sources and Cchemo is the baseline value from chemosynthetic

carbon sources. To estimate the contribution of chemosynthesis-

based carbon, we tested the two-component mixing equation

with two different Cchemo key end-members, 1) methane (CH4)

and 2) sulfur oxidizing bacteria (SOB). Cchemo for

methanotrophs is based on a mean of published values of

isotopic analyses of methane gas composition from the

Svalbard-Barents Sea region (d13C=-44.0‰, see Table S1)

whereas Cchemo for thiotrophs (CSOB =-35.0‰) is based on an

average of published SOB values in Decker and Olu (2012) and

Gebruk et al. (2003) and integrated reduced sediment and

bacterial mat samples from Åström et al. (2019). We also

apply the two-component mixing equation (2) using

sedimentary organic matter (SOM) as baseline (mean value of

d13C = -21.8‰) to account for the modification of pelagic POM

during transit to the seafloor. Sedimentary organic matter

includes refractory particulate organic matter at different levels

of degradation and diagenesis (Schubert and Calvert, 2001),

allowing a more refined estimate of the extent to which different

organisms have incorporated carbon from chemosynthetic

sources (e.g. Zapata-Hernández et al., 2014). A pairwise

comparison of d13C values of the two photosynthetic carbon

sources (POM and SOM) satisfied the conditions of normality

and equal variance and differences were tested using a Student’s

t-test.
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To further test the hypothesis that chemosynthesis-based

carbon contributes to the overall background benthic

community we used ‘SIBER’ (Stable Isotope Bayesian Ellipses

in R version 4.0.5) (Jackson et al., 2011) and selected Layman

metrics (Layman et al., 2007) to quantify isotopic niche

characteristics of habitats for ‘seeps areas’ and ‘non-seeps’ in

the Barents Sea. Isotopic niche space was compared between two

habitat groups and five taxonomic groups; ‘Polychaeta’,

‘Echinodermata’, ‘Mollusca’, ‘other benthos’ (including among

others demersal crustaceans and fishes, priapulids, nemerteans

and cnidarians) and ‘pelagic community’ (including pelagic taxa

e.g. krill and pelagic amphipods), see details for categorical

classification in supplementary material (Table S2). We

excluded chemosymbiotic siboglinids from the ‘Polychaeta’

group as they derive their nutrit ion via microbial

endosymbionts (Sen et al., 2018b) and the purpose in this

analysis was hence to compare non-chemosymbiotic fauna

from the two community-groups. We calculated the nitrogen

range (NR) in order to look at the length of the food web

(accordingly NR d15Nmax−d15Nmin), and carbon range (CR) to

assess basal niche diversification, where large a large CR

indicates multiple basal resources (accordingly CR d13Cmax

−d13Cmin). We computed isotopic niche space as total area of

the convex hull and standard ellipse area for the bivariate

d13C:d15N data. Furthermore, we determined the standard

ellipse area overlap between the means for isotopic niche area

for seep and non-seep sites and between the taxonomical

categories from the respective community. Total area is used

as a proxy for the total isotopic niche of all consumers of a

specific community while the convex hull is highly influenced by

extreme values. We retain however the total area here as it

provides an overview of the total isotopic niche space and

includes all sampled organisms in the study. Standard ellipse

area, in contrast, is a proxy for a core isotopic area, and is hence

smaller than Total Area and less sensitive to outliers and extreme

data points (Layman et al., 2007; Jackson et al., 2011). A large

total area or standard ellipse area value indicate a larger

isotopic niche.

The environmental data were analyzed and used to further

test the hypothesis that the shallow, productive, seeps are less

influenced by chemosynthesis-based carbon in comparison to

the deeper seeps at the shelves. We performed a pairwise

comparison (t-test) of sediment Chl a to the total chloroplastic

pigment equivalents ratios between seep and control station to

test for differences in food quality (i.e. fresh and recently

produced to older and partially degraded). To demonstrate the

conditions of environmental variables at the different stations we

used R and the package “vegan” v.2.5-7 (Oksanen et al., 2019) to

run a principal component analyses. The selected environmental

variables were bottom-water temperature, salinity, and sediment

characteristics (including grain size, total organic carbon

content, porosity of sediments) and total concentration of
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benthic chlorophyll pigments. Data were normalized prior

