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Growing demands stimulate the intensification of production and create the need for
practices that are both economically viable and environmentally sustainable. As European
Union banned the use of antibiotics in production in 2003, several alternative treatments
have been suggested, including probiotics. The first probiotic study in aquaculture was
published in 1986, and since then probiotics have been considered as a beneficial tool in
this industry. Today current evidence suggests that administration of certain probiotic
strains might be able to enhance growth rate, improve the welfare of different fish species
by modulating gut microbiota, improve physiological functions, such as metabolism,
digestion, immunity, stress tolerance, intestinal histology, and disease resistance. Even
though lactic acid bacteria and Bacillus spp. are the most frequently used probiotics in
aquaculture, numerous studies have been published on other interesting probiotics.
Therefore, the purpose of this paper is to summarize, comment, and discuss the current
knowledge related to the effects of Aeromonas, Aliivibrio, Alteromonas, Arthrobacter,
Bifidobacterium, Brochothrix, Clostridium, Enterovibrio, Kocuria, Microbacterium,
Micrococcus, Paenibacillus, Phaeobacter, Pseudoalteromonas, Pseudomonas,
Rhodococcus, Rhodopseudomonas, Rhodosporidium, Roseobacter, Shewanella and
Vibrio as probiotics in finfish aquaculture, and present general information on their
presence in the gastrointestinal tract of finfish. Moreover, some considerations for
future studies are also indicated.

Keywords: probiotic bacteria, non-LAB, bacilli, finfish, aquaculture
INTRODUCTION

By 2025, aquaculture is expected to play a leading role in the global supply of fish. However, the
growth of this industry could be considerably hampered by failures to predict, avoid, and contain
infections. Unsurprisingly, the intensification of aquatic production has led to a significant increase
in the frequency of disease and a growing inefficiency among the antibiotics used to treat these.
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Antibiotics have been used in aquaculture for more than 50
years (Shamsuzzaman and Kumar, 2012), and previously the
most common method for dealing with the occurrence of
bacterial infections was the administration of antibiotics
(Cabello, 2006; Cabello et al., 2020; Lulijwa et al., 2020), and
the rapid growth of for example the Chilean salmon industry was
accompanied by intensive use of antibiotics. However, as
antibiotic administrations became the target of increasing
public criticism and political controversy, Sweden was the first
country in Europe, to ban the use of antimicrobial growth
promoters as early as 1986. In 2003, European Union stated in
Regulation (EC) No. 1831/2003; “Antibiotics, other than
coccidiostats or histomonostats, shall not be authorized as feed
additives”. However, recent findings have revealed that mono-
(e.g., Gudmundsdottir and Bjornsdottir, 2007) and polyvalent
vaccines (e.g., Tobar et al., 2015) are effective for disease control
in aquaculture, especially for salmonids. However, for many
Chinese and Indian finfish-, shellfish- and cucumber species,
vaccines are not available, and will hardly be available soon.
However, there are several alternative treatment options
available; phytobiotics, phage therapy, bacterial membrane
vesicles (e.g., Jan, 2017; Tandberg et al., 2019; Mertes et al.,
2021), quorum sensing interference, postbiotics (secreted by live
bacteria, or released after bacterial lysis; Ang et al., 2020; Cuevas-
González et al., 2020; Teame et al., 2020), postbiotics in
combination with prebiotics, paraprobiotics (cell wall
components; Taverniti and Guglielmetti, 2011; Choudhury and
Kamilya, 2019; Nataraj et al., 2020), pro-, pre- and synbiotics.
However, Cheng et al. (2014) argue that these “so-called
alternatives” are not ideal antibiotics replacers.

According to Bermudez-Brito et al. (2012), “Probiotics are live
microorganisms that provide health benefits to the host when
ingested in adequate amounts”. The probiotic concept is
primarily based on the assumption that direct feeding of
microbial cultures possesses beneficial effects on growth
performance, digestive processes, the immune system and
animal health. The use of probiotics gained attention within
aquaculture in the mid 1980s (Kozasa, 1986), and since then
numerous reviews papers have been published (e.g., Gatesoupe,
1999; Irianto and Austin, 2002a; Merrifield et al., 2010;
Dimitroglou et al., 2011; Hoseinifar et al., 2018; Ringø et al.,
2018; Wang et al., 2019a; Hoseinifar et al., 2020; Hu et al., 2020;
Ringø et al., 2020a; Ringø et al., 2020b; Yao et al., 2020; Nayak,
2021; van Doan et al., 2021). In this context, it is also worth
mention that administration of antibiotics lead to their
accumulation in the tissues (Chen et al., 2020a), emergence of
antimicrobial resistant bacteria in the environment (e.g., Marti
et al., 2014; Chen et al., 2020a; Lulijwa et al., 2020), modulation of
the gut microbiota (dysbiosis) (e.g., Ringø et al., 2016; Kim et al.,
2019; Legrand et al., 2020), suppression of certain gut bacteria
(Saettone et al., 2020), and increased abundance of intestinal
bacteria that act as reservoirs for antibiotic resistance genes
(Salyers et al., 2004; Saenz et al., 2019). In addition,
modulation of the gut microbiota to an undesirable
community can induce mucosal inflammation (Tamboli et al.,
2004; Turroni et al., 2014). Furthermore, many antibiotics
Frontiers in Marine Science | www.frontiersin.org 2
currently used in aquaculture are, or are closely related to
agents used to treat bacterial diseases in humans, which makes
their uncontrolled application in animal production an
enormous risk to host health. It is thus clear that new methods
to control aquatic infections is required.

Among the probiotic bacteria used in aquaculture are lactic
acid bacteria (LAB) and Bacillus most frequently used (e.g.,
Ringø et al., 2018a; Kuebutornye et al., 2019; Soltani et al.,
2019; Ringø et al., 2020a; Nayak, 2021; James et al., 2021; van
Doan et al., 2021). However, in addition to LAB and bacilli are
numerous probiotics such as Aeromonas, Alteromonas,
Arthrobacter, Bifidobacterium, Brochothrix, Clostridium,
Kocuria , Microbacterium , Micrococcus , Paenibacillus ,
Phaeobacter, Pseudoalteromonas, Pseudomonas, Rhodococcus,
Rhodopseudomonas, Rhodosporidium, Roseobacter, Shewanella
and Vibrio used.

The use of probiotics is an alternative approach to reduce
pathogen adherence and colonization in larval-, fry- and juvenile
intestines by modulating the intestinal microbiota with beneficial
bacteria. They can be added to the diet or water in order to
enhance the proportion of health-promoting bacteria in the gut.
An advantage of this method is that it can be implemented
during the early stages of development when vaccination by
injection is impractical.

The review of Irianto and Austin (2002a); Tapia-Paniagua
et al. (2012); De et al. (2014); Newaj-Fyzul et al. (2014), Tan et al.
2020), Cámara-Ruiz et al. (2020); Hayatgheib et al. (2020), and
van Doan et al. (2021) presented some information on
administrations of the probiotic bacteria discussed in the
present study, and to avoid duplication with that presented in
the above mention reviews, these studies are only briefly
presented in Tables.

The present review address to present an overview of
interesting probiotic bacteria, not LAB and bacilli, with focus
on growth performance, modulation of the gut microbiota, gut
histology, effect on immunesystem, and disease resistance in
finfish. Furthermore, some general information is presented on
the probiotics discussed, and their presence in the GI tract
of finfish.
ADMINISTRATION AND MODE
OF ACTIONS

Probiotic administration has been described in several reviews
(e.g., Verschuere et al., 2000; Irianto and Austin, 2002a; Villamil
et al., 2010; Dawood and Koshio, 2016; Kumar et al., 2016;
Hoseinifar et al., 2018; Jahangiri and Esteban, 2018; Ringø et al.,
2020a; Vargas-Albores et al., 2021), and in order to avoid
overlaps, the administration methods are only briefly presented.

i) Oral administration via diet or water/bath, ii)
Administration of several probiotics in combination (Fuller,
1989; Kesarcodi-Watson et al., 2012; Melo-Bolivar et al., 2021),
iii) Inactivated bacteria, iv) Spores, v) Culturing, and added to
feed as freeze-dried cultures, which sometimes are coated with
lipids, vi) Encapsulation e.g., by calcium alginate beads (e.g.,
June 2022 | Volume 9 | Article 848037
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Rosas-Ledesma et al., 2012; Cordero et al., 2015; Prado et al.,
2020), vii) Lyophilization, viii) Administration – continuously or
regular intervals, but are the probiotics permanently colonisers in
the GI tract, ix) Co-administration of probiotics with prebiotics
or plant products, and x) Host specificity, or strains from other
species or commercial probiotics (Lazado et al., 2015; van Doan
et al., 2020).

