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ABSTRACT 

As a core part of a fuzzy neural system, the rule base antecedents and consequents may carry 

uncertainties because they are trained using noisy data. So, handling the uncertain rule base is an 

important need in some specific problems to have a better data modeling. As a solution, Interval 

Type-II (IT2) version of GSETSK (Generic Self-Evolving Takagi-Sugeno-Kang), namely IT2-

GSETSK, is presented in this paper. This solution uses IT2 membership functions for handling 

uncertainties, plus having Type-I (GSETSK) capabilities. In this way IT2-GSETSK is a fully-

online model able to handle data streams and cope with time-variant data. It also provides up-to-

date, relevant and compact rule base that is easily interpretable by human. The IT2-GSETSK is 

tested over several applications including medical, environmental and financial predictions, 

which show satisfactory performance of IT2-GSETSK. Moreover, it is observed that while 

GSETSK performs well enough for dynamic problems with less noise, noisy non-dynamic 

problems benefit significantly from IT2-GSETSK.  
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1.  INTRODUCTION 

Type-1 fuzzy sets and systems assume no uncertainty associated with data, meaning that there is 

no system unpredictability and that reduction from probability to determinism is possible. 

However, systems are uncertain in reality. So, fuzzy sets that handle uncertainties were invented, 

among which Type-2 fuzzy sets [1] are the most well-developed and well-studied. Specifically, 

Interval Type-2 (IT2) fuzzy sets [2-4] model the uncertainty by getting the footprint of 

uncertainty (FOU). An IT2 fuzzy set can be imagined as two Type-1 fuzzy sets, one bounding 

the upper membership function and the other bounding the lower membership function. In a 

Takagi-Sugeno-Kang (TSK) fuzzy system, IT2 fuzzy sets handle the uncertainties related to: 1- 

the cluster center and extending to the antecedent part, and 2- the consequent parameters. 

Interval Type-2 Fuzzy Neural networks (IT2FNN) have been widely used since their invention 

[5]. As a review in [6] shows, there are more than 6000 publications during 2009-2017 using 

IT2FNN for chaotic time series prediction, which show an increasing trend with applications in 

different areas. However as highlighted in  [6], application of IT2FNN in online and evolving 

modeling is still in the nascent stage and needs more research. 

Evolving FNNs [7, 8] have specific characteristics which are desirable for real-life 

applications. In non-stationary or evolving environment [9], the distribution of the data related to 

the behavior of a specific phenomenon changes gradually to abrupt and beyond its historical 

bounds. Today, the advancement in the sensor technology and related sciences provides better 

tracking of the phenomena in the form of data streams. With online structure and parameter 

learning, evolving FNNs can handle data streams in real-time based on the last data seen. This 

eventually leads to online FNN with low computational complexity. Evolving IT2FNNs portend 

to have the additional advantage of handling uncertainties comparing to evolving FNNs.  

Studies introduced as evolving IT2FNNs using 1st-order TSK [10] in the literature includes 

T2SONFS [11],  SEIT2FNN [12], its recurrent version RSEIT2FNN [13], IT2FNN-SVR [14], 

MRIT2NFS [15], and TSCIT2FNN [16]. However, none of these models are fully-online as all 

of them need data’s upper and lower bounds for data normalization, e.g. in the range of [-1, 1]. 

The other problem with these models is the absence of rule management mechanisms. 

Consequently, the shortage of rule pruning module in these models makes them ever-growing 

and unsuitable to handle non-stationary problems. Also, the absence of rule merging mechanism 

puts the model at the risk of overfitting with hardly-interpretable rule-base.  
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It was tried to fix the problem of rule management in the later studies. In one study, RIT2NFS-

WB [17], a fuzzy set merging module was proposed to reduce highly-overlapping fuzzy sets. In 

another study, SRIT2NFIS [18], rule pruning was carried out for classification problems in non-

stationary environment. Still, neither model is fully online as both need the data’s lower and 

upper bounds.  

Recently, two advanced evolving IT2FNNs, namely eT2RFNN [19] and eT2Class [20], were 

proposed for regression and classification tasks respectively. The rule merging and pruning 

mechanisms in both models empower the models for handling the non-stationarity of the data. 

Some other studies have used metacognitive theory and IT2 fuzzy sets, which provide functions 

similar to evolving IT2FNNs. McIT2FIS [21] is an example model for regression problems with 

rule pruning module. But it still needs data normalization. Also, RIVMcSFNN [22] and eT2ELM 

[23] applied to regression and classification problems respectively. Both models are equipped 

with rule pruning modules and the former one is equipped with rule merging module as well. To 

the best of our knowledge, SC-IT2FNN [24], and SOIT2FNN [25] are the other IT2-evolving 

neuro-fuzzy models (NFMs) with rule growing and pruning mechanism.  

Through this paper, we contribute a state-of-the-art evolving IT2FNN model, namely IT2-

GSETSK. The proposed IT2-GSETSK can cope with noisy data in non-stationary regression 

problems and provides an interpretable rule-base. It has the following specific features: 

1- Starting from scratch, IT2-GSETSK has online structure and parameter learning, while 

handling the data stream in an interleaving test-and-train manner. This means that we update 

the antecedent of the rule base using the current data sample, predict the output, and then 

tune the consequent part of the rule base using the predicted output.  

2- The Multidimensional-Scaling Growing Clustering (MSGC) method used in IT2-GSETSK 

does not need any prior-knowledge about the data. MSGC projects the real inputs on separate 

1-D input spaces. This makes IT2-GSETSK a fully-online and unbounded, without requiring 

data normalization, which eventually allows better handling of non-stationary problems. 

3- The rule pruning (i.e., unlearning) module of IT2-GSETSK helps the structure learning to 

forget the irrelevant rules, allowing it to better cope with the last changes in the process. 

4- The rule merging module manages the rule-base to have non-overlapping and distinct rules, 

which eventually reduces the risk of overfitting and provides more interpretable rule-base. 
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5- IT2 fuzzy sets can handle uncertainties with the cluster centers and cluster extent, expansion 

in the input space, and expansion in surface function relating to consequent parameters. 

Real-life phenomena are often complex and challenging to model. Some phenomena occur for 

a short duration of time, some are fast-changing, and there are some cases where no historical 

data is available. Automatic ventilation for a patient, volatile stock market prediction, and flood 

forecasting in a newly-gauged watershed are examples of such phenomena. Modeling such 

phenomena needs a fast-reaction mechanism which can capture and model the behavior of the 

system quickly. In addition, noisy data needs to be handled to not affect the model.  IT2-

GSETSK is capable to handle the challenges mentioned above, as is demonstrated by our results 

on such modeling problems. 

The layout of our paper is as follows. The architecture of IT2-GSETSK, and its structure and 

parameter learning approach are presented in Section 2. The experimental results are presented in 

Section 3, followed by a discussion in Section 0 and conclusion in Section 5. 

