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In the Arctic, sea ice loss has already transformed the dominant sources and periodicity of
primary production in some areas, raising concerns over climate change impacts on
benthic communities. Considered to be excellent indicators of environmental changes,
benthic invertebrates play important roles in nutrient cycling, sediment oxygenation and
decomposition. However, this biological component of the Canadian Arctic Archipelago
(CAA) is still somewhat poorly studied compared to other Arctic regions. To partly fill this
need, this study aims to evaluate benthic community composition and its relationship to
significant environmental drivers and to develop spatial predictive explanatory models of
these communities to expand coverage between sampled stations across the Kitikmeot
Sea region and Parry Channel. Results from previously collected samples suggest that
biodiversity is higher in this region compared to the Beaufort and Baffin Seas, two adjacent
regions to the West and East, respectively. This finding leads to the main hypothesis that
(1) benthic communities are succeeding one another, forming an ecotone (transition area)
between the Beaufort Sea and the Baffin Sea. Other hypotheses are that (2) Pacific Ocean
water influence through the CAA can explain part of this gradient, and that (3) terrigenous
inputs affect the distribution of species. Overall, results tend to confirm hypotheses.
Generalized Linear Models (GLMs) (with R2 up to 0.80) clearly displayed a succession in
community distribution from Queen-Maud Gulf (Southwest) to Lancaster Sound
(Northeast). Such models can be useful in identifying potential biodiversity hotspots and
as a baseline for marine spatial planning purposes. Further, Pacific origin water (traced
with concentrations of nitrate relative to phosphate) and terrigenous inputs (traced with
silicate concentrations) were related to species and community distribution. Given that
these two inputs/factors are generally increasing in the Canadian Arctic, their influence on
benthic communities may also be seen to increase in the upcoming years.
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INTRODUCTION

Quantitatively, marine invertebrates are the most taxon rich
group of the animal kingdom in the Arctic (Payer et al., 2013)
and 90% of these are benthic species (Meltofte et al., 2013).
Because of their high abundance, they play an important role in
Arctic food webs and overall biodiversity, and are linked to
higher trophic levels that feed on the seafloor (Bluhm and
Gradinger, 2008; Darnis et al., 2012). Benthic species can often
be used as indicators of environmental conditions and changes in
an environment. Moreover, species’ distribution variability can
inform of previous events/impacts in the marine environment
and whether current ecological states tend to improve or decline
(Borja et al., 2000; Niemi and McDonald, 2004).

Among several environmental factors shown to influence
Arctic marine invertebrates in their abundance, distribution
and assemblage characteristics, river inflow is of mention. In
fact, the Arctic Ocean receives more than 10% of global river
discharges (Opsahl et al., 1999), and river runoff contributes
significantly to the freshwater budget (Carmack, 2000; Prowse
et al., 2015) and has increased in the past decades (Déry et al.,
2009; Holmes et al., 2012; AMAP, 2017). Freshwater inputs
reduce salinity in the marine environment with negative
impacts on benthic diversity (Cusson et al., 2007; Witman
et al., 2008) and the benthic community structures (Pierrejean
et al., 2020). River water flowing into the Arctic marine
environment may also contain terrigenous components such as
terrestrial organic matter, inorganic carbon, nutrients and ions
such as silicate (McClelland et al., 2006). Because silicate
concentrations are higher in Arctic rivers than the marine
environment, this parameter can be used to trace terrigenous
inputs (Ekwurzel et al., 2001). Freshwater river inputs are also
associated to increases in CO2 concentrations, which decreases
water pH (Cooper et al., 2008; Vallières et al., 2008). This can
have an negative impact on benthos calcification abilities (Fabry
et al., 2008).

The Canadian Arctic Archipelago (CAA) receives substantial
volumes of Pacific Ocean origin water, which enters through
Bering Strait and generally flows eastwards towards Baffin Bay
(Carmack et al., 1997; Kliem and Greenberg, 2003). Compared to
Atlantic Ocean water, Pacific Ocean water has a lower density
because it is of lower salinity (more freshwater). The effects of a
lower density in Pacific Water is that it migrates to the upper
ocean layer while Atlantic Water is below (Granger et al., 2018).
Pacific Ocean influence is so strong in the CAA that even in areas
far from the inflow like Lancaster Sound (at the entry of Baffin
Bay), most of the surface water is of Pacific origin (Jones et al.,
2003). Because of its location at the entry of Baffin Bay, this area
is, however, the most influenced by the Atlantic Ocean
(McLaughlin et al., 2006). In addition to its low salinity, Pacific
Water that enters the Canadian Arctic is nitrate depleted,
resulting in lower nitrate:phosphate ratios than Atlantic Ocean
water (Yamamoto-Kawai et al., 2006; McLaughlin et al., 2009).
Because of climate-related increases in sea surface temperatures
and closely related decrease in ice cover, Pacific water inputs are
currently increasing in the Arctic through Bering Strait (Shimada
Frontiers in Marine Science | www.frontiersin.org 2
et al., 2006; Woodgate et al., 2010) and are projected to
substantially increase in the upcoming years (Woodgate, 2018).
Furthermore, the Canadian Arctic is quite shallow in many of the
areas of interest, e.g. Queen-Maud Gulf (QMG) is no deeper than
75 meters (Carmack and McLaughlin, 2011).

There is a particularily large knowledge gap for benthic
biodiversity in the Canadian Arctic and especially the
Kitikmeot Sea region (Wassmann et al., 2004; Archambault
et al., 2010; Piepenburg et al., 2011; Roy et al., 2015a). In
general, the number of species found increases with the
number of sampled stations (Jones et al., 2007; Bluhm et al.,
2011; Piepenburg et al., 2011; Roy et al., 2014) but this can be
difficult when describing such a large region. To efficiently fill
spatial gaps, species/community distributions must be predicted.
One way of predicting distributions is through species
distribution modelling (SDM), based on identified relevant
environmental drivers (Moritz et al., 2013). Since some of
these drivers (e.g. temperature, salinity, ice cover) can be
observed by satellite imagery, it is possible to model
community assemblages on large spatial scales and for difficult
to access locations. SDM is widely used in ecology and can
somewhat compensate the lack of data in a changing
environment (Brown et al., 2016; Brodie et al., 2020). Since
regional ( ≥1 km2) community variability is mostly influenced by
environmental gradients (Levin et al., 2001), understanding how
abiotic drivers influence species distributions may be useful for
filling spatial gaps of biodiversity hotspots and valuable habitats
(McArthur et al., 2010; McHenry et al., 2017; Saeedi et al., 2017;
Pierrejean et al., 2020). Results from these SDMs can be used for
conservation purposes and hopefully contribute to efforts in
reducing biodiversity loss.

