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Abstract—Low backscatter signatures in Synthetic Aperture
Radar (SAR) imagery are characteristic to surfaces that are
highly smooth and specular reflective of microwave radiation.
In the Arctic, these typically represent newly formed sea ice,
oil spills, and localized weather phenomena such as low wind
or rain cells. The operational monitoring of low backscatter
targets can benefit from a stronger integration of freely available
SAR imagery from Sentinel-1. We therefore propose a detection
method applicable to Sentinel-1 Extra Wide-Swath (EW) SAR
scenes. Using intensity values coupled with incidence angle and
Noise-Equivalent Sigma Zero (NESZ) information, the image
segmentation method is able to detect the low backscatter targets
as one segment across sub-swaths. We use the Barents Sea as
a test site due to the abundant presence of low backscatter
targets with different origins, and of long-term operational
monitoring services that help cross-validate our observations.
Utilising a large set of scenes acquired in the Barents Sea during
the freezing season (November - April), we demonstrate the
potential of performing large-scale operational monitoring of
local phenomena with low backscatter signatures.

Index Terms—Newly formed sea ice, oil spills, Remote Sensing,
SAR, Arctic, Barents Sea, Sentinel-1.

I. INTRODUCTION

HE thinning of sea ice and the reducing sea ice cover

[1] imply an increase in sea areas available for maritime
traffic in the Arctic [2], where newly formed sea ice and leads
provide safe routing for ship traffic and cost-effective passage
through ice. Monitoring the shipping routes is important not
only for safe shipping, but also out of environmental concerns
due to the risk of oil spills. In the Barents Sea, the occurrence
of oil slicks is more frequent along the commercial shipping
routes or in the vicinity of oil and gas platforms [3]. Awareness
of the major locations of oil spills, natural oil seeps [4], newly
formed sea ice or other oil spill “lookalikes”, structures that
have a similar appearance although different origins [5], are
important for operational services and their efforts to reduce
false alarms. In addition to potentially confusing oil spill
detection, new ice formation sites are also of interest for
navigation and climate studies. The general thinning of the
ice results in an increase in solar energy absorption [6] [7],
with expected implications in the energy budget [8], as well
as an increase in light transmittance affecting algal growth [9].
In the Barents Sea, most of the sea ice is formed locally, with
a fraction imported from the Arctic Basin through the straits
between Svalbard and Novaya Zemlya ( [10], [11] and [12]).
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New ice formation (frazil, grease and slush) takes place during
a large part of the year, both in the marginal ice zone (MIZ)
[13] and within sea ice leads.

Operational monitoring of Arctic regions is most reliably
performed using passive and active microwave instruments. In
[13], Advanced Microwave Scanning Radiometer 2 (AMSR2)
data was used to investigate the seasonal evolution of thin
ice in the Barents and Kara Seas. AMSR2 has the advan-
tage of being able to accurately capture thin ice areas and
provide thickness estimates, albeit at a relatively coarse 5-
km resolution. In contrast, Synthetic Aperture Radar (SAR)
is more readily used for operational monitoring of sea ice,
but cannot provide thickness estimates, although it may be
possible to retrieve relative thickness for thin ice, e.g. <30cm
[14], [15]. SAR already has a long history of being used for
the operational surveillance of Arctic areas, specifically the
detection of ice extent and marine oil spills [16]. In the Barents
Sea, the high spatial resolution of SAR systems (Table I)
benefits the detection of both oil slicks, as most local oil slicks
are between 0.5 and 5 km? [3], and of new ice, especially when
it occurs along the coastline or in narrow leads. The locations,
shapes as well the correlation with sea ice temperature can help
distinguish between oil slicks and newly formed sea ice once
they are identified, but to the SAR system alone they appear
to have similarly low backscatter relative to the background of
open water. Oil slicks (mineral/animal/vegetable) and new ice
all effectively dampen high frequency waves, thereby creating
a smooth surface which reflects electromagnetic radiation and
reduces backscatter. Rain cells can produce similar signatures,
when rain drops impinging onto the sea surface generate Bragg
wave-attenuating turbulence [17]. Certain wave patterns and
low wind areas can also present as lookalikes, as they are
highly reflective in contrast to the surrounding open water
[16]. Signatures of these low backscatter features and their
separation in SAR images have been extensively studied since
1990s (e.g. [18] and references therein, [17], [19], [20], [21]).
A Bayesian joint segmentation and classification approach has
been shown to perform detection of low backscatter leads and
open water in Radarsat-2 imagery in [22].