2.  IT2-GSETSK MODEL 

Similar to GSETSK [26, 27], IT2-GSETSK has a six-layer structure (Fig. 1) receiving the 

inputs at Layer I and delivering the outputs at Layer VI. The core part of the model is the rule 

base at Layer III which evaluates the IF statements with antecedents from Layer II and relates 

them to the rule consequents in Layer V. In IT2-GSETSK, IT2 fuzzy sets are used in each rule 

(as in Eq. (1)) to handle the uncertainties 

 

 𝑅𝑘: 𝐼𝐹 𝑥1 𝑖𝑠  �̃�1
𝑘 𝐴𝑁𝐷 ⋯ 𝐴𝑁𝐷 𝑥𝑛 𝑖𝑠 �̃�𝑛

𝑘 ,  THEN 𝑦 = �̃�0
𝑘 + ∑ �̃�𝑖

𝑘𝑥𝑖
𝑛

𝑖=1
,     𝑘 = 1, … , 𝐾(𝑡),       (1) 

 

where Rk  is the k(th) rule, (𝑘 = 1, . . . , 𝐾(𝑡)), 𝑥𝑖  is data on the specific input dimension i, (𝑖 =

1, . . . , 𝑛),  �̃�𝑖
𝑘 is IT2 fuzzy set of the k(th) rule in the input dimension i, and �̃�𝑖

𝑘 is the interval 

consequent parameter that relates to input dimension i of k(th) rule. 

IT2-GSETSK has a self-evolving structure, which is alive through the lifetime of the model 

such that it can construct or deconstruct its structure to cope with the complexities of the 

problem. This is handled in IT2-GSETSK through specific mechanisms for structure learning 

and unlearning and with a localized version of recursive linear least-squares (RLS) [26, 27] for 

tuning the consequent parameters. The model operates in an interleaved test-and-train mode 
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upon arrival of each data to support the online self-evolution of the model. The test-and-train 

begins after model initialization using the 1st input-output data sample, which is responsible for 

generating the 1st cluster. From the 2nd sample onwards, the interleaved test-and-train procedure 

is employed as follows: 

1.Update the antecedent part of the rule base based on the input of the current data sample. 

2.Predict the output by using the input of the current data sample.    

3.Tune the consequent part of the rule base using the output of the most recent data sample. 

In the following sections, the architecture of IT2-GSETSK and the structure learning and 

unlearning are explained, followed by interpretability of IT2-GSETSK. 

 
 

Fig. 1. IT2-GSETSK architecture. 

2.1. IT2-GSETSK Architecture 

IT2-GSETSK has a 6-layer structure (Fig. 1), with feedback connections for model unlearning 

from Layer VI to Layer III via Layer V. The layers and their functions are as follows. 

Layer I (input layer): The input layer makes singletons of the input values at each input 

dimension (𝑥𝑖,  𝑖 = 1, . . . , 𝑛)  and transfers them to the next layer. As mentioned before, there is 

no need of data normalization to unify different input dimensions in IT2-GSETSK. Instead, real 

inputs are projected on 1-D input spaces related to each specific input variable. This is an 
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advantage over most of the FNNs. This is accomplished in IT2-GSETSK through a clustering 

algorithm discussed in Section 2.2. 

Layer II (fuzzification layer): Each node in this layer is an IT2 fuzzy set (�̃�𝑖
𝑘) with lower and 

upper bounds representing the footprint of uncertainty (FOU). Gaussian membership functions 

(GMF) are used to represent the lower and upper bounds of fuzzy sets. When the model operates, 

an interval degree of membership (𝜇�̃�𝑖
𝑘) is computed by evaluating the input value against each 

IT2 fuzzy set: 

 

𝜇�̃�𝑖
𝑘 = [𝜇

¯
�̃�𝑖

𝑘,  �̅��̃�𝑖
𝑘],                                                (2) 

 

where 𝜇
¯

�̃�𝑖
𝑘  and �̅��̃�𝑖

𝑘  are the degrees of membership for lower and upper bounds respectively. 

There are two types of IT2 fuzzy sets used in this research (Fig. 2b1,c1): IT2 fuzzy set with 

uncertain mean (IT2-UM) and IT2 fuzzy set with uncertain standard deviation (IT2-USTD). 

These two types of IT2-GSETSK provides us greater opportunity to capture uncertainties as they 

cover different areas on the input space. As illustrated in Eq. (3), IT2-UM is constructed using 

two different centers (𝑐𝑖1
𝑘  and 𝑐𝑖2

𝑘 ) and a fixed standard deviation (STD). The degree of 

membership of a datum can be computed based on the distance of the datum from the two 

centers as in Eq. (4-5). 

 

𝜇�̃�𝑖
𝑘 = exp (−

1

2
(

𝑥𝑖−𝑐𝑖
𝑘

𝜎𝑖
𝑘 )2) ≡ 𝑁(𝑐𝑖

𝑘, 𝜎𝑖
𝑘; 𝑥𝑖),  𝑐𝑖

𝑘 ∈ [𝑐𝑖1
𝑘 , 𝑐𝑖2

𝑘 ],                      (3) 

 

where �̃�𝑖
𝑘 is the IT2 fuzzy set of kth rule on input dimension xi, 𝑐𝑖

𝑘 is the center of  �̃�𝑖
𝑘, and 𝜎𝑖

𝑘is 

the STD of  �̃�𝑖
𝑘 

�̅��̃�𝑖
𝑘(𝑥𝑖) = {

𝑁(𝑐𝑖1
𝑘 , 𝜎𝑖

𝑘; 𝑥𝑖), 𝑥𝑖 < 𝑐𝑖1
𝑘

1, 𝑐𝑖1
𝑘 ≤ 𝑥𝑖 ≤ 𝑐𝑖2

𝑘

𝑁(𝑐𝑖2
𝑘 , 𝜎𝑖

𝑘; 𝑥𝑖), 𝑥𝑖 > 𝑐𝑖2
𝑘

 ,                        (4) 
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𝜇
¯

�̃�𝑖
𝑘(𝑥𝑖) = {

𝑁(𝑐𝑖2
𝑘 , 𝜎𝑖

𝑘; 𝑥𝑖), 𝑥𝑖 ≤ (𝑐𝑖1
𝑘 + 𝑐𝑖2

𝑘 ) 2⁄

𝑁(𝑐𝑖1
𝑘 , 𝜎𝑖

𝑘; 𝑥𝑖), 𝑥𝑖 > (𝑐𝑖1
𝑘 + 𝑐𝑖2

𝑘 ) 2⁄
 ,                       (5) 

 

The IT2-USTD uses different STDs (𝜎𝑖1
𝑘  and 𝜎𝑖2

𝑘 ) and a constant center (𝑐𝑖
𝑘) as in Eq. (6). 

Then, each upper and lower degree of membership can be computed using Eqs. (7, 8). 

 

𝜇�̃�𝑖
𝑘 = exp [−

1

2
(

𝑥𝑖−𝑐𝑖
𝑘

𝜎𝑖
𝑘 )2] ≡ 𝑁(𝑐𝑖

𝑘, 𝜎𝑖
𝑘; 𝑥𝑖),       𝜎𝑖

𝑘 ∈ [𝜎𝑖1
𝑘 , 𝜎𝑖2

𝑘 ],                               (6) 

�̅��̃�𝑖
𝑘(𝑥𝑖) = 𝑁(𝑐𝑖

𝑘, 𝜎𝑖2
𝑘 ; 𝑥𝑖),                                               (7) 

𝜇
¯

�̃�𝑖
𝑘(𝑥𝑖) = 𝑁(𝑐𝑖

𝑘, 𝜎𝑖1
𝑘 ; 𝑥𝑖),                                           (8) 

 

Layer III (rule layer): This layer carries the information about the range of influence of each 

rule at the model output. The interval firing strength of each rule (𝑟𝑘) is computed in each rule 

node of this layer (Eq. (9)) which defines the upper and lower degree of activation of a rule as in 

Eq. (4). 

