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RELIABILITY MODELLING ON TWO-DIMENSIONAL LIFE DATA USING BIVARIATE

WEIBULL DISTRIBUTION: WITH CASE STUDY OF TRUCK IN MINES

MODELOWANIE NIEZAWODNOSCIOWE DWUWYMIAROWYCH DANYCH
DOTYCZACYCH OKRESU EKSPLOATACJI ZWYKORZYSTANIEM
DWUWYMIAROWEGO ROZKLADU WEIBULLA.

Z BADAN NAD WYWROTKAMI KOPALNIANYMI

An engineering system can exhibit two- or multi-dimensions in its lifetime. As the classical univariate distribution cannot model this
multi-dimensional characteristic, it is necessary to extend it to multivariate distribution in order to capture the multi-dimensional
characteristics. This paper proposes a bivariate Weibull distribution that combines two classical Weibull models by a common
exponent. The common exponent can represent the correlation between the two dimensions. A ratio likelihood test is proposed to
test the significance of the correlation between the two dimensions. 1o solve the parameter estimation problem, this paper suggests
a Bayesian method. Moreover, a goodness of fit test method is developed to visually check the fitness of the model. A case study
considering mining trucks is presented to apply the bivariate Weibull distribution to model the two-dimensional life data.

Keywords: bivariate Weibull; life data; reliability modelling,; Bayesian method; mining truck.

Systemy inzynieryjne mozna charakteryzowac za pomocq dwoch lub wiecej wymiarow dotyczqcych okresu ich eksploatacji (np.
przebieg i czas pracy pojazdu). Poniewaz klasyczny rozktad jednowymiarowy nie wystarcza do zamodelowania tej wielowymiaro-
wej charakterystyki, konieczne jest wykorzystanie rozktadu wielowymiarowego, ktory pozwala uchwycié wielowymiarowos¢ cyklu
zycia systemu. W artykule zaproponowano dwuwymiarowy rozktad Weibulla, ktory tgczy w sobie dwa klasyczne modele Weibulla
za pomocg wspolnego wyktadnika. Wspolny wyktadnik moze reprezentowac korelacje miedzy dwoma wymiarami. Zapropono-
wano test ilorazu wiarygodnosci, ktory umozliwia badanie istotnosci korelacji pomiedzy dwoma wymiarami. Do rozwigzania
problemu estymacji parametrow zastosowano metode bayesowskq. Ponadto opracowano metode badania dopasowania modelu
do danych empirycznych stuzqcq do wizualizacji dopasowania modelu. Przedstawiono studium przypadku dotyczgce wywrotek
kopalnianych, w ktorym dwuwymiarowy rozktad Weibulla zastosowano do modelowania dwuwymiarowych danych dotyczgcych
okresu eksploatacji tych pojazdow.

Stowa kluczowe: dwuwymiarowy rozktad Weibulla; dane z okresu eksploatacji; modelowanie niezawodnosci,
metoda Bayesa; wywrotka kopalniana.

1. Introduction

It is not rare for engineering systems exhibiting binary- or even
multi-dimensional lifetimes. The life of an airplane can be described
by both calendar time and the total flight hours; the life of rail track
life can be described according to both age and the total gross load
it has carried [2], while an automobile’s usage also corresponds
with calendar time and distance travelled [12]. Binary-dimensional
or multi-dimensional failure times are also practical when a system
comprises several dependent components. For example, for the rail-
way bogie, the failures of a wheel, an axle or a spring are essentially
dependent on each other. The reliability of the bogie should address
the dependency of the load, torque or other mechanic measurement
on each other. Each measurement is a dimension corresponding to
the lifetime. Multi-dimensional distribution is also practical when a
system has multiple dependent failure modes. Each failure mode cor-
responds one dimension in the lifetime.

Classic life-data analysis in reliability considers only one dimen-
sion [4, 24, 26, 28]. A typical example is Weibull analysis, which con-
siders time as the sole variate. The covariate-based model, such as the

Proportional Hazard Model (PHM), can accommodate multi-dimen-
sional variates to some extend [3, 7, 14, 15]. The main dimension,
usually calendar time, is in the baseline function. The other dimen-
sions are accommodated in the covariate function. However, covari-
ates are not one dimension of the distribution. The PHM is essentially
a one-dimensional model.

