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1. Introduction

It is not rare for engineering systems exhibiting binary- or even 
multi-dimensional lifetimes. The life of an airplane can be described 
by both calendar time and the total flight hours; the life of rail track 
life can be described according to both age and the total gross load 
it has carried [2], while an automobile’s usage also corresponds 
with calendar time and distance travelled [12]. Binary-dimensional 
or multi-dimensional failure times are also practical when a system 
comprises several dependent components. For example, for the rail-
way bogie, the failures of a wheel, an axle or a spring are essentially 
dependent on each other.  The reliability of the bogie should address 
the dependency of the load, torque or other mechanic measurement 
on each other. Each measurement is a dimension corresponding to 
the lifetime. Multi-dimensional distribution is also practical when a 
system has multiple dependent failure modes. Each failure mode cor-
responds one dimension in the lifetime. 

Classic life-data analysis in reliability considers only one dimen-
sion [4, 24, 26, 28]. A typical example is Weibull analysis, which con-
siders time as the sole variate. The covariate-based model, such as the 

Proportional Hazard Model (PHM), can accommodate multi-dimen-
sional variates to some extend [3, 7, 14, 15]. The main dimension, 
usually calendar time, is in the baseline function. The other dimen-
sions are accommodated in the covariate function. However, covari-
ates are not one dimension of the distribution. The PHM is essentially 
a one-dimensional model. 

It is thus necessary to develop multivariate lifetime distribution 
model, applicable for reliability analysis. In the desired multi-dimen-
sional model, each dimension of the lifetime is considered equal, 
instead of as covariate as in the PHM model. In order to apply the 
model to reliability analysis, the corresponding parameter estimation 
and goodness of fit test method should also be proposed. This paper 
is organized as follows: Section 2 presents the literature survey and 
discusses some properties of the bivariate Weibull model concerned 
with reliability. Section 3 presents the methods for parameter estima-
tion and the reliability evaluation, while Section 4 discusses the case 
of the mining transportation truck and the application of the Bivariate 
Weibull model to the case. Finally, Section 5 presents the discussion 
and conclusion of the paper. 
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Systemy inżynieryjne można charakteryzować za pomocą dwóch lub więcej wymiarów dotyczących okresu ich eksploatacji (np. 
przebieg i czas pracy pojazdu). Ponieważ klasyczny rozkład jednowymiarowy nie wystarcza do zamodelowania tej wielowymiaro-
wej charakterystyki, konieczne jest wykorzystanie rozkładu wielowymiarowego, który pozwala uchwycić wielowymiarowość cyklu 
życia systemu. W artykule zaproponowano dwuwymiarowy rozkład Weibulla, który łączy w sobie dwa klasyczne modele Weibulla 
za pomocą wspólnego wykładnika. Wspólny wykładnik może reprezentować korelację między dwoma wymiarami. Zapropono-
wano test ilorazu wiarygodności, który umożliwia badanie istotności korelacji pomiędzy dwoma wymiarami. Do rozwiązania 
problemu estymacji parametrów zastosowano metodę bayesowską. Ponadto opracowano metodę badania dopasowania modelu 
do danych empirycznych służącą do wizualizacji dopasowania modelu. Przedstawiono studium przypadku dotyczące wywrotek 
kopalnianych, w którym dwuwymiarowy rozkład Weibulla zastosowano do modelowania dwuwymiarowych danych dotyczących 
okresu eksploatacji tych pojazdów.
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2. Bivariate Weibull model

Weibull distribution can characterize an increasing, decreasing 
and constant failure rate. The desirable bivariate distribution is desig-
nated to retain this advantage.     