The Extended Wide-Swath (EW) mode of Sentinel-1 has
many advantages for operational surveillance: good spatial
coverage and temporal resolution (twice daily coverage over
the Barents Sea in the HH/HV configuration), as well as
the free data policy. However, it can also be difficult to
interpret due to corruption by noise artefacts, especially when
targeting areas where backscatter values approach the Noise
Equivalent Sigma Zero (NESZ), also referred to as the noise

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully ¢

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3214069

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING , VOL. XX, NO. XX, 2022 2

floor. During SAR image formation, the thermal noise inherent
to the imaging sensor is inevitably processed together with
the raw acquired signal [23]. As a consequence, antenna
pattern correction amplifies the noise at the sub-swath edges,
resulting in scalloping artefacts that are especially evident
in low backscatter regions. The sub-swaths are processed
individually and then stitched together, creating additional
inter-swath boundary artefacts. NESZ estimates are provided
in the product metadata. The typical noise removal procedure
consists in simply subtracting these values from the raw
intensities, and suppressing any resulting negative values [23].
However, due to imprecision in the NESZ estimates, this
approach does not remove the noise patterns completely, an
effect which is mainly evident in the cross-polarized channel,
which typically has a lower Signal-to-Noise Ratio (SNR) than
the co-polarized one. More complex methods that accomplish
superior denoising by employing a combination of local and
global image adjustments have been designed, with focus on
the cross-polarized channel ( [24] [25], [26]).

Our contribution specifically targets the mitigation of diffi-
culties raised by noise artefacts in the Sentinel-1 EW mode.
We tackle the problem by developing a robust low backscat-
ter target detection algorithm which employs an established
clustering-based segmentation framework, and further inte-
grates incidence angle and NESZ information in the segmenta-
tion model, for both the co-polarized and cross-polarized chan-
nels. The method is tested on a set of 24 scenes containing low
backscatter areas with various shapes, sizes and extents, and
present all extracted low backscatter segments together with
a discussion about their properties. The qualitative evaluation,
and comparison with a smaller set of manually segmented
slicks, show that the detection of areas with the lowest relative
backscatter can be done reliably.

II. STUDY AREA AND DATA SET

We use dual-polarization Sentinel-1 EW data covering parts
of the Barents sea (see Figure 1). The long new ice formation
season and high temporal resolution offered by Sentinel-1
makes the Barents Sea an ideal location to test the proposed
method. The authors of [13] have identified the peak in
new ice formation in the Barents and Kara Seas between
October and February, though large inter-annual variations
are observed. Here, we focus on the entire freezing season,
i.e. from November — April, where the mean temperature
is expected to be below -5°C [13]. Images were selected
based on their content, i.e. slicks with a variety of shapes,
sizes, and positions within the scene. An evaluation by the
operational oil spill detection services of SCANEX Moscow
has established that the scenes do not contain oil spills, but are
a mix of new ice and other lookalikes. Our previous analysis
of examples from the same dataset [27] concluded that there
is a high likelihood of new ice formation zones being imaged,
both close to the shore and in the marginal ice zone. The
remaining low backscatter areas are likely low wind fronts.
The specifics of the Sentinel-1 images are outlined in Table
I (the acronym GRDM stands for ”Ground Range Detected
Medium resolution”) and a list of the images are presented in

Table II. In total, 24 scenes from 2017 to 2020 are included
in this analysis. Image footprints are shown in Figure 1.
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Fig. 1. Outline of the study area, where the blue rectangles show the spatial
extent of the included Sentinel-1 images.

TABLE I
SPECIFICS OF THE SENTINEL-1 DATA USED IN THIS STUDY. THE RANGE
(RG) AND AZIMUTH (AZ) VALUES ARE GIVEN AS NOMINAL VALUES.