It is thus necessary to develop multivariate lifetime distribution
model, applicable for reliability analysis. In the desired multi-dimen-
sional model, each dimension of the lifetime is considered equal,
instead of as covariate as in the PHM model. In order to apply the
model to reliability analysis, the corresponding parameter estimation
and goodness of fit test method should also be proposed. This paper
is organized as follows: Section 2 presents the literature survey and
discusses some properties of the bivariate Weibull model concerned
with reliability. Section 3 presents the methods for parameter estima-
tion and the reliability evaluation, while Section 4 discusses the case
of the mining transportation truck and the application of the Bivariate
Weibull model to the case. Finally, Section 5 presents the discussion
and conclusion of the paper.
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2. Bivariate Weibull model

Weibull distribution can characterize an increasing, decreasing
and constant failure rate. The desirable bivariate distribution is desig-
nated to retain this advantage.

2.1. Bivariate Distribution Model

Various state-of-the-art bivariate distributions have been devel-
oped. Copula models are some of them. The Copula model uses a cop-
ula function to connect two or more cumulative distribution functions
[27]. For different Copula functions and cumulative distribution, there
are the Gaussian Copula model, the Gumbel Copula model, the Frank
Copula model, the Joe Copula model, etc. [8]. The Copula model can
model the dependence of the multi-variant distribution and is espe-
cially suitable for mechanical system reliability analysis. However,
Copula models require an explicit expression of the marginal distribu-
tion for each variate. For example, for the bivariate situation, suppose
the marginal distribution is # and v. The Gumbel Copula function is
defined as:

0
C(u,v;@)zexp {(lnu)é+(lnv)é} ()

The dependency of the two marginal distributions is contained in
the Copula parameter 6. In the univariate distribution, the exponential
and Weibull distributions are intensively investigated. It is preferable
to have a bivariate distribution of exponential or Weibull forms. The
bivariate distribution is designated to inherit the good properties from
the univariate exponential or Weibull distribution. For most exponen-
tial or Weibull distribution-based bivariate distributions, in general,
the cumulative density function of the bivariate distribution can be
written in the form:

R(t.s)=exp[—f (t.5)] )

State-of-the-art models, with the bivariate Marshall-Olkin model
being one of the most famous among them, differ in the definition of
the function f(¢,s) [23]. The bivariate Marshall-Olkin model consid-
ers the two variates to be exponentially distributed. The two variates
are competing to fail. The Marshall-Olkin takes the form:

R(t,s):exp[—llt—/'Lzs—AOMax(t,s)]. (3)

Hanagal (1996) extended Model (3) to bivariate or multivariate
Weibull distribution by replacing the exponential distribution of (3)
by Weibull distribution [6]:

R(t,s)= exp[—altc —0tys¢ — a3Max(t,s)c]. (4)

Ryu (1993) developed another bivariate Weibull distribution that
extends the classical bivariate Marshall-Olkin. The model is as fol-
lows [32]:

a, (b a, (=) it~
ap _altfl —apty _aztgz +£(l—e 102 11))+i(e 1lt2=h) _ y-nin-raty )}tl <t
72 271N
R(tty)=
a oty o . e
exp[faltlﬁ' —apt —aztgz +i(l—e 72(t2 lx))Jr 12 (e n(=h) _ yni=nh )];[l >t
n 271N

®)

This model is much more complex than the model developed by

Hanagal (1996), which complicates the parameter estimation. Other
available models such as the Nataf model, the 2D Nagao-Kadoya-Rice
model and the Placket model are derived from univariate Weibull dis-
tribution [18]. These models are simpler than (5) but still have com-
plex analytical expressions. We prefer the simple model with fewer
parameters and a simple reliability function or probability density
function. Roy (1994) developed another bivariate Weibull distribu-
tion with a simpler form of reliability function [30]:

R(t,s)zexp[—altﬁl —Ot2S'B2 —a3tﬁ1sﬁ2} (6)

In that model, the dependence of two variates is described by the term
a3xﬂ1 yﬁ2 . Hougaard (1986), Lu and Bhattacharyya (1990) and Joy

(1998) developed a bivariate Weibull model by combining the two
bivariates by means of a common exponent [10, 17, 20, 31, 34]. This
model is simple, and it can be derived from physical model:

Ai-2 pr-l A ld B ’
th‘y’[):ylafzﬂ1(ﬂ| _])[L] aflﬂz[i] [[LJ +(J/az)ﬂ:} |1_|{[Z] +(‘w‘az)ﬂ2:| ‘+
ot o o o Y o
fi f-1 Bl A - fi-1 ”
Fa' [Lj l a;ﬂz[il ’[ll](yl)allﬁ] [ij l {(i] I+(.¥/al)ﬂl} +(7-Dog 'y [Lj [(f a5y T/ 3}
] L) v ] ] o

(7

This paper follows Model (7), but with a slight modification. This
bivariate Weibull model considered by this paper is of this form:

R(t,s)zexp[—(altﬂl +aysP )y} ®)

The same model as (8) is also shown in [10, 17]. The model is the
simplest state-of-the-art model for bivariate Weibull distribution de-
rived from univariate Weibull distribution. This paper uses this model
due to its simplicity.