to analysis.
Results

Trophic structure at seep versus
non-seep sites

Carbon isotope (d13C) values exhibited a wide range (-51.3 to

-15.0‰, n = 381) among studied taxa (Table S2). The most

individual 13C-depleted samples were recorded in the

chemosymbiotic siboglinid worms ranging between -51.3 and

-32.7‰ (n samples = 12). Among non-chemosymbiotic taxa, the

most 13C-depleted individual samples were recorded in large

polychaetes collected at the seeps, Scoletoma fragilis, d13C =

-35.0‰ and Nephtys sp. d13C = -31.4‰. The highest d13C values

were recorded from two echinoderms: the sea star Pontaster sp.

(-15.0‰) and the brittle star Ophiopholis aculeata (-15.5‰; Table

S2). The majority of faunal samples in this study displayed d13C
values in the range of -22‰ to -16‰ (Table S2). The baseline

carbon source of photosynthetic particulate organic matter (POM)

from the water-column ranged between d13C = -27.3‰ and

-23.3‰ and in sediment organic matter (SOM), for samples

without signs of active seepage at the seabed, d13C varied between

-23.8‰ and -20.5‰. There was a significant difference between

POM and SOM values, (t (18) = 4.3, p < 0.001; meanSOM = -21.8 ±

0.35 SE vs. meanPOM = -24.5 ± 0.56 SE). Two sediment samples

collected at microbial mats and H2S patches at seeps were depleted

in 13C in comparison to other sediment samples, d13C = -25.3‰

and -34.5‰ respectively (Table S1).

Nitrogen isotope (d15N) values for the photosynthetic baselines
where meanPOM = 5.1‰ ± 0.38 SE andmeanSOM = 4.8‰ ± 0.13 SE

(Table S1). First order consumers (Trophic Level = 2) included

pelagic invertebrates such as euphausiids (krill) and hyperbenthic

amphipods (Onisimus sp.) as well as filter-feeding bivalves e.g.

Serripes groenlandicus, Macoma calcarea, and Ciliatocardium

ciliatum (Table S2). In addition, a few individuals of different

echinoderms including the sea cucumber Molpadia borealis and
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the sea urchin Strongylocentrotus sp. also exhibited low d15N values,

indicative of grazers (Table S2). The nitrogen isotope analysis

revealed that most taxa were 2nd or 3rd order benthic consumers

at Trophic Level ~3–4, containing typical deposit feeders,

opportunists, and predators. We noted that the benthic fish

species Atlantic poacher (Leptagonus decagonus) and American

plaice (Hippoglossoides platessoides) were represented as top

consumers in this study with individual samples of d15N =

15.1‰ and Trophic Level = 4 (Table S2). Food-web length as

indicated by the range of nitrogen isotopic values was hardly any

different between seep- and non-seep stations; nitrogen isotopic

range = 9.88‰ and 9.62‰ respectively. In contrast, the carbon

isotope range was almost double at seep stations compared to non-

seep stations; carbon isotope range = 19.93‰ and 9.85‰

respectively. Comparing taxonomic/functional categories from

non-seeps/controls to seep-stations, the total area and standard

ellipse area were larger at seeps for three out of the five categories,

where the exceptions are ‘Mollusca’ and ‘other benthos’ (Table 2).

In all taxa combined, the calculated standard ellipse area-niche

overlap between the seep-community and non-seep community

was 65.2% (Figure 3). The least overlap was seen between

‘Polychaeta’, 38.0% and the most for ‘Mollusca’, 51.6%.
Intra-species variation in
isotopic composition

A few benthic taxa display large intra-species variability in

their carbon values (Figure 4). The largest spread in species-

specific carbon isotope composition was demonstrated within the

polychaeta species of Scoletoma fragiliswhere individuals collected

at the Gas Hydrate Mound seep station in Storfjordrenna differed

by 16‰ from d13C = -35.0‰ to -18.9‰, (n = 4), revealing a large

variability within the same site. The variability among all collected

S. fragilis in the study ranged from d13C = -35.0‰ to -18.6‰, n =

10). Furthermore, in Nephtys sp. there was also a large intra-site

variation in d13C at the Bjørnøyrenna seeps, varying by more than

14‰ (-31.4‰ to -17.1‰, n = 9). For all sampled and analyzed

Nepthys sp. regardless station, the range of d13C was -31.4‰ to
TABLE 2 Total area, TA (‰2) and calculated standard ellipse area, SEA (‰2) for respective categorical group from the two communities “non-
seep” and “seep”.

