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Abstract
Interpretabilty is one of the desired characteristics in various classification task. Rule-based system and fuzzy logic can be

used for interpretation in classification. The main drawback of rule-based system is that it may contain large complex rules

for classification and sometimes it becomes very difficult in interpretation. Rule reduction is also difficult for various

reasons. Removing important rules may effect in classification accuracy. This paper proposes a hybrid fuzzy-rough set

approach named RS-HeRR for the generation of effective, interpretable and compact rule set. It combines a powerful rule

generation and reduction fuzzy system, called Hebbian-based rule reduction algorithm (HeRR) and a novel rough-set-based

attribute selection algorithm for rule reduction. The proposed hybridization leverages upon rule reduction through

reduction in partial dependency as well as improvement in system performance to significantly reduce the problem of

redundancy in HeRR, even while providing similar or better accuracy. RS-HeRR demonstrates these characteristics

repeatedly over four diverse practical classification problems, such as diabetes identification, urban water treatment

monitoring, sonar target classification, and detection of ovarian cancer. It also demonstrates excellent performance for

highly biased datasets. In addition, it competes very well with established non-fuzzy classifiers and outperforms state-of-

the-art methods that use rough sets for rule reduction in fuzzy systems.

Keywords Pattern classification � Neuro-fuzzy system � Hebbian-based rule reduction � Rough set � Rule reduction

1 Introduction

Recent demands of interpretable machine learning [1–4]

opened up new challenges to the research community.

Majority of the human experts depend on rules in many

classification tasks [5–8]. Such rule-based classifications

are interpretable and highly accurate. Fuzzy systems are

usually employed to model a practical problem that is too

complex to be described using mathematical mod-

els [9, 10]. Acquired knowledge can be understood and

readily explained using the IF-THEN fuzzy rules. The

fuzzy logic [11] provides a mathematical framework to

deal with uncertainty through employing fuzzy rules to

represent the knowledge of the model. Fuzzy logic centric

methods widely applied in various application such as

modeling of heat transfer mechanism [12], energy storage

system [13], bio-medical engineering [14], and intelligent

system design [15]. Olivas et al. [16] proposed ant colony

optimization using type-2 fuzzy, Xiao et al. [17] used

fuzzy theory in multi-criteria decision making, Nilashi

et al. [18] proposed a fuzzy-based classifier applied in

medical images. Fuzzy-based systems also used in many

emerging applications such as neural network design [19]

and quantum intelligence [20]. There are two important

issues in fuzzy system domain; namely: the accuracy (the

ability to classify patterns accurately), and the inter-

pretability (the capability to describe the system in an

understandable way). These two requirements are usually

contradictory to each other [21]. Tuning the fuzzy mem-

bership functions of the rules can diminish the modeling

error. But the interpretability may also be degraded as the

fuzzy sets may drift closer to each other and end up

overlapping [22]. Thus, a balance between accuracy and

interpretability is desirable.
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Rule reduction is one of the research objectives in var-

ious rule-based systems. In some analyses, too many use-

less rules may be a concern in a rule-based system. In this

area of researches, data-driven methods [23, 24] are pop-

ular but it is data dependent. A Hebbian-based Rule

Reduction (HeRR) method has been proposed for this

purpose [25]. In the HeRR method, consistent and inter-

pretable rule set is generated through an iterative tuning

and reduction process [26].

Although the iterative tuning and reduction process aims

to balance the accuracy and interpretability, a good com-

promise is not always achievable. Furthermore, HeRR may

result into a rule set with some amount of redundancy.

Further reduction of the rule set is necessary to reduce the

model complexity while maintaining high accuracy [24]. It

is desirable to modify the previous HeRR system to derive

an effective (high accuracy), interpretable (easy to under-

stand) and compact (less redundancy) rule set.

This paper presents a Rough-Set-based Hebbian Rule

Reduction (RS-HeRR) system to automatically generate

effective, interpretable and compact fuzzy rules for clas-

sification problem. In order to maintain the interpretability

of HeRR method, the reduction part of the HeRR is per-

formed without any tuning process. To improve the accu-

racy, a post-processing step is used to polish the generated

rule set. This step is implemented using the theory of rough

sets. Rough set is a mathematical tool to deal with vague

concepts and is domain independent. Hence, it is highly

suitable for this problem [27, 28].

Here, we discuss the previously proposed fuzzy systems

that exploit the rough set theory [29, 30] and form the basis

of RS-HeRR. One of them is the rough-fuzzy multi-layer

perceptron (MLP) [31–33]. The method successfully

applied in robot modeling [34], controlling nonlinear sys-

tems [35], and demand prediction [36]. In the rough-fuzzy

MLP, the domain knowledge is encoded in the connection

weights and rules are generated from the decision table by

computing the relative reducts. This model is further pur-

sued using a modular approach in [37, 38]. A multi-class

problem is divided into multiple 2-class sub-problems. The

rough-fuzzy MLP modules, generated for each class, are

subsequently combined to formulate fuzzy rules automat-

ically using genetic algorithm.

Recently developed granulation approach computes

granules of fuzzy rules are through rough set

approach [39]. While rough sets are used directly in the

definition and formation of the fuzzy neural networks,

rough sets are not used for direct reduction of rules and

attributes. Another rough-fuzzy approach for the identifi-

cation of fuzzy rules is proposed in [40], which corre-

sponds to tandem approach of hybridization of fuzzy neural

networks and rough sets as mentioned in [29]. This types

of architectures are also used with support vector

machine [41]. The proposed approach is also a tandem

approach. The reduction approach of [40] uses the rough

set-based attribute reduction algorithms (QuickReduct and

QuickReduct II) to reduce the attributes of fuzzy rules

derived from the rule induction algorithm (RIA) [42]. This

approach attempts to compute a minimal reduct without

exhaustively generating all possible subsets of attributes.