Few research projects have been conducted on the subtidal
benthic communities of the Kitikmeot Region and Parry
Channel, CAA, but some information is available. Foremost,
Roy et al. (2015a) and Balsom et al. (2003) found that epifauna
collected in the southwestern portion of the Archipelago
(essentially matching the Kitikmeot Region) have a higher
Shannon-Wiener diversity index compared to neighboring
areas. Another study [Roy et al. (2015a)] shows that benthic
biomass is higher in the deeper Eastern Archipelago, from
Barrow strait to Lancaster Sound in the Parry Channel
segment, than in the shallower Kitikmeot Western Archipelago
study area.

The main objective of this study is to increase knowledge of
the macrobenthic infauna and epifauna composition and predict
their distribution across much of the Kitikmeot sea region and
Parry Channel. Specifically, we first evaluated benthic
composition and its relationship to relevant environmental
factors. Second, we created models to predict spatially different
benthic communities across the studied area. The prediction
tested is that benthic fauna spatial distribution and benthic
communities are succeeding one another in the CAA, forming
a transitional area (ecotone) between Baffin Bay and Beaufort
Sea, where diversity is higher. The second prediction is that the
decreasing Pacific Ocean water influence through the CAA can
explain part of this succession. The third prediction is that
June 2022 | Volume 9 | Article 898852
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terrigenous inputs transported into the region by numerous
rivers also play an important role in the Kitikmeot Region’s
benthic community composition.
METHODS

Study Area
The study area can be divided into two main parts. The first,
Parry Channel, is situated in the middle of the CAA and the
considered portion extends from Lancaster Sound to Viscount
Melville Sound (Figure 1). The second is the Kitikmeot marine
region, located in the Northern part of Nunavut and in the
southern part of the CAA. Compared to Kitikmeot, Parry
Channel is quite deep, extending from 500 m to 700 m, except
around Barrow Strait which is closer to 200 m to 400 m in depth.
The Kitikmeot region includes the Queen-Maud Gulf southward,
M’Clintock Channel and Peel Sound northward, Coronation
Gulf to the west and Chantry Inlet to the east. Our area of
interest for this study is especially Queen-Maud Gulf (where
most of our samples were taken), which is 20-75 meters deep, but
also Victoria Strait and M’Clintock Channel. Queen-Maud Gulf
is connected to Coronation Gulf by the shallow Dease Strait (~40
meters deep) (Carmack and McLaughlin, 2011) and many rivers
are discharging into it. Queen-Maud Gulf receives inflows from
the Simpson, Perry and Pitok rivers and a few others (Brown
et al., 2020).

In total, 55 different locations were sampled across this area
(Figure 1). Generally, infauna and epifauna were both sampled
at the same location but a few stations have either only infauna or
epifauna. For each station, benthic organisms and environmental
data (detailed in section 2.3) were sampled/measured.

Sampling Procedures
Throughout this work, infauna and epifauna samples are treated
separately. Samples were collected between August and
Frontiers in Marine Science | www.frontiersin.org 3
September, from 2009 to 2018, onboard the Canadian research
ice breaker CCGS Amundsen (ArcticNet, 2009; ArcticNet, 2010;
ArcticNet, 2011; ArcticNet, 2013; ArcticNet, 2014; ArcticNet,
2015; ArcticNet, 2017; ArcticNet, 2020). Moreover, this study
focuses only on subtidal macrobenthic (> 500mm) invertebrate
communities living deeper than 30 meters.

Infauna was sampled with a Reineck box corer (50 cm x
50 cm), where sediments from half of the box surface (25 cm x
50 cm) and contained within the upper 10 cm were considered.
Sediments were sieved on a 0.5 cm mesh size to sample organisms
greater size than 0.5 x 0.5 cm. These sieved sediments containing
organisms were preserved in a seawater and formaldehyde
solution (4%), buffered with sodium tetraethylborate.

Epifauna was sampled using a single haul of an Agassiz trawl
per station, the unit measuring 1.5 m in width, with a 1.5 cm net
mesh size and 5mm cod end. After having reached the sea bottom,
the trawl was dragged for 3 minutes at an approximate forward
speed of 1.5 knots. Since this trawl method is semi-quantitative
(Eleftheriou and McIntyre, 2005), taxa count may contain minor
biases. Trawl contents were thereafter sieved on a 2 mmmesh size
and then sorted to taxon. In samples where trawl content was
considerably higher than average, the contents were subsampled if
the estimated sorting time was considered excessive. The
subsampled fraction depended on the size of the catch and was
noted to adjust abundance and biomass measures. Larger
specimens were identified, counted and weighted on the ship
and the others preserved as for the infauna.

Preserved infauna and epifauna samples were washed of the
formaldehyde solution before sorting. After, infauna samples were
sieved on a 500 mm sieve while epifauna samples were sieved on a
2 mm sieve in the lab. Washed and sieved organisms were then
sorted under a dissecting microscope. Specimens were identified
and counted to the lowest possible taxonomic level based on
morphological criteria. Experienced taxonomists validated the
identifications of less common specimens. However, nematodes
were kept at phylum level, and foraminifera were not considered.
FIGURE 1 | Locations of epifauna, infauna and environmental variable sampling stations from Parry Channel and the Kitikmeot sea region. Note that the Kitikmeot
Region also contains areas west (Coronation Gulf) and east (Chantry Inlet) of the marked area, but those were not studied.
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Afterwards, specimen biomass was measured on a ± 0.0001g
precision scale. Taxonomic identification names were verified on
the World Register of Marine Species (WORMS) database.