Acquisition mode EW (GRDM)
Frequency band C (5.41 GHz)
Polarization mode HH/HV
Resolution (Rg x Az) 93m x 87m
Pixel spacing (Rg x Az) 40m x 40m
Swath width 410km
Incidence angle range 18.9°-47.0°
Noise Equivalent Sigma Zero (NESZ) | -22dB

III. METHODS
A. Existing Segmentation Framework

The base framework consists in automatic statisti-
cal mixture-based clustering applied to polarimetric SAR
backscatter and backscatter-derived data. We have previously
used complex statistical models that account for textural varia-
tions to model the polarimetric data in narrow-swath imagery,
such as the K-Wishart [28] and U distributions [29]. As the
swaths extend, it becomes necessary to include incidence
angle information in order to compensate for the intensity
decay from near to far range. The effect of the increased
model complexity on the computational load can be mitigated
by using a Gaussian approximation for the distribution of
log-intensities, which is generally sufficient for the relatively
low resolution wide-swath imagery. We have integrated the
incidence angle by enforcing non-stationary linearly varying
means for the statistical mixture components, parameterized
using a decay rate and an intercept [30].

As described in [29] and [30], the clustering problem is
solved using an adapted Expectation-Maximization (EM [31])
algorithm. The algorithm is initialized with a single cluster,
which is split after model fitting, if the goodness-of-fit criterion
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TABLE II
OVERVIEW OF THE SATELLITE SCENES ACQUISITION TIMES AND NUMBER
OF IMAGE SAMPLES (PIXELS) USED FOR SEGMENTATION

Scene Date Time (UTC) | Sample nb.
# 1 2017/11/27 03:16 12 000
#2 2017/11/29 03:00 12 000
#3 2018/04/16 03:47 5 000
# 4 2018/04/16 03:48 5 000
#5 2018/11/12 02:58 5 000
# 6 2018/11/13 02:00 10 000
#7 2018/11/14 02:41 5 000
# 38 2018/11/14 02:42 10 000
#9 2019/01/01 03:30 6 000
# 10 2019/01/01 03:31 3 000
# 11 2019/02/25 03:22 2 500
# 12 2019/02/25 03:23 12 000
# 13 2019/02/25 03:24 2 500
# 14 2019/03/25 03:39 10 000
# 15 2019/03/25 03:40 10 000
# 16 2019/04/01 03:31 7 500
# 17 2019/04/01 03:32 10 000
# 18 2019/10/07 01:28 5 000
# 19 2019/10/07 04:44 2 500
# 20 2019/10/10 05:56 10 000
# 21 2019/10/12 04:03 2 500
# 22 2019/10/13 03:04 7 500
# 23 2019/10/17 04:10 2 500
# 24 2020/02/25 03:30 5 000

(expressed via Pearson’s chi-squared test) is not met. The
splitting continues until all clusters are considered as good
fits to a chosen sensitivity (or confidence level). Finally, hard
cluster labels are assigned to all image pixels, according to
their associated maximum posterior probabilities. The auto-
matic characteristic of the algorithm refers to its capacity to
determine the suitable number of clusters based on the input
data, number of samples used for clustering and the chosen
confidence level for Pearson’s test. A uniformly subsampled
subset of the total image pixels are used for clustering, with
the dual purpose of reducing the processing time and the
number of identifiable clusters (for simplicity). Increasing the
confidence level decreases the sensitivity of the test, rendering
each class test more tolerant of random variation. The poorest
fits will still be separated and hence the major class divisions
are still detected, but less distinct clusters (sub-class divisions)
are grouped together ( [29]). The overall effect will be a
reduction in the total number of clusters. We have set the
confidence level to 99 % to produce all the results presented
in this paper, and adjusted the number of samples for each
task (see Table II).

B. Novel Integration of the Variable Noise Floor into the
Statistical Model

The approach we propose integrates the nominal noise
floor into the statistical model, while allowing its level to be
dynamically adjusted during the segmentation process, thus
transforming it into a variable noise floor. In [32], the noise
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Fig. 2. Schematic representation of the proposed processing steps.

is corrected by adjusting the nominal noise floor considering
different gain values for the different sub-swaths, and power-
balancing coefficients at the sub-swath boundaries. We have
adopted a similar approach in this respect, by using a multi-
plicative Gain G and an additive Offset O for each individual
sub-swath.

The distribution of the backscatter coefficients (BSCs, or
log-intensities) is modeled by using a statistical mixture of &
components (clusters):
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The mixture component mean parameters iy vary linearly
with the incidence angle value 6;, a; being the intercept and
b, the decay rate in the log-domain, as already presented in
[30]. We introduce the local parameters Gygyi and Oggyi, Which
scale the nominal noise floor value N F'L; in sub-swath sswi.
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As the noise floor is global and additive in the linear domain
[23], it contributes equally to the means of each components:

pie(0;, NFL;) = 10 % logyo(10@+—Pr6:)/10
Gsswi * NFLz + Osswi)~ (2)

Note that a;, by, Ggwi and Ogy; are d-dimensional vectors
for d-dimensional data. In the case of Sentinel-1 dual-polarized
data, d = 2.