Taxonomical category Polychaeta Echinodermata Mollusca Other benthos Pelagic

Community Non-
seep

seep Non-
seep

seep Non-
seep

seep Non-
seep

seep Non-
seep

seep

Total area (TA) ‰2 14.8 60.2 21.8 61.5 43.4 30.4 35.5 30.2 18.2 28.1

Standard ellipse area (SEA) ‰2 7.9 16.0 8.1 14.8 11.3 7.5 11.3 7.2 9.1 11.6

SEA niche overlap between non-seep and seep categorical
groups (%)

38 49 52 45 42
frontiers
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-16.5‰ (n = 31) Among non-Polychaeta taxa, the mud-dwelling

sea star Ctenodiscus crispatus displayed the largest intra-species

variability in individual samples where the d13C ranged between

-26.8‰ and -16.6‰, (n = 21) (Figure 4). In contrast to the carbon

values, the nitrogen values varied little and there was no consistent

difference between seeps and non-seeps. The exception for an

extraordinarily high variation in d15N was seen in the sea

cucumber Molpadia borealis, where d15N values ranged from

5.8‰ to 14.6‰, (n = 9). Both the low and high extremes were

collected at non-seep sites.
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Chemosynthesis-based carbon end-
member contributions

The results from the two-component mixing equation using

CPOM and Cchemo as end-members indicate that a suite of non-

chemosymbiotic taxa, the majority of them polychaetes,

incorporated carbon from chemosynthesis-based carbon (up to

54% –100%) (Table S3; Figure 5).

Using sedimentary organic carbon as a primary

carbon source, instead of CPOM to the end-member
B

C D

E F

A

FIGURE 3

Isotopic data of consumers plotted in bivariate C:N d-space. Ellipses show standard ellipse area (SEA) of bivariate means for non-seep (dashed
line) and seeps (solid). Open triangles represent samples collected from non-seeps, solid symbols indicate samples collected at seeps. (A) All
samples. Calculated niche overlap of SEA is 65% between seeps vs. non-seeps. (B–F) SEA of bivariate means for taxonomic/functional groups.
Calculated overlap in SEA between groups (B–F) is found in Table 2. Note the different x and y-scales.
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equation (i.e. CSOM) to CH4 resulted in a similar range of

contributions of chemosynthesis-based carbon for benthic

invertebrates (up to 59%–100%). Applying the latter

scenario of the mixing model using SOM and SOB as
Frontiers in Marine Science 10
end-members showed in the mixing model that a partial

input of the diet for several benthic organisms could

be composed of chemosynthesis-based carbon-derived

sources, also beyond polychaetes; Echinodermata (up to
B

A

FIGURE 4

Boxplots of d13C variation in selected benthic invertebrates and community baseline sources. (A) Intra-specific comparisons of benthic taxa and
measured d13C values in this study. (B) d13C ranges of baseline energy-sources at the investigated area, abbreviations; CH4-methane, SOB-Sulfur
oxidation bacteria, SOM-sediment organic matter, POM-particulate organic matter (water-column). The bold line represents the median value,
the edges of the box represent the 25th and 75th percentile of data and the solid line display the highest and lowest values excluding outliers
(black dots outside box). Reference data from Svalbard for O. acuminata is based on Renaud et al. (2011) and for P. groenlandica on (Sokołowski
et al., 2014; Renaud et al., 2015). B. glacialis, Bathyarca glacialis; O. aculeata, Ophiopholis aculeata; M. borealis, Molpadia borealis; C. crispatus,
Ctenodiscus crispatus; O. acuminata, Ophelina acuminata; P.groenlandica, Phyllodoce groenlandica; S. fragilis, Scoletoma fragilis.
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39%), Mollusca (up to 16%), Priapulida (15%) and

Pycnogonida (<5%) (Table S3).