2.2. Bivariate hazard function

In the case of a univariate case, for example where only time is
under consideration, the hazard function describes the conditional
probability that a system will fail per time unit, given that the system
has survived until time t. Provided the failure distribution function is
first-order continuous, the hazard function can be defined as:

. F(t+At)-F(t)
r(f) = Alz@o At _ /(1) )

R(1) R(1)

Extending (9), we can derive the hazard function of the bivariate
case as:

im F(t+At,s+As)—F(t,s)
At—0 AtAs

r(t,s) _ As—0

3 6F(t,s)/6t+6F(t,s)/6s
- R(t,s)

R(t,s)
(10)

This formula implies the bivariate failure rate and its distribu-
tion function can be converted from each other. For the univariate
case, a simple and flexible hazard function is of the power form
A@)=] H#) di=(t/a)’""). This is the hazard function of the two-param-
eter Weibull distribution. This form can describe a monotonically in-
creasing, decreasing and constant hazard function. This monotonicity
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describes the physical characteristics of the system. The desired hazard function of model (8) for bivariate-dimensional distribution also retains
this advantage. This cumulative hazard function of model (8) is a combination of the cumulative hazard function of the two variates:

B=(t/a) +(s/ a)” (11

where y>0; a,0,>0; B, /,=>0; ay, as, f1, B2, ¥ € R, and a,, a, cannot both be zero. This condition ensures the lim r(t,s) =+o0 . Equation (11)
—0

s>
is the desired cumulative hazard function of binary Weibull distribution. The cumulative hazard function is linear when all shape parameters and

y are equal to 1. For simplicity of notation, we let B=(¢/ al)ﬂl +(s/ay)P.

This (11) is similar but simplifies the cumulative hazard function described by Lu and Hougaard [9-11, 20]. This model implicitly assumes
the two variates s and ¢ are influenced by the unknown common factor y The variates ¢ and s are independent only when y =1. By binomial series
expansion, Equation (11) expands into a series as:

lkﬁaﬂﬁlwaﬁm4j(770@72ﬂ@/aﬁ%)

M“FOWM”””%W+H%; T )ﬂrw (12)
’ ’ t/al

when (s/ oy )ﬁ 2 < (t/ al)ﬂ ! Equation (12) reveals that Model (11) degenerates into a linear model where variates s and ¢ are independent.

Model (6) is also a special case of (11). Model (6) only considers the first three terms of (11). It is also revealed from (11) that, when y<1, Model
(11) is nonlinear and the interaction of s and ¢ are considered.
The reliability function corresponding to hazard function (11) is R=exp[-A(z,5)]. The corresponding probability density function (PDF) is:

f(s.2)=7% "By (t/al)ﬁrlaz_lﬁz(s/az)ﬁrl[(t/al)ﬁl +(s/an)P2 ]y_z{l/y—l+[(t/al)ﬁl +

+ (s/otz)ﬁ2 T’} exp[—[(t/al)ﬁ' +(s /otz)ﬁ2 T/]
(13)

As y E{0,1]y €(0.1], the f(s.t)f(s.t] is positive, which ensures (13) is a legitimate PDF function. The corresponding hazard function is:

St - 1 -1 r-2 ¥
h(S,t):I?Et;:yzal lﬁl (t/Ot] )ﬁl (%) lﬁz (S/az)ﬁz [(t/al)ﬁl +(S/a2)ﬁ2:| l/y —1+|:(t/0t])ﬁ1 +(S/a2)ﬂ2:| (]4)
as:
-2 pr-1 By 72 By v
Oh(s,t _ t _ K t 1 t
( ):yzal zﬂl(ﬂl—l)[J azlﬂz[] (J +(s/ ay)P2 ——1+ [] +(slap)P2 | b
A AR Rl e - Pt 5 2
a ﬂl[} a; ﬂz[] [—lj(y—z)al ﬁl[] [] Hsla) |+ 2y -Day ﬂl[] [(t7e) (s )™ |
a) 29) 14 a o o
(15)
as: 0<y <1, when:
6h(s,t)
=L 0
Bi o
Bi>L 6hgs,t) is not monotonic (16)
t
0< B <L Oh(s1) <0
ot
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A similar situation is for . The (16) reveals a weakness of

Oh (s, t)
. . as .
Model (8): the failure rate is not always monotonic. When f; =1, the

hazard function for the bivariate Weibull is not the constant. Some
desired properties for the univariate Weibull has not retained in the
multi-dimensional model.