The mixture parameters are estimated by applying the EM
algorithm. The EM scheme consists in two stages. In the
“Expectation” stage, the a posteriori probabilities that a sample
i belongs to a cluster k are obtained as:

B TN (x5 e (03, NFL;), i, 3)
ik — M )

Zj:l miN (xi; 15 (0i, NFL;), ;)
where N (xy; pr(0;, NFL;), ) denotes the Gaussian (Nor-
mal) likelihood that the sample (x;,6;) belongs to compo-
nent k. In the second, or "Maximization” stage, both cluster
and noise scaling parameters are estimated as follows. The
intercept a; and decay rate by result from the closed-form
expressions:

Yo zikoi + b >y zikbi
Dli1 Zik ’
b, — — Yo zikbizot + ag >y Zikb; 5)
k — n 9 )
>z Zikt;
where the “denoised” values x; result from subtracting the
adjusted noise floor Gsyi * NFL; + Oggq; from the original
linear-domain signal intensities, then converting to decibels:

“4)

ap =

X0i = 10[0910(1OXi/1O - Gsswi * NFLz - Osswi) (6)

The scaling factor Gg;,; and offset Ogg,; of the variable
noise floor profile are then estimated by solving:

N M
argmin Z Z(zik(xi — 1x)?) @)
GaswiyOsswi 51 —1

for each of the 5 sub-swaths, considering uy from Eq. 2. The
equation can be solved by using a built-in solver, and enforcing
numerical constraints. For our MATLAB implementation, we
used the built-in optimizer finincon. The parameter bounds
for the each of the sub-swaths were determined empirically
for consistent performance across the dataset (see Table III).
In addition, a positivity constraint was applied, to ensure that

the linear-domain intensity values 10%0:/10 > (.

Finally, the cluster covariances are estimated by applying
the classical covariance estimator considering the component
means fij:

Doy Zik(Xi — ) (x5 — )T
Dimi Zik

One can see that, in contrast to a denoising approach,
the proposed approach does not apply any correction to the
original data, thus eliminating associated errors. The main

Yk = ®)

source of error is instead represented by deviations of the real
data distribution from the assumed model.

TABLE III
OPTIMIZATION BOUNDS FOR G AND O.

G upper | HH | 145 1.55 1.45 1.45 1.45
HV | 1.55 1.45 1.45 1.45 1.45
lower | HH | 0.55 0.75 0.75 0.75 0.45
HV | 0.75 0.75 0.65 0.75 0.75
O upper | HH | 0.005 0.005 0.005 0.005 0.005
HV | 0.005 0.005 0.005 0.005 0.005
lower | HH | -0.0025 | -0.0025 | -0.0025 | -0.0025 | -0.0025
HV | -0.0025 | -0.0025 | -0.0025 | -0.0025 | -0.0025

C. Segment selection

Post segmentation, the segment with the lowest intensity
at incidence angle 6 = 32° is selected as the dark feature.
The reference value of 32° was chosen to be mid-range in
order to ensure consistency between images. Morphological
erosion is then performed on the extracted dark feature in
order to remove small-sized clustering artefacts. A disk-shaped
structuring element with a diameter of 1 pixel was used to
produce the results.

IV. PERFORMANCE ASSESSMENT AND ANALYSIS OF
DETECTED TARGETS

A. Performance gain from integrating the Variable Noise
Floor

The goal of the proposed method ("IA+NFL” method) is to
extract low backscater targets from noise-corrupted Sentinel-
1 EW scenes, while bypassing errors stemming from noise
artefacts and preserving integrity across all sub-swaths. We
have shown in [27] that the extraction is in some cases also
feasible by applying the method published in [30] and briefly
described here in section III.A, i.e. Gaussian-mixture based
segmentation considering intensity variation with incidence
angle ("IA” method), on the co-polarized channel. In this
part of the study, we compare the performance of the two
methods on two example scenes extracted from the dataset,
containing low-backscatter targets of different extents. Scene
24 was selected as an example of relatively small-size targets
distributed through the scene, while scene 22 contains an
extended target stretching over the entire swath. We use
the method published in [30] as reference because, to our
knowledge, no methods that deal with similar detection in
wide-swath imagery have been published.