Estimates of chemosynthesis-based carbon in individuals

varied between depth groups. Individuals collected at deeper

(Barents Sea) seeps displayed a larger modeled input of

chemosynthesis-based carbon (up to 50–100%) in comparison

to taxa and individuals collected at the shallower seeps (Prins

Karls Forland shelf-seeps in Western Svalbard). In fact, hardly

any depleted 13C values and thus, no chemosynthesis-based

carbon contributions, were detectable in organisms at the

latter site (Figure 5B).
Environmental conditions

In the principal component analysis over environmental

variables, stations were overall ordinated regionally,

demonstrating the influence on stations of selected

environmental variables (Figure 6). Western Svalbard shelf

stations were separated from Barents Sea stations along the

first principal component analysis-axis, explaining 51.3% of the

variability in the data where the characteristics of water-mass

(temperature and salinity) and sediments (grain size, total

organic carbon and porosity) caused the observed difference.

The two northernmost stations, Hinlopen seep site (HLF, north

of Hinlopen strait) and P4 (south of Kvitøya; Figure 1) were
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ordinated at opposite edges along the second principal

component analysis-axis (explaining 21.7% of the variability in

the data) and the observed separation was explained by

differences in water temperature and content of chloroplastic

pigment equivalents (Figure 6). P4 displayed the coldest water-

mass at the bottom, (T = -0.2°C) and S = 34.8 psu, characteristic

of Arctic water (Svendsen et al., 2002) (Table 1), and was the

only station with negative bottom-water temperature. In

contrast, Hinlopen Flare site was the second warmest station

(T = 3.5°C) and influenced by warm and saline (35 psu), Atlantic

water. For chloroplastic pigment equivalents in the sediment, the

concentration was highly variable among stations and there was

no significant difference in total pigment concentration between

seep and non-seep stations. The stations Hinlopen Flare site and

P1, ordinated in the upper range of the y-axis (Figure 6)

displayed the highest concentrations of chloroplastic pigment

equivalents in the sediment. We detected a significant difference

in the ratio of sediment chlorophyll a (Chl a) to sediment

chloroplastic pigment equivalents concentration, where seeps

had a lower ratio of Chl a compared to non-seep control

stations; t (56) = 2.129 p < 0.05 meancontrol = 0.222 ± 0.008 SE

vs. mean seep = 0.197 ± 0.007 SE. For total organic carbon

content, we noted a trend towards slightly higher Total

Organic Carbon concentration in sediments at seep-stations,

however, the difference was too small to exclude the natural

variability (t-test, p > 0.05).
BA

FIGURE 5

d15N values plotted against the estimated relative contribution of chemosynthesis-based carbon (CBC) incorporated in background benthic taxa
(excl. siboglinids), using the two-component mixing equation applied from Søreide et al. (2006). Solid diamonds show the estimates for consumers
based on particulate organic matter (POM) vs. CH4 end-members as baselines and black crosses show the outcome using sedimentary organic
matter (SOM) vs. sulfur oxidizing bacteria (SOB) as baselines. (A) benthic taxa collected from deeper seeps (Barents Sea, depth range 330–385 m)
and (B) taxa from shallow seeps (Western Svalbard Prins Karls Forland, 85–157 m depth). Each symbol represents one sample.
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Discussion

Cold seeps and chemosynthesis as potential energy sources

for Arctic benthos have in the past been rather uncertain or

entirely overlooked. This is in contrast to other identified carbon

sources which are included in the Arctic benthic food-web such

as terrestrial sources as well as phytoplankton, macro,- and ice

algae production (e.g. Søreide et al., 2006; Sokołowski et al.,

2014; Renaud et al., 2015). We demonstrate, in this study, that a

variety of “background” benthic taxa at the investigated cold

seeps can benefit from carbon sources originating from

chemosynthesis-based carbon (CBC). We detect a larger

isotopic niche-width for seep-communities than non-seep

communities and report intra-species variability in isotopic

carbon signals, reflecting the availability of multiple carbon

sources to the community and flexible feeding-patterns among

benthic taxa. Furthermore, we note contrasting patterns in the

use and incorporation of chemosynthesis-based carbon between
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shallow seeps at theWestern Svalbard margin and deeper ones at

the Barents Sea shelf. Despite intense methane seepage from the

bottom at the shallow sites, we did not recognize much use of

chemosynthesis-based carbon in ambient background taxa. We

suggest this may be a result of an intensified photosynthetic

production, caused by local seep-mediated upwelling and high

pelagic-benthic coupling at the shallow seep sites.
Community comparisons of trophic
structure at seep and non-seep sites