However, it does not guarantee to always generate a min-

imal reduct. Further improvement for this approach is

proposed in [40]. It uses the fuzzy-rough set [43] to pro-

vide better guidance in the selection of attributes. A hybrid

of fuzzy neural network and the rough set, called rough

sets-based outer-product (RSPOP), has been proposed

in [44, 45] and extended in [46]. The RSPOP algorithm

utilizes the rough set theory to perform the reduction of the

attributes of the fuzzy rules generated by the pseudo outer-

product (POP) rule identification algorithm [47, 48]. It uses

the accuracy which is derived using subsets of attributes, to

guide the computation of the relative reduct. We note that

attribute reduction of RS-HeRR can be incorporated into

RF-MLP and granulation approaches for applications such

as medical image segmentation problems [49, 50].

The main contributions of the paper are as follows:

1. We have proposed a generalized rule generation and

reduction method, namely RS-HeRR. The method

produce state-of-the-art results in four variety of

classification tasks without compromising accuracy.

2. Motivated by the existing methods, RS-HeRR per-

forms optimization of accuracy, interpretability, and

compactness of rule set using a rough-set-based

attribute set selection approach using partial

dependency.

The main novelty of our method is that we pay attention to

the interpretability of learning methods. We have intro-

duced an automatic rule generation and reduction module

to build a compact learning framework. The method uti-

lizes a combination of fuzzy logic and rough-set to achieve

the goal. We made a theoretical foundation of the proposed

method and also applied on four public classification

dataset. The results conclude that the method is generic and

can be applied to different classification tasks.

This paper is organized as follows. Section 2 describes a

summary of the Hebbian-based Rule Reduction (HeRR)

algorithm and Sect. 3 present the proposed Rough-Set-

based Hebbian Rule Reduction (RS-HeRR) system. Four

sets of experimental results are presented in Sect. 4 to

benchmark and demonstrate the effectiveness of the pro-

posed method; Sect. 5 presents the conclusion.
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2 Hebbian-based rule reduction system

Fuzzy models usually consist of four components, a

fuzzifier, a rule base, an inference engine and a defuzzifier.

Crisp inputs are fuzzified to fuzzy inputs through a fuzzi-

fier. Fuzzy inference is performed in the inference engine

based on a set of fuzzy rules, as shown in Fig. 1.

It transforms the fuzzy inputs to the fuzzy outputs.

These fuzzy outputs are defuzzified to the crisp outputs

through a defuzzifier. The crisp input and output vectors

are represented as XT ¼ ½x1; x2; . . .; xi; . . .; xn1�,
YT ¼ ½y1; y2; . . .; yi; . . .; yn5�, where n1 and n5 are the input

and output dimensions, respectively [3]. Gaussian mem-

bership functions (MF) are used for fuzzification and

defuzzification in this paper. Although other types of

membership functions such as triangular, trapezoidal, etc.

can also be used in our case. We have used Gaussian MF

because of its advantage of being smooth and nonzero at all

points. The centroids and widths of the MFs are variables

in the framework and denoted as ðcini;j; dini;jÞ, the i-th input

dimension and the j-th MF, and ðcout
l;m; d

out
l;mÞ, the l-th output

dimension and the m-th MF, for the input and output

counterparts of the rules, respectively. Denote iLkðiÞ as the

input label in the i-th input dimension of the k-th rule, and

as the output label in the m-th output dimension of the k-th

rule. Although the framework of Fig. 1 is valid for multi-

input-multi-output (MIMO) systems, we consider only

classification problems which are multi-input-single-output

(MISO). The centroids of the single output are denoted as

cout
l (l-th MF), and the widths of the output MF are not

involved in the computation. The output label of the k-th

rule is represented as oLk. The minimum and the maximum

functions are used for fuzzy union and intersection opera-

tors, respectively. Given the input vector

XT ¼ ½x1; x2; . . .; xi; . . .; xn1�, the output of the fuzzy system

can be expressed as Eq. (1), where fk is called the firing

strength of the input point XT by the k-th rule and define in

Eq. (2).

o ¼ cout
k0 ; k

0 ¼ arg max
k

ðfkÞ ð1Þ

fk ¼ min
i

�
exp

� ðxi � cini;iLkðiÞÞ
2

ðdini;iLkðiÞÞ
2

��
ð2Þ

Hebbian-based rule reduction neuro-fuzzy system [25]

consists of 4 steps shown in Fig. 2, namely initial rule set

generation, rule ranking, membership functions merging,

and redundancy removal. We discuss each step in detail as

this framework is used directly by RS-HeRR.

The initial rule set is generated from the training data

samples. If there are no rules in the rule base or no rules

with sufficient firing strength (threshold h), a new rule node

is created. When a new rule is created, the centroids of the

newly generated MFs for the input dimensions are assigned

the value of the current data sample, while the widths of the

MFs are set to a predefined value in proportion to the scale

of each dimension. The centroid of the output dimension is

assigned a value equal to the class label. The flowchart of

the procedure is described in Fig. 3.

In the next step, all the initial rules are ranked and sorted

based on their Hebbian importance. In fuzzy modeling,

each fuzzy rule corresponds to a sub-region of the decision

space. Some rules lying in an appropriate region may

represent many samples and have much influence on the

final result, while some other rules may occasionally be

generated by noise and become redundant in the rule base.