The scenes were pre-processed using ESAs Sentinel Ap-
plication Platform (SNAP) for the extraction of intensity (co-
polarized and cross-polarized) and incidence angle informa-
tion, as well as calibration and land masking. The noise
profiles and sub-swath maps were extracted from the original
annotation files. For the application of the "IA+NFL” method,
the input intensity data only requires calibration. For the
application of the "IA” method, it is necessary to perform
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Fig. 3. Scene 24 (a) 3-channel (HH, HV, HV/HH) color composite representation; segmentation result using: (b) IA method on both channels (HH, HV)
post-standard noise correction, (c) IA method on the HH channel post-standard noise correction, and (d) IA+NFL method on both channels (HH, HV), without
prior noise correction - low backscatter segment is number 2 in all labeled results.

the standard noise correction (via the SNAP software) prior
to calibration. Multilooking was applied using an averaging
5x5 pixel window in order to increase radiometric separability,
then the image size was reduced by subsampling at a 5x5 rate.
Lastly, the intensities and noise profiles were log-transformed,
to ensure approximately Gaussian-distributed data and a linear
decay with incidence angle.

The assessment overall contains three tests:

o The "IA” method applied on both data channels (co-
polarized and cross-polarized);

o The "TA” method applied on the co-polarized channel,
which is less affected by noise, i.e. the same approach as
in [27];

o The proposed "IA+NFL” method applied on both data
channels.

As discussed in the previous subsection, the subsampling rate
influences the final number of clusters. The same number of
samples (7500) was used for segmentation in this test.

B. Qualitative and quantitative comparison with manually
extracted segments

We conducted a comparison with a small set of manually
extracted low backscatter targets. The manual extraction has
been performed by the operational oil spill detection service
of SCANEX Moscow, and precisely delineates the locations
of targets with high likelihoods of being newly formed ice,
or other oil spill lookalikes. The identification was based on
visual examination of the images, after the absence of oil was
confirmed using the semi-automatic approach of [3]. The low
backscatter targets were clearly identified and delineated down
to pixel resolution, thereby enabling a quantitative pixel-to-
pixel comparison with the results from the automatic detection
algorithm.

The scenes were pre-processed following the same steps as
in the previous subsection, with the addition of a geocoding
step performed using the SNAP software. A subset of 3
scenes containing low backscatter targets extending over the
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Fig. 4. Scene 22 (a) HH and HV backscatter; segmentation results using: (b) IA method on both channels (HH, HV) post-standard noise correction, (c) IA
method on the HH channel post-standard noise correction, and (d) IA+NFL method on both channels (HH, HV), without prior noise correction (low backscatter
segment is number 6). The scatter plots show the corresponding distributions of the HH channel BCSs from near to far range, for the most representative
segments.
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entire swath were selected for the comparison. The number of
representative samples used here was slightly higher than in
the tests conducted in the previous subsection, proportional to
the larger size of the geocoded scenes: 15 000 for scene 1 and
scene 2, and 20 000 for scene 7.

C. Evaluation of the output over the entire dataset

The proposed method is applied to the 24 scenes in order
to evaluate performance and consistency over a large dataset.
Pre-processing was performed as described in Section IV.A.

The selected scenes have almost identical sizes, therefore a
simple assumption would be that result consistency could be
achieved by using a uniform subsampling rate. However, in
practice we observe that scene content also drives the necessity
for a variable subsampling rate. We have tested the detection
method with variable sample numbers, and empirically settled
for the lowest number that would identify the low backscatter
segment in each case, and keeping the rest of the scene
detail as simple as possible (see values in Table II). We
mention that scenes containing low-contrasting targets can
benefit from the enhanced radiometric contrast achieved by
applying a higher number of looks, but this procedure also
carries a risk of enhancing the visibility of noise patterns. The
number of samples is the only parameter that we varied in this
demonstration.

In addition to the labeled segments, the algorithm also
outputs cluster parameters, of which the intercept a; (the mean
intensity [dB] at § = 0°) and the decay rate by (intensity
decay rate [dB/°]) are examined. The model decay rates are
compared with decay rate values computed directly from the
image data (raw BSC data used as input, as well as BSC data
noise-corrected via SNAP), using the low-backscatter segment
masks for selection. Finally, co-polarized BSCs averaged over
1 degree at 20°, 32° and 42° (chosen to represent near-range,
mid-range and far-range) are also extracted and analyzed.