3. Parameter estimation of bivariate Weibull model

The bivariate Weibull model should overcome the parameter es-
timation issue in order for it to be applied to reliability. This section
firstly derives the likelihood function of the bivariate model. This
likelihood function will be used for parameter estimation and for opti-
mal model selection among various bivariate models.

3.1. Likelihood function

When observed failure data are given as pairwise (s;,f;) i =1,2,..,
the likelihood function corresponding to (13) is:

L=T1/f G50 (17)
i=1

The marginal distributions are R(s,O)zeXp(f(s/ oy )yﬂ 1) and

R(0,¢)=exp(-(t/a, )yﬂ 2), where the model have degenerated into

two univariate Weibull distributions.
In L= n(-Ina; —Ina, + 2Ing + Inb; +Inb, )+ (b; - Xt /a,

(B =i lay +(y =2)XInB; + Xin(1/y ~1+B] )~ XB] (18)

The maximum likelihood estimate method can be used to estimate
the parameters. There are no explicit analytical solutions by maximiz-
ing (18). One has to resort to a numerical method to find a solution.
This numerical computation is heavy to find the solution by maximiz-
ing (18). However, the computation can be simplified, as the likeli-
hood function (17) has a special property: the maximum likelihood
estimator of y is unique when B; is known. The proof is shown as
follows. The computation can be simplified if the parameters in the
two individual Weibull distributions are known.

Theory 1: The likelihood function in (17) has a unique global maxi-
mum when B; >0.

Proof: Rewrite (11) as B and we consider the B as a variable. The
PDF corresponding to Model (8) can then be written as

f(B)= yBVﬁlexp(—BV). It is a continuous function for BeR . A

likelihood function can then be written as:
In L=f(y)= nlny +(y —1)XInB, - X B/. (19)

The function is continuous and has a second derivative as:

*InL __l:

n 2
- = +XB/ (nB;) ] (20)

4

L

oy?
when B; > 0. The local maximum will be the global maximum. The
maximum likelihood estimate obtained by setting the first derivative
to zero has a unique and global solution. This property facilitates the

Then

<0 when B; >0, ie. the InL is a concave function

parameter estimation. Once the B; is known, one can find the optimal
7.

3.2. Test the significance of correlation

When y=1, Model (8) degenerates to a classic competing model.
The y contains the information about correction between the two vari-

ates s,¢ . The likelihood ratio test can be used to test the significance
of y. The hypothesis is:

Hy:y=1LHy:y#1 1)

L y#1
Ly

The statistics for test 7 =

. The H,, is accepted when the

2P(1)=T .

The PDF of (8) for y=1 degenerates into f (s,t)= f(s).f ().
i.e. two independent univariate Weibull distributions. The likelihood
function is then L ,_; = max L(s).max L(¢) . The significance test of
y can facilitate the parameter estimation. If y is significantly near to 1,
the two variates in (8) are considered as independent. One can hence
estimate the parameters as univariate Weibull distributions for each
dimension.

3.4. Bayesian parameter estimation

As there is no analytical solution to the parameter estimate prob-
lem for Model (8), using maximum likelihood estimate when the two
variates are significantly correlated, only a numerical method is fea-
sible. For this situation, alternatively, this paper proposes a Bayesian
estimate method [5, 19, 25]. The Bayesian method considers the pa-
rameter as a random variable. The distribution of the random variable
(prior distribution) should be specified. For the univariate Weibull
model, when the shape parameter is known, Gamma distribution can
be used as the prior distribution for the scale parameter [16]. How-
ever, practically, the shape parameter is unknown in a more general
situation. This paper uses the general Gamma and Beta distribution as
the prior distribution.

As ay,0,, B, B, >0, this paper assumes their prior distributions

follow Gamma distribution. The y is assumed to be Beta distribution

since it is confined in (0,1). The case with y=1 can be considered
separately. The full Bayesian expression is then:

7 (ay,0y, By, By, y|Data) =

_% oy
L(Data)xéalalfle b x;alarle by
I(a)p" I'(ay)by?

1 1yl 1 ag=1 ~By /b T(as) 4 bs -1
——— BB T e B —— BT T2 yS5 7 (1-y
(o)t Mot ey’ 77

(22)

The ay,b ay,by,a3,b3,a4,b4 , as,bs are hyper-parameters for the
corresponding distribution. When there is no expert information or
no knowledge regarding the hyper-parameters, the uninformative uni-
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form distribution can be used; that is the case in this paper. Alterna-
tively, one can use Jeffreys’ prior as prior distribution [1]. However,
Jeftreys’ prior requires the Fisher information matrix. For our model
with five unknown parameters, the Fisher information matrix is
complex. Therefore, Jeffreys’ prior is not preferable. In order to
obtain the posterior distribution of parameters, this papers uses
the MCMC (Markov chain Monte Carlo) simulation method with
Gibbs sampling [22]. The discussion on the computing method is
ignored here, as it is not the main concern of this paper.