As the membership functions of a rule are determined, the

training sample ðXT; yiÞ is fed into both the condition and

consequence parts of the rule simultaneously. The input XT

is used to determine the firing strength of the rule. If the

class label of the rule (the centroid of the consequence part)

is the same as yi, it is given a membership of 1. Otherwise,

the membership is assigned 0. If the input-output samples

repeatedly fire a rule by the product of their firing strength

and the membership values of consequence part, such that

the accumulated strength surpasses that of other rules, it

indicates the existence of such a rule. The larger the pro-

duct is, the more important the rule is deemed. The Heb-

bian importance of the k-th rule is defined in Eq. (3).

Ik ¼
Xn
i¼1

fk;i � loLkðyiÞ ð3Þ

where fk;i is the firing strength of the k-th rule on the i-th

data point and

oLkðyiÞ ¼
0 if cout

k 6¼ yi

1 if cout
k ¼ yi:

�

The fuzzy rules are sorted in a decreasing order of Ik. This

is called the Hebbian ordering of the rules.

The next step is merging of membership functions and

rules reduction by redundancy and inconsistency removal,

which are performed iteratively. Their flowchart is shown

in Fig. 4. In the beginning of this flowchart, Hebbian

ordered rules are contained in the original rule set R and the

initial reduced rule set R0 is null. If there is no rule in the

reduced rule set, the rule with highest Hebbian importanceFig. 1 Fuzzy rule (Mamdani type)
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in R is added into R0, otherwise, the fuzzy set in each

dimension of the rule is added or merged into the fuzzy sets

in R0 according to a set of criteria defined below. All the

newly added or merged fuzzy sets are linked together to

formulate a new rule in the reduced rule set R0.
Since some fuzzy sets may be shared by several rules,

changing a fuzzy set is equivalent to modifying these rules

simultaneously. Thus, to merge the MFs, the fuzzy set

associated with each MF is assigned an importance value

which is equal to the sum of importance of the rules which

share the fuzzy set. Let us denote the importance value of a

fuzzy set F as ÎF . The value of ÎF changes during the

merging process. Each time the k-th rule (i.e., the k-th rule

is ‘‘If xi ¼ Ai then y1 ¼ Ck’’) in the original rule set R is

presented, its fuzzy sets Aiði ¼ 1. . .n1Þ in the condition

part, would have the same importance with the Hebbian

importance of the associated rule and is described in

Eq. (4).

ÎAi
¼ Ikði ¼ 1. . .n1Þ ð4Þ

As the consequence part of a rule is the class label, C1 does

not participate in the merging process. In each input

dimension i, among the fuzzy sets in the reduced rule set R0

of this dimension, the fuzzy set A0
i with the maximum

degree of overlap over Ai (the degree of overlap is defined

in Eq. (8)) is selected. If the maximum degree of overlap

satisfies a specified criterion, they are merged into another

fuzzy set A00
i , otherwise, the fuzzy set Ai is directly added

into the reduced rule set of this dimension. The centroid

and the width of Ai and A0
i; namely: ðcAi

; dAi
Þ and

ðcA0
i
; dA0

i
Þ, respectively, are merged into ðcA00 i; dA00

i
Þ using

Eqs. (5) and (6).

Fig. 2 The four procedures of

the Hebbian-based rule

reduction neuro-fuzzy system

Fig. 3 Flowchart of rule initialization algorithm

Fig. 4 Flowchart of merging of

membership functions and rule

reduction algorithm
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cA00
i
¼ ÎAi

cAi
þ ÎA0

i
cA0

i

ÎAi
þ ÎA0

i

ð5Þ

M2:

dA00
i
¼ ÎAi

dAi
þ ÎA0

i
dA0

i

ÎAi
þ ÎA0

i

ð6Þ

The importance of the new fuzzy set A00
i is determined

using Eq. (7).

M3:

ÎA00
i
¼ ÎAi

þ ÎA0
i

ð7Þ

In other words, the centroid and variance of the resultant

fuzzy set is the weighted average of the two fuzzy sets in

accordance with their importance, and the degree of

importance of this final fuzzy set is the sum of the

importance of the two. Subsequently the newly generated

fuzzy set A00
i replaces the previous fuzzy set A0

i. Finally, the

newly added or merged fuzzy sets in all the dimensions are

linked together to form a fuzzy rule in the reduced rule set

R0. Given fuzzy sets A and B, the degree of overlap of A by

B is defined as in Eq. (8).

SAðBÞ ¼
����A \ B

A

���� ð8Þ

As the Gaussian membership function is used in the pro-

posed method, the overlap measure can be derived using

the centroids and widths of the MFs. For fuzzy sets A and

B, with membership functions given in Eqs. (9), (10),

respectively, where cA and cB are their centroids, dA and dB
are their widths; and assuming that cA � cB, then |A| and

A \ Bj j can be expressed in Eqs. (11) and (12).

lAðxÞ ¼ exp

�
�ðx� cAÞ2

d2
A

�
ð9Þ

lBðxÞ ¼ exp

�
�ðx� cBÞ2

d2
B

�
ð10Þ

jAj ¼
ffiffiffi
p

p
dA ð11Þ

jA \ Bj ¼ 1

2

h2 cB � cA þ
ffiffiffi
p

p
dA þ dBð Þ½ �ffiffiffi

p
p

dA þ dBð Þ

�

þ h2 cB � cA þ
ffiffiffi
p

p
dA � dBð Þ½ �ffiffiffi

p
p

dB � dAð Þ

þ h2 cB � cA �
ffiffiffi
p

p
dA � dBð Þ½ �ffiffiffi

p
p

dA � dBð Þ

�
ð12Þ

where hðxÞ ¼ max 0; xf g. The criterion of merging is as

follows, if SA Bð Þ[ k or SB Að Þ[ k, the two fuzzy sets A

and B are merged, where k is a specified threshold that

determines the maximum degree of overlap between fuzzy

sets that the system can tolerate. Higher k may increase the

accuracy but degrade the interpretability, while lower k
may force a larger number of rules to be reduced but at the