 

𝑟𝑘 = [𝑟
¯

𝑘, �̅�𝑘],                                            (9) 

 �̅�𝑘 = ∏ �̅��̃�𝑖
𝑘

𝑛
𝑖=1 ,  and  𝑟

¯

𝑘 = ∏ 𝜇
¯

�̃�𝑖
𝑘

𝑛
𝑖=1  ,                               (10) 

 

The Π (minimization) operation ensures lowering the degree of uncertainty as the lower and 

upper firing strengths are related to the level of coincidence of all the predictors (input spaces).   

   

Layer IV (normalization layer): The output of each node in this layer (𝛺𝑘) is an interval (Eq. 

(11)) which shows the upper and lower degrees of the influence of each rule on the whole model. 

The upper and lower normalized firing strengths (�̅�𝑘 and 𝜔
¯

𝑘, respectively) are computed as in 

Eq. (12). 

 

𝛺𝑘 = [𝜔
¯

𝑘, �̅�𝑘],                                         (11) 
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�̅�𝑘 = �̅�𝑘/ ∑ �̅�𝑘𝐾(𝑡)

𝑘=1
,    and    𝜔

¯

𝑘 = 𝑟
¯

𝑘/ ∑ 𝑟
¯

𝑘
𝐾(𝑡)

𝑘=1
,                              (12)  

 

Layer V (consequent Layer):  Since IT2-GSETSK uses 1st-order TSK [10] neuro-fuzzy model, 

the consequent part is in the form of a linear equation. Each node describes the output space 

related to the antecedent part (cluster) of that rule as an interval (𝐹𝑘(𝑋) in Eq. (13)) with lower 

and upper bounds as in Eq. (14).     

 

𝐹𝑘(𝑋) = [𝑓
_

𝑘(𝑋), 𝑓̅𝑘(𝑋)],                                        (13) 

𝑓̅𝑘(𝑋) = �̅�0
𝑘 + �̅�1

𝑘𝑥1 + ⋯ + �̅�𝑛
𝑘𝑥𝑛,       𝑓

¯

𝑘(𝑋) = 𝑏
¯

0
𝑘 + 𝑏

¯
1
𝑘𝑥1 + ⋯ + 𝑏

¯
𝑛
𝑘𝑥𝑛 ,       (14) 

 

where the consequent parameters in Eq. (14) can be arranged in two matrices (as in Eq. (15)) that 

are later used for model parameter learning [26].  

 

�̅�𝑘 = [�̅�0
𝑘, �̅�1

𝑘,   . . ., �̅�𝑛
𝑘],    and    𝐵

¯

𝑘 = [𝑏
¯

0
𝑘,  𝑏

¯
1
𝑘, ⋯ ,  𝑏

¯
𝑛
𝑘],                      (15) 

 

Covering an upper and lower degree of uncertainty, each input space partition has respective 

upper and lower planes in the output space. The effect of each rule is computed by multiplying 

the normalized firing strength with the output of the linear equation in the output space. This 

forms two interval output (�̅�𝑘  and 𝑞
¯

𝑘) as in Eq. (16) and their average is computed for the final 

outcome (𝑄𝑘) of a rule as in Eq. (17).  

 

�̅�𝑘 = �̅�𝑘𝑓̅𝑘(𝑋)     and     𝑞
¯

𝑘 = 𝜔
¯

𝑘𝑓
¯

𝑘(𝑋),                                     (16) 

𝑄𝑘 = (𝑞
¯

𝑘 + �̅�𝑘)/2 ,                                           (17) 

Layer VI (summation layer): In this layer, outcomes of all rules are summed up to generate the 

final result (y) as in Eq. (18).   

𝑦 = ∑ 𝑄𝑘𝐾(𝑡)

𝑘=1
,                                                 (18) 
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2.2. IT-GSETSK Structure Learning 

The structure of IT2-GSETSK is continuously updated based on the problem complexities in 

the model’s lifetime. There are two learning and unlearning mechanisms responsible to construct 

and deconstruct the model, which we discuss in the following. 

 
 

Fig. 2. MSGC mechanism from scratch dealing with 3 arrival data (xi1 ,xi2, xi3) at different steps from IT1 

(a) to IT2-UM (b1-b5) and IT2-USTD (c1-c5) GMFs; a) creation of the 1st IT1 GMF; b1,c1) conversion to 

IT2 GMFs; b2,c2) evaluation of degree of activation of the arrived data with closest GMF; b3,c3) similarity 

measurement; b4,c4) merging of GMFs; b5,c5) generation of new GMF without merging. 

2.2.1. Learning Algorithm 

The learning mechanism in IT2-GSESK is designed to make the model fully-online, which 

needs no prior-knowledge of data. Also, it creates non-overlapping clusters which cover the 

entire cluster space very well. This is supported by Multidimensional-Scaling Growing 

Clustering (MSGC) [26, 27] used for partitioning the input space. The steps of MSGC are 
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described below and illustrated using three example samples in Fig. 2. Initially, there is no rule 

in IT2-GSETSK. During the online execution of the model, for each newly arrived set of input 

data (such as xi1 in Fig. 2a), the model first creates a temporary rule k with temporary IT1 GMFs 

for different input dimensions. This frees the model from normalization which needs the prior 

knowledge of data’s upper and lower bounds. There is one GMF in each specific dimension i 

(Fig. 2a) with center (𝑐𝑖
𝑘) and STD (𝜎𝑖

𝑘) as in Eq. (19)  

 

𝑐𝑖
𝑘 = 𝑥𝑖 ,        𝜎𝑖

𝑘 = 𝜐,                                            (19) 

 

where 𝜐 is a predefined value for the 1st cluster. For the 1st cluster, 𝜐 is defined based on expert 

knowledge. The temporary GMFs in the 1st cluster are of the type IT1. They need to be 

converted to IT2 to cope with the uncertainties. This is done by multiplying the center or STD of 

the temporary GMF (Eq. (19)) by the degree of uncertainty (𝛼 ∈ (0.05,0.95)) as in Eq. (20). 

Hence, the center and the STD of the new GMF (Fig. 2b1, c1) are computed as in Eq. (21) for 

IT2-UM. Eq. (22) shows the computation of the center and the STD of new GMF for IT2-USTD. 