3.4. Reliability evaluation using Bayesian method

The reliability can be evaluated once the parameters in Model
(8) are known. One advantage of the Bayesian method is that the
distribution of the estimator is its posterior distribution. Reliabil-
ity and its credible interval can be readily derived since each of
the distributions of the parameters is known. The point reliability
at time t, by integrating (8) and (22), is as follows:

R(t,5)= Te((’/“l Pe(sia |

0

(. ay, By, By y|Data)doyd Bidayd Body

(23)

The corresponding credible interval for R(t,s) at significance level
o is:

Or (t/ey )'B1 +(s/a2)ﬁ2
|e

0

4
) ﬂ(al,az,ﬂl,ﬂz,}/|Data)da1dﬁ1da2dﬁ2d}/ =a/2

% (t1g)P1 +(s/a2)ﬁ2 )7
j e (a0, By, By,yIData)doyd Bidond Bydy =1-a /2

0
24

0= f(al,ﬂl,abﬂZ’Y)

where . The lower and upper bound of

R(¢,s) given parameter 0 is:
R(t,s) =[inf(R(t,s;9L )),sup(R(t,s;Gu ))J (25)

It is hard to obtain the analytical expression of §; and 6;. The
(25) can be derived using the MCMC simulation method. The MCMC
method is a standard method to find the solution in Bayesian analysis.
One can refer to [21] for detail.

4, Case study

The case study addresses the reliability analysis of trucks at Jajarm
Bauxite Mine in Iran. Jajarm Bauxite Mine is an open-pit mine, where
the ore rock and waste is hauled by truck from the mine to the allo-
cated deposition places. In this mine, the ore rock is diasporic bauxite
and the waste is flysch, which is characterized by the rhythmic alter-
nations of sandstone and fine-grained layers. The fine-grained layers
contain siltstone, silty shales, clay shales, and, rarely, limestone beds
or an ophiolitic mass may be found close to its margins. Based on the
percentage of diaspora, ore rock is divided into three groups: Hard
Bauxite (HB), Kaolin Bauxite (KB) and Shale Bauxite (SB). Waste
and ore deposition are located in different places, at varying distances
from the mine. The waste rock and ore rock depots are around 4 and
15 kilometres outside the mine pit, respectively. The trucks transfer
the ore rock during the day shift, and, during the night shift, they work
on the waste rock. This mine is the biggest bauxite mine in Iran, at a
length of 11 kilometres. It is divided into 12 different sections, each

section working independently with its own allocated trucks. Current-
ly, two types of trucks work in this mine: truck Type A and Type B.
The capacity of Type A is 14 tons and of Type B is 35 tons. The truck

Mine Site

Ore Rock
4 )

Waste Rock

Fig. 1. Mining activities in Jajarm Bauxite Mines

drivers have, on average, 12 years’ experience. The mine has its own
repair shop, where all maintenance is carried out by mine employees.
The mine follows the preventive maintenance plan recommended by
the truck manufacturing company. Fig. 1 shows a picture and a geo-
logical section of Jajarm Bauxite Mine.

4.1. Data description

Data are collected from the maintenance database for two trucks.
The database records the total tons carried by the trucks between two
failure times. During operation, the trucks carry SB, KB, HB and
waste. The travel distance from the original location to the destina-
tion varies for iron ore or waste, as they are located in different spots.
This paper defines the product of tonnage and travelled distance in
km, abbreviated as TonsxkM, as the work load, as the failure depends
on both the tonnage and the distance travelled. After sorting out the
data, the total number of failures observed for each truck is 49 and
32, respectively. Table 1 shows all the Time To Failure (TTFs) and
the workload.

4.2. Fitting data to bivariate Weibull model

Considering TTF as one dimension (variate) and the workload as
another dimension (variate), the bivariate Weibull models are used as
reliability models. In order to compare the performance, this paper
uses three models as the bivariate Weibull models: the simple bivari-
ate Weibull model, where the two dimensions are independent; the
model (6) in Section 2; and the desired model (8) also in Section 2.

4.2.1. Model 1: Simple bivariate Weibull model
The first model uses the simple model of cumulative hazard func-
4
tion, assuming y=1 for A(t,s) = ((l/al )ﬁl +(s/a2)ﬁ2) . This im-

plicitly assumes the two variates are independent of each other. We
estimate the scale and shape parameters for the classical univariate
Weibull distribution for each variate. The maximum likelihood meth-
od is used for each univariate Weibull distribution to estimate the pa-
rameters. The results are shown in Table 2.