The modes of action of probiotics are well discussed, and
several hypotheses have been suggested (e.g., Irianto and Austin,
2002a; Prado et al., 2010; Kumar et al., 2016; Zorriehzahra et al.,
2016; Wang et al., 2017; de Melo Pereira et al., 2018; Hoseinifar
et al., 2018; Chauhan and Singh, 2019; Ran et al., 2021), and
according to these reviews the modes of action are: a)
competitive adhesion of probiotic microorganisms to epithelial
receptors may prevent the attachment of pathogenic bacteria
(rational behind “competitive exclusion”), b) aggregation of
probiotics and pathogenic bacteria, c) competition for
nutrients between probiotic and undesired bacteria, d)
increased synthesis of lactic acid and reduction of intestinal
pH, e) production of specific antibacterial substances, f) reduced
production of toxic amines and decrease of ammonia level in the
GI tract, g) beneficial effects on the intestinal immune system, h)
interference with quorum sensing, i) bioremediator, j) improved
defense against bacterial and viral infections, k) alleviate negative
effects induced by crowding stress, and l) antioxidant properties.
GRAM-NEGATIVES

In Table 1 are the beneficial effects of Gram-negative probiotic
bacteria used in finfish aquaculture revealed. In addition, some
vital information is presented from in vitro studies.

Acinetobacter
Acinetobacterbelong toGammaproteobacteria, is oxidase-negative,
aerobic coccobacilli with twitchingmotility. They are isolated from
theGI tract offinfish (e.g., Ringø et al., 2006a; Navarrete et al., 2013;
Liu et al., 2019; Wang et al., 2020a), but their use as probiotics in
finfish are less investigated (Bunnoy et al., 2019a), and as a part in
multi-strain probiotic supplementation (Li et al., 2019a).

In a study with bighead catfish (Clarias macrocephalus; 150g),
Bunnoy et al. (2019a) used an Acinetobacter originally isolated
from skin mucus of bighead catfish revealing strong antibacterial
activity against several freshwater pathogens in vitro (Bunnoy
et al., 2019b). After 15- and 30-days administration, phagocytic
index, phagocytic-, lysozyme-, and respiratory burst activity, and
alternative complement pathway significantly enhanced, and
upregulation of immune-related genes was observed. After 30
days administration, increased resistance was observed following
intraperitoneal injection with Aeromonas hydrophila. The main
reason why Acinetobacter species have little been used as
probiotics in finfish, may be due to reports on opportunistic
fish pathogenic agents within the genus.

Aeromonas
Aeromonas is facultative anaerobic, rod-shaped bacteria. Even
though Aeromonas are mainly associated with diseases
Frontiers in Marine Science | www.frontiersin.org 3
(Feckaninova et al., 2017), there are present in the GI tract of
healthy finfish (e.g., Ringø et al., 1997; Navarrete et al., 2013;
Chen et al., 2014; Abdelhamed et al., 2019). In finfish,
information is available on the use of Aeromonas as probiotics
(Irianto and Austin, 2002b; Lategan et al., 2004; Brunt and
Austin, 2005; Makridis et al., 2005; Brunt et al., 2007; Brunt
et al., 2008; Makridis et al., 2008; Pieters et al., 2008; Abbass et al.,
2010; Wu et al., 2015; Hao et al., 2017), as well as a part of multi
strains probiotics supplementation; Aeromonas veronii in
combination with Flavobacterium sasangense (Chi et al., 2014).

Irianto and Austin (2002b) indicated that feed supplemented
with A. hydrophila for 7 and 14 days led to better survival rate of
rainbow trout (Oncorhynchus mykiss) following challenge with
Aeromonas salmonicida. In contrast, Makridis et al. (2005)
revealed no clear effect on survival of gilthead sea bream
(Sparus aurata) larvae exposed to 6 x 105 Aeromonas mL-1.

Saprolegina paracitica (saprolegniosis; caused by fungal
infections) is reported in silver perch (Bidyanus bidyanus), and
Lategan et al. (2004) revealed that administration of Aeromonas
media strain A199 to the tank water of silver perch halted the
outbreak. In three later studies using Aeromonas sobria GC2 as
probiont to rainbow trout, Brunt and Austin (2005) and (2008);
Brunt et al. (2007) revealed enhanced survival after challenge
with a range of pathogens. Similarly, Pieters et al. (2008)
displayed that dietary inclusion of A. sobria protected rainbow
trout against surface infections and against a eukaryotic
pathogen, Ichthyophthirius multifiliis. Abbass et al. (2010)
evaluated intraperitoneal and intramuscular injections of
subcellular component of A. sobria GC2 to rainbow trout and
revealed protection against Yersinia ruckeri.

Even though, diseases caused by A. veronii in freshwater fish
are reported (e.g., Liu et al., 2018), the bacterium has been used as
probiotic supplement. A dietary supplementation of A. veronii
isolated from grass carp (Ctenopharyngodon idella) was
administrated to grass carp, 108 CFU g-1, for 28 days and
challenged with A. hydrophila (Wu et al., 2015). A significant
increase of respiratory burst, phagocytic and lysozyme activities,
and upregulation of immune related genes (IL-8, IL-1b,
lysozyme-C and TNF-a), and resistance against A. hydrophila
were observed. Modulation of the gut microbiota of grass carp by
A. veronii administration was revealed by Hao et al. (2017), as
Brevundimonas was the abundant genus in the GI tract, while
Lactococcus , Pseudomonas and Vibrio decreased, and
Flavobacterium and Lactococcus was not detected in probiotic
administrated fish compared to control fed fish.

Alcaligenes
A genus of rod-shaped, motile, aerobic bacteria, and some strains
of Alcaligenes are capable of anaerobic respiration in the presence
of nitrate or nitrite. The genus does not use carbohydrates.
Strains of Alcaligenes are reported in the intestinal tracts of
vertebrates as well as finfish (e.g., Ringø, 1993; Navarrete et al.,
2013; Sedlacek et al., 2016; Karlsen et al., 2017).

A decapeptide (cyclo‐(l‐Pro‐Gly)5) from Alcaligenes faecalis
revealed immunostimulatory activities in a study with crucian
carp (Carassius carassius) (Wang et al., 2011), and a challenge
experiment displayed that fish injected with the decapeptide
June 2022 | Volume 9 | Article 848037
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TABLE 1 | Effect of Gram-negative bacteria on growth performance, gut health, immune system and disease resistance in finfish, and some in vitro studies.

Species Isolated from Doses and duration Finfish species
investigated

Parameters investigated References

Acinetobacter
KU011TH

Skin mucus of
bighead catfish

105, 107, 109 CFU g-1, 30
days

Bighead catfish ~
150 g

↑ growth performance, upregulated expression of several
immune-related gens and resistance against Aeromonas
hydrophila
! histopathological changes in gills, skin, intestine or liver

Bunnoy et al.
(2019a)

Acinetobacter sp.
P27 and P33

Yellowtail
amberjack

In vitro test In vitro test ↑ antimicrobial activity against Vibrio 25LT1

Aeromonas sp. Isolated from
live feed

6 x 105 CFU mL-1, 10
days

Gilthead sea
bream larvae

Survival was similar to those larvae held in sterilized
seawater

Makridis et al.
(2005; 2008)

Aeromonas
hydrophila A3-51

Fish intestine,
no specification

Deal cells, 107 cells g-1, 21
days

Rainbow trout ~
1 g

↑ survival against Aeromonas salmonicida and larger
number of erythrocytes vs. control
! numbers of leucocytes and lysozyme activity

Irianto and
Austin (2003a)

A. hydrophila A3-51 Fish intestine,
no specification

Inactivated A3-51,
2 x 107 cells g-1, 84 days

Goldfish, 40 –

50 mm in length
↑ survival against A. salmonicida and larger number of
erythrocytes and leucocytes vs. control

Irianto and
Austin (2003b)

Aeromonas media
A199

Cultured
collection

Administration to water,
104 -105 cells mL-1, 3
weeks

Silver perch, 200
– 300 g

Administration halted outbreak of saprolegniosis Lategan et al.
(2004)