D. Applicability to the Interferometric Wide (IW) Swath mode

The EW mode of Sentinel-1 is the preferred mode used
for environmental surveillance of the Arctic Ocean due to its
good spatial and temporal coverage of the area. Imaging of
Arctic-adjacent areas is possible with freely available imagery
from the same sensor, in the Interferometric Wide-Swath (IW)
mode. The IW mode imagery is constructed using a very
similar procedure to the EW mode, i.e. by stitching together
sub-swaths (3 instead of 5) with curved noise profiles. In the
IW mode, the incidence angle range is narrower (approx. 30 to
45°), the resolution is finer (20x22 m for the High resolution
Ground Range Detected imagery used here) and the swath
width is 250 km. One of the main uses for this mode is
oil spill detection, which is why much of the IW imagery is
acquired in the VV/VH mode. Different applications are also
possible further south, therefore the sought-after targets may
be different (for example, coastal erosion can be monitored
using this type of imagery [33]), but we show that they can
easily be detected using the proposed method if they have
low-backscatter signatures.

We present a detection example on an IW scene. The
image has been acquired over a frozen up Hudson Strait on
2018/03/06, and contains sea ice, open water and leads (Figure
9). The lead is another type of ocean surface area that can
be characterized by low backscatter, as can the open water as
observed here. The scene has been processed identically to the
EW images, and 12 500 samples were used for segmentation.
The constraints for the G and O parameters were kept as in
Table III (for sub-swaths 1-3). A finer adjustment of the values
is possible, but has not been thoroughly investigated for this
mode.

V. RESULTS AND DISCUSSION

A. Performance gain from integrating the Variable Noise
Floor

The full segmentation results of the two sets of tests are
shown in Fig. 3 and Fig. 4.

A simple visual examination makes the advantages of
the proposed method over the reference method clear when
both data channels are used, in both examples: inter-swath
boundaries are largely eliminated, and, most importantly, these
boundaries are no longer included in the same segment as the
areas of interest (in Fig. 3 (b), notice the boundary between
sub-swaths 4/5). Segment continuity is preserved across the
entire image. Scene 24 presents an example of distributed
or “patchy” low backscatter target that is identified both
by applying the "IA” method on the co-polarized channel
and by applying the proposed “IA+NFL” method on the
full dataset. In this example, the segmentation results are
overall very similar, with subscene (Fig. 3 (d)) showing small
improvements over (Fig. 3 (¢)) in terms of ocean detail level
and open water/sea ice ambiguities.

Scene 22 contains an example where the benefit of the
proposed method over the reference one is evident. Fig.
4 (c) shows how the low backscatter area is not captured
accurately when using the co-polarized channel alone. This
can be explained by the extent of the target. Low backscatter
values lie close to the noise floor, and may therefore not be
captured accurately by a model that does not consider the noise
floor shape. For a small area, the deviation from the model may
not prove to be significant at the targeted level of detail, but
as the area size increases, so does the effect of the noise floor.
The final result highlights the advantage of considering both
channels and incorporating the noise floor (Fig. 4 (d)). Some
residual artefacts are still visible at the boundaries between
sub-swaths 1/2, and 2/3, respectively, but the integrity of the
segment is preserved. Increasing the radiometric contrast (by
increasing multilooking) or increasing the desired level of
detail of the segmentation (by using more samples) would
enhance the likelihood of this scenario also occurring in the
case of less extended targets. The plots adjacent to the seg-
mentation results show the co-polarized (HH) BSC distribution
from near to far range in each case. For visual clarity, only
the most representative segments are included. The plots show
how the IA method encounters challenges in relatively low-
backscatter areas of the image, where the BSC values more
closely follow the oscillating shape of the noise floor, thus
risking oversplitting along absolute value boundaries.
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Fig. 6. Extracted low backscatter segments and histogram counts for corresponding BSC values (HH channel) at 22 ©, 32 ©, 42 ©. Scenes (a) 1 (b) 2 (¢) 7.