risk of the number of rules being less than necessary to

maintain the required modeling accuracy. In the algorithm,

the current rule set R consists of the fuzzy rules derived

from the rule initialization algorithm and the reduced rule

set R0 is the resultant rule set and is set to null at the

beginning. There are two loops in the flowchart, where the

outer loop is for each fuzzy rule ri and the inner loop is for

each input dimension j. If some fuzzy set of the dimension j

in the R0 is very similar to the fuzzy set of dimension j of

the rule ri (i.e., the similarity measure S is larger than a

predefined value), these two fuzzy sets are merged into a

new fuzzy set according to Eqs. (5) and (6). Otherwise, the

fuzzy set of dimension j of the rule ri are added into the

reduced rule set R0. All the newly merged or added fuzzy

sets are linked together and inserted into R0. The last step is

the redundancy and inconsistency removal. After the

merging process, the reduced rule set R0 consists of a set of

modified rules. The following three steps are used to

remove redundancy in R0:

1. If there is only one membership function within one

dimension, this dimension (feature) is removed;

2. If there is any rule that has the same conditions and

consequences with the others, it is removed;

3. If there are any conflicting rules that have equivalent

conditions but different consequences, the one with the

higher degree of importance is preserved and the others

are deleted.

3 RS-HeRR: the hybrid of Hebbian-based
rule reduction system and rough set

Although the Hebbian rule reduction method is proposed to

remove redundant rules and attributes through the merging

process, redundancy may still remain. For example, if a

conditional attribute, which is unrelated with the decision

attribute, cannot be merged into a membership function,

this conditional attribute will become redundant for the rule

set. Thus, further reduction of the generated rule set is

desirable. This is the goal of RS-HeRR. Rule set is initially

generated through the Hebbian rule reduction algorithm

and the rough set theory is used as a post-processing step to

further reduce the generated rule set without affecting the

classification accuracy.

As discussed in the introduction, the proposed RS-HeRR

uses both the partial dependency (used in QuickReduct

algorithms [40]) and the system’s performance (used in

RSPOP [44, 45]) to select attributes and reduce fuzzy rules.

QuickReduct algorithms aim to find the ‘reduct’ of the

rough set through rule selection based on partial

Neural Computing and Applications (2021) 33:1123–1137 1127
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dependency. We describe the concept of dependency, and

partial dependency below.

In the theory of rough sets, a knowledge base can be

represented as a relational system K ¼ U;Rð Þ, where

U 6¼ ;, called the universe, is a set of objects, and R is a set

of relations. In the knowledge base, R particularly consists

of a set of attributes, each of which forms an equivalence

relation. For any P � R, an associated equivalence rela-

tion, called indiscernibility relation over P, denoted by

IND Pð Þ, is formed in Eq. (13):

IND Pð Þ ¼
�

x; yð Þ 2 U2j8a 2 P; aðxÞ ¼ aðyÞ
�

ð13Þ

The family of all equivalence classes of the equivalence

relation IND Pð Þ is denoted by U=IND Pð Þ. With each subset

X � U and an equivalence relation R, the rough set theory

uses the R-lower ðRXÞ and R-upper ðRXÞ approximations to

approximate X, as described in Eqs. (14) and (15).

RX ¼ [ Y 2 U=RjY � Xf g ð14Þ

RX ¼ [ Y 2 U=RjY \ X 6¼ ;f g ð15Þ

By employing the knowledge R, RX is the set of all objects

of U which can be classified with certainty as the elements

of X, and RX is the set of objects of U which can be

possibly classified as elements of X. Let P and Q be two

equivalence relations in U, the positive, negative and

boundary regions are defined by Eqs. (16)–(18):

POSP Qð Þ ¼ [
X2U=Q

PX ð16Þ

NEGP Qð Þ ¼ U� [
X2U=Q

PX ð17Þ

BNDP Qð Þ ¼ [
X2U=Q

PX � [
X2U=Q

PX ð18Þ

For a knowledge base, dependency between attributes may

exist. Let P;Q � R. Q depends on P if IND Pð Þ � IND Qð Þ.
The dependency can also be partial which means that only

part of Q depends on P. For a partial dependency, Q

depends on P in a degree cP Qð Þ 0� cP Qð Þ� 1ð Þ, described

in Eq. (19).

cP Qð Þ ¼ card POSP Qð Þ
cardU

ð19Þ

Where card() is the cardinality of the input set, i.e.,

card POSP Qð Þ and cardU denote the number of elements

in POSP Qð Þ and U, respectively.

A simple depiction of RS-HeRR is given in Fig. 5.

Initially, when training samples are available, a rule set is

generated by the Hebbian rule reduction method. Then,

using this set of rules (denoted as RuleSet A;Cð Þ), the

accuracy due to each attribute is also computed. Similar to

QuickReduct, an additive approach is used for building the

new rule set, however, guided primarily by the classifica-

tion accuracy. This implies that the new attribute set R is

initially empty. The attribute which single handedly gives

the best classification accuracy is the attribute first trans-

ferred to R. It is investigated if the accuracy of R is poorer

than the accuracy of RuleSet A;Cð Þ. For each remaining

attribute af g, the classification accuracy of R [ af g is

computed. The attribute, whose inclusion gives the best

accuracy is included in R. In the case of a tie for best

accuracy, partial dependency cR[ af g Cð Þ and cR Cð Þ is

computed for the attributes resulting into the tie. The

attribute with maximum partial dependency is added to

R. If there is a situation of tie in the partial dependency as

well, one of them is randomly chosen. The algorithm ter-

minates when the partial dependency becomes one and the

classification rate using the subset of attributes is not worse

than that using the whole set of the attributes. Conceptu-

ally, it implies that RS-HeRR tackles the conditional

attribute for redundancy handling which is uncorrelated

with the decision attributes (i.e., contributors to accuracy).