Aeromonas sobria
GC2

Ghost carp 103, 106, 107 and 1010

CFU g-1,
14 days

Rainbow trout ~
20 g

↑ resistance against Lactococcus garvieae and
Streptococcus iniae

Brunt and
Austin (2005)1

A. sobria GC2 Ghost carp 2 x 108 CFU g-1,
14 days

Rainbow trout ~
12 g

↑ lysozyme, phagocytic and respiratory activity, and
resistance against Aeromonas salmonicida, Lac. garvieae,
S. iniae, V. anguillarum, Vibrio ordalli and Yersinia ruckeri

Brunt et al.
(2007)

A. sobria GC2 Ghost carp 103, 106, 107 and 1010

CFU g-1, 14 days
Rainbow trout ~
25 g

↑ NADH dehydrogenase, dystrophin, mKIAA0350 Brunt et al.
(2008)

A. sobria GC2 Ghost carp 108 CFU g-1, 14 days Rainbow trout ~
25 g

↑ phagocytic activity and resistance against Aeromonas
bestiarum, bacterium cause skin infection

Pieters et al.
(2008)1,2

Subcellular
component of
Aeromonas sobria
GC2

Unknown,
laboratory
strain,
parabiotics of
GC2

Intraperitoneal- or
intramuscular injection

Rainbow trout ~
12 g

↑ resistance against Y. ruckeri Abbass et al.
(2010)

Aeromonas veronii
A-7

Grass carp 108 CFU g-1, 28 days Grass carp 35 ±
5 g

↑ non-specific immune parameters, immune-related genes,
and resistance against A. hydrophila

Wu et al.
(2015)

Aeromonas veronii
A-7

Grass carp 108 CFU g-1, 28 days Grass carp 40 ±
0.5 g

Modulated the gut microbiota Hao et al.
(2017)

Alcaligenes sp. Malaysian
Mahseer

108CFU g-1, 90 days Malaysian
Mahseer ~
1.4 g

↑ weight gain, gut histology, and short chain fatty acids in
the gut
Modulated the gut microbiota

Asaduzzaman
et al. (2018)

Alcaligenes faecalis
Y311

Sediment of
tilapia tank

108 CFU mL-1, every 7
days over 3 months

Nile tilapia ~ 5.2 g ↑ alkaline phosphatase activities in gill and intestine
! on the dominant bacteria, but some low-abundance
bacteria in skin, gill and intestine was affected
↓ relative abundance of Acinetobacter in the gut

Wang et al.
(2020a)

Alteromonas sp. European sea
bass

105 and 108 CFU mL-1,
inoculated intraperitoneally

European sea
bass, 354 ± 83 g

↑ immunostimulative properties Mladineo et al.
(2016)

Chromobacterium
aquaticum

Lake water 106, 107 CFU g-1,
8 weeks

Zebrafish ~
4.7 g

↑ hepatic mRNA expression of carbohydrate metabolism-
related genes, growth related genes, resistance against A.
hydrophila and Streptococcus iniae
Induced innate immune-related genes

Yi et al. (2019)

Enterobacter strain
PIC15 and
Enterobacter
amnigenus

Rainbow trout 106 – 108 CFU g-1, 7 days Rainbow trout ~
5 g

↑ resistance against Flavobacterium psychrophilum Burbank et al.
(2011)

Enterobacter sp.
JC10

No information
given

5 x 104 CFU g-1, 30 days Red tilapia, 35-
40g

! growth, survival and feed convention rate
Adhesion experiment showed adherence abilities

Suryaningsih
et al. (2021)

Enterobacter cloacae Curd
(coagulating
milk)

107 CFU g-1, 60 days Kenyi cichlid ~
1.5 g

↑ growth, respiratory burst activity
Modulated the gut microbiota

Girijakumari
et al. (2018)

Phaeobacter sp. Turbot hatchery 107 CFU mL-1 added to
well dishes

Atlantic cod
larvae

↑ resistance against Vibrio anguillarum 02a D´Alvise et al.
(2013)

(Continued)
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TABLE 1 | Continued

Species Isolated from Doses and duration Finfish species
investigated

Parameters investigated References

Phaeobacter sp. Turbot hatchery Grown on ceramic biofilter
(probiofilter)

Turbot* larvae ↑ resistance against V. anguillarum, and seawater quality
! gut microbiota

Prol-Garcıá
and Pintado
(2013)

Phaeobacter
gallaeciensis

Seawater in
scallop cultures

107 CFU mL-1 Atlantic cod
larvae

↑ resistance against V. anguillarum serotype 01 D´Alvise et al.
(2012)

Phaeobacter inhibens
DSM 17395

Mariculture
environment

4.05 x 106 ± 1.05 106

CFU per cell
Turbot larvae ! gut community structure

↓ relative abundance of Rhodobacterales in the gut
Dittmann et al.
(2020)

Pseudoalteromonas
AP5

Clownfish 105 mL-1 Clownfish larvae ↑ survival
Partially out compete V. alginolyticus in the gut

Vine (2004)

Pseudoalteromonas
sp.

European sea
bass

105 and 108 CFU mL-1,
inoculated intraperitoneally

European sea
bass, 354 ± 83 g

↑ immunostimulative properties Mladineo et al.
(2016)

Pseudomonas sp. NI 107 CFU g-1, 90 days Nile tilapia ~ 21 g ! growth performance, and hematological and biochemical
parameters
↓ resistance against A. hydrophila

Abd El-Rhman
(2009)3

Pseudomonas M174 Rainbow trout
egg

Bathing Rainbow trout ~
15 g

Potential as probiotic against Flavobacterium psychrophilum Korkea-aho
et al. (2012)3

Pseudomonas MSB1 Rainbow trout In vitro test In vitro test Produced siderophores Strom-Bestor
and Wiklund
(2011)3

Pseudomonas sp.
P18

Yellowtail
amberjack

In vitro test In vitro test ↑ antimicrobial activity against Vibrio 25LT1, Vibrio 25LH1,
and Vibrio 25LS1

Pseudomonas
aeruginosa VSG2

Rohu gut
content

105, 107, 109 CFU g-1, 60
days

Rohu ~ 60 g ↑ serum lysozyme↑- and alternative complement pathway
activities, phagocytosis, respiratory burst activity in head
kidney macrophages, and superoxide dismutase and
resistance against A. hydrophila at 107and 109 inclusions

Giri et al.
(2012)2

P. aeruginosa VSG2 Rohu gut
content

Cellular component of P.
aeruginosa, intraperitoneal

Rohu ~ 43.5 g ↑ respiratory burst-, phagocytic- activities, expression of
immune-related genes, and survival against A. hydrophila

Giri et al.
(2015)

P. aeruginosa VSG2 Rohu gut
content

Heat-killed
P. aeruginosa VSG2

In vitro, head
kidney
macrophages
were isolated
from rohu ~ 190
g

↑ cytokine expression Giri et al.
(2016)

P. aeruginosa Skin mucus of
catfish

107 CFU mL-1, challenge
in a biocontrol study, with
or without co-habitation of
A. hydrophila-15 min

Rohu, fingerlings In vitro immunomodulation
↑ survival against A. hydrophila

Hoque et al.
(2019)2

P. aeruginosa VSG2 Indian major
carp

Heat-killed VSG2, 20 and
40 mg kg-1, 8 weeks

Common carp ~
6.5 g

↑ immune system, antioxidant efficacy, and resistance
against A. hydrophila

Giri et al.
(2020)

Fluorescent
pseudomonad F19/3
(Pseudomonas
fluorescens)

Atlantic salmon Bathing in bacterial
suspension

Brown trout ↑ resistance against A. salmonicida Smith and
Davey (1993)

P. fluorescens AH2 Iced freshwater
fish

Addition to rearing water,
107 CFU
mL-1, 5 days

Rainbow trout ~
40 g

↑ growth rate and survival following challenge with V.
anguillarum

Gram et al.
(1999)3,4

P. fluorescens AH2 Iced freshwater
fish

103–105 CFU mL-1 rearing
water,
5 days

Atlantic salmon
20 – 25 g

! effects against infection with Aeromonas salmonicida Gram et al.
(2001)

P. fluorescens LE89
and LE141

Skin of brown
trout, LE89, and
LE141 from
rainbow trout
skin

Adding the strains to
water, final concentration
of 106 CFU mL-1

Rainbow trout ~
16 g

Reduced saprolegniosis-a disease caused by pseudo-
fungus

González-
Palacios et al.
(2019)

P. fluorescens LE89
and LE141

Skin of brown
trout,
LE89, and
LE141 from

Adding the strains to
water, final concentration
of 106 CFU mL-1

Rainbow trout,
72 ± 10 g

↑ innate immune response and reduced saprolegniosis González-
Palacios et al.
(2020)