B. Qualitative and quantitative comparison with manually
extracted segments

Figure 5 shows the 3 example scenes, highlighting overlaps
as well as differences between the automatic and manual
selections. The automatically detected segments appear clearly
delineated and follow the outlines of the manually extracted
segments used as reference. Differences arise in areas where
the overall intensity of the backscatter varies, bringing back
into discussion the issue of how the targets are defined. The
operational oil detection service appears to have a broader
definition of the "low backscatter targets”, which includes the
low backscatter regions detected by the proposed method, as
well as surrounding brighter areas. Indeed, the automatically
extracted segments only cover the darkest image pixels, which
is congruent with the model. Quantitatively, the overlaps for
scenes 1, 2 and 7 presented in Fig. 5 are of 48%, 56% and
20%, respectively (as a proportion of the manual segment).
The smaller overlap registered in the case of scene 7 shows
that detection of such targets may prove difficult when the
backscatter values vary within the area of interest, as the
lighter areas are not easy to capture in a separate segment, i.e
they are not “seen” as one distinct target by the algorithm. It
is worth exploring strategies for merging the original target
segment with a higher-backscatter segment in a carefully
defined neighborhood of the former.

We have observed that variations in the confidence level of
the statistical goodness-of-fit test do not produce significant
changes in the detected low backscatter segments, and conse-
quently in the overlap percentages, considering the low sample
numbers used here. The contrast between low backscatter
targets and their neighbors is sufficiently strong for these
to count as major class divisions at confidence level values
over 90%. However, if the number of samples is increased
substantially, the segmentation problem becomes more com-
plex, which often determines the over-splitting of the segment
of interest. The number of image samples should therefore
be chosen carefully upon implementation in an operational
setting, as it carries more weight for the end result.

C. Evaluation of the output over the entire dataset

Low backscatter segments extracted from the 24 scenes
are shown in the Appendix. Overall, the observations are
similar to those presented in subsection V.A. The segments are
continuous across the image and are largely unaffected by the
sub-swath boundary discontinuities (including the boundary
with the first sub-swath, which presents the largest offset
from its neighbor). The intensities of low backscatter targets
follow the noise floor closely and are the easiest to separate
in the images, once the noise floor is adjusted to even an
approximately correct level (since we do not know the actual
correct level). Essentially, in many cases we are separating a
target whose signature is pure noise. The boundaries become
problematic mostly over extended open water areas (calm or
wind-roughened), likely due to more significant deviations
from the linear approximation of the intensity decay with
incidence angle, as in Figures 4 and 10 (c),(g).

Fig. 6 shows the co-polarized BSC value distribution of the
low backscatter segments extracted from scenes 1, 2 and 7
(also see Fig.5), in near-range, mid-range and far-range, in
intervals of 1° centered at 20°, 32° and 42°, respectively.
The distributions are centered around progressively lower
values, as expected, and present considerable overlap, even
with gaps of 10° between the interval centers. The distribution
of BSC values at 42° for scene 2 is bimodal, which may
seem to contradict the Gaussian model assumption. However,
the cluster parameters resulting from solving the Gaussian
mixture are estimated only from the representative samples.
The majority of image samples are classified into the most
similar cluster, therefore the final classification may contain
mixtures.

Figures 7 and 8 show an overview of co-polarized decay rate
and BSC values extracted from the detected low backscatter
segments. The information is somewhat complementary, as
it allows the reader to observe the correspondence between
decay rate values and evolution of mean intensities at different
incidence angles. Results in Fig. 10, Fig. 11 and Fig. 12
show all low backscatter segments extracted from the dataset,
with the exception of those presented in previous subsections.
While the number of samples used in this test (Table II) were
slightly different for these scenes, the extents of the extracted
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segments in both tests are nearly identical. The extraction of
the low backscatter segments was successful in all examples,
regardless of their spatial positioning (e.g. in the far range
where noise is more prominent, at interswath boundaries, or
even narrowly in the mid-range, as in Scene 21 - Fig. 12 (d).)

As the “low backscatter” area is defined relative to its
surroundings at the specific position in a scene, flat model
decay rates can be estimated, as observed in a few cases
(in Fig. 7, scenes 11, 16, 17, 20, 21). Estimates from the
raw data can even be negative, as in the case of scenes 20
and 21. We also observe that the decay rates estimated as
a model parameter can vary considerably in comparison to
those computed directly from the BSC values. The variations
originate not only from the modeling, but also from differences
between the distribution of the final classified pixels and that of
the representative samples used to estimate the model decay
rates. Of course, the chance of estimating a reliable model
decay rate value increases with the range coverage of the low
backscatter areas. The model decay rate values estimated here
averaged 0.34 + 0.21 dB/°, while the ones estimated from
the raw or noise-corrected intensities have values that are
comparable and on average higher than the model decay rates.
The former consistently have slightly lower values (0.5240.28
dB/°) than the latter (0.54 £ 0.34 dB/°). The relatively large
variations registered within the selected sample of 24 scenes
suggest the need for a larger dataset in order to increase the
reliability of the estimates.