The pseudo-code of the attribute selection algorithm is

presented in Algorithm 1. We also present an example in

Sect. 4.1 to explain the procedure.

Algorithm 1 Rough-set based attribute selection
Require: RuleSet(A, C), the rule set formed by the condition attribute set A and class

attribute C . ACCU(RuleSet(A, C), the classification accuracy of the fuzzy system
using the rule set formed by attribute set A and C .

1: OA ← ACCU(RuleSet(A, C))
2: R ← φ
3: do
4: T ← R
for each: a ∈ (A − R)
5: OR∪{a} = ACCU(RuleSet(R ∪ {a}, C))
6: if OR∪{a} > OT OR (OR∪{a} = OT AND OR∪{a}(C) > γT (C)) then
7: T ← R ∪ {a}
8: end if
9: R ← T
10: while#1
11: Return R

4 Experimental results

In this section, we use four binary classification problems

and demonstrate the effectiveness of RS-HeRR in meeting

the three requirements, namely classification performance,

interpretability, and compactness. The datasets of the

classification problems are detailed in individual sub-sec-

tions but a brief summary is provided in Table 1. The

amount of cross-folding validation (CV) used and the ratio

of number of training data samples (#Train) to the number

of test data samples (#Test) is given in Table 1. Notably,

we use smaller subset for training as compared to the test

subset. The purpose of using the smaller subset of data as

the training set is to test and compare the generalization

ability of the proposed system and other benchmarked

models.
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Classification performance is quantitatively assessed

using overall classification accuracy over both classes,

specificity for the positive class, and sensitivity for the

negative class. For binary classification problem, the sen-

sitivity is the accuracy for the positive class, and the

specificity is the accuracy for the negative class. They are

computed using Eqs. (20) and (21), respectively.

Sensitivity ¼ Number of positive samples correctly predicted

Total number of positive samples

ð20Þ

Specificity ¼ Number of negative samples correctly predicted

Total number of negative samples

ð21Þ

We compare the classification performance of the RS-

HeRR with Support Vector Machine (SVM) [51], the C4.5

decision tree algorithm [52], the Naı̈ve Bayesian classifier

(NB) [53], and the Rough-Set-based Pseudo Outer-Product

fuzzy rule identification algorithm (RSPOP) [45]. Our

selection of these methods for comparison is explained as

follows. For comparison of accuracy, we consider the

classification methods that concern with different formats

of knowledge representation and concern with achieving

accuracy rather than factors such as interpretability or

compactness. Our selection was also guided by the avail-

ability of the codes or executables of the methods being

compared.

Interpretability is measured by the number of fuzzy rules

used for representing the knowledge. For other factors

concerning interpretability remaining the same, such as the

type of membership functions, the architecture, etc., the

interpretability due to the attribute selection strategy is

better if the number of rules after selection is less than the

number of rules obtained using other attribute selection

strategies. Similarly, compactness of the fuzzy system is

characterized by the number of attributes as well as the

number of rules. Here also, a fair comparison requires that

other factors of the fuzzy system are kept the same and the

compactness due to the attribute selection strategies is

compared. Thus, for analyzing the advantage of RS-HeRR

Fig. 5 The hybrid of the

Hebbian rule reduction fuzzy

system and the rough set

Table 1 The details of the datasets and the associated binary classification problem

Pima Indian diabetes dataset Urban water treatment plant

monitoring dataset

Sonar dataset Ovarian cancer dataset

Description Medical data of female patients of a

t least 21 years old Pima Indian

heritage

Data measured from an urban waste

water treatment plant over a period

of 527 days

Processed data on each

antenna in the sonar

array

Gene patterns from

DNA microarray gene

expression

Positive

class

Patients having diabetes Normal function Target is metallic Gene is from an ovarian

tumor

Negative

class

Patients not having diabetes Abnormal event Target is rocky Gene is from a normal

tissue

#of

features

8 38 60 1536

#of data

samples

768 527 208 54

#of

positive

sample

500 513 111 30

#of

negative

samples

268 14 97 24

Cross-

validation

10 10 10 3

#Train:

#Test

1:9 1:9 1:9 1:2
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regarding interpretability and compactness, we use same

initial fuzzy systems as obtained using the basic HeRR

strategy explained in Sect. 2 and compare RS-HeRR with

the cases where no attribute is used (original HeRR) or

QuickReduct and QuickReduct II are used for attribute

selection. We refer to this comparison as attribute selection

comparison.

4.1 Pima indian diabetes dataset

The Pima-Indian Diabetes dataset [54] consists of a total of

768 data instances, all of which are for the patients who are

female of at least 21 years old Pima Indian heritage. There

are 8 input features for each instance, listed in Table 2.

Figure 6 shows the benchmark results of the RS-HeRR

against the SVM, C4.5, NB, and RSPOP. The RS-HeRR

system achieve the highest overall testing accuracy, though

its sensitivity is lower than that of SVM by only 4.36 and

its specificity is worse than that of C4.5 and NB by less

than 4.37%. This poor performance is attributed to the use

of Mamdani model of fuzzification, which favors inter-

pretability over accuracy.