We confirm our hypothesis that chemosynthesis-based

energy sources are incorporated in a suite of benthic

organisms. We detected highly depleted 13C values in

primarily benthic predatory polychaetes. With recorded values

of -35.0‰ in d13C and trophic levels of 2–3 for invertebrates
FIGURE 6

Principal component analysis based on standardized environmental variables; Bottom water temperature (Temp), salinity and sediment
characteristics (including grain size, total organic carbon (TOC), porosity (por.) of sediments) and total concentration of benthic chlorophyll
pigments from sampled station in this study. (No sediment and pigment data were obtained from P2, P3 and P5, see details in Table 1 for station
information). There is a clear regional separation between Western Svalbard Prins Karls Forland stations (PKF and PKF C), compared to stations in
the Barents Sea region (all others) as these stations are diverged along the first principal component analysis axis (PCA I), primarily related to the
variable’s salinity and sediment characteristics, explaining more than 50% of the observed difference. North of Svalbard, the station Hinlopen
seep site (HLF) and station P4 at the northern Barents Sea shelf are separated along PCAII, mainly driven by the contrasting bottom water
temperatures and sediment pigment concentration. For site abbreviations see Table 1.
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collected at the seeps, it is unlikely that these individuals would

have incorporated these low values through other sources. We

expected negligible input from terrestrial sources (from land-

riverine discharge) and no significant input of macroalgae, that

could cause such low d13C values (Renaud et al., 2015; Bell et al.,

2016; McGovern et al., 2020) considering the depth and distant

location to land of our sampling locations. The overall isotopic

niche space in a specific habitat represents the heterogeneity of

carbon use. While the length of the food-webs did not differ

between seeps and non-seep samples in this study, the main

difference between the communities is seen in the range of d13C
values. A higher d13C range indicates availability of diverse basal

resources and/or a potential diversity in the isotope values of

these basal sources (Layman et al., 2007). The observed larger

carbon isotope range for the seep community in this study is

hence reasonable considering the additional available carbon

sources via chemosynthesis and hydrocarbon seepage. Among

taxonomic/functional groups, we saw a considerably larger

isotopic niche space (expressed as total area and standard

ellipse area) for ‘Polychaeta’ and ‘Echinodermata’ at seeps in

contrast to non-seeps, consistent with these groups having

individuals with the largest estimated proportions of

chemosynthesis-based carbon (Table S3). The relative high

proportion of isotopic niche overlap between the two

communities (seeps and non-seeps) as a whole, and among

the categorical taxonomic groups, suggests that they share a high

proportion of basal food resources (McTigue and Dunton,

2017). This is also a realistic as well as an expected result as

the seep and non-seep communities were composed of the same

species overall and given the fact that the investigated seeps lack

higher trophic level chemosymbiotic faunas beyond siboglinids

(which were excluded in the niche space analysis). Moreover, we

found in general a relatively high utilization of particulate

organic matter and sediment organic matter carbon sources

among the analyzed organisms. The least overlap between the

two communities was observed in ‘Polychaeta’, highlighting the

large variance in d13C signals within this group, indicative of

multiple available carbon sources (Figure 3).

The large intra-species variability in carbon signals in a few

taxa likely reflects the flexibility in utilization of food resources

within the investigated species. For example, the species-specific

difference of ~ -15‰ in d13C in each of the two species of

polychaetes, Scoletoma fragilis, and Nephtys sp., suggests that

these species feed from a variety of carbon pools at the sea floor.

Furthermore, it indicates that the 13C-depleted individuals

consume prey or organic matter with a chemosynthetic origin.