  

 𝜗𝑖 = 𝛼𝑐𝑖
𝑘 ,       𝜁 = 𝛼𝜎𝑖

𝑘 ,                                            (20) 

[𝑐𝑖1
𝑘 , 𝑐𝑖2

𝑘 ] = [𝑐𝑖
𝑘 − 𝜗𝑖 , 𝑐𝑖

𝑘 + 𝜗𝑖],      𝜎𝑖
𝑘 = 𝜐,                                (21) 

𝑐𝑖
𝑘 = 𝑥𝑖 , [𝜎𝑖1

𝑘 , 𝜎𝑖2
𝑘 ] = [𝜎𝑖

𝑘 − 𝜍, 𝜎𝑖
𝑘 + 𝜍],                            (22) 

 

From the 2nd rule onwards, it is checked if the newly arrived data (xi2 in Fig. 2b2, c2) can 

contribute to the generation of a new rule in the model. This is done by evaluating the degree of 

activation of each rule for the newly arrived data (Fig. 2b2, c2). If the firing strength does not 

exceed a predefined threshold, the existing rules are deemed insufficient as they cover the 

evidence of no coincidences of triggering of all input dimensions above the acceptable range. So, 

a new cluster is generated using recently arrived data (Fig. 2b3, c3). For this purpose, at every 

data arrival from the 2nd data onwards, IT2-GSETSK is partially run up to Layer III and the 

firing strength of each rule (Fig. 2b2, c2) is computed as in Eq. (10). The center of the firing 

strength interval of each rule k (𝑟𝑐
𝑘) is computed using Eq. (23) to obtain a unique number. Then 

the highest activated rule (𝜌) is computed as in Eq. (24). Decision to create a new rule is taken if 
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𝑟𝑐
𝜌

≤ 𝜃 where 𝜃 ∈ (0,1) is a firing threshold. The higher the firing threshold is set, the more 

rules are created. However, the interpretability is compromised, as discussed in section 2.3. The 

firing threshold is set to be set as 0.6 in this study. 

 

𝑟𝑐
𝑘 =

1

2
(𝑟

¯

𝑘 + �̅�𝑘),                                                               (23) 

 𝜌 = arg max
1≤𝑘≤𝐾(𝑡)

𝑟𝑐
𝑘 ,                                   (24) 

 

For the creation of new rule, for each input dimension i, MSGC evaluates the original fuzzy 

sets (IT1 versions) at that dimension to find the closest fuzzy set to the data (𝜀𝑖) as in Eq. (25). 

Then, the center of the closest GMF (𝑐𝑖
𝜀) (Fig. 2b2, c2) is used to compute the STD of the new 

rule which is half of the distance of the new GMF center (𝑥𝑖) and the closest one. This is 

specified in Eq. (26) in where 𝜂 = 0.5 is the overlap degree, which prevents overlapping of 

GMFs. Bigger overlap degree results into bigger width for the newly-created fuzzy set.  

 

𝜀𝑖 = 𝑎𝑟𝑔 max
1≤𝑘≤𝐾(𝑡)

exp [−
1

2
(

𝑥𝑖−𝑐𝑖
𝑘

𝜎𝑖
𝑘 )

2

],                                  (25) 

𝜎𝑖
𝑘 = 𝜂|𝑥𝑖 − 𝑐𝑖

𝜀|,                                         (26) 

 

Ultimately, the STD computed using Eq. (26) and the center computed using Eq. (19) are used 

to form the new GMF using Eq. (21) for IT2-UM or Eq. (22) for IT2-USTD (Fig. 2b3, c3). After 

creation of the new rule, its similarity to the closest GMF is computed to consider if the new 

GMF should be retained as it is, discarded, or merged with the closest GMF. This ultimately 

ensures an up-to-date and compact rule base. The fuzzy subset measure [28] was used to measure 

the similarity (S) of two fuzzy sets A and B as in Eq. (27).  

 

𝑆 = |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵|,                                                        (27) 

 

where ∩ and ∪ are intersection and union. Based on the degree of the similarity the following 

actions will be taken: 
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• If𝑆 > 𝑇ℎ𝑟𝑒𝑠𝐴, 𝑇ℎ𝑟𝑒𝑠𝐴 = 0.8 [29] then the new rule is discarded as the existing rule is 

representative  

• If𝑆 < 𝑇ℎ𝑟𝑒𝑠𝐵,  𝑇ℎ𝑟𝑒𝑠𝐵 = 0.7  [29] then the new rule is created  

• If 𝑇ℎ𝑟𝑒𝑠𝐴 > 𝑆 > 𝑇ℎ𝑟𝑒𝑠𝐵 (Fig. 2b3, c3) then a new rule is created by merging the two rules  

In the case of merging (Fig. 2b4, c4), Eq. (28) and Eq. (29) are used to create the new GMF.  

 

𝐶𝑛𝑒𝑤 = (𝐶1 + 𝐶2 + (𝜎1 − 𝜎2)√𝜋)/2 ,                                          (28) 

𝜎𝑛𝑒𝑤 = (𝐶1 − 𝐶2 + (𝜎1 + 𝜎2)√𝜋)/(2√𝜋) ,                            (29) 

 

where C1 and C2 are the centers and 𝜎1 and𝜎2  are the STDs of the two GMFs. It is worth 

mentioning that the centers are average centers in case of using IT2-UM. Also, STDs are average 

STDs in the case of IT2-USTD. The merged GMF formed using Eq. (28-29) is IT1. It is 

converted to IT2 using Eq. (21) or Eq. (22) as required. 

2.2.2. Unlearning Algorithm 

The unlearning mechanism in IT2-GSETSK enables the model to maintain relevance and 

compactness of the rule base, which translates to higher accuracy and better interpretability, 

respectively. Unlearning is based on Hebbian learning mechanism [30] in which the synaptic 

connections are strengthened when pre-synaptic and post-synaptic activations occur 

simultaneously. For each rule in IT2-GSETSK, forward and backward firing strengths play the 

roles of pre-synaptic and post-synaptic activations, respectively. If both the forward and 

backward firing strength are highly activated at the same time, the rule is retained. The rule is 

pruned if the coincident activation of forward and backward firing strength is lower than a 

certain threshold. At each time t, the error of each rule k (𝑒𝑘(𝑡)) is calculated as in Eq. (30) 

 

𝑒𝑘(𝑡) = |𝑑(𝑡) − 𝑓𝑘(𝑋(𝑡))|,     𝑘 = 1, . . . , 𝐾(𝑡),                          (30) 

 

where 𝑑(𝑡) is the desired output at time t, and 𝑓𝑘(𝑋(𝑡)) is the average of the linear equations 

defined in Eq. (14). A GMF with zero mean and STD as defined in Eq. (31) can measure the 

closeness of the output to the desired values. As illustrated in [27], such a GMF can be 

approximated by an isosceles triangle with unity height and bottom of  2𝜎𝑏𝑎𝑐𝑘(𝑡)√𝜋. 
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𝜎𝑏𝑎𝑐𝑘(𝑡) = ∑ 𝑒𝑘(𝑡)/(𝐾(𝑡)√𝜋)
𝐾(𝑡)

𝑘=1
,                                (31) 

 

The backward firing strength of k(th) rule, (𝑟𝑘
𝑏𝑎𝑐𝑘(𝑡)) given in Eq. (32), shows the prediction 

accuracy of the rule. While the values close to one indicate high accuracy, values close to zero 

indicate low accuracy.  

 

𝑟𝑘
𝑏𝑎𝑐𝑘(𝑡) = exp((−𝑒𝑘(𝑡)2 )/(2𝜎𝑏𝑎𝑐𝑘(𝑡)2 )),                       (32) 

 

Then this backward firing strength 𝑟𝑘
𝑏𝑎𝑐𝑘(𝑡) as well as the forward firing strength 𝑟𝑘(𝑥(𝑡)) is 

used for computation of the fuzzy rule potential 𝑃𝑘(𝑡) applicable for evaluation of the rule 

pruning in Eq. (33). The rule is pruned if 𝑃𝑘(𝑡) < ThresP. The greater value of ThresP cause 

more rules to be pruned. ThresP = 0.5 [26] was used in this paper. 