The results for attribute selection comparison are shown

in Table 3. The overall accuracy, the number of generated

rules and the number of selected features are given in the

table for comparison. The classification accuracy of the

HeRR without rough set is the worst among these models,

and the number of rules and features are much higher than

others. It indicates that the redundancy in the rule set could

have degraded the testing accuracy of the HeRR system

and the removal of redundant rules and features is neces-

sary to maintain and boost the performance. The RS-HeRR

system achieves a decrease of 58.37% for the number of

rules and 60.76% for the number of features, compared

with the HeRR system without any feature selection pro-

cess. The decrease is larger than the HeRR system plus

QuickReduct and QuickReduct II. It indicates the rule set

derived by RS-HeRR is more compact than that derived by

HeRR plus QuickReduct & QuickReduct II. The experi-

mental results thus show the superior performance of the

proposed rough-set-based attribute selection.

After the Hebbian rule reduction algorithm shown in

Fig. 2, a total of 17 fuzzy rules are derived. The classifi-

cation accuracy on the training and testing sets are 80.52%

and 71.35%, respectively. At the beginning of RS-HeRR,

the attribute set A consists of all the attributes x1 � x8, and

the output attribute set R is empty. For each attribute a in

A� R, the training accuracy and the partial dependency

using the rule set with the attribute set R [ fag are shown

in Table 4. It is seen that when the attribute x2 is added to

R, the training classification achieved the maximum among

all the 8 attributes. Thus, R becomes fx2g. As the training

accuracy is worse than that using the whole attribute set,

the selection process continues. In the second round of the

loop, the training accuracy and partial dependency of the

remaining 7 attributes are shown in Table 5. In the table,

both x6 and x8 achieves the best in training accuracy.

However, the partial dependency of x6 is larger than that of

x8. Thus, the attribute x6 is selected. As the training

accuracy is still lower than 80.52%, which is achieved by

the whole attribute set, the algorithm comes into the third

round. The training accuracy and partial dependency are

shown in Table 6. The best accuracy is achieved by adding

x7 to R. Hence, x7 is selected. As the accuracy is not lower

than 80.52% and the partial dependency becomes 1, the

algorithm terminates. At the end of the algorithm, the

attribute set fx2; x6; x7g is produced. Using the 3 attributes,

the rule set is simplified into 6 rules by deleting repeated

rules. The training accuracy is still maintained at 80.52%.

However, the testing accuracy is boosted to 75.40%, which

is better than before, due to the selection of the attributes.

The interpretability of the proposed RS-HeRR system is

evaluated in Figs. 7, 8, 9 and Table 7. Figures show the

membership functions of the attributes: x2; x6 and x7. x2 is

divided into 2 MFs (Low and High), and x6 and x7 are

divided into 3 MFs (Low, Medium and High). It is shown

that the divided MFs are all clearly separated and have

distinguished semantic meanings. The resultant rule set

which consists of a total of 6 fuzzy rules is shown in

Table 8. From the rule set, it can be seen that, when the x2

(Plasma glucose concentration) is low and the x6 (Body

mass index) and x7 (Diabetes pedigree function) are not

high, the patient will be tested as positive for diabetes, and

when x2 (Plasma glucose concentration) is high and the x6

(Body mass index) is not low, the patient will be tested as

negative for diabetes. The derived rule set can be easily

understood by humans and used to assist the decision

making of the clinicians.

4.1.1 Urban water treatment plant monitoring dataset

The urban water treatment dataset1 consists of a set of

historical data measured from an urban waste water treat-

ment plant over a period of 527 days. The objective is to

classify the operational state of the plant in order to predict

faults through the state variables of the plant at each of the

stages in the treatment process. In total, 38 input features

for each data point, organized into 5 aspects, are used (see

Table 8).

The status of the plant is represented by one of 13 dif-

ferent categories. Some represent the normal operation of

the plant and others point out various faults of the plant.

They are listed in Table 9. As all the faults appear in a

short period and are dealt with immediately, there are not

1 The UCI Machine Learning Database Repository.
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enough training data points for these categories. However,

for the statuses normal function (green shaded row in

Table 9) and abnormal event (blue shaded row in Table 9),

there are 513 and 14 data samples, respectively. Even after

clustering statuses corresponding to normal and abnormal

performance, the dataset is a highly skewed dataset and

thus it is difficult to obtain good specificity (accuracy for

abnormal samples). Further, there are missing values for

Table 2 The description of the

eight features of the Pima Indian

diabetes dataset

Feature Description

1 Number of times pregnant

2 Plasma glucose concentration a 2 h in an oral glucose tolerance test

3 Diastolic blood pressure (mm Hg)

4 Triceps skin fold thickness (mm)

5 2-h serum insulin (mu U/ml)

6 Body mass index (weight in kg/(height in m)^2)

7 Diabetes pedigree function

8 Age (years)

Fig. 6 Classification results on the Pima Indian diabetes dataset (statistics over 10 cross-fold validation)

Table 3 Results on the Pima

Indian diabetes dataset,

compared with the

QuickReduct, QuickReduct II

and without rough set reduction

(statistics over 10 cross-fold

validation)

Models Pima Indian diabetes dataset

Accuracy % No. of rules No. of features

Mean Std. Mean Std. Dec % Mean Std. Dec %

HeRR without RS 71.86 1.72 43.00 21.29 N/A 7.90 0.31 N/A

RS-HeRR 74.13 0.78 17.90 19.79 58.37 3.10 1.91 60.76

HeRR ? QuickReduct 73.35 1.49 32.90 26.42 23.49 3.80 2.04 51.90

HeRR ? QuickReductII 72.82 1.50 34.00 20.48 20.93 5.10 1.59 35.44

Table 4 The training accuracy

and partial dependency using x1

to x8

Attributes x1 x2 x3 x4 x5 x6 x7 x8

Accuracy % 63.64 77.92 61.04 38.96 61.04 40.26 42.86 62.34

Dependency 0.00 0.67 0.33 0.33 0.00 0.50 0.20 0.20

Table 5 The training accuracy and partial dependency using

x1; x3; x4; x5; x6; x7; x8

Attributes x1 x3 x4 x5 x6 x7 x8

Accuracy % 77.92 77.92 76.62 76.62 79.22 77.92 79.22

Dependency 0.96 1.00 1.00 1.00 1.00 1.00 0.96

Table 6 The training accuracy and partial dependency using

x1; x3; x4; x5; x7; x8

Attributes x1 x3 x4 x5 x7 x8

Accuracy % 77.92 76.62 76.62 79.22 80.52 77.92

Dependency 1.00 1.00 1.00 1.00 1.00 1.00
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some features in this dataset. The missing values are

replaced by the average value of the corresponding

attribute in this experiment. This substitution may be

considered as noise in the data samples.