Our finding is consistent with the general observation at cold

seeps and other reduced habitats that utilization and

incorporation of chemosynthetic carbon occurs also in non-

chemosymbiotic taxa showing that non-specialists can benefit

from such additional carbon sources (Levin and Michener, 2002;

Bernardino et al., 2012; Zapata-Hernández et al., 2014). A few

studies have now documented this phenomenon in Arctic waters
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(Gebruk et al., 2003; Decker and Olu, 2012; Sweetman et al.,

2013) where the most common macro-benthic taxonomic

groups that incorporate chemosynthesis-based carbon are

polychaetes, mollusks and echinoderms. In this study, we

establish that a larger number of taxa than previously known

appears to incorporate carbon sources derived via

chemosynthesis at Arctic seeps, including large predatory

polychaetes such as lumbrinerids, nephtyids and phyllodocids,

which can derive significant proportions of chemosynthesis-

based carbon at seeps.
Photosynthetic production at seeps

Characteristic for Arctic shelves with inflow of AtlanticWater is

high primary production and strong pelagic-benthic coupling,

hence the fraction of surface production reaching the benthic

community is high for the investigated areas (Grebmeier and

Barry, 1991; Wassmann et al., 2020). We noted in this study that

the larger portion of the benthic community utilized

photosynthetically produced carbon sources despite a high

potential for cold seeps to fuel marine systems. Previously, it has

been argued that the amount of surface photosynthetic primary

production and fraction of vertical particulate flux to the seabed can

restrict the development of chemosynthesis-dependent

communities, including the settlement of chemosymbiotic species

(Sahling et al., 2003; Vedenin et al., 2020). Hence, the results in this

study are neither unexpected nor surprising given that utilizing

chemosynthetic sources directly may imply costly physiological

adaptations. In order to avoid sulfide intoxication some animals

have evolved special binding proteins to tolerate high sulfide

concentrations in reduced habitats (Vismann, 1991; Terwilliger,

1998). Yet, if there is sufficient supply from photosynthetic

resources, there is no essential need to develop such adaptations.

Specifically, for the shallow Western Svalbard Prins Karls Forland

seeps, no taxa stand out in carbon depletion that would be

indicative of chemosynthesis-based carbon. Moreover, there are at

present no records of siboglinid polychaetes from these seeps at

depths shallower than 250 m (Sahling et al., 2014; Åström et al.,

2016) despite intense and long-term methane seepage this area

(Sahling et al., 2014; Portnov et al., 2016). We speculate that the

reason why we do not find siboglinids (and other chemosymbiotic

taxa) or detect any significant use of carbon sources derived via

chemosynthesis inmacrobenthos at these shallowWestern Svalbard

Prins Karls Forland seeps is the high primary production and the

strong pelagic-benthic coupling: At the Western Svalbard Prins

Karls Forland seeps, Åström et al. (2016) recorded the highest

concentration of chloroplastic pigment equivalents in the sediment

as well as the highest macrofaunal biomass (321 g wet weight m-2)

in a comparative study of macrobenthic seep-communities between

Western Svalbard and the Barents Sea. In our present study, we also

infer strong pelagic-benthic coupling from the relatively high

concentration of chloroplastic pigment equivalents at a few
frontiersin.org

https://doi.org/10.3389/fmars.2022.910558
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Åström et al. 10.3389/fmars.2022.910558
stations. The significant lower ratio of sediment chlorophyll a to the

total concentration of chloroplast pigments in the sediments at the

seeps, in contrast to non-seep stations seen in this study, may imply

that the available and the recently produced fresh organicmaterial is

more swiftly consumed by organisms at the seeps, reflected also in

the high abundance and biomass there (Åström et al., 2016). Such

links are consistent with earlier findings relating high vertical export

of photosynthetic and biogenic material produced in surface-waters

with high macrobenthic biomass (Ambrose and Renaud, 1995; Wei

et al., 2011). Moreover, investigations by Pohlman et al. (2017) of

the water-column and exchange of methane and carbon dioxide

(CO2) across the sea−air interface at seeps at the Western Svalbard

margin revealed that CO2-uptake in surface-waters was enhanced

where elevated methane concentrations were recorded, in contrast

to the surrounding waters. These authors suggested that physical

mechanisms (e.g., upwelling) bring methane and possibly nutrient-

enriched waters to the surface at seeps, which supports enhanced

primary production and CO2 drawdown in the surface-water

(Pohlman et al., 2017). Furthermore, in the same area Sert et al.

(2020) reported significant correlations between more bio-labile

dissolved organic carbon and greater chemical diversity of dissolved

organic carbon at seeps in comparison to non-seeps. Based on these

findings, Sert et al. (2020) suggested that microbial processes at the

seeps significantly influenced the composition of dissolved organic

matter in the water column. The abovementioned examples support

the arguments that in areas of high primary production, the

photosynthetic effect overrides a potential chemosynthetic signal

despite intense methane seepage.