A total of 19 environmental parameters were used in the
analyses (Table 1). Bottom-water temperature, salinity and
oxygen were obtained with a Seabird Scientific CTD profiler
(SBE911 Plus). Water for nutrient analysis was taken
simultaneously with a Niskin bottle attached to the Rosette
sampler and filtered through GF/F filters. The concentrations of
nitrite (NO−

2 ) , nitrate+nitrite (NO−
3+NO

−
2 ) , phosphate (PO3−

4 )
and silicate (Si(OH)4) were determined on board with a Bran
+Luebbe autoanalyzer 3, following the methods of Grasshoff
(2009). Analytical detection limits for these were 0.02, 0.03, 0.03
and 0.05 mM, respectively. Nitrate concentrations were obtained
by difference of “nitrate+nitrite” – “nitrite”. Silicate concentrations
was used to trace terrigenous inputs. The N/P ratio used to trace
back Pacific origin water that is nitrate depleted (Yamamoto-
Kawai et al., 2006; Tremblay et al., 2015) is the ratio of nitrate
concentration to phosphate concentration. As samples were
collected during the summer and since nitrate concentrations
are often very low or null after the spring bloom, the N* index was
also used in parallel. The latter was calculated based on Gruber
and Sarmiento (1997) and Deutsch et al. (2001) as:

N* = DIN½ � – 16 x  PO3−
4

� �� �
Eq:1

where [DIN] is the sum of nitrite and nitrate concentrations.
The bottom water current velocity was obtained using the

updated version of Ocean-Navigator (Hernandez, 2007) and
annual mean sea ice thickness was extracted from Bio-Oracle
and estimated from 2000 to 2016 (Tyberghein et al., 2012; Assis
et al., 2018). For the last 7 parameters in Table 1, the box core-
collected sediments were analyzed in the laboratory. The grain
size proportions were determined by laser diffraction (Horiba
LA-960 particle size analyzer), and grain dimensions classified
using the Gradistat classification (Blott and Pye, 2001). We
burned the sediment at 450°C to obtain the dry mass
Frontiers in Marine Science | www.frontiersin.org
2

4

proportion of organic content (Byers et al., 1978). Pigment
concentrations in sediments were obtained using acetone
extraction followed by fluorometric analysis (Riaux-Gobin and
Klein, 1993).

Statistical Analysis
Statistical analyses presented below were performed separately on
infaunal and epifaunal data, using R Software, version 3.6. (R Core
Team, 2020). Except for functions from the base package, most of
the statistical functions used are from the Vegan package (Oksanen
et al., 2018).

A cluster tree analysis based on a Bray-Curtis dissimilarity
matrix was performed on biomass data which was initially
transformed using the Hellinger method (Legendre and
Gallagher, 2001). Afterwards, the most representative species
in each community were identified using the indicator value
index (IndVal) (Dufrêne and Legendre, 1997). Values of IndVal
range between from 0 to 100%. A value of 100% for a particular
species would indicate that it is encountered exclusively in a
given group and at every station.

Subsequently, a redundancy analysis (RDA) was done to
determine which environmental parameters are related to the
differences between communities. Again, Hellinger transformed
faunal biomass data was used and environmental data was
transformed with the standardize method of the vegan package
(Oksanen et al., 2018). Such transformations are used to reduce
the effect of outlier values in analyses. In the first iteration, a best
fit selection of variables was performed to obtain an RDA with
the highest adjusted-R2. Then, to answer the second and third
hypotheses, selection of environmental variables that are
significantly related to the biomass was performed via a two-
step process with forward selection. The alpha value was set at
0.05. Only significantly influential variables were used to build a
graphical representation (i.e. x-y graph), where the distance
between each community represents the Euclidian distance and
each influential driver is represented by an arrow, for which
communities are influenced and positioned in relation to each
other by these drivers. The length of the arrow is related to the
strength of influence. The p-value of the model was obtained
with a permutation test for RDA under a reduced model and
9999 permutations.

Generalized linear models (GLMs) were used to predict
spatial community likelihood of occurrence (on a scale from 0
to 1). The family type of the GLMs in this case is binomial
because the presence of communities was expressed by either 1
(presence) or 0 (absence). To obtain the highest R2 possible, we
used a best fit approach, where every combination of
environmental variables possible was tested in a GLM. The
combination with the highest R2 and lowest Bayesian
Information Criterion (BIC) was selected. The McFadden
pseudo-R2 (McFadden, 1973) was used along with the GLMs
statistics. Using GIS rasters of chosen environmental data and
the GLM, we predicted the probability of occurrence of the
community for every cell in the study area. Rasters for every
parameter used were extracted from Bio-Oracle (Assis et al.,
2018), for which resolution is 0.083° of latitude by 0.083° of
longitude, and cells are approximately 3 km of longitude by
TABLE 1 | Environmental parameters considered for the statistical analysis.

Environmental parameter Unit Abbreviation

Bottom water temperature °C T
Bottom water salinity PSU S
Water Depth m D
Bottom water Oxygen concentration mL·L-1 O
Bottom and Surface water N/P ratio – b.N/P and s.N/P
Bottom and Surface water N* index – b.N* and s.N*
Bottom and Surface Nitrate µmol·L-1 b.N and s.N
Bottom and Surface Nitrite µmol·L-1 b.NO2 and s.NO
Bottom and Surface Phosphate µmol·L-1 b.PO4 and s.PO4

Bottom and Surface Silicate µmol·L-1 SiB and SiS
Bottom water velocity m·s-1 WV
Annual Mean Ice Thickness m Ice
Gravel % Gravel
Sand % Sand
Mud % Mud
Sediment Organic Matter % OM
Sediment Chlorophyll a µg·g-1 C.a
Sediment Phaeopigments µg·g-1 Pha
Total sediment pigments µg·g-1 P
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9.3 km of latitude in our study area, hence every cell has an area
of 27.9 km2. It is important to note that some areas were blanked
due to the lack of data, which was useful in preventing false
identification of unexplored benthic regions. Because sediment
content of pigments (phaeopigments and chlorophyll a) is not
available on Bio-Oracle as raster, this variable was replaced by
bottom water chlorophyll concentration (mg·m-3) for the GLMs
only. Upon analysis, field data was found to be quite similar to
GIS data. In the stations that differed, slightly different values
could be observed at times, and some outliers were also observed
but mean values were very similar. Nevertheless we used
extracted environmental data from the rasters to perform
GLMs. Due to the unavailability of Bio-Oracle data relating to
sediment types (sand, mud and gravel), these were not
considered in the process of modelling communities.