(Continued)
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TABLE 1 | Continued

Species Isolated from Doses and duration Finfish species
investigated

Parameters investigated References

rainbow trout
skin

Pseudomonas
monteilii JK-1

Grass carp gut Dietary administration,
7 days

Grass carp ~
20 g

Not toxic to grass carp
! effects against infection with A. hydrophila

Qi et al. (2020)

Pseudomonas
stutzeri F11

Grass carp
pond

105 CFU mL-1, 3 day
intervals

Grass carp ~
16 g

Reduced levels of ammonia-N, nitrite-N and total N in water,
and modulated the water microbiota

Fu et al.
(2017)

Psychrobacter sp. Grouper
intestine

108 CFU mL-1, 60 days Grouper ~ 45 g ↑ feed conversion ratio and serum component 4
! weight gain, specific growth rate, hepatopancreatic
protease and lipase activity, intestinal amylase activity, and
immune parameters

Sun et al.
(2011)

Psychrobacter
namhaensis

Marine
environment

2.8 x 107, 5.6 x 107 CFU
mL-1, 50 days

Nile tilapia ~ 4.6 g ↑ growth, hematocrit-, hemoglobin-, erythrocytes-, total
leucocyte values
↑ immunoglobulin, alternative hemolysis, phagocytic and
lysozyme activities by the 2.8 x 107 CFU mL-1 feeding

Makled et al.
(2017)

Psychrobacter
maritimus S

Sediment 3.3 x 108, 6.6 x 108 CFU
mL-1, 50 days

Nile tilapia ~ 5.4 g ↑ growth, digestive enzymes, phagocytic- and lysozyme
activity, alternative complement hemolysis, hematological
parameters, and
expression of interleukin-4 and 12 was upregulated by 3.3 x
108 CFU mL-1 feeding

Makled et al.
(2020)

Rhodopseudomonas
palustris
(photosynthetic
bacteria)

Common carp 107 CFU mL-1, was added
to the rearing water every
2 day, 40 days

Nile tilapia ~ 7 g ↑ growth performance, respiratory burst-, superoxide
dismutase,- catalase- and myeloperoxidase activities
! total serum protein, albumin, globulin, serum lysozyme
content

Zhou et al.
(2010)

R. palustris Common carp
pond

106 CFU g-1, 60 days Grass carp ~
2.1 g

↑ growth performance, and amylase activity in proximal- and
distal intestine
! protease- and cellulase activity in proximal- and distal
intestine

Wang (2011)

R. palustris Grass carp
pond

1011 CFU/m3 per week,
15 days

Grass carp ~
15 g

↓ ammonia-N, total inorganic-N and total-N
Modulated the water microbiota

Zhang et al.
(2014)

R. palustris NI Six days wastewater
treatment

Yellow catfish, 30
± 5 g

↑ digestive enzyme activities, and immune enzyme-related
gene, antioxidant enzyme-related gene expression, and
resistance against A. hydrophila
Modulated the gut microbiota

Liu et al.
(2020)

Roseobacter sp. 27-
4**

Tank wall of
turbot hatchery

Addition to rearing water Turbot larvae ↓ mortality Hjelm et al.
(2004)3

Roseobacter sp. 27-
4**

Tank wall of
turbot hatchery

Enriched rotifers with 27-4,
10 days

Turbot larvae ↑ survival against V. anguillarum and
27-4 was detected in gastrointestinal lumen

Planas et al.
(2004)

Roseobacter sp. Isolated from
live feed

6 x 105 CFU mL-1, 10
days

Gilthead sea
bream larvae

Survival was similar to those larvae held in sterilized
seawater

Makridis et al.
(2005; 2008)

Shewanella sp. Isolated from
live feed

6 x 105 CFU mL-1, 10
days

Gilthead sea
bream larvae

Survival was similar to those larvae held in sterilized
seawater

Makridis et al.
(2005; 2008)5

Shewanella sp. MR-7 Intestinal mucus
of turbot

Soybean meal fermented
by MR-7, 79 days

Turbot ~ 7.6 g ! effects on digestive enzymes activities
Suppressing inflammatory responses, and modulated the
intestinal microbiota

Li et al.
(2019b)

Shewanella sp. MR-7 Intestinal mucus
of turbot

~ 108 CFU g-1,
7 days

Turbot ~ 71 g ↑ intestinal villus and microvilli height, inflammatory response
Modulated the gut microbiota

Zhang et al.
(2020)

Shewanella sp. Malaysian
Mahseer

108CFU g-1, 90 days Malaysian
Mahseer ~
1.4 g

↑ gut histology, short chain fatty acids in the gut, and
modulated the gut microbiota

Asaduzzaman
et al. (2018)

Shewanella baltica
Pdp13

Skin mucus of
gilthead
seabream

109 CFU g-1,
60 days

Senegalese sole
10-17 g

↑ growth and resistance against Photobacterium damselae
sub. piscicida
! kidney leucocytes respiratory burst activity

Dıáz-Rosales
et al. (2009)4

S. baltica Yellowtail
amberjack

In vitro test In vitro test ↑ antimicrobial activity against Vibrio 25LT1, Vibrio 25LH1

Shewanella
putrefaciens Pdp11

Skin mucus of
gilthead
seabream

Heat-inactivated Pdp11,
60 days

Gilthead
seabream ~ 65 g

↑ phagocytic ability of head kidney leucocytes Dıáz-Rosales
et al. (2006)5,6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

Heat-inactivated Pdp11 Gilthead
seabream ~ 65 g

↑ cellular innate immune responses Salinas et al.
(2006)5,6
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S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

109 CFU g-1,
60 days

Senegalese sole
10-17 g

↑ growth, kidney leucocytes respiratory burst activity and
resistance against Photobacterium damselae sub. piscicida

Dıáz-Rosales
et al. (2009)5,6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

109 CFU g-1,
60 days

Senegalese sole
10-15 g

↑ growth performance, the length of microvilli
! proximal composition
↓ lipid droplets inside the enterocytes

Sáenz de
Rodrigáñez
et al. (2009)5,6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

109 CFU g-1,
60 days

Senegalese sole
26.7± 4.6 g

↑ kidney leucocytes respiratory burst activity and resistance
against Photobacterium damselae sub. piscicida
↓ lipid droplets inside the enterocytes

Garcia de la
Banda et al.
(2010)5,6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

Live (109 calls g-1) or
lyophilized cells of Pdp11,
60 days

Senegalese sole
~ 30 g

Modulated the intestinal microbiota Tapia-
Paniagua et al.
(2010)5,6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

109 CFU g-1,
116 days

Gilthead
seabream ~
38.5 g

↑ stress tolerance Varela et al.
(2010)5,6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

Live (109 calls g-1) or
lyophilized cells of Pdp11,
2 months

Senegalese sole
~ 23.5 g

↑ growth (live bacteria), and resistance against
Photobacterium damselae sub. piscicida (both treatments)
! growth (lyophilized)

Garcıá de la
Banda et al.
(2012)3,6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

Enrichment of Artemia (2.5
x 107 CFU mL-1), 90 days
post hatching

Senegalese sole
larvae

↑ growth
Modulated the gut microbiota

Lobo et al.
(2014a)

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

Enrichment of Artemia (2.5
x 107 CFU mL-1), 119
days after hatching

Senegalese sole
larvae

↑ growth performance, proteolytic activity, and modulation
of the gut microbiota

Lobo et al.
(2014b)

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

Enrichment of Artemia
metanauplii, 10-30 days
post hatching

Senegalese sole
larvae

Modulated the gut microbiota Tapia-
Paniagua et al.
(2014a)6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

109 CFU g-1,
30 days

Senegalese sole
~ 15 g

Modulated the gut microbiota under stress Tapia-
Paniagua et al.
(2014b)6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

109 CFU g-1,
4 weeks

Gilthead
seabream ~
14.5 g

↑ some immune responses and gene expression
! growth performance

Guzmán-
Villanueva
et al. (2014)

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

109 CFU g-1,
4 weeks

Gilthead
seabream ~ 8 g

↑ carbohydrate composition and up-regulated different
immune-related gene expression in skin

Cerezuela
et al. (2016)

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

Encapsulated in calcium
alginate beads (108 CFU
g-1), 4 weeks

Gilthead
seabream ~ 44 g

↑ humoral parameters
Modulated gut microbiota

Cordero et al.
(2015)6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

108 CFU g-1,
4 weeks

Gilthead
seabream, no
information given
about fish weight

↑ cellular, humoral immunity and gene expression profile of
pro-inflammatory cytokines