2.1.	 Bivariate Distribution Model

Various state-of-the-art bivariate distributions have been devel-
oped. Copula models are some of them. The Copula model uses a cop-
ula function to connect two or more cumulative distribution functions 
[27]. For different Copula functions and cumulative distribution, there 
are the Gaussian Copula model, the Gumbel Copula model, the Frank 
Copula model, the Joe Copula model, etc. [8]. The Copula model can 
model the dependence of the multi-variant distribution and is espe-
cially suitable for mechanical system reliability analysis. However, 
Copula models require an explicit expression of the marginal distribu-
tion for each variate. For example, for the bivariate situation, suppose 
the marginal distribution is u and v. The Gumbel Copula function is 
defined as:
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The dependency of the two marginal distributions is contained in 
the Copula parameter θ. In the univariate distribution, the exponential 
and Weibull distributions are intensively investigated. It is preferable 
to have a bivariate distribution of exponential or Weibull forms. The 
bivariate distribution is designated to inherit the good properties from 
the univariate exponential or Weibull distribution. For most exponen-
tial or Weibull distribution-based bivariate distributions, in general, 
the cumulative density function of the bivariate distribution can be 
written in the form:

	 ( ) ( ), exp ,R t s f t s= −   	 (2)

State-of-the-art models, with the bivariate Marshall-Olkin model 
being one of the most famous among them, differ in the definition of 
the function f  (t, s) [23]. The bivariate Marshall-Olkin model consid-
ers the two variates to be exponentially distributed. The two variates 
are competing to fail. The Marshall-Olkin takes the form:

	 R t s exp, , .( ) = − − − ( ) λ λ λ1 2 0t s Max t s 	 (3)

Hanagal (1996) extended Model (3) to bivariate or multivariate 
Weibull distribution by replacing the exponential distribution of (3) 
by Weibull distribution [6]:
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Ryu (1993) developed another bivariate Weibull distribution that 
extends the classical bivariate Marshall-Olkin. The model is as fol-
lows [32]:
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This model is much more complex than the model developed by 

Hanagal (1996), which complicates the parameter estimation. Other 
available models such as the Nataf model, the 2D Nagao-Kadoya-Rice 
model and the Placket model are derived from univariate Weibull dis-
tribution [18]. These models are simpler than (5) but still have com-
plex analytical expressions. We prefer the simple model with fewer 
parameters and a simple reliability function or probability density 
function. Roy (1994)  developed another bivariate Weibull distribu-
tion with a simpler form of reliability function [30]:
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In that model, the dependence of two variates is described by the term 
α β β

3 1 2x y . Hougaard (1986), Lu and Bhattacharyya (1990) and Joy 
(1998) developed a bivariate Weibull model by combining the two 
bivariates by means of a common exponent [10, 17, 20, 31, 34]. This 
model is simple, and it can be derived from physical model: 
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This paper follows Model (7), but with a slight modification. This 
bivariate Weibull model considered by this paper is of this form:

	 R t s exp t s, .( ) = − +( )
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The same model as (8) is also shown in [10, 17]. The model is the 
simplest state-of-the-art model for bivariate Weibull distribution de-
rived from univariate Weibull distribution. This paper uses this model 
due to its simplicity. 

2.2.	 Bivariate hazard function

In the case of a univariate case, for example where only time is 
under consideration, the hazard function  describes the conditional 
probability that a system will fail per time unit, given that the system 
has survived until time t. Provided the failure distribution function is 
first-order continuous, the hazard function can be defined as:
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Extending (9), we can derive the hazard function of the bivariate 
case as: 
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This formula implies the bivariate failure rate and its distribu-
tion function can be converted from each other. For the univariate 
case, a simple and flexible hazard function is of the power form 
Λ(t)=∫ r(t) dt=(t/α)β₋1). This is the hazard function of the two-param-
eter Weibull distribution. This form can describe a monotonically in-
creasing, decreasing and constant hazard function. This monotonicity 
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describes the physical characteristics of the system. The desired hazard function of model (8) for bivariate-dimensional distribution also retains 
this advantage. This cumulative hazard function of model (8) is a combination of the cumulative hazard function of the two variates:

	 B = ( ) +t s/ ( / )α αβ β
1 2

1 2 	 (11)

where γ > 0; α1, α2 ≥ 0; β1, β2 ≥ 0; α1, α2, β1, β2, γ ∈ R, and  α1, α2 cannot both be zero. This condition ensures the lim r t s
t
s
→∞
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, ∞ . Equation (11) 

is the desired cumulative hazard function of binary Weibull distribution. The cumulative hazard function is linear when all shape parameters and 

γ are equal to 1. For simplicity of notation, we let B = ( ) +t s/ ( / )α αβ β
1 2

1 2 .