Taxonomic richness was the chosen unit to measure diversity
(Supplemental 5, 6, 7 and 8). We applied the same method as for
the community models except using the Poisson family type of
GLMs because the number of taxa is discrete, and predictor
environmental variables are continuous.

Epifauna community distribution models were partly
validated using seafloor images from Lancaster Sound by
Bouchard Marmen et al. (2017). This was done to validate if
indicator species of the communities were in fact present or not
at a predicted location. These images are from a North-South
transect photographed in Lancaster Sound around 83° W of
longitude with a Digital Benthic Camera, but acquired in
different sites than the ones in this study. The photos cover an
average of 0.692 m2 (0.675 m x 1.025 m).
RESULTS

Infauna
A total of 40 stations were sampled and 407 taxa were identified
in the infauna. The most dominant taxon was Annelida (38%),
followed by Arthropoda (25%). Most of the Annelida found were
polychaetes (99,8%) and Arthropoda were mainly composed of
Amphipoda (42%) and Cumacea (27%). Based on the Bray-
Curtis dissimilarity, stations clearly clustered into 4 spatially
contiguous station groups (Figure 2 , Figure 3). Which are used
in all subsequent species assemblage related analyses.

The first community of the cluster analysis (Figure 2) is
composed of the shallowest stations, located around Victoria
Strait and in the northern portion of Queen-Maud Gulf. They
also display the lowest salinity values and the highest sediment
chlorophyll a concentration (Figure 4). The second community
encompasses some northern stations of Kitikmeot, in the
M’Clintock Channel and at the entry of Peel Sound in
Franklin Strait. According to the RDA, this is the community
with the highest bottom N/P ratio and bottom nitrate
concentration (Figure 4). Moreover, two locations within this
community show the lowest concentrations of chlorophyll a in
the sediment and mean sediment organic matter content
between all communities. This second community also has
some stations which are overlapping with some of the third
Frontiers in Marine Science | www.frontiersin.org 5
community, although the average depth (100 meters) a little
deeper than for the third community (85 meters). The main
indicator species in this second community is the bivalve Astarte
crenata/montagui (Table 2).

The third community has some stations in Queen-Maud
Gulf. This community is different from the second by, 1) the
absence of stations in the Northern Kitikmeot, 2) the presence of
stations in Dease Strait (Figure 3), and 3) the lowest mean
surface N* value, according to the RDA (Figure 4). Indicator
species are represented by bivalvles in 3 out of 5 total species and
are characterized by very low mobility. Along with the brittle star
Ophiocten sericeum (IndVal of 39%), 4 of the 5 indicator taxa are
calcified organisms. The genus Yoldiella is strongly
representative of the community with the two species, Y.
intermedia and Y. solidula, as main indicators. The fourth
community is composed of stations located almost exclusively
within the Parry Channel region, and is the closest of four to the
Atlantic Ocean and also furthest from the Pacific Ocean (Figure
3). Stations here are characterized by the lowest ocean depth
measurements as well as highest mean bottom water
temperatures (Supplemental 2). As observed on the RDA
(Figure 4), these stations share some similarities with the first
and third communities. The taxon that best distinguishes this
community is the gastropod family Philinidae (Indval of
83%) (Table 2).

In a best-fit RDA with the selected environmental variables,
19 parameters (D, s.N*, P, b.N/P, S, WV, SiS, Sand, T, Pha, s.PO4,
Mud, SiB, Gravel, s.N/P, b.N, b.N*, Ice and C.a) explained 63% of
the variation among stations (adj-R2 = 0.28) (Supplemental 1).
Nine of these were statistically significant and explained 40% of
the variation among stations (adj-R2 = 0.22) (Figure 4).
Sediment chlorophyll a concentration, annual mean ice
thickness and surface silicate had the strongest influence on
the species composition. Additionnally, an interesting
observation among studied regions was that annual mean ice
thickness and surface silicate were inversely correlated.
Chlorophyll a concentration is also inversely correlated with
depth and salinity. However, depth and salinity generally tend to
be vary proportionally (Figure 4).

The main observation from the infauna GLMs models is the
succession of habitat suitability between the communities
(Figure 5). Starting from the Southwest, habitat suitability in
Dease Strait and towards Coronation Gulf was highest for the
third community. Environmental conditions also appeared
favorable for this same community in the middle of Queen-
Maud Gulf and in Northern Peel Sound, albeit the species’ group
characteristic of this community were not found within these two
locations. This could mean that more sampling may have
revealed this community or perhaps a similar one, given that
the environmental conditions were favorable.

The second community was predicted to be present in
suitable habitat within coastal areas and especially in Queen-
Maud Gulf, surrounding the third community. Suitable habitat
for the first community was predicted to occur a little northward
of the second community. Habitat suitability for the first
community was higher around Victoria Strait and inside
June 2022 | Volume 9 | Article 898852

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Dumais et al. Modelling Canadian Archipelago Benthic Communities
Ommanney Bay near Prince-Of-Wales Island, with a patch
around Barrow Strait which is a shallower portion of Parry
Channel. Completing the niche succession northeastwards, the
fourth community found high predicted habitat suitability for
Viscount Melville Sound and Lancaster Sound. In summary,
communities 3, 2, 1 and 4 seem to be largely succeeding one
another from the Southwest, near Beaufort Sea, to the Northeast
and nearer to Baffin Bay.