4.2.2. Model 2: Linear bivariate Weibull model

Model (6) is also applied to analyse the data. In order to differenti-
ate it from the other models, we name it the linear bivariate Weibull
model. Let t in the bi-Weibull denote the calendar time and s denote
the work load, TonxkM. The probability density function for Model
(6) is written as:
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Table 1. Failure Data Collected from Field for Truck 1 and Truck 2

Table 2. Maximum Likelihood Estimator for y=1

Truck 1 Truck 2 Truck | Variable | Parameter | Estimator -InL Total
No TTF (In Workload No TTF (In Workload
’ hours) (Ton*km) ' hours) (Ton*km) Workload * 9496 4985
0.96
1 18.55 2013 1 225.15 21997.8 Truck 1 B 752
2 31.15 3501.3 2 255.35 26485.8 a 63.4
Time 253.5
3 67.05 6986.1 3 109.4 10840.5 B 0.95
4 | 104 1511.4 4 521 6754 o 15202
5 | 2655 2963.4 5 | 444 6664.9 Workload 5 12328 336.8
1 .
6 |2925 29494.3 6 280.11 34886.5 Truck 2 517.4
0 112.97
7 10.3 1217.7 7 39.2 4527.6 Time 180.6
By 1.1845
8 20.4 2992 8 180.55 24619.1
9 101.15 10906.5 9 254.1 26753.1
10 |85 6705.6 10 22.45 2821.5 -1 -1.2p,-1 2B-1 Br-1
f(ts)= (%ﬁ]ﬁzfﬂl P21+ ayaBiByt” s ool 4
11 | 46.05 5009.4 11 45.4 6695.7
12 | 266.29 31519.4 12 | 2521 28967.4 3B Pyt Pils? Pt )exp[,altﬂl —aysP? —aytPish
13 | 213 5544 13 335 4664 ' (26)
14 135 33759 14 |92 3483.7 We apply the Bayesian method discussed in Section 3.3 to esti-
15 |11 12309 15 15625 6496.6 mate the parameters. The prior distribution chooses the uniform dis-
16 | 243.15 26690.4 16 | 22.15 3465 tribution for the hyper parameters in the Gamma prior distribution.
17 | 120.55 13084.5 17 | 31.35 4048 The MCMC method is applied to compute the posterior distribution.
18 | 341 53592 18 | 442 12698.4 AfterIIO,IOOO. iteratiqns,.the results converge. T.he mean of the pOStf.:-
19 | 4205 47751 19 169.41 344916 rior dlSFrlbuthl’l, which is also the Bayesian estimator of the model, is
shown in Table 3.
20 | 136.35 16525.3 20 | 2045 2079
21 | 102 2420 21 149.05 14813.7 Table 3. Bayesian Estimator for Linear Bivariate Model
22 1193 10351 22 13263 47537.6 Truck Parameter Estimator ~InL
23 | 22.15 10997.8 23 61.35 11809.6 a 4.61%10-4
24 | 61.15 6755.1 24 33.55 4818
By 0.534
25 | 28.45 3177.9 25 17.55 1570.8
26 | 39.45 4492.4 26 | 3735 3036 Truck1 % 0.01387 7134
27 | 29.15 38313 27 | 2032 29823.2 Pz 0.5591
28 |21 653.4 28 | 97.55 11267.3 a3 0.001233
29 104 2051.5 29 110.25 16124.9 B 0.5853
30 |5 1100 30 | 45.25 6211.7 a 0.01394
Truck 2
31 | 22.05 2607 31 | 8645 13818.2 B, 05893
32 | 3945 5643 32 85.1 18590 a 5.608%10-4
33 ]67.21 14032.7
34 |34.15 8911.1
35 | 943 13212.1 4.2.3. Model 3: Exponent bivariate Weibull model
36 | 1954 23562 Similarly to the linear bivariate Weibull model, the paper also let t
37 | 324 5984 in the bi-Weibull denote the calendar time and s denote the work load,
38 | 69.5 16434 TonxkM in Model (8). The prior distribution chooses the Gamma dis-
39 |19.25 3410 tribution as prior. The results are shown in Table 4.
4 4 1 . .
0 | 5645 06095 4.3. Model selection
41 |17.25 3421
42 891 154462 When )./:1 for Model (8),.tw0' Variate.s in the biV'ariate Weibull
43 | 1434 48605.7 model are independent. The bivariate Weibull model is degenerated
' ’ into two ordinary univariate Weibull models, and the classic parame-
44 |41 920.7 ter estimation for univariate Weibull distribution can be used. Section
45 |32 742.5 3.2 in this paper proposes a likelihood ratio test for the significance of
46 | 81.2 8434.8 y=1. If the hypothesis of y=1 is accepted, the simple bivariate model
47 |87 106117 should be chosen. Firstly, we use the maximum likelihood method to
48 | 2795 51966.2 estimate the parameter to obtain the likelihood function for Model
' X (8). Table 5 shows the results of maximizing (13) in Section 3.1 by
49 | 101 1007.6 using the constrained optimization method in Matlab for the data from