On the contrary, in shallow water but in less primary-

productive and oligotrophic systems, seepage seems to

stimulate uptake of chemosynthetic carbon by macrobenthic

communities at the seabed. This is observed from the Laptev Sea

where shallow methane seeps (~ 60–70 m deep) support dense

populations of chemosymbiotic species (Oligobrachia sp.)

(Vedenin et al., 2020) and growth of microbial mats at the sea

bed. In comparison to the productive inflow shelves at Western

Svalbard (Wassmann et al., 2006), the Laptev Sea, as an interior

shelf, is characterized by a narrow window of summer

phytoplankton primary-production, while during the rest of

the year it is ice-covered and the photosynthetic production

remains extremely low (Sorokin and Sorokin, 1996; Vedenin

et al., 2020). Also, at the Western Svalbard Prins Karls Forland

seeps, microbial mats are observed at the bottom at 80 m water

depth, yet, no larger chemosymbiotic macrofauna has been

recorded (Sahling et al., 2014; Åström et al., 2016). The only

background macrobenthic taxon that potentially may benefit

directly from carbon sources derived via chemosynthesis in this

area was the sea urchin (Strongylocentrotus sp.). Individuals of

Strongylocentrotus sp. were observed sitting (potentially grazing)

at microbial mats at the Western Svalbard Prins Karls Forland-

seeps (Figure 7) although isotopic signatures did not indicate

uptake of chemosynthesis-based carbon in collected specimens.
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Footprint of carbon sources derived via
chemosynthesis and assimilation
to benthos

In this study, we have shown that chemosynthesis-based

carbon reaches macro-benthic communities beyond microbial

assemblages and chemosymbiotic siboglinid worms. The use of

carbon sources derived via chemosynthesis occurs not only at

isolated deep-sea seeps with limited input of photosynthetic

organic matter (e.g. Seabrook et al., 2019; Toone and Washburn,

2020; Ashford et al., 2021), but also takes place at highly

productive Arctic shelves. We acknowledge, though, that the

use of bulk stable isotopes is more insightful when combined

with compound-specific isotope analysis (Niemann et al., 2013;

Seabrook et al., 2019). For example, Seabrook et al. (2019)

studied tanner crabs (Chionoecetes tanneri) inhabiting seeps

along the North American west coast and used both bulk

stable isotopes and compound specific isotope analyses to

investigate the diet of crabs and found differing results. Their

result from bulk stable isotopes analysis seemingly suggested

that the crabs primarily relied on photosynthetically derived

food resources since d13C values in their tissue ranged between

-20.5 and -17.4‰ (Seabrook et al., 2019). In contrast, the

compound specific isotope analysis of bacterial fatty acids

indicated chemosynthetic processes and methane-derived

carbon. Furthermore, Seabrook et al. (2019) also noted high

abundance of seep-associated microbes in guts of some tanner

crabs indicating a direct consumption of seep associated bacteria

and archaea. It is also likely that the level of mobility of higher

trophic level taxa may influence the detection of potential

chemosynthesis-based carbon in animal tissue. Highly mobile

taxa could explore a larger variety of carbon sources available at

seeps disguising a potential chemosynthetic carbon isotope

composition. For example, in a study from seeps in the Gulf of

Mexico, MacAvoy et al. (2003) noted that for a less mobile sea

star, the carbon isotopic signature in both bulk stable isotopes

and compound specific analysis revealed input of

chemosynthetic carbon, while in mobile hagfish and spider

crabs, chemosynthetic carbon was only obvious via compound

specific analysis. Based on these findings, we hence consider our

chemosynthesis-based carbon-estimates conservative, and it is

possible that we undervalue the input of chemosynthesis-based

carbon sources to benthos. There have been observations of

larger aggregations of highly mobile and vagrant taxa such as

shrimps and sea-spiders in microbial mats and tufts of

chemosymbiotic Oligobrachia worms at Arctic seeps (Sen

et al., 2018a; Sen et al., 2019; Åström et al., 2019), nonetheless,

whether they use the mats and tufts for feeding, hiding or as

substrate still remains unanswered.