When considering the environmental variables retained for
creating the GLM models (Supplemental 2), silicate
Frontiers in Marine Science | www.frontiersin.org 6
concentration is present in all four models. Also, annual mean
ice thickness explains the presence/absence of 3 out of 4
communities. The first community seems to thrive where
explaining variable values are intermediate. Furthermore,
shallow depths, low annual mean ice thickness and high
surface silicate concentration explaining the second community
is consistent with its nearshore location inside Queen-Maud
Gulf. The third community is explained by the lowest annual
mean ice thickness, low bottom nitrate and moderate bottom
silicate concentration. The fourth community is not explained by
FIGURE 2 | Infauna cluster tree (Bray-Curtis Distance) based on Bray-Curtis dissimilarity matrix with transformed species biomass data. Green dots are the stations
from the first community, pale blue dots are community 2, dark gray dots are community 3 and red dots are community 4.
FIGURE 3 | Location of the 4 infaunal communities across the Kitikmeot Sea region and Parry Channel. Colors represent the communities assigned in Figure 2.
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depth, but its distribution pattern clearly fits the deepest regions
of the studied area. The variable with the strongest influence on
this community is the bottom current velocity, which is clearly
higher compared to the other groups even though it is in
deeper water.

Epifauna
A total 50 stations were considered and 436 taxa were identified.
The most dominant phylum was Arthropoda (28%), which was
dominated by the order Amphipoda (48%), followed by Annelida
(13%) (mostly Polychaeta at 99%) and by Bivalvia (12%).
Frontiers in Marine Science | www.frontiersin.org 7
Based on a Bray-Curtis dissimilarity matrix, epifauna stations
clustered into 3 different groups (Figure 6). Almost half of all
stations represent the first community which occurs at the
highest mean depth, mostly in Parry Channel (Figure 7) and
with a few stations in Queen-Maud Gulf. The latter stations from
2018 are more similar to deeper area communities in Parry
Channel than to stations sampled in previous years a few
kilometers away. The first community has the highest N* index
values, is furthest from Pacific Ocean sources and has the low
mean surface silicate concentrations. Two indicator species of
that group are echinoderms of the class ophiuroids (brittle stars)
(Table 3). The second and third share few similarities in
taxonomic composition (Table 3), though both are found
mainly in Queen-Maud Gulf, Victoria Strait and Dease Strait
(Figure 7). However, locations in which the second community
is present have lower salinity and higher surface silicate values,
which are indicative of terrigenous water inputs. The five
indicator species of this group are quite taxonomically diverse
(Table 3). Most of third community stations were in Kitikmeot
area, although, some are in Barrow Strait where the sea is
shallower compared to the rest of Parry Channel. Overall,
Community 3 stations are found deeper than the ones from
the second community. In terms of silicate concentrations and
salinity, this group is between the first and second community.
The N* index value is the lowest, therefore indicative of strong
Pacific Ocean water influence.

In a best-fit RDA, 11 parameters (S, D, b.N*, O, b.N/P, SiS,
WV, Sand, OM, C.a and P) explain 32% of the variation among
stations (adj-R2 = 0.13) (Supplemental 3). The forward selection
indicate that 6 environmental parameters are significantly
influencial (depth, N* index, pigment, salinity, organic matter,
and surface silicate) and when combined, explain 22% of the
differences between the 50 stations (adj-R2 = 0.12) (Figure 8).
Overall, high surface silicate and organic matter concentrations
are inversely proportional to high salinity concentration, N*
index (used to trace Pacific Ocean water), and depth values. High
FIGURE 4 | Redundancy analysis plot of the biomass Hellinger transformed 40 infaunal stations sampled between 2010 and 2018 (p-value = 0.0001). Significant
environmental variables were obtained using a two-step forward selection. Colors represent the community determined with a Bray-Curtis distance-based cluster
analysis. Green dots are the stations from the first community, pale blues are community 2, dark grays are community 3 and reds are community 4.
TABLE 2 | Indicator species (5 most important species are presented) of each
benthic infaunal community in the Kitikmeot sea region and Parry Channel based
on the IndVal Index.

Community Mean depth
(m)

Taxa (Phylum) IndVal
(%)

1 55 Haploops laevis (Arthropoda) 83
Ennucula tenuis (Mollusca) 81
Nuculana pernula (Mollusca) 72
Maldane sarsi (Annelida) 67
Micronephthys minuta (Annelida) 62

2 99 Astarte crenata/montagui
(Mollusca)

58

Alcyonidium sp. (Bryozoa) 41
Abyssoninoe abyssorum (Annelida) 36

3 85 Bathyarca glacialis (Mollusca) 67
Yoldiella intermedia (Mollusca) 64
Yoldiella solidula (Mollusca) 42
Diastylis oxyrhyncha (Arthropoda) 39
Ophiocten sericeum
(Echinodermata)

39

4 445 Philinidae (Mollusca) 83
Diplocirrus hirsutus (Annelida) 66
Prionospio sp. (Annelida) 56
Thyasira sp. (Mollusca) 52
Chirimia biceps (Annelida) 50
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values of the latter five parameters are mainly associated to
stations of the first community (Figure 8, displayed in red). High
concentrations of surface silicate and organic matter are
associated with stations from the second and third community.

In the GLMs models, habitat suitability for the three
communities shows a somewhat obvious spatial succession
from Southwest to Northeast, albeit not as clear as with the
infauna (Figure 9). The second community is mostly present in
southern Kitikmeot. The third community has high habitat
suitability inside most of Kitikmeot sea region and is located
just beyond coastal areas. There are also high habitat suitability
Frontiers in Marine Science | www.frontiersin.org 8
values North of Prince-of-Wales Island and Barrow Strait.
Hence, this can be interpreted as an intermediate community
between the communities of Lancaster Sound (1) and Queen-
Maud Gulf (2). Finally, community 1 has high habitat suitability
values in North M’Clintock, Viscount Melville Sound, Peel
Sound and especially Lancaster Sound with a tendency to
expand East towards Baffin Bay. Overall, the 3 epifaunal
communities are succeeding one another inside the study area.
For Community 1, the coefficient with the highest value is
associated with depth (Supplemental 4). Indeed, high habitat
suitability values for this community are found mostly for deeper
FIGURE 6 | Epifauna cluster tree based on Bray-Curtis dissimilarity matrix with Hellinger transformed species biomass data. Red dots are the stations from group 1,
pale blue dots are group 2 and dark grey dots are group 3.
FIGURE 5 | Habitat suitability of 4 infaunal groups in the Kitikmeot sea region and Parry Channel regions obtained with GLMs. The scale from 0 to 1 represents the
probability of occurrence of each community. The arrows show the gradient of species community distribution from Dease Strait to Lancaster Sound.
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areas such as Parry Channel while the community has ‘near zero’
habitat suitability values in shallow regions like Queen-Maud
Gulf. Regarding the second community, the highest absolute
value of coefficients is associated with high bottom current
velocities, which are mainly observed within channels.
Moreover, this community has higher suitability values when
Frontiers in Marine Science | www.frontiersin.org 9
dissolved oxygen increases. Finally, the third community is
present in areas with the highest mean current velocities,
whereas the first community is found mainly in areas of
medium mean current and the second community, the lowest
mean current velocities.
DISCUSSION