This (11) is similar but simplifies the cumulative hazard function described by Lu and Hougaard [9-11, 20]. This model implicitly assumes 
the two variates s and t are influenced by the unknown common factor γ The variates t and s are independent only when γ =1. By binomial series 
expansion, Equation (11) expands into a series as: 
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when s t/ /α αβ β
2 1

2 1( ) < ( ) . Equation (12) reveals that Model (11) degenerates into a linear model where variates s and t are independent. 

Model (6) is also a special case of (11).  Model (6) only considers the first three terms of (11). It is also revealed from (11) that, when γ<1, Model 
(11) is nonlinear and the interaction of s and t are considered.

The reliability function corresponding to hazard function (11) is R = exp [₋Λ(t, s)]. The corresponding probability density function (PDF) is:
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As , the  is positive, which ensures (13) is a legitimate PDF function. The corresponding hazard function is:
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A similar situation is for  ( ),h s t
s

∂
∂

. The (16) reveals a weakness of 

Model (8): the failure rate is not always monotonic. When β1 1= , the 

hazard function for the bivariate Weibull is not the constant. Some 
desired properties for the univariate Weibull has not retained in the 
multi-dimensional model.

3. Parameter estimation of bivariate Weibull model

The bivariate Weibull model should overcome the parameter es-
timation issue in order for it to be applied to reliability. This section 
firstly derives the likelihood function of the bivariate model. This 
likelihood function will be used for parameter estimation and for opti-
mal model selection among various bivariate models.   

3.1.	 Likelihood function

When observed failure data are given as pairwise ( ),  1,2,..i is t i =  , 
the likelihood function corresponding to (13) is: 
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two univariate Weibull distributions. 
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The maximum likelihood estimate method can be used to estimate 
the parameters. There are no explicit analytical solutions by maximiz-
ing (18). One has to resort to a numerical method to find a solution. 
This numerical computation is heavy to find the solution by maximiz-
ing (18).  However, the computation can be simplified, as the likeli-
hood function (17) has a special property: the maximum likelihood 
estimator of γ is unique when Bi  is known. The proof is shown as 
follows. The computation can be simplified if the parameters in the 
two individual Weibull distributions are known.

Theory 1: The likelihood function in (17) has a unique global maxi-

mum when B 0i ≥ . 

Proof: Rewrite (11) as B and we consider the B as a variable. The 
PDF corresponding to Model (8) can then be written as 
f B B exp B( ) = −( )−γ γ γ1 . It is a continuous function for B R∈ . A 

likelihood function can then be written as:
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The function is continuous and has a second derivative as:
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 when B 0i ≥ , i.e. the ln L  is a concave function 

when B 0i ≥ . The local maximum will be the global maximum. The 
maximum likelihood estimate obtained by setting the first derivative 
to zero has a unique and global solution. This property facilitates the 

parameter estimation. Once the Bi  is known, one can find the optimal 
γ. 

3.2.	 Test the significance of correlation

When γ 1g = , Model (8) degenerates to a classic competing model. 
The γ contains the information about correction between the two vari-
ates ,s t .  The likelihood ratio test can be used to test the significance 
of γ. The hypothesis is:
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The statistics for test T
L
L

= ≠

=

�

�

γ

γ

1

1
. The 0H  is accepted when the 

χ 2 1( ) ≥ T  .

The PDF of (8) for γ 1g =  degenerates into ( ) ( ) ( ), . f s t f s f t= , 
i.e. two independent univariate Weibull distributions. The likelihood 
function is then L L s L tγ = = ( ) ( )1 max .max  . The significance test of 
γ can facilitate the parameter estimation. If γ is significantly near to 1, 
the two variates in (8) are considered as independent. One can hence 
estimate the parameters as univariate Weibull distributions for each 
dimension.