Trucks 1 and 2. The results are close to the Bayesian estimators in
Table 4.
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Table 4. Bayesian Estimator for Exponent Bivariate Model

Truck Parameter Estimator —-InL
a 11.210
B1 4526
Truck 1 a; 79.33 701.2
B, 4224
y 0.2237
a 15760
By 5.861
Truck 2 a, 119.3 480.5
B, 5.823
y 0.214

Table 5. Maximum Likelihood Estimator for g #1

potential to be more flexible than the simpler one to fit the data. How-
ever, the more complex model tends to have greater uncertainty. The
AIC and BIC can balance the complexity and the model uncertainty.
The AIC and BIC for the three models are shown in Table 7.

Table 7. BIC and AIC of Models

Truck Model BIC AIC
Simple Model 1519.6 1512
Truck 1 Model (5) 1446.3 1436.8
Model (8) 1421.9 1412.4
Simple Model 1048.7 1042.8
Truck 2 Model (5) 1196.0 1188.7
Model (8) 978.1 970.8

It can be seen from Table 7 that the exponent bivariate Weibull
Model (8) has the lowest BIC and AIC values for both trucks and it
is therefore considered the best model among the three. The linear

] bivariate Weibull model has the same number of parameters in the
Truck Parameter Estimator ~InL models. However, the BIC and AIC values are higher than the expo-
a 10000 nent bivariate Weibull. The simple bivariate Weibull shows the worst
P 4514 performance for both trucks. This paper thus selects the exponent bi-
! i variate Weibull for both trucks.
Truck 1 ) 70.55 700.5
B, 4.224 4.4. Analysis using exponent bivariate Weibull
g 0.219 The model selected is the exponent bivariate Weibull Model (8).
The results of parameter estimation by the Bayesian method are elab-
a 15019 orated in Table 8. “Std” denotes the standard deviation. The lower and
B 6.002 upper bounds of the credible interval are derived from the posterior
Truck 2 a 113.9 4804 distribution (22).
Ba 59708 Table 8. Bayesian Parameter Estimator for Trucks with Credible Interval
y 0.2035 Truck | Parameter | Estimator Std Lower Upper
ay 11210 929 10050 13430
By 4.526 0.5585 3.504 5.663
At significant level ¢=0.98, the y*(1)=5.41. The hypothesis T is Truck 1 a 79.33 7.76 66.28 96.07
Ly;tl B> 4.224 0.5055 3.295 5.263
—ln—— |= for Truck 1 218 for Truck 2. For both
2x| =In i ,,:1 104 for Truc and or Truc or bo ) 0.2237 . 01637 0.2972
trucks, x?(1)=5.41<5.41. The calculations are shown in Table 6. ! 15760 2143 11510 19660
Therefore, the hypothesis is rejected for both trucks. B1 5.861 0.922 4.149 7.907
Conclusively, for both trucks, work load and time are not independ- Truck 2 @ 119.3 16.59 88.03 153.6
ent. The bivariate Weibull model with y=1 is out of consideration for
both trucks. By 5823 | 0921 | 4.144 7.879
Table 6. Hypothesis Test for y=1 l 0.214 004282 | 0.1439 0.3031

Likelihood Likelihood
Truck ofy=1 of %1 T Result
Truck 1 752 700.5 103 Rejected
Truck 2 517.4 480.4 218 Rejected

A more general model selection uses the AIC (Akaike Information
Criterion) and BIC (Bayes Information Criterion) [13, 29, 33]. BIC
and AIC are defined as:

AIC=-InL+2p and BIC=-InL+ plnn 27)
where L is the likelihood value, p is the number of parameters, and

n is the data size. The model with lower AIC or BIC value is con-
sidered to be better. A complex model with more parameters has the

Table 8 shows that the y of the data for both trucks is below 0.5;
the credible bounds of y are far below 1. The results also showed the
hypothesis of y should be rejected. This result is consistent with the
results from the likelihood ration test described in Table 6.