Cordero et al.
(2016a)

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

Skin samples were
incubated by 103 mL-1, of
Pdp11 and P. damselae in
12 well plates for 2 hours

Gilthead
seabream ~ 97 g

Different patterns of cytokine profile in dorsal and ventral
skin

Cordero et al.
(2016b)6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

108 CFU g-1,
30 days

Gilthead
seabream ~
108 g

↑ skin mucosal immunity. Cordero et al.
(2016c)6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

Artemia metanauplii as
vector (2.5 x 107 CFU mL-
1), 119 days after hatching

Senegalese sole
larvae

↑ growth until day 87 post hatching
Sole lipid profile was affected

Lobo et al.
(2016)

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

109 CFU g-1,
15 days thereafter control
diet for 6 days

Senegalese sole,
26.7 ± 4.6 g

↑ protective effect against oxidative stress
Modulation of the gut microbiota

Vidal et al.
(2016)6
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S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

Mixed diets of commercial
formulated feed and live
prey (rotifers and Artemia),
73 days post hatching

Senegalese sole
larvae

↑ total protein concentration, alkaline phosphatase activity,
non-specific immune response
Effects larval development and gene expression

Jurado et al.
(2018)6

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

109 CFU g-1,
30 days

Gilthead
seabream ~ 22 g

Administration facilitated wound closure
↑ albumin/globulin ratio, protease and peroxidase activities
in skin mucus, and anti-inflammatory cytokines (il-10 and
tgf- b), 7 days after post-wounding
↓ serum aspartate aminotransferase and pro-inflammatory
cytokines (il-1 b, il-6, il-8 and tnf-a).

Chen et al.
(2020b)

S. putrefaciens
Pdp11

Skin mucus of
gilthead
seabream

109 CFU g-1,
30 days

Gilthead
seabream ~ 22 g

Up-regulation of pro-inflammatory cytokines, while the tight
junction protein occluding was down-regulated
! number of goblet cells

Chen et al.
(2020c)6

Shewanella
xiamenensis A-1 and
A-2

Grass carp 108 CFU g-1, 28 days Grass carp 35 ±
5 g

↑ non-specific immune parameters, immune-related genes,
and resistance against A. hydrophila

Wu et al.
(2015)

S. xiamenensis A-1 Grass carp 108 CFU g-1, 28 days Grass carp 40 ±
0.5 g

Modulated the gut microbiota Hao et al.
(2017)

Allivibrio Atlantic salmon Different concentrations of
the probiotics were added
to the tanks, 4-6 months

Atlantic salmon,
55, 88 and 110 g
in the various
trials

↑ growth performance and ulcer prevalence Klakegg et al.
(2020a)

Enterovibrio coralii European sea
bass

105 and 108 CFU mL-1,
inoculated intraperitoneally

European sea
bass, 354 ± 83 g

! immunostimulative properties Mladineo et al.
(2016)

Atlantic salmon Bathing in bacterial
suspension, varied from
7.5 x 105 to 5 x 107 for
10-30 min

Lumpfish, 0.025
to 16.3 g in the
various trials

Fewer ulcer outbreak caused by Moritella viscosa Klakegg et al.
(2020b)

Strain E (Vibrio
alginolyticus – like)

Turbot larvae Enrichment of rotifer Turbot larvae ↑ resistance against Vibrio strain P Gatesoupe
(1997)3

Vibrio strain PB 1-11
and PB 6-1

Atlantic halibut
juveniles

Enrichment of rotifer Atlantic halibut
larvae

↑ total CFU in water
! larval gut microbiota

Makridis et al.
(2001)

Vibrio alginolyticus Commercial
shrimp hatchery

Bathing in bacterial
suspension ~ 108 CFU
mL-1

Atlantic salmon ~
21 g

↑ survival when challenge with A. salmonicida, but to a
lesser extent after exposure to V. anguillarum and Vibrio
ordalli
The probiont was revealed in the intestine up to 21 days
after initial application

Austin et al.
(1995)3

Vibrio fluvialis A3-47S Fish intestine,
no specification

Deal cells, 107 cells g-1, 21
days

Rainbow trout ~
1 g

↑ survival against A. salmonicida
! numbers of erythrocytes and leucocytes and lysozyme
activity

Irianto and
Austin
(2003a)2

Vibrio lentus Sea bass larvae 106 CFU mL-1 well water,
8 days post hatching

Gnotobiotic sea
bass larvae

↑ resistance against V. harveyi Schaeck et al.
(2016)

Vibrio lentus Sea bass larvae 106 CFU mL-1 well water,
8 days post hatching

Gnotobiotic sea
bass larvae

↑ gene expression
! apoptotic and cell proliferative indexes

Schaeck et al.
(2017)

V. lentus Sea bass larvae 106 CFU mL-1 well water,
8 days post hatching

Gnotobiotic sea
bass larvae

Lower glucocorticoid levels in larvae Aerts et al.
(2018)

Vibrio pelagius Copepod fed
turbot larvae

Addition to rearing water,
4x105 CFU
mL-1, 14 days

Turbot larvae Modulated gut microbiota Ringø et al.
(1996)

V. pelagius Copepod fed
turbot larvae

Addition to rearing water,
105 CFU
mL-1, 16 days

Turbot larvae ↓ mortality when challenge with Aeromonas caviae Ringø and
Vadstein
(1998)3

V. pelagius Copepod fed
turbot larvae

Addition to rearing water,
105 CFU
mL-1, 16 days

Turbot larvae V. pelagius colonize the intestine
! survival

Ringø (1999)

Vibrio proteolyticus No information
given

Oral intubation 1010 CFU
mL-1, diet-water mixture,
3weeks

Turbot 25-30 g ↑ protein digestion DeSchrijver
and Ollevier
(2000)

V. proteolyticus Sea bass larvae 108 CFU mL-1 well water,
8 days post hatching

Gnotobiotic sea
bass larvae

! against V. harveyi infection Schaeck et al.
(2016)
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significantly improved survival (87.0%) compared with the
control (54.6%) after infection with live A. hydrophila. An
Alcaligenes sp. at inclusion level of 108 CFU g-1 feed, was fed
to Malaysian Mahseer (Tor tambroides) for 90 days
(Asaduzzaman et al., 2018). Weight gain, gut histology (villi
height, villi with and villi area), and production of short chain
fatty acids (SCFAs) significantly improved, and modulation of
the gut microbiota Wang et al. (2020a) conducted a three-month
feeding trial with Nile tilapia (Oreochromis niloticus) to
determine the e ffec t o f Alca l i genes faeca l i s Y311
supplementation and revealed increase of alkaline phosphatase
activities in gill and intestine. Probiotic administration did not
affect the dominant bacteria but affected the relative abundance
of some low abundance bacteria, Methyloparacoccus,
Enterococcus, Limnohabitans, Tepidimonas and Cetobacterium
in skin, gill and intestine. One interesting finding was that the
relative abundance of Acinetobacter, potential pathogen,
decreased in the gut by A. faecalis Y311 administration.

Alteromonas
Genus Alteromonas are facultative anaerobic bacteria, and in the
absence of oxygen, the genus possess capabilities to use of a
variety of other electron acceptors for respiration, for example
trimethylamineoxide (Ringø et al., 1984). The genus is isolated
from the GI tract of finfish (e.g., Akimoto et al., 1990; Jiang et al.,
2018; Fonseca et al., 2019), and some information is available on
the use of Alteromonas as probiotic supplement in shellfish
(Ringø, 2020), but less information is available on their use as
probiotics in finfish aquaculture (Mladineo et al., 2016).
Mladineo et al. (2016) revealed improved phagocytic activity,
respiratory burst, and gene expression of lysozyme, Mx protein,
caspase 3, TNF-a, and IL-10, by Alteromonas sp. administrated to
European sea bass (Dicentrarchus labrax).

Chromobacterium
Chromobacterium is a facultative anaerobic, motile and non-
sporing coccobacillus, present in the GI tract of finfish
(Ziólkowska et al., 2009; Zhou et al., 2016).

In a recent study, Yi et al. (2019) evaluated the effect of
administration of a Chromobacterium aquaticum isolated from
Frontiers in Marine Science | www.frontiersin.org 9
lake water with bacteriocin-like activity on zebrafish (Danio
rerio) and revealed improved hepatic mRNA expression of
carbohydrate metabolism-related genes, including glucokinase,
hexokinase, glucose-6-phosphatase and pyruvate kinase, and
growth-related genes, induced effect on innate immune-related
genes and enhanced resistance against A. hydrophila and
Streptococcus iniae by probiotic administration.