3.4.	 Bayesian parameter estimation

As there is no analytical solution to the parameter estimate prob-
lem for Model (8), using maximum likelihood estimate when the two 
variates are significantly correlated, only a numerical method is fea-
sible. For this situation, alternatively, this paper proposes a Bayesian 
estimate method [5, 19, 25]. The Bayesian method considers the pa-
rameter as a random variable. The distribution of the random variable 
(prior distribution) should be specified. For the univariate Weibull 
model, when the shape parameter is known, Gamma distribution can 
be used as the prior distribution for the scale parameter [16]. How-
ever, practically, the shape parameter is unknown in a more general 
situation. This paper uses the general Gamma and Beta distribution as 
the prior distribution. 

As α α β β1 2 1 2, , ,  >0, this paper assumes their prior distributions 

follow Gamma distribution. The γ is assumed to be Beta distribution 
since it is confined in (0,1). The case with γ 1g =  can be considered 
separately. The full Bayesian expression is then:
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(22)

The 1 1, 2 2 3 3 4 4, , , , , ,a b a b a b a b , 5 5 ,a b  are hyper-parameters for the 
corresponding distribution. When there is no expert information or 
no knowledge regarding the hyper-parameters, the uninformative uni-
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form distribution can be used; that is the case in this paper. Alterna-
tively, one can use  Jeffreys’ prior as prior distribution [1]. However, 
Jeffreys’ prior requires the Fisher information matrix. For our model 
with five unknown parameters, the Fisher information matrix is 
complex. Therefore, Jeffreys’ prior is not preferable. In order to 
obtain the posterior distribution of parameters, this papers uses  
the MCMC (Markov chain Monte Carlo) simulation method with 
Gibbs sampling [22]. The discussion on the computing method is 
ignored here, as it is not the main concern of this paper.

3.4.	 Reliability evaluation using Bayesian method

The reliability can be evaluated once the parameters in Model 
(8) are known. One advantage of the Bayesian method is that the 
distribution of the estimator is its posterior distribution. Reliabil-
ity and its credible interval can be readily derived since each of 
the distributions of the parameters is known. The point reliability 
at time t, by integrating (8) and (22), is as follows:

R |t s e Data d d
t s

, , , , ,
( / / )

( ) = ( )∫
( ) +( )

0
1 2 1 2 1 1

1 1 2 2∞ α αβ β γ

π α α β β γ α β dd d dα β γ2 2

(23)

The corresponding credible interval for ( )R ,t s  at significance level 
α is:

0
1 2 1 2 1 1 2 2

1 1 2 2θ α αβ β γ

π α α β β γ α β α β
L
e Data d d d d

t s
∫

( ) +( ) ( )
( / / )

, , , , | ddγ α= / 2
	

0
1 2 1 2 1 1 2 2

1 1 2 2θ α αβ β γ

π α α β β γ α β α β
U

e Data d d d d
t s

∫
( ) +( ) ( )

( / / )
, , , , | ddγ α= −1 2/

(24)

where 
θ α β α β γ= ( )f 1 1 2 2, , , ,

 . The lower and upper bound of 

( )R ,t s  given parameter θ is:

	 R inf supt s R t s R t sL u, , ; , , ;( ) = ( )( ) ( )( ) θ θ 	 (25)

It is hard to obtain the analytical expression of θL and θU. The 
(25) can be derived using the MCMC simulation method. The MCMC 
method is a standard method to find the solution in Bayesian analysis. 
One can refer to [21] for detail.   

4. Case study

The case study addresses the reliability analysis of trucks at Jajarm 
Bauxite Mine in Iran.  Jajarm Bauxite Mine is an open-pit mine, where 
the ore rock and waste is hauled by truck from the mine to the allo-
cated deposition places. In this mine, the ore rock is diasporic bauxite 
and the waste is flysch, which is characterized by the rhythmic alter-
nations of sandstone and fine-grained layers. The fine-grained layers 
contain siltstone, silty shales, clay shales, and, rarely, limestone beds 
or an ophiolitic mass may be found close to its margins. Based on the 
percentage of diaspora, ore rock is divided into three groups: Hard 
Bauxite (HB), Kaolin Bauxite (KB) and Shale Bauxite (SB).  Waste 
and ore deposition are located in different places, at varying distances 
from the mine. The waste rock and ore rock depots are around 4 and 
15 kilometres outside the mine pit, respectively. The trucks transfer 
the ore rock during the day shift, and, during the night shift, they work 
on the waste rock. This mine is the biggest bauxite mine in Iran, at a 
length of 11 kilometres. It is divided into 12 different sections, each 