 

𝑃𝑘(𝑡) = 𝛾𝑃𝑘(𝑡 − 1) + 𝑟𝑘(𝑥(𝑡)) × 𝑟𝑘
𝑏𝑎𝑐𝑘(𝑡),   𝑘 = 1, . . . , 𝐾(𝑡),                  (33) 

 

where  𝑃𝑘(𝑡 − 1) is the previous fuzzy rule potential and 𝛾 = [0.97,0.99] [31] is the forgetting 

factor to let the rules gradually degrade. The higher values of this parameter lead to slower 

forgetting. 𝛾 = 0.97 [26] was used for all the experiments in this study. 

2.3. Interpretability 

Defining interpretability of NFMs is a controversial subject and still an open problem. This is 

because NFM are subjective and get affected by lots of factors such as number of rules, number 

of features, and shape of membership functions (MFs). The research conducted in [32] proposes 

a framework classifying different measures of interpretability based on the review of the other 

researches. Although this framework does not define which criteria are good, it provides a global 

vision to the researchers to come to their own conclusion about the interpretability of their 

model. Reducing the complexity and preserving the semantic associated with MFs are the key 

axes of interpretability. So, in this framework (Table 1), complexity-based interpretability and 

semantic-based interpretability are the two key measures which are considered both in the rule-

base and fuzzy partition level resulting in four quadrants. 
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Table 1: Framework for analyzing interpretability(adapted from [32]) 

“Complexity-

based 

interpretability” 

“rule base 

level” 
“Q1” 

“number of rules”                                                                                                  

(must be as small as possible while preserving the performance) 

“number of conditions”                                                                                      

(number of distinct conditions in antecedent must not exceed 

7±2) 

“fuzzy 

partition 

level” 

“Q2” 

“number of features”                                                                                        

(to reduce dimensionality in high dimensional problems) 

“number of MFs/labels (granularity)”                                                            

(should not exceed 7±2) 

“Semantic-

based 

Interpretability” 

“rule base 

level” 
“Q3” 

“consistency of rules”                                                                             

(absence of contradictory rules in RB) 

“Number of rules fired at the same time”                                               

(minimizing number of rules activated by a given input) 

“fuzzy 

partition 

level” 

“Q4” 

“completeness or coverage”                                                                      

(all universe of discourse needs to be covered at least by the 

MFs) 

“normality”                                                                                       

(using normal fuzzy sets) 

“distinguishability”                                                                            

(clear semantic meaning and distinguishable from other MFs) 

 

For each of these quadrants in Table 1, the main measures (and the favorable in parentheses) 

have been included. Following IT2-GSETSK status is cleared for each quadrant in Table 1:  

• For limiting the number of rules and MFs (as a part of Q1 and Q2 in Table 1), there are the 

following mechanisms or constraints in-operation in IT2-GSETSK: 1) the firing threshold (θ, 

Fig. 2b2) limits the MF and hence rule generation; 2) similarity measure and merging 

mechanism (Fig. 2b3,b4,c3,c4) reduces the number of MFs and hence the number of rules; 3) 

rule pruning reduces the number of rules and MFs. 

• Regarding the number of conditions (Q1) or features (Q2), there is no automatic way of 

handling it in IT2-GSETSK as dynamic feature selection is not present. Instead the number of 

features and conditions are limited by using expert-knowledge or static feature selection 

methods in advance. 

• The firing threshold (θ) guarantees consistency of rules (Q3) with preventing the rule 

generation with the same premises. Also, the degree of overlap (η) dictates the rules to be 

generated in a way which guarantees less rules to be fired by a given input.  

• As the mechanism of IT2-GSETSK creates new MFs whenever the existing MFs are not 

covering the newly-arrived data, the completeness of coverage (Q4) is ensured. Also, the 

distinguishability of MFs (Q4) is guaranteed by using the degree of overlap (η) between two 
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adjacent MFs. Finally, it is worth to mention that normality (Q4) is met in GSETSK by using 

all normal GMFs.  

The interpretability of IT2-GSETSK will be discussed on different datasets in Section 4. 

3. EXPERIMENTAL RESULTS  

IT2-GSETSK was tested on 7 different data sets, namely the three well-known Nakanishi data 

sets, a stock market data set, an environmental data set and two medical data sets. These diverse 

data sets validate the utility of IT2-GSETSK to diverse practically important applications.  

All parameters of IT2-GSETSK are common for different data sets as noted in detail in Section 

2.2 (θ = 0.6,  𝜂 = 0.5, 𝑇ℎ𝑟𝑒𝑠𝐴 = 0.8, 𝑇ℎ𝑟𝑒𝑠𝐵 = 0.7, ThresP = 0.5, λ = 0.97), except the initial 

variance () which controls the coverage of the first cluster. It is worth mentioning that 

assignment of large value to the initial variance () is not critical because the MSGC clustering 

mechanism optimizes the size of clusters from the second incoming sample onwards. The 

recommended value of  is roughly equal to one-fourth of the estimated range of the most 

relevant input variable range determined heuristically. The only other dataset-dependent 

parameter is the level of uncertainty assigned to IT2-GSETSK model. It may be assigned a value 

equal to the location or the coverage of the cluster, whichever is active. Since there is no prior 

knowledge of the type and level of uncertainty, all the datasets are tested under two different 

scenarios, namely uncertain mean (UM) and uncertain STD (USTD). For each scenario, the level 

of uncertainty is varied between 0.05-0.95 and the results are evaluated. This provides an insight 

about the choice of the type and level of uncertainty. For all of the data sets, IT2-GSETSK is 

executed fully online. 

Performance of modeling is evaluated using criteria such as coefficient of efficiency (CE), 

coefficient of determination (R2), root mean square error (RMSE), and mean absolute error 

(MAE) and interpretability. Additionally, statistical measures such as quantiles of absolute error 

and p-values are included for large datasets, i.e. excluding Nakanishi datasets. 

In all the data sets, IT2-GSETSK is compared with GSETSK and the available benchmark 

results of other methods. The availability of NeuCom Student v0.919 software [33] facilitated 

benchmarking of the datasets for which benchmarks are unavailable in the literature. DENFIS 

[34] and EFuNN [35] are NFMs available in this package, representative of a TSK [10] and 

Mamdani [36] fuzzy system respectively. Since these models can learn continuously during the 
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model’s lifetime, they are good candidates for benchmarking IT2-GSETSK. However, as they 

are not fully online models and needs prior knowledge of data, they cannot be used for modeling 

the whole data. Instead, a part of data (as detailed for each dataset in Sections 3.1-3.5) is used in 

pre-training of these models before incremental learning can occur. We note that the best 

performance of DENFIS was achieved by assigning the value of distance threshold parameter, 

responsible for determining the cluster coverage, equal to 0.3. Also, the best performance of 

EFuNN was achieved by activation of pruning module of EuFNN. Details of the experiments 

and results on the seven datasets are presented in the following subsections.  