Fig. 7 Derived fuzzy

membership functions of

attribute x2

Fig. 8 Derived fuzzy

membership functions of

attribute x6

Fig. 9 Derived fuzzy

membership functions of

attribute x7
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The classification results are shown in Fig. 10. RSPOP

achieves a sensitivity of 100%, classifying all the positive

samples correctly across all the CV groups. However its

performance in classifying negative samples is bad, as its

specificity is lower than others. In this experiment, RS-

HeRR achieves the best specificity. It shows that the RS-

HeRR system outperforms other models in overall testing

accuracy, although its sensitivity is slightly lower than that

of SVM, C4.5 and RSPOP. This is attributed to the prop-

erty of RS-HeRR in favoring accuracy even while identi-

fying the critically important attributes through partial

dependency. The experimental results show the classifica-

tion capability of the RS-HeRR in the dataset where the

classes are unbalanced distributed.

Table 10 shows the attribute selection comparison

results. The testing accuracy achieved by RS-HeRR is the

same as that of HeRR without RS, while the HeRR plus

QuickReduct and QuickReduct II achieve lower accuracy.

Under the percentage decrease in the number of rules and

features, compared with the HeRR without RS, the pro-

posed RS-HeRR outperforms the HeRR with QuickReduct

& QuickReduct II. We note that in some cross-validation

sets, RS-HeRR, HeRR ? QuickReduct, and HeRR ?

QuickReductII, all select only one feature. But, the selected

feature in RS-HeRR is the one that provides the best

accuracy rather than maximum partial dependency. This is

critical since such set of CV may have only one or two

negative samples. It indicates that the RS-HeRR derives a

more compact rule set while still maintaining the accuracy.

4.2 Sonar dataset

The Sonar dataset [55] consists of a total 208 pattern

samples with 60 input features and two classes (metal

target and rock target). Figure 11 shows the classification

results of RS-HeRR, compared with SVM, C4.5, NB, and

RSPOP. The proposed RS-HeRR system yields an accu-

racy of 89:41 	 1:75%. The standard deviation of both the

accuracy and sensitivity is lower than that of other models.

In shows that classification capability of the proposed RS-

HeRR is better than the others in this dataset.

Table 7 The six derived fuzzy

rules
Rule #1: IF x2 is low and x6 is medium and x7 is medium THEN y is positive class

Rule #2: IF x2 is low and is x6 medium and x7 is low THEN is positive class

Rule #3: IF x2 is low and x6 is low and x7 is low THEN y is positive class

Rule #4: IF x2 is high and x6 is medium and x7 is low THEN y is negative class

Rule #5: IF x2 is high and x6 is medium and x7 is medium THEN y is negative class

Rule #6: IF x2 is high and x6 is high and x7 is high THEN y is negative class

Table 8 The five aspects of the input features

Aspect Number of features

Input to plant 9

Input to primary settler 6

Input to secondary settler 7

Output from plant 7

Plant performance 9

Total 38

Table 9 The 13 statuses of the water treatment plant

Categories Number of samples Description
1 275 Normal situation
2 1 Secondary settler problem, type 1
3 1 Secondary settler problem, type 2
4 4 Secondary settler problem, type 3
5 116 Normal situation with performance over the mean
6 3 Solids overload, type 1
7 1 Secondary settler problem, type 4
8 1 Storm, type 1
9 69 Normal situation with low influent
10 1 Storm, type 2
11 53 Normal situation
12 1 Storm, type 3
13 1 Solids overload, type 2

Blue shaded rows indicate abnormal events
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The attribute selection comparison results are given in

Table 10. The HeRR without the RS attribute selection

yields the highest testing accuracy, while the performance

of the proposed RS-HeRR is at the second place. Notably,

Table 11 shows that the HeRR system will involve all the

60 input features in the classification if no attribute selec-

tion process is incorporated. Such system is difficult to

interpret. RS-HeRR only involves 11 	 4:58% input fea-

tures, at a cost of about 1% degradation in accuracy. The

results show that, a balance between accuracy and inter-

pretability is achieved by the proposed RS-HeRR. The

HeRR with QuickReduct competes well with RS-HeRR.

Although its accuracy is slightly lower than that of RS-

HeRR, the number of both derived rules and selected

features is less than that of RS-HeRR. This is because RS-

HeRR prioritizes accuracy over partial dependency and the

accuracy may inherently be poor in noisy measurements,

such as in the case of sonars which have poor signal to

noise ratio in the presence of cluttered background. The

HeRR with QuickReduct II derives the least number of

rules, but its accuracy is much lower than others.

4.3 Ovarian cancer dataset

The ovarian cancer DNA microarray gene expression

dataset [56] consists of a total of 54 patterns where 30

examples are derived from ovarian tumors and 24 exam-

ples are normal. Each of these examples comprises 1536

features. This is a good example of a highly complex and

uninterpretable problem where attribute reduction and

compact rule base is highly desirable.