This study demonstrates that benthic communities in the
southern and central CAA are succeeding one another from
Southwest to Northeast, with 4 infaunal and 3 epifaunal
communities that are mostly contiguous and partly
overlapping. Pacific Ocean water flowing through the CAA,
from Bering Strait to Baffin Bay, is an influential
environmental parameter for the community composition.
Moreover, we observed that benthic assemblages are
potentially influenced by terrigenous inputs in the marine
environment. This is the first time that benthic communities
and diversity are modelled in the Kitikmeot sea region.

Indicator Taxa
All characteristic species are well known from Arctic shelf areas.
In the epifauna, indicator species of 2 out of 4 communities are
both ophiuroids, or brittle stars, which are often observed in the
Arctic. A potential explanation suggested by Piepenburg (2003)
for their omnipresence in Arctic regions is that they are exposed
to very low predation pressure. In Community 1, Ophiocten
TABLE 3 | Indicator species (5 first if available) of each benthic epifauna
community in the Kitikmeot sea region and Parry Channel based on the IndVal
Index.

Community Mean Depth
(m)

Indicator Species IndVal
(%)

1 318 Ophiocten sericeum
(Echinodermata)

75

Ophiopleura borealis
(Echinodermata)

57

Alcyonidium gelatinosum (Bryozoa) 40
Phascolion sp. (Sipuncula) 37
Cuspidaria glacialis (Mollusca) 33

2 68 Yodiella intermedia (Mollusca) 77
Anonyx sp. (Arthropoda) 74
Eurycyde hispida (Arthropoda) 72
Arcturus baffini (Arthropoda) 69
Bathypolypus arcticus (Mollusca) 68

3 97 Ophiacantha bidentata
(Echinodermata)

88

Grammaria abietina (Cnidaria) 82
Nothria conchylega (Annelida) 76
Nototropis smitti (Arthropoda) 76
Lophaster furcifer (Echinodermata) 76
FIGURE 7 | Location of the 3 epifaunal communities across the Kitikmeot sea region and Parry Channel. Colors represent the communities determined at Figure 6.
June 2022 | Volume 9 | Article 898852

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Dumais et al. Modelling Canadian Archipelago Benthic Communities
sericeum is the most indicative species most likely because of its
large depth range (Piepenburg, 2003). The best indicators of
Community 2 are the bivalve Yoldiella intermedia, the amphipod
Anonyx sp. and the pycnogonid Eurycyde hispida, all of which
have been observed in shallow and low salinity areas such as in
fjords (Arnaud and Bamber, 1988; Shea and Percy, 1990;
Różycki, 1992; Bryazgin, 1997). The exception among indicator
species for that community would be Bathypolypus arcticus, a
cosmopolitan deep-water octopus, though its variable
distribution may include shallow areas (Wood, 2000; Gardiner
and Dick, 2010). For Community 3, the first indicator species is
Ophiacantha bidentata, a shallow water brittle star species
(Martynov and Litvinova, 2008). The second indicator species,
Grammaria abietina, is a sessile hydroid while the third is the
shallow water polychaete Nothria conchylega. These two latter
species are present despite a mostly fine sediment structure,
although they do need coarser sediment for attachment and to
build a dwelling, respectively (La Porta et al., 2011).

For infauna, Bivalvia and Polychaeta were the main indicator
taxa, which are often dominant within the sediment in the Arctic
and globally (Dale et al., 1989; Olsen et al., 2007; Schonberg et al.,
2014). The main indicator for Community 1 is a common shallow
water amphipod, Haploops laevis (Bryazgin, 1997). In Community
2, the most important species is Astarte crenata/montagui, which is
also omnipresent in the Arctic, followed by the bryozoan genus
Alcyonidium. The latter species can be an indicator of the presence
of at least sparse, coarse substratum enabling attachment of these
organisms. The third indicator species of this community is the
Polychaeta Abyssoninoe abyssorum. Unlike its name may suggest, it
can be found in shallow water (Bakken et al., 2010). In addition, the
burrowing bivalve genus (Kokarev et al., 2017) Yoldiella is common
in the community, also found worldwide and often in the Arctic
(Bernard, 1979). Finally, Philinidae is the main indicator species of
Community 4, being a family of small carnivorous gastropods that
mainly feed on foraminifera (Ohnheiser and Malaquias, 2013).
Except for this family, the other indicator taxa are all deposit
feeders, which suggests low predation from other species in that
Frontiers in Marine Science | www.frontiersin.org 10
environment. Among these, the bivalve genus Thyasira may
tolerate hypoxia conditions due to chemoautotrophic abilities
(Dando and Spiro, 1993).
Environmental Influence on Assemblages
The most notable results are that N* index and surface silicate
concentrations significantly explain the differences between
benthic assemblages within stations. This means that Pacific
Ocean origin water and terrigenous input have an influence on
benthic communities in the CAA. Pacific waters that enter by the
Bering Strait are nitrate depleted (Yamamoto-Kawai et al., 2006)
and fresher than the Atlantic water. In the Arctic, nitrogen in the
form of nitrate is a limiting element for marine primary
productivity (Gray and Elliott, 2009). Because of its lower
density, water of Pacific origin is mostly found within the upper
200 meters (Woodgate, 2013). More than 3 stations out of 4 were
sampled no deeper than 200 meters. This means that most of our
stations are literally in the depth zone of these lesser dense waters.
Moreover, other depth zones may also be influenced by it, for
instance by receiving organic matter from the euphotic zone. Not
only is the influence of the Pacific observable in the study area, but
as mentioned before, Pacific water input is currently increasing in
the Arctic (Woodgate, 2018).