3.1. The Three Nakanishi Datasets 

Nakanishi datasets [37] include 3 datasets corresponding to a non-linear system, human 

operation of a chemical plant, and daily price of a stock in a stock market, respectively. These 

datasets have 50, 70 and 100 data samples respectively. Thus, they constitute examples of small 

datasets. In each of these, the first half of the data is used for model training and the remaining 

half for benchmarking in [38]. Nakanishi [37] compared different fuzzy reasoning methods 

including Sugeno P&P-G, Sugeno-P, Sugeno P-G, Mamdani, Turksen IVCRI (Table 2 represents 

the computations from [35]). While applying IT2-GSETSK and GSETSK on Nakanishi datasets, 

we used a fully online learning scheme, in comparison to the use of half of the data samples for 

pre-training as reported in [38]. However, for a comparison favorable to the methods that use 

pre-training, we use the same second half of the data used for benchmarking in [38] for reporting 

results on IT2-GSETSK and GSETSK.  The benchmarking results for ANFIS [39], DENFIS, 

EFuNN, POP-CRI, RSPOP-CRI [38] are available in [38] and are recomputed and presented 

here for comparison. The details of experiments on Nakanishi dataset are discussed next. 

3.1.1. A Non-linear System 

This data set describes a nonlinear system behaving as in Eq. (34).  

 

 𝑦 = (1 + 𝑥1
−2 + 𝑥2

−1.5)2,     (1 ≤ 𝑥1, 𝑥2 ≤ 5),                          (34) 

 

Sensitivity analysis of the model under the UM and USTD scenarios indicated that the best 

performance was achieved in USTD scenario with the level of uncertainty in the range [0.05, 

0.5]. Table 2 shows the IT2-GSETSK results for USTD = 0.5. It is evident that IT2-GSETSK 

outperforms the other models by achieving R2 and RMSE values of 0.92 and 0.34, respectively. 
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The 2nd best performance is observed for GSETSK with R2 and RMSE values of 0.91 and 0.38 

respectively. These results were achieved by a model with 6 rules. Notably, the performances of 

IT2-GSETSK and GSETSK results are far superior than the other models, for example, POP-

CRI achieves R2 and RMSE as 0.77 and 0.52 respectively using 192 rules.  

3.1.2. Human Operation of a Chemical Plant 

The 2nd Nakanishi data set is the human operation of a chemical plant. The output-input model 

for this dataset is stated in [37] as 𝑦 = 𝑓(𝑥1, 𝑥3) where y is the set point for monomer,  𝑥1 is the 

monomer concentration, and  𝑥3 is the monomer flow rate.  

The sensitivity analysis of IT2-GSETSK revealed that the best performance is achieved under 

the USTD scenario with the level of uncertainty in the range [0.5, 0.95]. Table 2 shows the 

results of IT2-GSETSK with USTD = 0.5. IT2-GSETSK outperforms the other methods, 

achieving the best performance values of R2 and RMSE at 0.998 and 99, respectively. In terms of 

RMSE, IT2-GSETSK results in RMSE values of 41 and 130 units lesser than GSETSK and 

DENFIS respectively. It is worth mentioning that the reported performance for both IT2-

GSETSK and GSETSK is obtained using only 3 rules. 

Table 2: Modeling results of Nakanishi data sets. IT2-GSETSK uses USTD = 0.5. 

 Nonlinear system Chemical Plant Stock market 

 R2 RMSE R2 RMSE R2 RMSE 

IT2-GSETSK 0.92 0.34 0.998 99 0.71 6.5 

GSETSK 0.91 0.38 0.996 140 0.72 6.5 

ANFIS  0.73 0.53 0.61 1723 0.77 6.2 

DENFIS 0.65 0.64 0.99 229 0.66 8.4 

EFuNN 0.52 0.75 0.89 851 0.57 8.5 

POP-CRI 0.77 0.52 0.89 750 0.54 8.7 

RSPOP-CRI 0.73 0.62 0.97 461 0.85 5.0 

Sugeno P&P-G 0.69 0.59 0.96 537 0.50 9.7 

Sugeno-P 0.73 0.58 0.88 787 0.78 5.9 

Sugeno P-G 0.71 0.68 0.98 1389 0.49 13.0 

Mamdani 0.69 0.66 0.88 797 0.75 6.4 

Turksen IVCRI 0.37 0.84 0.986 508 0.48 9.5 

 

3.1.3. Daily Price of a Stock in a Stock Market 

The 3rd Nakanishi dataset is the daily stock market data of a particular stock. The output-input 

model used in [37] is  𝑦 = 𝑓(𝑥4, 𝑥5, 𝑥8) where 𝑦 is the predicted stock price,  𝑥4 is the present 

separation ratio with respect to moving average over a middle period, 𝑥5 is the present change of 

moving over a short period, and  𝑥8 is the past separation ratio with respect to the moving 
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average over a short period. 

The sensitivity analysis results of IT2-GSETSK indicate the best performance under the USTD 

scenario with the level of uncertainty lying in the range [0.4, 0.7]. The result of IT2-GSETSK 

with USTD = 0.5 presented in Table 2 shows that R2 and RMSE are equal to 0.71 and 6.5, 

respectively. For this particular dataset, the performance of IT2-GSETSK is poorer than RSPOP-

CRI, Sugeno-P, ANFIS, and Mamdani models. It is worth mentioning again that GSETSK/IT2-

GSETSK is run in fully-online mode whereas the other models used the 1st half the data for pre-

training. Pre-training the data gives advantage to the other models because of the reason we 

describe next. Nakanishi data set 3 has both inputs and outputs take values on either side of zero 

while the other 2 sets take positive values only. This property of dataset 3 upsets the parameter 

update of IT2-GSETSK.  

3.2. Sydney Stock Market  

A large dataset of Sydney stock market consisting of 8540 data samples was used in this 

analysis. This pertains the daily data of stock prices in 33 years during the working days from 3rd 

Jan 1985 to 14th Nov 2018 [40] (Fig. 3). At a given time instance, the price in the next time 

interval 
1

( )y  is predicted using the current price (𝑦0), and the prices one, two, and three 

intervals ago (𝑦−1, 𝑦−2, 𝑦−3respectively), modelled as 𝑦1 = 𝑓(𝑦0, 𝑦−1, 𝑦−2, 𝑦−3). 

The sensitivity analysis of IT2-GSETSK shows no significant difference in the results under 

different scenarios (UM and USTD) or with different levels of uncertainty. For benchmarking 

the results against EFuNN and DENFIS, the data of the first 5 years was used for pre-training 

and prediction was tested over the remaining years. Table 3 shows the results of the prediction 

over the last 28 years. As before, IT2-GSETSK and GSETSK were executed as fully online. 

There is no advantage of IT2-GSETSK over GSETSK for this dataset, as observed in Table 3. 