section working independently with its own allocated trucks. Current-
ly, two types of trucks work in this mine: truck Type A and Type B. 
The capacity of Type A is 14 tons and of Type B is 35 tons. The truck 

drivers have, on average, 12 years’ experience. The mine has its own 
repair shop, where all maintenance is carried out by mine employees. 
The mine follows the preventive maintenance plan recommended by 
the truck manufacturing company. Fig. 1 shows a picture and a geo-
logical section of Jajarm Bauxite Mine.

4.1.	 Data description

Data are collected from the maintenance database for two trucks. 
The database records the total tons carried by the trucks between two 
failure times. During operation, the trucks carry SB, KB, HB and 
waste. The travel distance from the original location to the destina-
tion varies for iron ore or waste, as they are located in different spots. 
This paper defines the product of tonnage and travelled distance in 
km, abbreviated as Tons×kM, as the work load, as the failure depends 
on both the tonnage and the distance travelled. After sorting out the 
data, the total number of failures observed for each truck is 49 and 
32, respectively. Table 1 shows all the Time To Failure (TTFs) and 
the workload. 

4.2.	 Fitting data to bivariate Weibull model 

Considering TTF as one dimension (variate) and the workload as 
another dimension (variate), the bivariate Weibull models are used as 
reliability models. In order to compare the performance, this paper 
uses three models as the bivariate Weibull models:  the simple bivari-
ate Weibull model, where the two dimensions are independent; the 
model (6) in Section 2; and the desired model (8) also in Section 2.

4.2.1.	 Model 1: Simple bivariate Weibull model 

The first model uses the simple model of cumulative hazard func-

tion, assuming γ=1 for Λ t s t s, ( / / )( ) = ( ) + ( )α αβ β γ
1 2

1 2 . This im-

plicitly assumes the two variates are independent of each other.  We 
estimate the scale and shape parameters for the classical univariate 
Weibull distribution for each variate. The maximum likelihood meth-
od is used for each univariate Weibull distribution to estimate the pa-
rameters. The results are shown in Table 2. 

4.2.2.	 Model 2: Linear bivariate Weibull model

Model (6) is also applied to analyse the data. In order to differenti-
ate it from the other models, we name it the linear bivariate Weibull 
model. Let t in the bi-Weibull denote the calendar time and s denote 
the work load, Ton×kM. The probability density function for Model 
(6) is written as:

Fig. 1. Mining activities in Jajarm Bauxite Mines
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	 (26)

We apply the Bayesian method discussed in Section 3.3 to esti-
mate the parameters. The prior distribution chooses the uniform dis-
tribution for the hyper parameters in the Gamma prior distribution. 
The MCMC method is applied to compute the posterior distribution. 
After 10,000 iterations, the results converge. The mean of the poste-
rior distribution, which is also the Bayesian estimator of the model, is 
shown in Table 3.

4.2.3.	 Model 3: Exponent bivariate Weibull model

Similarly to the linear bivariate Weibull model, the paper also let t 
in the bi-Weibull denote the calendar time and s denote the work load, 
Ton×kM in Model (8). The prior distribution chooses the Gamma dis-
tribution as prior. The results are shown in Table 4. 

4.3.	 Model selection

When γ=1 for Model (8), two variates in the bivariate Weibull 
model are independent. The bivariate Weibull model is degenerated 
into two ordinary univariate Weibull models, and the classic parame-
ter estimation for univariate Weibull distribution can be used. Section 
3.2 in this paper proposes a likelihood ratio test for the significance of 
γ=1. If the hypothesis of γ=1 is accepted, the simple bivariate model 
should be chosen. Firstly, we use the maximum likelihood method to 
estimate the parameter to obtain the likelihood function for Model 
(8). Table 5 shows the results of maximizing (13) in Section 3.1 by 
using the constrained optimization method in Matlab for the data from 
Trucks 1 and 2. The results are close to the Bayesian estimators in 
Table 4.