Enterobacter
Genus Enterobacter is rod shaped, facultative anaerobic, non-
spore-forming bacteria and belong to family Enterobacteriaceae.
During the last years, information has become available showing
the presence of Enterobacter in intestine of finfish (e.g., Tapia-
Paniagua et al., 2014a; Tapia-Paniagua et al., 2019; Terova et al.,
2019; Nguyen et al., 2020).

Burbank et al. (2011) reported administration of Enterobacter
strain PIC15 and Enterobacter amnigenus to rainbow trout for 7
days and revealed significant improved resistance against
Flavobacterium psychrophilum. Furthermore, as both probiotic
strains were isolated from the GI tract, this finding may indicate
their ability to colonize the GI tract. Kenyi cichlid (Maylandia
lombardoi) fed 60 days on an Enterobacter cloacae isolated from
curd revealed enhanced growth, respiratory burst activity, and
modulated the gut microbiota (Girijakumari et al., 2018).
Moreover, it is of interest to notice that dietary administration
of Enterobacter cloacae in combination with Bacillus mojavensis
at 108 CFU g−1 to rainbow trout for 60 days improved protection
against Y. ruckeri, as survival rate increased to 99.2% vs. 35% in
the control group (Capkin and Altinok, 2009).

Phaeobacter
Genus Phaeobacter belongs to family Rhodobacteraceae and was
first suggested by Martens et al. (2006). Phaeobacter is important
as a carbon and sulfur metabolizer, and a biofilm former and
antibiotic tropodithietic acid producer (TDA) a sulfur-
containing compound (Porsby et al., 2008; Dittmann et al.,
2020). Most of the cultured strains of Phaeobacter are isolated
from aquatic environments, and from the intestine of finfish
(Hjelm et al., 2004; Planas et al., 2004; Terova et al., 2019).
Information is available on its use as probiotic, as well as a part of
TABLE 1 | Continued

Species Isolated from Doses and duration Finfish species
investigated

Parameters investigated References

Vibrio iliopiscarius No information
given

105 CFU mL-1 Atlantic halibut
larvae

↓ larval survival, 32 days post hatched Ottesen and
Olafsen (2000)

Apathogenic Vibrio
salmonicida

No information
given

105 CFU mL-1 Atlantic halibut
larvae

↑ larval survival, 32 days post hatched Ottesen and
Olafsen (2000)
June 2022 | Volume 9 |
↑ - increased; ! no effect; ↓ - decrease.
IP, intraperitoneal injection; IM, intramuscular injection.
** reclassified as Phaeobacter strain 27-4 by Prol et al. (2009).
Bighead catfish (Clarias macrocephalus); Yellowtail amberjack (Seriola lalandi); Gilthead sea bream (Sparus aurata); Rainbow trout (Oncorhynchus mykiss); Goldfish (Carassius auratus);
Silver perch (Bidyanus bidyanus); Ghost carp (Cyprinus carpio albino); Grass carp (Ctenopharyngodon idella); Malaysian Mahseer (Tor tambroides); Nile tilapia (Oreochromis niloticus);
European sea bass (Dicentrarchus labrax); Zebrafish (Danio rerio); Kenyi cichlid (Maylandia lombardoi); Turbot* (Psetta maxima); Atlantic cod (Gadus morhua); Turbot (Scophthalmus
maximus); Clownfish (Amphiprion percula); Rohu (Labeo rohita); Iced freshwater fish (Lates niloticus); Common carp (Cyprinus carpio); Brown trout (Salmo trutta); Atlantic salmon (Salmo
salar); Yellow catfish (Pelteobagrus vachelli); Rotifer (Brachionus plicatilis); Grouper (Epinephelus coioides); Senegalese sole (Solea senegalensis); Lumpfish (Cyclopterus lumpus); Atlantic
halibut (Hippoglossus hippoglossus); Sea bass (Dicentrarchus labrax).
1
– discussed in the review of Newaj-Fyzul et al. (2014); 2 – discussed in the review of Hayatgheib et al. (2020); 3 – discussed in the review of De et al. (2014); 4 – discussed in the review of

Irianto and Austin (2002a); 5 - discussed in the paper of Tapia-Paniagua et al. (2012); 6 – discussed in the review of Cámara-Ruiz et al. (2020).
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multi strains probiotics supplementation with Bacillus pumilus
(Schmidt et al., 2017), and Phaeobacter inhibens in combination
with vibriophage KVP40 (Rasmussen et al., 2019).

In a previous review, Dimitroglou et al. (2011) discussed
probiotic administration of Phaeobacter in Mediterranean
finfish, and in order to avoid overlaps we recommend readers
with interest to have a closer look at the papers discussed in the
above mention review.

Phaeobacter gallaeciensis isolated from seawater of scallop
cultures and administrated to Atlantic cod (Gadus morhua)
larvae enhanced survival towards Vibrio anguillarum serotype
01 (D’Alvise et al., 2012). In a later study with Atlantic cod larvae,
improved resistance against V. anguillarum 02a was noticed
when Phaeobacter sp. isolated from turbot hatchery was added
into well dishes at 107 CFU mL-1 (D’Alvise et al., 2013). Based on
their results, the author suggested that Phaeobacter was a
promising probiont in marine larval culture, and that TDA
contribute to its probiotic effect as a mutant of P. gallaeciensis
did not reduce V. anguillarum numbers.

Planas et al. (2004) revealed that Phaeobacter 27-4
administration improved survival against V. anguillarum and
detected 27-4 in GI lumen of turbot (Scophthalmus maximus)
when the probiont was administrated to the larvae incorporated
in rotifers, but 27-4 did not colonize the larval gut and
intestinal epithelium.

A Phaeobacter strain isolated from turbot hatchery, grown on
ceramic biofilter (probiofilter) revealed resistance against V.
anguillarum, improved seawater quality by decreasing
turbidity, but the bacterial diversity in larval turbot (Psetta
maxima) gut was unchanged (Prol-Garcıá and Pintado, 2013).
In a recent study, Dittmann et al. (2020) studied administration
of a TDA producing P. inhibens strain DSM17395 isolated from
mariculture environment to turbot larvae, and observed no effect
on gut community structure, even though the relative abundance
of Rhodobacterales in the GI tract decreased.

Pseudoalteromonas
Gauthier et al. (1995) proposed that genus Pseudoalteromonas,
aerobic, non-spore forming rods was split from Alteromonas.
They produce a broad range of anti-bacterial products (Jin et al.,
2010; Offret et al., 2016; Richards et al., 2017), and are reported in
finfish intestine (e.g., Fjellheim et al., 2007; Ringø et al., 2008;
Jiang et al., 2018), as probiotics (Mladineo et al., 2016), and as a
part of a mult i-strain probiot ic preparations with
Microbacterium, Ruegeria and Vibrio fed to Atlantic cod larvae
(Skjermo et al., 2015).

In a study using Pseudoalteromonas sp. Administrated to
European sea bass (Dicentrarchus labrax), Mladineo et al. (2016)
documented best stimulation of phagocytic activity, respiratory
burst, and gene expression of lysozyme, Mx protein, caspase 3,
TNF-a, and IL-10, by Pseudoalteromonas compared to
Alteromonas sp. And Enterovibrio coralii administration.

Pseudomonas
Genus Pseudomonas belong to family Pseudomonadaceae, are
rod-shaped, aerobic, catalase- and oxidase positive and contain
Frontiers in Marine Science | www.frontiersin.org 10
approximately 200 species. The genus has a great metabolic
diversity (Palleroni, 1992; Silby et al., 2011), and produce
exopolysaccharides, which could make it difficult for
pseudomonads to be phagocytosed by mammalian white blood
cells and contribute to surface-colonizing biofilms that are
difficult to remove from food preparation surfaces (Royan
et al., 1999).

Several studies have revealed the probiotic potential of
Pseudomonas (e.g., Giri et al., 2011; Giri et al., 2015; Giri et al.,
2016), and they are able to colonize a wide range of niches,
including the GI tract of finfish (e.g., Ringø et al., 1997; Ringø
et al., 2006a; Navarrete et al., 2013; Wang et al., 2020a).