This may be because of more certainty of the inputs as the input variables are accurate historical 

data uncorrupted by noise. It is worth to mention, although DENFIS has a good prediction also, 

but this is as a cost of more rules up to 46 rules at the end of modeling. Also the fact that 

DENFIS requires pre-training should not be neglected. The excellent prediction demonstrated by 

IT2-GSETSK can also be witnessed qualitatively in Fig. 3.  
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Fig. 3. Sydney stock market prediction between 1.Jan.1985 to 14.Nov.2018  

 

Table 3: Modeling results of Sydney stock market over the last 28 years (7276 samples). aQuantile of 

absolute error. *If pairwise t-test rejects a null hypothesis with 5% significance 

 IT2-GSETSK GSETSK DENFIS EFuNN 

CE 1.00 1.00 1.00 0.87 

R2 1.00 1.00 1.00 0.89 

RMSE 13.3 12.3 14.7 217.1 

MAE 8.7 8.2 9.4 82.5 

Qa0.5 5.22 5.20 5.69 28.22 

Qa0.9 20.64 20.77 22.21 150.42 

P-value* 0.07 0.10 - - 

Rules 5 2 46 5 

 

3.3. Patient Ventilator     

Having a solution which can learn a prediction model using a small dataset is vital when 

dealing with medical applications. Proper control of ventilator in the life support systems of a 

patient is critical to maintain suitable oxygen supply to the patient. The requirement of each 

patient over time is unique to the patient’s condition and cannot be pre-learnt, therefore imposing 

a significant challenge in automation of ventilator control systems. The online learning capability 

of IT2-GSETSK empowers it to perform the prediction from the second sample onward (see 

example data in Fig. 4). The hourly ventilation data (including 391 samples) of a patient is 

analyzed in this section. The fraction of oxygen to be supplied in the next hour (𝐹𝑖𝑂2(𝑡 + 1)) is 

a function of the fraction of oxygen supplied in the current hour (𝐹𝑖𝑂2(𝑡)) and the positive end 

expiratory pressure (PEEP) in the current hour (PEEP(t)) as 𝐹𝑖𝑂2(𝑡 + 1) =

𝑓(𝐹𝑖𝑂2(𝑡), 𝑃𝐸𝐸𝑃(𝑡)). 

The sensitivity analysis of IT2-GSETSK to different type and level of uncertainty shows no 
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changes in the results. For benchmarking, the data of the first 30 hours was used for pre-training 

DENFIS and EFuNN models and continuous test and train was done for the remaining data. 

Table 4 shows the modeling results of FiO2 predicted between hours 30-391. It is noted that all 

models except EFuNN perform well on this problem with IT2-GSETSK performing slightly 

better than the others by achieving lower RMSE as 1.20. However, beyond the similar 

performances of most approaches, IT2-GSETSK provides the ability to predict second sample 

onwards, a benefit that is critical in such applications. 

Table 4: Modeling results of patient FiO2 between hours 31 to 391 of the dataset (360 samples). a 

Quantile of absolute error. *If pairwise t-test rejects a null hypothesis with 5% significance 

 IT2-GSETSK GSETSK DENFIS EFuNN 

CE 0.93 0.93 0.93 0.73 

R2 0.93 0.93 0.93 0.75 

RMSE 1.20 1.23 1.24 2.35 

MAE 0.54 0.54 0.47 1.14 

Qa0.5 0.23 0.18 0.13 0.39 

Qa0.9 1.00 1.02 0.88 4.25 

P-value* 0.46 0.41 0.45  

Rules 8 6 9 8 

 
Fig. 4. FiO2 modeled by IT2-GSETSK 

 

3.4. Pulse Oximeter  

The amount of oxygen carried in human body (SpO2) can be predicted using the pulse rate data 

sensed from the fingertip. In this section, the current SpO2 (𝑆𝑝𝑂2(𝑡)) is modeled as a function of 

last observed SpO2 (𝑆𝑝𝑂2(𝑡 − 1)) and current sensed pulse rate (𝑃(𝑡)) as 𝑆𝑝𝑂2(𝑡) =

𝑓(𝑆𝑝𝑂2(𝑡 − 1), 𝑃(𝑡)). 

The dataset includes 1811 samples. Fig. 5 shows the predicted SpO2 results of IT2-GSETSK 

and demonstrates good agreement between the modeled and actual time series. It is worth 
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mentioning that the type and level of uncertainty used in IT2-GSETSK results in no difference 

on the results. The first 200 data samples are used for pre-training DENFIS and EFuNN. The 

results are given in Table 5. It is evident that IT2-GSETSK outperforms the other models by 

achieving R2 and RMSE values of 0.86 and 0.2, respectively. Interestingly, IT2-GSETSK uses a 

rule base of only 2 rules for modeling. The result of GSETSK is similar to IT2-GSETSK. 

Table 5: Modeling results of SpO2 (1610 samples). a Quantile of absolute error. *If pairwise t-test 

rejects a null hypothesis with 5% significance. 

 IT2-GSETSK GSETSK DENFIS EFuNN 

CE 0.86 0.86 0.55 0.47 

R2 0.86 0.86 0.55 0.57 

RMSE 0.20 0.20 0.36 0.39 

MAE 0.07 0.07 0.23 0.18 

Qa0.5 0.02 0.02 0.11 0.04 

Qa0.9 0.08 0.08 0.62 1.00 

P-value* 0.36 0.37 0.42  

Rules 2 2 3 16 

 
Fig. 5. SpO2 modeled by IT2-GSETSK 

3.5. Flood Forecasting 

Flood forecasting is an important environmental application, which may help in disaster 

preparedness and management when used as an early warning system. Flood forecasting is done 

by modeling river discharge as a continuous process. In a recent research [26], GSETSK was 

applied for rainfall-runoff forecasting in a catchment in Sweden with limited availability of data. 

The river discharge in this region is a complex function of rainfall and temperature as some of 

the flow comes by snow melting. Based on the expert knowledge, 1-day-ahead river discharge 

(𝑄1) is a function of current river discharge (𝑄0), current precipitation (𝑃0) and current 

temperature (𝑇0) as 𝑄1 = 𝑓(𝑄0, 𝑃0, 𝑇0). 
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Two years of daily data including 731 samples were used for this model. The sensitivity 

analysis of IT2-GSETSK indicates that the best performance of the model is achieved for UM 

with level of uncertainty in the range [0.4, 0.7] and for USTD with level of uncertainty in the 

range [0.05, 0.5]. Table 6 and Fig. 6 show the results of IT2-GSETSK under USTD scenario 

with level of uncertainty set as 0.5. As DENFIS and EFuNN needs pre-training dataset, half of 

the data was used for this pre-training and the remaining half was used for benchmarking while 

being used for continuous testing and training. As obvious from Table 6, IT2-GSETSK provides 

an improvement of 2% in R2 as compared to GSETSK. Also, it outperforms DENFIS, EFuNN 

and HBV [41]. Notably, HBV is the flood forecasting model currently being used by Swedish 

Meteorological and Hydrological Institute [42].   

Table 6: Modeling results for river discharge modeling (365 samples). aQuantile of absolute error. 

 IT2-GSETSK GSETSK DENFIS EFuNN HBV 

CE 0.88 0.87 0.86 0.68 0.82 

R2 0.89 0.87 0.87 0.69 0.83 

RMSE 1.83 1.89 1.98 2.92 2.21 

MAE 0.76 0.78 0.80 1.30 1.36 

Qa0.5 0.30 0.30 0.24 0.50 0.84 

Qa0.9 1.90 1.90 1.99 3.20 3.09 

Rules 6 4 8 36 - 
 

 

 
 

Fig. 6. River discharge forecasting (a) modeling result (b) rule base dynamics 
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4. DISCUSSION  

Evaluation of the performance of IT2-GSETSK in different applications (Section 3) shows that 

IT2-GSETSK performs similar to, or better than the other methods (except for Nakanishi stock 

market data). This is in the case that some of these methods requiring pre-training while others 

are completely online. In fact, the fully-online mechanism of IT2-GSETSK and GSETSK, made 

it possible to work with data streams in an interleaving manner without pre-training data. The 

online learning and unlearning mechanisms of these two algorithms make them powerful to cope 

with any non-stationarity and time-variance of the problem. So, data challenges such as drift and 

shift will be handled. At the same time the learning and unlearning mechanisms ensures a model 

with few numbers of rules and membership functions which are easily interpretable. For IT2-

GSETSK, additional feature of IT2 fuzzy membership copes with any uncertainties with the 

data.    