Table 1.	 Failure Data Collected from Field for Truck 1 and Truck 2

Truck 1 Truck 2

No. TTF (In 
hours)

Workload 
(Ton*km) No. TTF (In 

hours)
Workload 
(Ton*km)

1 18.55 2013 1 225.15 21997.8
2 31.15 3501.3 2 255.35 26485.8
3 67.05 6986.1 3 109.4 10840.5
4 10.4 1511.4 4 52.1 6754
5 26.55 2963.4 5 44.4 6664.9
6 292.5 29494.3 6 280.11 34886.5
7 10.3 1217.7 7 39.2 4527.6
8 20.4 2992 8 180.55 24619.1
9 101.15 10906.5 9 254.1 26753.1

10 85 6705.6 10 22.45 2821.5
11 46.05 5009.4 11 45.4 6695.7
12 266.29 31519.4 12 252.1 28967.4
13 21.3 5544 13 33.5 4664
14 35 3375.9 14 9.2 3483.7
15 11 1230.9 15 56.25 6496.6
16 243.15 26690.4 16 22.15 3465
17 120.55 13084.5 17 31.35 4048
18 34.1 5359.2 18 44.2 12698.4
19 42.05 4775.1 19 169.41 34491.6
20 136.35 16525.3 20 20.45 2079

21 10.2 2420 21 149.05 14813.7

22 19.3 10351 22 326.3 47537.6
23 22.15 10997.8 23 61.35 11809.6
24 61.15 6755.1 24 33.55 4818
25 28.45 3177.9 25 17.55 1570.8
26 39.45 4492.4 26 37.35 3036
27 29.15 3831.3 27 203.2 29823.2
28 2.1 653.4 28 97.55 11267.3
29 10.4 2051.5 29 110.25 16124.9
30 5 1100 30 45.25 6211.7
31 22.05 2607 31 86.45 13818.2
32 39.45 5643 32 85.1 18590
33 67.21 14032.7
34 34.15 8911.1
35 94.3 13212.1
36 195.4 23562
37 32.4 5984
38 69.5 16434
39 19.25 3410
40 56.45 10609.5
41 17.25 3421
42 89.1 15446.2
43 143.4 48605.7
44 4.1 920.7
45 3.2 742.5
46 81.2 8434.8
47 87 10611.7
48 279.5 51966.2
49 10.1 1007.6

Table 2.	Maximum Likelihood Estimator for γ=1

Truck Variable Parameter Estimator ln L− Total

Truck 1

Workload
α1 9496

498.5

752
β1 0.96

Time
α2 63.4

253.5
β2 0.95

Truck 2

Workload
α1 15202

336.8

517.4
β1 1.2328

Time
α2 112.97

180.6
β2 1.1845

Table 3.	 Bayesian Estimator for Linear Bivariate Model

Truck Parameter Estimator ln L−

Truck 1

α1 4.61*10-4

713.4

β1 0.534

α2 0.01387

β2 0.5591

α3 0.001233

Truck 2

β1 0.5853

α2 0.01394

β2 0.5893

α3 5.608*10-4
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At significant level α=0.98, the χ2(1)=5.41. The hypothesis T  is  

2 1041

1
× −










 =

≠

=
ln

L
L
γ

γ
 for Truck 1 and 218 for Truck 2. For both 

trucks, χ2(1)=5.41<5.41. The calculations are shown in Table 6. 
Therefore, the hypothesis is rejected for both trucks. 
Conclusively, for both trucks, work load and time are not independ-
ent. The bivariate Weibull model with γ=1 is out of consideration for 
both trucks. 