Multiple classification studies report decay rate values es-
timated on various low backscatter targets, using the same
type of imagery. A direct comparison with values estimated
in the current study must be done carefully, as we do not
perform classification and our results likely include a mixture
of target types. However, we conclude that the model decay
rates estimated here for the co-polarized channel are close
to the model decay rates reported for open water in [30],
at 0.39 dB/°, and all decay rate values are lower than
those estimated for open water at 0.65 dB/° in [34] and at
0.72 dB/° in [35], respectively. Decay rates for young ice
classes such as reported in [36] and [35] are typically not
higher than 0.23 dB/°.

D. Applicability to the Interferometric Wide (IW) Swath mode

Figure 9 shows the selected IW scene and segmentation
result. The low backscatter areas identified as leads and open
water are comprised in segment 2. Like in the previous
examples, the integrity of the segment is preserved across sub-
swaths, with no boundary impact on the result. This example
serves the purpose of showing that the proposed method can
detect targets with low backscatter signatures in the IW mode
similarly to the EW mode, with no special requirements for
the implementation. Efficient use on a variety of scenes may
benefit from a finer tuning of the optimization bounds.

VI. CONCLUSION

We have presented the outline and results of a project with
a twofold purpose, mainly, to develop a reliable method for
the detection of low backscatter targets in wide-swath SAR
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Fig. 7. Decay rate values of the low-backscatter segments in the co-polarized
channel, measured on the intensity data before noise correction, after classical
noise correction and estimated from the proposed model.
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Fig. 8. Mean backscatter values of the low-backscatter segments in the co-
polarized channel, measured on the raw (not noise-corrected) intensity data,
at 20 ©,32 2,42 °,

imagery from Sentinel-1 while overcoming the poorly defined,
variable and stepped noise floor, and secondarily, to offer an
overview of some of the properties of the detected targets,
based on a study set collected over the Barents Sea. Our
detection method is primarily a segmentation algorithm based
on Gaussian mixtures with IA- and NESZ-dependent means,
adapted to noise-contaminated SAR scenes. We focused on
the Barents Sea as a study area, with a selection of 24
scenes containing various types of targets with low backscatter
signatures that represent newly formed sea ice and lookalikes.
Application on this dataset has consistently produced segments
representing the low backscatter targets, clearly delineated
and connected across sub-swaths. These results clearly show
potential for operational monitoring of phenomena with low
backscatter signatures. Validation has been performed using
manually extracted segments provided by oil spill monitoring
services, which routinely detect oil spill and their lookalikes
in the Barents Sea. The validation shows that our estimates
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(@)

(b)

Fig. 9. Application on IW mode (a) 3-channel (HH, HV, HV/HH) color composite representation; (b) segmentation result the IA+NFL method on both
channels (VV, VH), without prior noise correction. Black - Landmask. Low backscatter segment is number 2.

essentially capture the areas of interest, but are more conser-
vative than those of the operational service, as they strictly
cover the scene areas with the lowest intensity values.

The method shows promise as a general segmentation
approach not restricted to low backscatter targets, but requires
further development and testing in different conditions before
clear conclusions are made. Comparison with other dynamic
noise correction methods proposed for the cross-polarized
Sentinel-1 EW mode data also constitutes potentially inter-
esting research, although we expect the proposed method to
outperform them in the cases of extended low backscatter areas
affected by noise in the co-polarized channel. The classifica-
tion of the detected segments represents the next step, and
will require the exploration of multimodal data such as passive
microwave, dual- and quad-polarized SAR data. Examples of
classification approaches for low backscatter features into oil
spills or lookalikes post-detection are summarized in [19].
Features included in the classification are not only related to
backscatter levels, but also to the shapes, sizes and locations
of the targets. We are also investigating the adaptation of the
current method to a supervised approach, where the estimation
of the noise balancing coefficients would be done on training
areas representing single classes.
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APPENDIX
EXTRACTED SEGMENTS

Figures 10, 11 and 12 show the low backscatter segments
extracted from the dataset (except scenes 1, 2, 7, 22, 24, which

were presented and discussed in detail in previous sections and
figures).
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