The modelling of the distributions of epifauna and infauna
communities suggests that they largely succeed one another
across the study area. The distribution of habitat suitability
values for every community suggests that every community
occupies a distinct niche and geographic area. However it is
possible to observe that communities occupy succeeding
geographic locations. This succession is mainly from South to
North with a slight tendency of West to East. This West-East
tendency is more obvious for the infauna where the first
community of the succession (Community 3) has very high
suitability values in the West in Dease Strait and the last
community (Community 4) has very high habitat suitability
values in Lancaster Sound at the entrance of Baffin Bay.
FIGURE 8 | Redundancy analysis plot of the biomass Hellinger transformed 50 epifaunal stations sampled between 2010 and 2018 (p-value = 0.0001). Significant
environmental variables were obtained using a two-step forward selection. Colors represent the community determined with a Bray-Curtis distance-based cluster
analysis. Red dots are the stations from community 1, pale blues are community 2 and dark grays are community 3.
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The community turnover occurs along the same gradient as the
strength of influence of Pacific Ocean origin water (a significantly
influential parameter) (Yamamoto-Kawai et al., 2006) that flows
through the CAA. Moreover, an increasing volume of higher
temperature seawater (Woodgate, 2018) may promote Pacific
Ocean water inflow in the Arctic and hence allow for the
northward movement of sub-polar species via Bering Strait
(Waga et al., 2020). Based on these insights, we suggest that the
community succession observed in the models could potentially
move North and/or Eastwards towards Baffin Bay in the future,
depending on the original location of the community. Furthermore,
this could also include exotic species in the near as suggested by the
change in future conditions (Goldsmit et al., 2018; Goldsmit
et al., 2020).

Another significant observation is that surface silicate and
salinity are correlated. This is especially the case where rivers are
present because silicate concentrations are higher in Arctic rivers
than in the Pacific Ocean (Ekwurzel et al., 2001). This is the case
here as there are a significant number of terrestrial sources in the
studied area (in particular QMG). When looking at redundancy
analysis and group averages for each environmental variable,
Kitikmeot stations have higher surface silicate concentrations,
which was used to trace terrigenous inputs. However this will
need to be explored further. For instance, d13C could be a better
tool to evaluate organic matter origin and its impact on benthic
communities (Naidu et al., 1993; Bell et al., 2016). Moreover,
d18O can be used to trace more precicely the presence and
Frontiers in Marine Science | www.frontiersin.org 11
movement of freshwater masses and indicate if water is from
marine sources, such as sea ice melting or of terrigenous origin
(Yamamoto‐Kawai et al., 2008; Lansard et al., 2012).

Land inputs contribute meaningfully to the Arctic Ocean’s
organic carbon budget (Grebmeier and Barry, 1991; Wheeler
et al., 1996) and freshwater budget, where the Arctic receives
over 10% of global fluvial imports (Opsahl et al., 1999). All this
freshwater entering marine ecosystems contains allochthonous
organic matter, hence food for benthic invertebrates. Although it
has a lower nutritional quality for benthos (Schell, 1983), this
organic matter can be consumed by benthic organisms after
microbial reworking and contributes in reducing the pelagic-
benthic coupling (Bell et al., 2016). In some Arctic areas, it has
been observed that autochthonous organic matter might not be
enough for pelagic and benthic organisms. Hence, allochthonous
sources are of importance for the carbon budget (Schmid et al.,
2006). This connection is supported by our epifauna data, where
the concentration of organic matter was correlated with the
concentration of surface silicate. River discharge is expected to
increase in the upcoming years, and this is especially the case
around Queen-Maud Gulf, where predictions suggest the
greatest increase along the Canadian Arctic coastline (Bring
et al., 2017). Furthermore, Brown et al. (2020) demonstrated
that smaller rivers may have a greater inorganic import potential
in the future than previously anticipated. River discharge also
favors species that are more tolerant than others to salinity
variations (Remane and Schlieper, 1971). Precipitations in the
FIGURE 9 | Habitat suitability of the 3 epifauna groups in the Kitikmeot sea region and Parry Channel obtained with GLMs. The scale from 0 to 1 represents the
probability of occurrence of the community. The arrows show the proposed gradient of species assemblage from Dease Strait to Lancaster Sound.
June 2022 | Volume 9 | Article 898852

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Dumais et al. Modelling Canadian Archipelago Benthic Communities
Arctic tend to increase and will continue to do so in the future
(Bintanja and Selten, 2014), adding to the direct effect of river
discharge and thus freshwater inputs in the marine environment
(Peterson et al., 2002; Zhang et al., 2013).

In both infauna and epifauna, depth is a significant
environmental driver, although depth per se does not necessarily
have an influence on living organisms (Gage and Tyler, 1991;
Gibson et al., 2005). Depth is especially linked to food availability
by negatively affecting the benthic-pelagic coupling (Smith et al.,
2008; Soltwedel et al., 2009; Roy et al., 2015b) and food quality
(Grebmeier and Barry, 1991; Forest et al., 2011). This explains why
depth and chlorophyll a are inversely correlated. In addition, the
CAA has different and more heterogenous environmental
conditions than Baffin Bay and the Beaufort Sea, located on either
side.Additionally, to theSouthwest-Northeast succession, the inter-
regional heterogeneity could also explain why there is such a large-
scaledifference in species assemblages. Thisheterogeneity ofhabitat
could be partly linked to depth fluctuations in the CAA where
multiple sills are present (McLaughlin et al., 2006). For instance,
Queen-Maud Gulf (shallower environment; maximum depth of
115 meters) communities are quite different from the ones in
Lancaster Sound (deeper environment; maximum depth of
786 meters).