A more general model selection uses the AIC (Akaike Information 
Criterion) and BIC (Bayes Information Criterion) [13, 29, 33]. BIC 
and AIC are defined as:

	 ln 2AIC L p= − +   and  ln lnBIC L p n= − + 	 (27)

where L  is the likelihood value, p  is the number of parameters, and 
n  is the data size. The model with lower AIC or BIC value is con-
sidered to be better. A complex model with more parameters has the 

potential to be more flexible than the simpler one to fit the data. How-
ever, the more complex model tends to have greater uncertainty. The 
AIC and BIC can balance the complexity and the model uncertainty. 
The AIC and BIC for the three models are shown in Table 7.

It can be seen from Table 7 that the exponent bivariate Weibull 
Model (8) has the lowest BIC and AIC values for both trucks and it 
is therefore considered the best model among the three. The linear 
bivariate Weibull model has the same number of parameters in the 
models. However, the BIC and AIC values are higher than the expo-
nent bivariate Weibull. The simple bivariate Weibull shows the worst 
performance for both trucks. This paper thus selects the exponent bi-
variate Weibull for both trucks.

4.4.	 Analysis using exponent bivariate Weibull

The model selected is the exponent bivariate Weibull Model (8). 
The results of parameter estimation by the Bayesian method are elab-
orated in Table 8. “Std” denotes the standard deviation. The lower and 
upper bounds of the credible interval are derived from the posterior 
distribution (22).  

Table 8 shows that the γ of the data for both trucks is below 0.5; 
the credible bounds of γ are far below 1. The results also showed the 
hypothesis of γ should be rejected. This result is consistent with the 
results from the likelihood ration test described in Table 6. 

4.5.	 Goodness of fit test

The assumption of the data fitting the bivariate Weibull model 
should be validated by the goodness of fit test. The reliability function 
for Model (8) has the form R Λ Λ Λ( ) = −( )−γ γ γ1exp . This is a uni-

variant Weibull distribution with scale parameter 1 and shape param-
eter γ. The proposed goodness of fit test is based on this special struc-
ture. Each Λi can be computed from the given data and the estimated 

Table 5.	Maximum Likelihood Estimator for 1g ≠

Truck Parameter Estimator ln L−

Truck 1

α1 10000

700.5

β1 4.514

α2 70.55

β2 4.224

g 0.219

Truck 2

α1 15019

480.4

β1 6.002

α2 113.9

β2 5.9708

γ 0.2035

Table 6.	 Hypothesis Test for γ = 1

Truck Likelihood 
of γ = 1

Likelihood 
of γ 1g ≠ T Result

Truck 1 752 700.5 103 Rejected

Truck 2 517.4 480.4 218 Rejected

Table 7.	 BIC and AIC of Models

Truck Model BIC AIC

Truck 1

Simple Model 1519.6 1512

Model (5) 1446.3 1436.8

Model (8) 1421.9 1412.4

Truck 2

Simple Model 1048.7 1042.8

Model (5) 1196.0 1188.7

Model (8) 978.1 970.8

Table 8.	 Bayesian Parameter Estimator for Trucks with Credible Interval

Truck Parameter Estimator Std Lower Upper

Truck 1

α1 11210 929 10050 13430

β1 4.526 0.5585 3.504 5.663

α2 79.33 7.76 66.28 96.07

β2 4.224 0.5055 3.295 5.263

γ 0.2237 0.034 0.1637 0.2972

Truck 2

α1 15760 2143 11510 19660

β1 5.861 0.922 4.149 7.907

α2 119.3 16.59 88.03 153.6

β2 5.823 0.921 4.144 7.879

γ 0.214 0.04282 0.1439 0.3031

Table 4.	 Bayesian Estimator for Exponent Bivariate Model

Truck Parameter Estimator ln L−

Truck 1

α1 11.210

701.2

β1 4.526

α2 79.33

β2 4.224

γ 0.2237

Truck 2

α1 15760

480.5

β1 5.861

α2 119.3

β2 5.823

γ 0.214
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parameter. This paper proposes a simple goodness of fit test based on 
the plot. Let B t s= +α αβ β

1 21 2 , since:

	 ln R t( ) = −Bγ 	 (28)

The (28) can be converted to a linear function, the linearity can be 
used to test goodness of fit. The ( )R t  is approximated by median 
rank R i( ) = − −( ) +( )1 0 3 0 4i n. / . . The Bγ can be calculated by using 
the parameters in Table 8. Some of Bγ  are tabulated in Table 9 for 
Truck 1. 