In Fig. 12, the RS-HeRR yields an accuracy of

96:30 	 3:21%. The SVM, C4.5 and NB yield the same

average accuracy, 90.74%, where the standard deviation of

Fig. 10 Classification results on the urban water treatment dataset (statistics over 10 cross-fold validation)

Table 10 Classification results

on the urban water treatment

dataset, compared with the

QuickReduct, QuickReduct II

and without rough set reduction

(statistics over 10 cross-fold

validation)

Models Urban water treatment dataset

Accuracy % No. of rules No. of features

Mean Std. Mean Std. Dec % Mean Std. Dec %

HeRR without RS 97.70 0.52 27.50 13.67 N/A 23.60 8.62 N/A

RS-HeRR 97.70 0.49 3.50 3.87 87.27 1.10 0.32 95.34

HeRR ? QuickReduct 97.68 0.49 4.80 7.27 82.45 1.20 0.42 94.92

HeRR ? QuickReductII 97.53 0.63 8.40 13.03 69.45 1.20 0.42 94.92

Bold indicates this value is better in terms of criteria of performance metric

Fig. 11 Classification results on the sonar dataset (statistics over 10 cross-fold validation)
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the accuracy of C4.5 and NB is the same. Table 12 shows

attribute selection comparison results. RS-HeRR selects

only 2:67 	 0:58 features out of the whole 1536 features

for classification. This indicates the ability to represent the

knowledge using about only three attributes (which corre-

sponds to only 3 genes) and about only 12 rules (12 genetic

combinations characterizing the presence or absence of

ovarian cancer). However, the accuracy is enhanced from

70:37 	 6:41 to 96:30 	 3:21. This is because of the

elimination of the attributes that affect classification

accuracy adversely. The performance of the RS-HeRR and

HeRR with QuickReduct in the terms of testing accuracy is

the same. However, the RS-HeRR selects and derives less

number of features and less number of rules than that of

HeRR with QuickReduct. The proposed attribute selection

algorithm outperforms the QuickReduct, as the proposed

algorithm makes the rule set more compact.

5 Conclusion

This paper proposes RS-HeRR, the hybridization of Heb-

bian rule reduction fuzzy system and rough set theory, for

generating fuzzy rules for pattern classification problems.

The rule set is initially generated using the Hebbian-based

rule reduction algorithm. A post-processing step is used to

further remove redundant attributes based on the rough set

theory. In this step, a rough-set-based attribute selection

algorithm is proposed to reduce and simplify the rule set

without affecting the classification accuracy. It uses both

the system’s performance and partial dependency as guides

to determine suitable attributes subset. The key strengths of

the proposed methods are summarized as follows:

1. Compact, effective and interpretable rule set: a com-

pact, effective and interpretable rule set is generated

from the trained fuzzy system. The redundancy is

Table 11 Classification results

on the sonar dataset, compared

with the QuickReduct,

QuickReduct II and without

rough set reduction (statistics

over 10 cross-fold validation)

Models Sonar dataset

Accuracy % No. of rules No. of features

Mean Std. Mean Std. Dec % Mean Std. Dec %

HeRR without RS 90.86 2.23 135.33 1.15 N/A 60.00 0.00 N/A

RS-HeRR 89.41 1.75 127.67 5.51 5.66 11.00 4.58 81.67

HeRR ? QuickReduct 88.94 0.79 118.00 5.57 12.80 5.33 0.58 91.11

HeRR ? QuickReductII 77.89 1.59 112.67 4.16 16.74 10.33 0.58 82.78

Bold indicates this value is better in terms of criteria of performance metric

Fig. 12 Classification results on the ovarian cancer dataset (statistics over 3 cross-fold validation)

Table 12 Classification results

on the ovarian cancer dataset,

compared with the

QuickReduct, QuickReduct II

and without rough set reduction

(statistics over 3 cross-fold

validation)

Models Ovarian cancer dataset

Accuracy % No. of rules No. of features

Mean Std. Mean Std. Dec % Mean Std. Dec %

HeRR without RS 70.37 6.41 36.00 0.00 N/A 14.95 58.20 N/A

RS-HeRR 96.30 3.21 12.33 5.77 65.75 2.67 0.58 99.82

HeRR ? QuickReduct 96.30 3.21 17.67 9.29 50.92 3.33 1.53 99.78

HeRR ? QuickReductII 87.04 3.21 26.33 5.86 26.86 4.67 0.58 99.69
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removed from the rule set using rough-set-based

attribute selection algorithm, while the classification

performance is maintained and boosted. Membership

functions in each dimension are clearly separated and

the size of the resultant rule set is small. It makes the

rule set readily understandable by human.

2. No additional control parameter: HeRR needs only two

control parameters, namely initial rule set generation

threshold h and the membership function merge

threshold k (see Sect. 2). RS-HeRR does not require

any additional parameter.

The performance of the proposed rough-set-based Hebbian

rule reduction system is evaluated using four datasets: (1)

the Pima Indian diabetes dataset; (1) the urban water

treatment plant monitoring dataset; (3) the sonar dataset;

(4) the ovarian cancer dataset. The experimental results

show good performance by the proposed method, when

benchmarked against with other well established classi-

fiers. In certain challenging classification problems, such as

skewed dataset of the urban water treatment plant moni-

toring characterized with very few negative sample and the

ovarian cancer dataset characterized by huge number of

features, RS-HeRR shows a huge advantage. For instance,

RS-HeRR can reduce the knowledge from the data char-

acterized by 1536 features in the ovarian cancer dataset to

identification of 3 genes and 12–14 genetic combinations

that characterize the presence of ovarian cancer.

There are a few future avenues of the proposed method.

First, we will apply a similar mechanism in the image

classification domain. Next, we will consider extending the

method with a combination of deep neural networks. This

may open up new possibilities and challenges in the

domain of interpretable and explainable artificial

intelligence.
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