Genus Pseudomonas is frequently used in finfish aquaculture,
and in order to avoid overlaps, previous studies discussed in the
review of De et al. (2014); Hayatgheib et al. (2020) and Irianto
and Austin (2002a) are only briefly presented in Table 1.
Siderophore-producing Pseudomonads strains have successfully
been applied as biocontrol agens to finfish. In an early study,
Smith and Davey (1993) showed that the fluorescent
pseudomonad F19/3 isolated from Atlantic salmonatlantic
salmon (Salmo salar) with furunculosis inhibitied in vitro
growth of A. salmonicida in culture media, and improved
resistance of presmolts of brown trout (Salmo trutta) against
A. salmonicida and the authors suggested that this finding was
due to that the strain inhibited the pathogen by competing for
free iron. Similarly, Pseudomonas fuorecens was regarded as
effective probiont for rainbow trout conferring protection
against V. anguillarum (Gram et al., 1999), but the strain did
not protect Atlantic salmon against A. salmonicida despite
that in vitro inhibition was revealed (Gram et al., 2001).
(Korkea-aho et al. (2012) revealed that Pseudomonas sp. M162
administrated to rainbow trout fry colonised the GI tract,
improved immunity and protection against F. psychrophilum,
while administration of P. fluorescens at a inclusion level of 107

displayed enhanced growth rate, and feed conversion ratio of
African catfish (Clarias gariepinus) (Osungbemiro et al., 2018).
Haematological analyses of African catfish fed the P. fluorescens
diets had significantly higher white blood cell than control diet.
In addition, lower mortality rate and several intestine
histopathological alterations were revealed in catfish fed diets
supplemented with P. fluorescens. In two recent studies,
González-Palacios et al. (2019; 2020) revealed that two P.
fluorescens isolated from skin of trout could adhere to mucus,
reduced adhesion of zoospores and cysts of S. paracitica in
rainbow trout, stimulated phagocytic activity of macrophages,
serum lysozyme activity and serum protein concentration, and
might be promising for biocontrol of saprolegninosis. Giri et al.
(2020) conducted a 8 weeks feeding trial with juvenile common
carp to determine the effect of heat-killed Pseudomonas
aeruginosa strain VSG2, and revealed enhanced lysozyme,
protein level, and alkaline phosphatase. In serum and skin
mucus, superoxide dismutase, glutathione, glutathione
peroxidase, and myeloperoxidase levels significantly enhanced.
Furthermore, mRNA expression of antioxidant genes
significantly improved in liver. These positive effects were also
noticed by improved resistance against A. hydrophila. Qi et al.
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(2020) displayed that Pseudomonas monteilii JK-1 significantly
inhibited in vitro growth of A. hydrophila, and based on this
criterion administrated the bacteria to grass carp, and showed
that the bacteria was not toxic to the fish, and improved
resistance against A. hydrophila. According to Fu et al. (2017),
administration of Pseudomonas stutzeri F11 to grass carp
reduced the levels of ammonia-N, nitrite-N, and total N in the
water over an extended range, but administration did not had
any effect on nitrate-N level. Modulation of the water microbial
community was observed, by increasing the relative abundance
of Bacteroidetes and Firmicutes, in contrast to Proteobacteria,
Actinobacteria and Verrucomicrobia which decreased.

P. aeruginosa strain VSG2 has also been used in a multi-strain
probiotic preparation with Bacillus subtilis and Lactobacillus
plantarum (Giri et al., 2015), revealing improved growth
performance, immunity and disease resistance in rohu.
Psychrobacter
Genus Psychrobacter belongs to the family Moraxellaceae, are
Gram-negative aerobic, oxidase-negative, catalase-positive, non-
pigmented and non-motile coccoid bacteria. Information is
available showing the presence of Psychrobacter in intestine of
finfish (e.g., Bakke-McKellep et al., 2007; Ringø et al., 2006a;
Ringø et al., 2016b), and some Psychrobacter strains have
successfully been used as probiotics to finfish (Sun et al., 2011;
Sun et al., 2014; Makled et al., 2017; Makled et al., 2020).

Sun et al. (2011) administrated Psychrobacter sp. SE6 to
grouper (Epinephelus coioides) and revealed only improvement
in feed conversion ratio and serum component 4, while no effect
was noticed on weight gain, specific growth rate (SGR),
hepatopancreatic protease and lipase activity, intestinal
amylase activity, and serum lysozyme - and superoxide
dismutase activity, and serum component 3. In a later study,
Sun et al. (2014) revealed that viable SE6 administration
upregulated expression of TRL2 and TRL5 and cytokines,
while results of heat-inactivated SE6 administration revealed
that the MyD88-independent TLR2 signaling pathway was
involved in the recognition of SE6. Use of Psychrobacter
namhaensis administrated to Nile tilapia for 50 days, showed
improved growth rate and feed utilisation ratio, haematocrit-,
haemoglobin-, erythrocytes- and total leucocytes values by 2.8 x
107 CFU mL-1 supplementation vs. control fish (Makled et al.,
2017). Moreover, immunoglobulin, alternative hemolysis,
phagocytic and lysozyme activities significantly increased by
feeding similar administration level. In a later study by the
same authors, Makled et al. (2020) used Psychrobacter
maritimus S, isolated from sediment as probiont to Nile tilapia.
Growth rates, digestive enzymes (protease, lipase and amylase),
phagocytic- and lysozyme activity, alternative complement
hemolysis, hematological parameters significantly increased by
3.3 x 108 CFU mL-1 feeding, but slightly decreased at the highest
inclusion level. Similarly, expression of interleukin-4 and 12
genes was significantly up-regulated by 3.3 x 108 CFU mL-1

feeding, while heat shock protein gene was down-regulated.
Based on their results, the authors concluded that P. maritimus
Frontiers in Marine Science | www.frontiersin.org 11
S at inclusion level of 3.3 x 108 CFUmL-1 is a promising probiont
for Nile tilapia fingerlings.

Even though some information is available on Psychrobacter as
probiotic in finfish, the genus deserves more attention as findings
indicate that Psychrobacter might be capable of producing and
secrete antimicrobial compounds (Wanka et al., 2018).

Rhodopseudomonas palustris
Rhodopseudomonas palustris is a rod-shaped photosynthetic
bacterium, with an ability to switch between four different
modes of metabolism. The bacterium has been isolated from
swine waste lagoons, earthworm droppings, marine coastal
sediments, sludge for use in a recirculating aquaculture system
(Kim et al., 1999), pond water (Wang, 2011; Zhang et al., 2014),
used in fluidizes bed biofilters (Zhan and Liu, 2013), and in some
probiotic studies (Zhou et al., 2010; Wang, 2011; Zhang et al.,
2014; Liu et al., 2020).

Zhou et al. (2010) revealed that administration during 40 days
of a diet supplemented with R. palustris GO6 increased
significantly the tilapia growth performance, respiratory burst-,
superoxide dismutase-, catalase- and myeloperoxidase activities,
while no effect was revealed regarding total serum protein,
albumin, globulin, serum lysozyme content. In this study,
administration of two bacilli species were included, and the
author’s conclusion was Bacillus coagulans, followed by G06
were better water additives than B. subtilis to tilapia. In a 60-day
study with grass carp, Wang (2011) reported that R. palustris
administration enhanced growth performance and amylase
activity in proximal intestine (PI) and distal intestine (DI),
while protease- and cellulase activities in PI and DI were not
affected. Although R. palustris supplementation revealed some
positive effect, the best results were revealed by Bacillus
coagulans. Zhang et al. (2014) demonstrated that R. palustris
administration to grass carp culture significantly decreased
ammonia-N, total inorganic-N and total-N in water, and
modulated the water microbiota, by affecting the relative
abundance of Proteobacteria, Bacteroides and Actinobacteria.
In a study with yellow catfish (Pelteobagrus vachelli), Liu et al.
(2020) revealed that R. palustris in effluent increased protease-,
amylase-, and lipase activities, and alkaline phosphatase, acid
phosphatase, superoxide dismutase and catalase by up-regulating
gene expression. Furthermore, disease resistance towards A.
hydrophila, and modulation of the gut microbiota was
observed by significantly increased the relative abundance of
bifidobacteria and lactobacilli.

Roseobacter
Roseobacter species have been identified as both oval and rod-like
shaped motile cells, are marine species and have a major role in
oceanic sulfur cycling (Buchan and Moran, 2005; Wagner-
Döbler and Biebl, 2006). They are heterotrophs, anaerobic and
possess N-acyl homoserine lactones (AHLs) based quorum
sensing systems (Tang et al., 2010; Cude and Buchan, 2013).
During the last years, information has become available showing
the presence of Roseobacter in intestine of finfish (e.g., Hjelm
et al., 2004; Fjellheim et al., 2007).
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Roseobacter species as candidate probiotic bacteria of the fish
could antagonize fish-pathogenic bacteria without harming the
fish or their live feed. Makridis et al. (2005; 2008) revealed similar
survival of gilthead sea bream larvae exposed to 6 x 105

Roseobacter mL-1 when larvae were reared in sterile seawater,
while lower survival was noticed when larvae were held in filtered
seawater. spp. sp.