The task is to check whether ( )ln R t  and Bγ is a linear function of 
form, as y = − x. If the model fits the data, the data will scatter around 

the straight line y = − x. Figure 3 presents the ( )ln R t  against Bγ for 
Trucks 1 and 2. For Truck 1, the empirical values (red dots) are around 
the theoretical values (the blue line in Figure 2). For Truck 2, the em-
pirical data deviate more from the expected value than in the case of 
Truck 1. The model is considered unable to fit the data for Truck 2.

4.6.	 Reliability evaluating

The bivariate Weibull model can be applied to the data from Truck 
1. Substitute the estimated parameters into Model (8); the reliability 
function against calendar time and work load is:

	
( ) ( ) ( )0.22374.526 4.224R . ( / 11,210 / 79.33)t s t s= + 	 (29)

Model (29) is plotted in Figure 3 in three dimensions. 

It is usually of interest to find 
the reliability for a given time. The 
reliability and its lower and upper 
bounds of the credible interval 
are also computed by the MCMC 
method described in Section 3.5. 
Table 10 gives a demonstration of 
the reliability for some lifetime 
points. 

The reliability function (29) can be further 
used to schedule the maintenance activities in 
respect of cost and available resources. This pa-
per omits this, as the maintenance optimization 
is outside the paper’s scope.

5. Discussion and conclusion

In the truck data, the work load and the cal-
endar time show significant correlation. The 
simple bivariate Weibull model is thus not suit-
able for the data. In this case study, according 
to the AIC and BIC model selection criteria, 
the exponent model has the best performance, 

as it has the lowest AIC 
and BIC values. Moreo-
ver, with reference to our 
discussion in Section 3, 
the exponent model is the 
most general among the 
three models. The linear 
bivariate Weibull model 
only considers the first two 
orders of the exponent bi-
variate model. The simple 
bivariate model does not 
have the interaction part of 
the linear bivariate model. 
The exponent model is 
more general than the sim-
ple model and the linear 
model. 

The reliability of the 
mining trucks depends on 

Table 9.	 Cumulative Hazard Function and Empirical Reliability

i 1 2 3 4 5 6 7 8 9 10 ..

Bγ 0.058 0.068 0.084 0.10 0.146 0.152 0.1607 0.1632 0.1934 0.2196 ..

( )ln R t 0.0142 0.035 0.0562 0.078 0.10 0.123 0.146 0.170 0.194 0.219 ..

Table 10. Reliability for Some Points for Truck 1 

(T.S) R Std Lower Upper

(20.2000) 0.7165 0.05052 0.6129 0.8097

(100.10000) 0.2359 0.04949 0.1491 0.342

(30.10000) 0.3628 0.05484 0.2604 0.4729

(30.5000) 0.5556 0.05654 0.4438 0.6659

(300.30000) 0.02118 0.01495 0.003495 0.06009

Fig. 3. Reliability Function of Mining Truck 1

Fig. 2. Goodness of Fit Test for Truck 1 (Left) and Truck 2 (Right)
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two dimensions:  calendar time and work load. The bivariate Weibull 
model is proposed to accommodate this two-dimensional life data 
for reliability modelling. Three bivariate models – simple bivariate 
Weibull model, linear bivariate Weibull model and the exponent bi-
variate model – are selected to model the reliability. The exponent 
model shows the best performance among the three models, and so, 
in the case study, the reliability model chooses the exponent model. 
The likelihood ratio test proposed in the paper is used to test whether 
the correlation of the two dimensions of the data are significant. In the 
case study, it found the correlation significant. If they are not corre-

lated, the simple bivariate is preferred, as the model can be simplified 
and the traditional parameter estimation method can be used, since 
each independent variant can be considered as a univariate Weibull 
distribution. The case study found that the Bayesian method is ef-
fective by using the Gamma distribution as prior-distribution.  The 
disadvantage is that obtaining the results requires simulation, which 
is time-consuming. Future work will focus on the development of a 
more efficient parameter estimation method. 
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