Presently, natural seepage of methane is recognized from

widespread areas across the circum-Arctic (Stranne et al., 2016;

Åström et al., 2020; Cramm et al., 2021) and it is predicted that
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the Arctic shelves and margins holds vast amounts of gas and

gas hydrates that (can) emerge from the seabed as a

consequence of decreasing hydrostatic pressure from glacial

periods (Solheim and Elverhøi, 1993; Wallmann et al., 2018;

Shakhova et al., 2019). With such large potential of ongoing

and future release of seep-hydrocarbons in the Arctic, we

suggest that this carbon source likely is and will be exploited

by certain background taxa. The extent thus, to which

chemosynthesis-based carbon is utilized, surely varies locally

depending on connectivity and intensity of pelagic-benthic

coupling (Sahling et al., 2003; Vedenin et al., 2020; this

study) (Figure 8). Arctic seep habitats may act as attractive

zones for a broad range of background organisms as they

receive input from both photosynthetic and chemosynthetic

resources and a seep-stimulated upwelling would further

increase the water-column productivity and generate an

enhanced transport of food resources to the seabed (Pohlman

et al., 2017; Ofstad et al., 2020; Sert et al., 2020). The broad

range of carbon isotopic values within species seen in our study

is indeed consistent with Ashford et al. (2021) who discuss a

possible ‘chemotone’, the zone between an active seepage area

and a background habitat where specific faunal assemblages are

shaped by a mixture in food availability. Furthermore, Ashford

et al. (2021) estimate that in certain areas, such a ‘chemotone’

may extend 200 m or even further away from an active seepage-

area). Similarly, Levin et al. (2016) introduced the term ‘sphere

of influence’ where seeps and other chemosymbiotic habitats

provide a spillover effect of multiple ecosystem functions, such

as nutrition and connectivity to benthic and planktonic
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heterotrophic background taxa inhabiting the vicinity of

seep-areas.
Closing remarks

In view of a warming Arctic, large environmental changes

are expected as well as shifts in marine carbon cycling dynamics

as a result of changes in the interplay between primary surface

production and ice algae (Bluhm et al., 2020; Wassmann et al.,

2020). Species recognized from southern and lower latitudes

appear in the Arctic region, which may cause a “borealization” of

Arctic communities (Fossheim et al., 2015; Ingvaldsen et al.,

2021; Snoeijs-Leijonmalm et al., 2022). One condition that

determines if such new-coming species have the potential to

establish viable populations in the Arctic will be the acquisition

of available food resources. Reduction in sea-ice conditions and

increased run-off from land, leading to potentially new patterns

in upwelling and nutrient cycling will likely shift the baselines of

carbon sources (McGovern et al., 2020; Wassmann et al., 2020).

During such conditions, seep habitats may attract certain types

of organisms as they can offer a wide niche heterogeneity and

support communities with alternative carbon sources.

In this study, we have demonstrated that chemosynthesis-

based carbon originating from cold seeps is used as an additional

energy source in non-chemosynthetic benthic taxa, while the

majority of the investigated taxa relied on sources with

photosynthetic origin. This result is not surprising given that

the study region is (seasonally) highly productive and
FIGURE 7

Seep site at the shallow western Svalbard margin (water depth = 85 m). Whitish/bluish microbial mats are visible at the seabed surface. It was
noted that sea urchins (Strongylocentrotus sp., pointed out with arrows) concomitantly occurred within, or in association to, the microbial mats.
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characterized by relatively tight pelagic-benthic coupling.

Furthermore, our results highlight the difference in use of

chemosynthesis-based carbon between shallow and deeper

seeps at these productive shelves, where we suggest that

chemosynthesis-based carbon plays an increasingly larger role

with increasing depth. We also point out that far more taxa

(besides the chemosymbiotic siboglinids) can exploit these

hydrocarbon-rich habitats, where some derive significant

portions of their energy demand from chemosynthesis-based

carbon. As the number of discovered and investigated cold seeps

in the Arctic increases (Shakhova et al., 2019; Cramm et al.,

2021), it is likely that the utilization of chemosynthesis-based

carbon in ‘background’ taxa is much more prevalent than

previously known (e.g. Morganti et al., 2022).
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