4.5. Goodness of fit test

The assumption of the data fitting the bivariate Weibull model
should be validated by the goodness of fit test. The reliability function

for Model (8) has the form R(A)=yA” *leXp(-AY ) This is a uni-
variant Weibull distribution with scale parameter 1 and shape param-

eter y. The proposed goodness of fit test is based on this special struc-
ture. Each A; can be computed from the given data and the estimated
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parameter. This paper proposes a simple goodness of fit test based on

the plot. Let B = altﬁl +a2sﬁ2 , since:

InR(1)=-B’ (28)

4.6. Reliability evaluating

The bivariate Weibull model can be applied to the data from Truck
1. Substitute the estimated parameters into Model (8); the reliability
function against calendar time and work load is:

The (28) can be converted to a linear function, the linearity can be R(t. s)= ((t /11, 210)4'526 + (s / 79'33)4.224 )0'2237 (29)
used to test goodness of fit. The R(t) is approximated by median
rank R(i)=1-(i—0.3)/(n+0.4). The B’ can be calculated by using ) o ) , )
) . Model (29) is plotted in Figure 3 in three dimensions.
the parameters in Table 8. Some of B” are tabulated in Table 9 for
Table 10. Reliability for Some Points for Truck 1
Truck 1.
The task is to check whether In R (t) and B is a linear function of (TS) R Std Lower Upper
form, as y=—x. If the model fits the data, the data will scatter around (20.2000) 0.7165 0.05052 0.6129 0.8097
the straight line y=—x. Figure 3 presents the lnR(t) against B’ for (100.10000) 0.2359 0.04949 0.1491 0.342
Trucks 1 and 2. For Truck 1, the empirical values (red dots) are around (30.10000) 0.3628 0.05484 0.2604 0.4729
the theoretical values (the blue line in Figure 2). For Truck 2, the em- (30.5000) 0.5556 0.05654 0.4438 0.6659
pirical data deviate more from the expected value than in the case of
. . . .0211 .0149 . 49 . 9
Truck 1. The model is considered unable to fit the data for Truck 2. (300.30000) 0.02118 0.01495 0.003495 0.0600
Table 9. Cumulative Hazard Function and Empirical Reliability It is usually of interest to find
i 1 2 3 4 5 6 7 8 9 10 the reliability for a given time. The
reliability and its lower and upper
B 0.058 0.068 0.084 0.10 0.146 0.152 | 0.1607 | 0.1632 | 0.1934 | 0.2196 bounds of the credible interval
nR(r) | 0.0142 | 0.035 | 0.0562 | 0078 | 0.0 | 0123 | 0146 | 0.70 | 0.194 | 0219 are also computed by the MCMC
method described in Section 3.5.

Table 10 gives a demonstration of
the reliability for some lifetime
points.

Expected Values
Real Values

log(R)
log(R)

The reliability function (29) can be further
used to schedule the maintenance activities in
respect of cost and available resources. This pa-
per omits this, as the maintenance optimization
is outside the paper’s scope.

5. Discussion and conclusion

In the truck data, the work load and the cal-
endar time show significant correlation. The

2 3

Cumulative Hazard Rate

Fig. 2. Goodness of Fit Test for Truck 1 (Left) and Truck 2 (Right)

200

Cumulative Hazard Rate

simple bivariate Weibull model is thus not suit-
able for the data. In this case study, according
to the AIC and BIC model selection criteria,
the exponent model has the best performance,
as it has the lowest AIC
and BIC values. Moreo-

120

Time

ver, with reference to our
discussion in Section 3,
the exponent model is the
most general among the
three models. The linear
bivariate Weibull model
only considers the first two
orders of the exponent bi-
variate model. The simple

ar bivariate model does not
© Y 0z 01 have the interaction part of

T the linear bivariate model.
ak The exponent model is

more general than the sim-
ple model and the linear

model.
The reliability of the
mining trucks depends on

15000
Ton*Kilo

20000 25000

Fig. 3. Reliability Function of Mining Truck 1
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two dimensions: calendar time and work load. The bivariate Weibull
model is proposed to accommodate this two-dimensional life data
for reliability modelling. Three bivariate models — simple bivariate
Weibull model, linear bivariate Weibull model and the exponent bi-
variate model — are selected to model the reliability. The exponent
model shows the best performance among the three models, and so,
in the case study, the reliability model chooses the exponent model.
The likelihood ratio test proposed in the paper is used to test whether
the correlation of the two dimensions of the data are significant. In the
case study, it found the correlation significant. If they are not corre-

lated, the simple bivariate is preferred, as the model can be simplified
and the traditional parameter estimation method can be used, since
each independent variant can be considered as a univariate Weibull
distribution. The case study found that the Bayesian method is ef-
fective by using the Gamma distribution as prior-distribution. The
disadvantage is that obtaining the results requires simulation, which
is time-consuming. Future work will focus on the development of a
more efficient parameter estimation method.
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