 Based on the experiments done on this research, using IT2-GSETSK with USTD = 0.5 is 

recommended for the best performance over noisy data. 

Comparing the results of IT2-GSETSK to Type-I version (GSETSK), the best performances of 

IT2-GSETSK are for the chemical plant, non-linear system and flood data sets. Among them for 

the “human operation of a chemical plant” dataset, IT2-GSETSK had about % 31 improvement 

(in terms of RMSE) over GSETSK. This significant improvement possibly relates to more 

uncertainties with the data (possibly due to human operation) which IT2-GSETSK was able to 

handle it. For other SpO2, FiO2, and Sydney market price there is no advantages of IT2-GSETSK 

over GSETSK. This may be due to the nature of the problems in which some of them are more 

dynamic (relying on the inputs which are the outputs happened in the past). In this case, noise 

models are the same for the measurements of same quantities. On the other hand, for non-

dynamic or less-dynamic problems, the noise models of different quantities may be different, 

resulting in predictions being afflicted by a variety of noise rather than the noise that affects the 

measurements. In summary, IT2-GSETSK is advantageous for handling noisy data of non-

dynamic problems. However, when dealing with less noisy data representing and/or in dynamic 

problems, there is no significant outperformance of IT2-GSETSK over GSETSK. For such cases 

the usage of the simpler model, GSETSK is preferable. 

As discussed in Section 2.3, IT2-GSETSK inherently meet some of the interpretability measures 

mentioned in Table 1. This is specifically true for semantic-based interpretability measures, 
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namely consistency of rules, fewer number of rules fired at the same time, completeness of 

coverage, normality and distinguishability. Regarding complexity-based measures, for different 

experimental data, IT2-GSETSK meets these interpretability criteria (Table 7) also. In term of 

number of features or number of conditions, IT2-GSETSK results in a value less than 5 in all the 

experimental datasets. Also, in terms of number of rules, maximum number of 8 rules was 

achieved during the model’s lifetime among all data set, which implicitly shows that the number 

of MFs are less than 8.  

Table 7: Interpretability of IT2-GSETSK for different experimental datasets 

Dataset No. of features/ No. of conditions No. of rules  

Non-linear System 2 6 

Human Operation of a Chemical Plant 2 3 

Daily Price of a Stock in a Stock Market 3 3 

Sydney Stock Market  4 5 

Patient Ventilator     2 8 

Pulse Oximeter  2 2 

Flood Forecasting 3 6 

 

The interpretability of IT2-GSETSK can be understood through the analysis of the rule base 

dynamics of the flood forecasting data. As discussed in Section 2, the specific clustering method, 

MSCG, in IT2-GSETSK has an important effect on the interpretability of the model. MSGC 

generates rule base of non-overlapping rules which is compact and interpretable. Also, the rule 

pruning mechanism in IT2-GSETSK makes it relevant and up-to-date. Fig. 6(b) shows the rule 

base dynamics of rainfall-runoff data when predicting the river discharge. As evident, the 

number of rules changes over time but is limited to a maximum of 6. The rule base history of 

rainfall-runoff data can be classified to the following stages. 

1) Rule base foundation: In this stage, which lasts for more than half of the dataset up to end Jan 

1980, the rule base is building the appropriate rules which number up to four.  

2) Rule base pruning: In this stage, happening at almost the end of Jan 1980, an irrelevant rule 

is found and pruned.  

3) Rule base update: After Mid Dec 1980, 3 new rules are added to cope with the new data 

trends, such as the occurrence of the highest peak in the time series.  

Finally, Fig.7 shows IT2 GMFs for each input space dimension (river discharge, precipitation 

and temperature) at the end of the model’s lifetime. As evident, there are limited numbers of 
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GMFs (2) in each input dimension space. These GMFs can be easily assigned as human-

interpretable tags, for example, less or more river discharge, light or heavy precipitation, and 

cold and warm temperature. 

 
 

Fig. 7. IT2-GSETSK MFs for each input space at the end of model river discharge. 

 

5. CONCLUSION 

IT2-GSETSK was found to be advantageous for modeling noisy data of non-dynamic problem. 

For dynamic problems as well as problems with less noisy data, the simpler model, GSETSK is 

enough. Both two models were able to compete the benchmarks quantitatively and qualitatively 

(in terms of interpretability of neuro-fuzzy models). This competence is due to specific learning 

and unlearning ability of the models and the presence of IT2 membership functions (for IT2-

GSETSK). For the next stage, the authors target to imbed an online feature selection method to 

the algorithm which alleviate the current need of separate feature selection. Also, online 

optimization of the clusters is another future work for this algorithm. 
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List of symbols 

𝑖 Input dimension index 

𝑘 Rule number Index 

 n Number of Input dimensions 

𝐾(𝑡) Number of rules at time t 

𝑥𝑖 Input value at dimension i 

Rk k(th) rule 

A ˜𝑖
𝑘 IT2 fuzzy set A (k(th) rule in the input dimension i) 

𝜇
_

A ˜𝑖
𝑘 and �̅�

A ˜𝑖
𝑘 Degree of membership lower and upper bounds for fuzzy set A, respectively 

𝑐𝑖 and 𝜎𝑖  Center and standard deviation of fuzzy set 

𝑟𝑘 Interval firing strength 

𝑟
¯

𝑘 and �̅�𝑘 Lower and upper degrees of activation at rule k 

𝛺𝑘 Interval normalized firing strengths 

𝜔
_

𝑘 and �̅�𝑘 Normalized firing strengths’ lower  and upper bounds 

𝐹𝑘(𝑋) Interval consequent node output 

𝑓
_

𝑘(𝑋), 𝑓̅𝑘(𝑋) Consequent node linear equation’s lower and upper bounds 

�̃�𝑖
𝑘 interval consequent parameter that relates to input dimension i of k(th) rule 

𝑞
_

𝑘 and �̅�𝑘 Consequent node output’s lower and upper bounds 

 y Final Output 

𝜐 Predefined value for the 1st cluster 

𝛼 Degree of uncertainty 

𝑟𝑐
𝑘 Center of the firing strength interval of rule k 

𝜌 Rule which has the maximum firing strength 

𝜃 Firing Threshold 

𝜀 Largest matching degree 

𝜂 Degree of overlap between two GMF 

 S Measure of similarity 

 ThresA Threshold for rule base management 

 ThresB Threshold for rule base management 

d(t) Desired output 

𝑒𝑘(𝑡) Error of node K at time t 

𝑟𝑘
back(𝑡) Backward firing strength of node K at time t 

 rk (x(t)) Forward firing strength of node K at time t 

𝑃𝑘(𝑡) Fuzzy rule potential 

 Γ Forgetting factor 
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