A prominent oceanographic phenomenon in the CAA,
especially in the Kitikmeot sea region, is the local presence of
strong tidal currents (Rotermund et al., 2021). These currents are
fastest in narrow straits and contribute to reducing the ice cover
during winter and are thought to increase pelagic-benthic
coupling during summer (Williams et al., 2019). Even though
current velocity is not an explanatory variable in the RDA, it was
selected in GLMs of the three epifauna communities, suggesting
it is a non-negligible factor for community distribution. In fact,
Fredriksen et al. (2018) demonstrated that epifauna communities
in areas with high current are dominated by suspension feeders,
in agreement with Community 3, while lower current regions
were dominated by deposit feeders.

As some environmental parameters are significantly
influential, there is no key variable that can alone explain
benthic communitiy distribution. It is more reasonable to
assume that interactions between every variable influence the
species assemblages, where some interactions can be antagonistic
while others synergistic and very few variables act in isolation
(Carrier-Belleau et al., 2021).

As observed on community location maps, stations that are
geographically closer to each other tend to have similar
community composition. There is one notable exception to
this observation, and it is Community 1 of the epifauna.
Indeed, Queen-Maud Gulf stations of 2018 are much more like
those of Parry Channel than they are from stations of the same
location from different years. However, Queen-Maud Gulf
stations are in shallower depths and Parry Channel stations are
within the deepest locations of our sampling effort. QMG
stations of 2018 had less organic matter, less surface silicate
(less terrigenous inputs), lower chlorophyll a concentration and
less bottom oxygen concentration (which proposes a greater
column water stratification) than observed in that region during
Frontiers in Marine Science | www.frontiersin.org 12
other sampling periods. In 2018, there was a higher sea ice extent,
lower temperatures and slightly lower precipitations (Smoliansky
et al., 2018) than other years. All of which could have impacts on
primary productivity and hence benthic communities
(Gradinger, 1995; Arrigo et al., 2008; Wassmann and Reigstad,
2011; Link et al., 2013; Kędra et al., 2015). Another potential
explanation of this unique result would be a greater increase in
the nitrate depleted Pacific Ocean water inputs in the Arctic for
that year. However, those stations do not exhibit different N*
index value for that year. A sudden shift in benthic communities’
composition driven by changes in the environmental conditions
over only one year seems quite unlikely. Normally, shifts in
benthic communities occur over more than a year given that
many species are long-lived and slow growing (Grebmeier, 2012;
Kortsch et al., 2012).

Modelling diversity is even more complex than doing so for
presence/absence of communities, judging from the overall low
R2 values (Supplemental 5, 6, 7, 8). In the case of our data, the
highest pseudo R2 for these latter models was 0.28. For
communities, they were at least higher than 0.30 and go up to
0.80. Despite some low R2 values, diversity models are based on
species level identifications, which brings more model strength
since the species level is usually most impacted by the
environment (Bertrand et al., 2006). Additionally, more
parameters are selected to predict diversity and it is normally a
combination of many parameters that affect diversity in marine
ecosystems (Rosenzweig, 1995; McArthur et al., 2010). Many
environmental variables are found to be significantly influential
on the number of taxa for both epifauna and infauna. This is
especially the case for surface silicate, salinity, bottom N/P and
annual mean ice thickness.

Model Validity
The only possible validation of our model by external data was
achieved with Lancaster Sound bottom pictures from Bouchard-
Marmen et al. (2017), the latter having been taken exclusively in
the area mostly occupied by epifauna of community 1 (Lancaster
Sound). Our model shows that the two main indicator species for
this community were Ophiocten sericeum and Ophiopleura
borealis, which can be confirmed/validated by photographs
showing their high abundance in that area. Comparatively, oher
indicator species were not often observed in these pictures,
probably due to the difficulty in detecting them by their smaller
size. Therefore, a more detailed validation of these models would
be warranted in the near future. Additionnaly, sampling effort
should be increased in the whole area to have a maximal validation
resolution. This was suggested by Wei et al. (2020), where future
research activities must fill these knowledge gaps to improve the
accuracy and resolution of pattern predictions. Furthermore, we
must be careful with predictions of habitat suitability for
communities around coastal areas, since we do not actually have
any infauna or epifauna data shallower than 34 meters. Hence,
models are not built to predict community presence or
characteristics in such complex environments. Finally, models
that were built are considered to be large-scale, where every cell
measures 27 km2. Consequently, community gradients may not be
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observable everywhere since, on a local scale, it is interspecific
relationships that impact community composition (Levin et al.,
2001). This model does not consider these types of relationships.
SUMMARY AND CONCLUSION

Our research suggests that epifaunal and infaunal benthic
communities are succeeding one another from Dease Strait, in
the West of the CAA, to Lancaster Sound in the East, near Baffin
Bay. This finding reinforces the hypothesis that the CAA is an
ecotone, a transitional area, between the Beaufort Sea and Baffin
Bay. Results also suggest that Pacific Ocean origin waters have
significant influence on benthic communities in the CAA, further
explaining the observed succession. A biogeographic analysis
looking at gradients in Pacific affinity species could later support
this finding. Unrelated to the transitional status, our results also
suggess that river inputs have an important impact on benthic
assemblages, particularly in Kitikmeot where many rivers are
discharging in Queen-Maud Gulf. Many significantly influential
parameters on benthic organism presence and community
composition have already changed and will be subject to more
important changes in the upcoming years (Polyakov et al., 2020).
This is notably the case for the terrigenous imports, the Pacific
Ocean water influence, the sea ice cover, sea temperature and the
primary production (Stroeve and Notz, 2018; Woodgate, 2018;
Brown et al., 2020; Lewis et al., 2020). Our study is also the first
modelling of Kitikmeot and Parry Channel benthic communities.
Moreover, such models could be useful for spatial planning
applications or even for marine conservation purposes.
However, further validations from external data sources are
needed, especially in the Kitikmeot sea region. In the context of
climate change, this region is a key area for the transition of Pacific
Ocean water to the Baffin Bay areas, which will also experience an
increase in human activities such as maritime transport.
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Université Laval).

ArcticNet (2011). ArcticNet 2010-2011 Annual Report (Quebec City, Qc, Canada:
Université Laval).
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