Roseobacter species revealing antagonism against Vibrio
species in combination with algae could be a possible probiotic
organism in larval rearing.

Shewanella
The genus is included in family Shewanellaceae, is facultative
anaerobic in the absence of oxygen, and members of the genus
have capabilities to use of a variety of electron acceptors for
respiration. Most of the bacteria in the genus are revealed in
extreme aquatic habitats, at low temperature, and at high
pressure. Shewanella are a normal component of the surface
microbiota of several finfish species (e.g., Satomi et al., 2006;
Fjellheim et al., 2007; Satomi et al., 2007; Navarrete et al., 2013;
Egerton et al., 2018).

Genus Shewanella is one of the most frequently used Gram-
negative probiotics in finfish aquaculture, as the bacterium
inhibit in vitro growth of Photobacterium damselae subsp.
piscicida, Vibrio harveyi , Vibrio alginolyticus and V.
anguillarum (Chabrillón et al., 2005a; Chabrillón et al., 2005b;
Chabrillón et al., 2006).

Within genus Shewanella, is Shewanella putrefaciens Pdp11
most frequently used. Guzmán-Villanueva et al. (2014) used
Pdp11 as a probiotic supplementation to gilthead seabream
(14.5 g) in a 4-week study, and revealed significant lower
serum IgM levels, and serum peroxidase activity after 4 weeks,
while growth performance (SGR and condition factor), serum
antiprotease -, leucocyte peroxidase- serum antiprotease and
leucocyte peroxidase activities were unaffected by probiotic
feeding compared to control fed fish. In two studies using
enriched of Artemia by S. putrefaciens Pdp11 to Senegalese
sole (Solea senegalensis) larvae, Lobo et al. (2014a; 2014b),
revealed improved growth and modulation of the gut
microbiota. In a later study, Lobo et al. (2016) showed that
Artemia metanauplii used as live vector for Pdp11
administration, improved growth of the sole and affected
lipid profile.

In a recent study, Chen et al. (2020b) revealed that
administration of Pdp11 facilitated wound closure, and
increased the albumin/globulin ratio, protease and peroxidase
activities in skin mucus, 7 days after post-wounding, but
decreased serum aspartate aminotransferase. In addition,
probiotic administration up-regulated gene expression of
antioxidant enzymes and anti-inflammatory cytokines (il-10
and tgf- b) but decreases pro-inflammatory cytokines (il-1 b,
il-6, il-8 and tnf-a). Based on their results, the authors concluded
that Pdp11 had a positive effect on wound healing and skin
damage. This conclusion was strengthened by Chen et al. (2020c)
evaluating administration of Pdp11 on gene expression of the
intestinal inflammatory response and barrier function of
gilthead seabream.
Frontiers in Marine Science | www.frontiersin.org 12
An interesting approach regarding probiotics, using
Shewanella sp. MR-7 isolated from turbot intestine that could
utilize soybean meal (SBM) in turbot intestine was evaluated by
Li et al. (2019b). SBM fermented by the bacterium and fed to
turbot counteracted inflammatory response and modulated
mucosal microbiota at both phylum and genus level, but no
significant effect was noticed on trypsin, diastase (catalyze the
breakdown of starch into maltose) and lipase activities. These
interesting findings merit further investigations by including
disease-, immunological- and gene expression studies.

S. putrefaciens Pdp11 is also used in combination with
Bacillus sp. and palm fruits extracts in a study evaluated
antioxidant enzyme gene expression in the mucus of gilthead
seabream (Sparus aurata L.) (Esteban et al., 2014).

According to Seoane et al. (2019), S. putrefaciens Pdp11,
presents features that can explain its probiotic benefits; specific
proteins for adhesion and colonization of the GI tract, resistance
to bile salt, and inhibition of pathogen adhesion in the gut.

A dietary supplementation of Shewanella xiamenensis A-1
and A-2 isolated from grass carp was administrated to grass carp
for 28 days and thereafter challenged with A. hydrophila (Wu
et al., 2015). A significant enhancement of respiratory burst, and
phagocytic and lysozyme activities, and upregulation of immune
related genes (IL-8, IL-1b, lysozyme-C and TNF-a), and
resistance against A. hydrophila were revealed. In later study,
Hao et al. (2017) supplemented grass carp diet with a dose of 108

CFU g−1 of S. xiamenensis for 28 days, and at the end of feeding
modulation of the gut microbiota was noticed. The relative
abundance of Meganema and Rubellimicrobium increased,
Lactococcus, Pseudomonas and Citrobacter (cellulose degrading
bacteria) decreased, while Flavobacterium was not detected
compared to control fed fish.

Asaduzzaman et al. (2018) revealed that administration of
Shewanella sp. to Malaysian Mahseer for 90 days, improved gut
histology (villi height, villi with and villi area), gut production of
SCFAs, and modulated the gut microbiota. In a more recent
study, administration of Shewanella sp. MR-7 to turbot,
ameliorate lipopolysaccharide induced intestinal dysfunction
(villus and microvilli height), and modulated the gut
microbiota by enhancing the relative abundance of
Lactobacillus, and reducing the relative abundance of
Pseudomonas (Zhang et al., 2020).

Aliivibrio
The taxonomy and phylogeny of genus Photobacterium is
revised, for example, Photobacterium logei and Photobacterium
fischeri are now considered members of genus Aliivibrio (Labella
et al., 2017). Aliivibrio is reported in the intestinal tracts of
vertebrates as well as finfish (Green et al., 2013; Karlsen et al.,
2017; Rud et al., 2017; Hamilton et al., 2019), and some
information is available on their use as probiotics in
finfish aquaculture.

Vibrio v iscosus rec lass ified as Morite l la vi scosa
(Benediktsdottir et al., 2000) is a bacteria species associated
with “winter ulcer”, affecting salmonids reared in seawater. In
two recent studies, Klakegg et al. (2020a; 2020b) investigated the
effect of Aliivibrio strains isolated from the mandibulum of
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farmed Atlantic salmon on growth performance and ulcer
prevalence of Atlantic salmon, and ulcer prevalence of
lumpfish (Cyclopterus lumpus), respectively. Both studies,
revealed improved growth performance and ulcer prevalence
after adding Aliivibrio into the tank water. Based on their results,
the author suggested that Aliivibrio administration may have
impact on welfare, economy and sustainability in aquaculture as
fewer ulcer outbreak caused by M. viscosa was noticed.

Enterovibrio
In a study evaluating Enterovibrio coralii administration to
European sea bass (Dicentrarchus labrax), Mladineo et al.
(2016) revealed no significant stimulation of phagocytic
activity, respiratory burst, and gene expression of lysozyme, Mx
protein, caspase 3, TNF-a, and IL-10.

Vibrio
Genus Vibrio has a curved-rod (comma) shape, are reported in
salt water, and are facultative anaerobe and oxidase positive
bacteria. Even through several species of Vibrio are among the
most common bacteria leading to massive mortality of cultured
fish, and shellfish (Ina-Salwany et al., 2019), several studies have
reported that Vibrio is dominant in the GI tract offish (e.g., Eddy
and Jones, 2002; Fonseca et al., 2019). Even though genus Vibrio
are pathogenic, several studies have used apathogenic Vibrio as
probiotic in finfish aquaculture (Austin et al., 1995; Gatesoupe,
1997; Ringø and Vadstein, 1998; DeSchrijver and Ollevier, 2000;
Ottesen and Olafsen, 2000; Makridis et al., 2001; Aerts et al.,
2018; Schaeck et al., 2016), as well as a part in a multi-strain
probiotic supplementation with Microbacterium, Ruegeria and
Pseudoalteromonas (Skjermo et al., 2015), and in combination
with A. veronii and Flavobacterium sasangense (Chi et al., 2014).

In an early study, Ottesen and Olafsen (2000) evaluated the
effect of water administration of Vibrio iliopiscarius and
apathogenic Vibrio salmonicida on Atlantic halibut
(Hippoglossus hippoglossus) larval survival. Pre-incubation of
larvae with apathogenic V. salmonicida improved survival to
94.4%, whereas V. iliopiscarius administration reduced survival
to 63% compared to 81% survival in the control group.

Makridis et al. (2001) reported the use of Vibrio strain PB 1-
11 and strain PB 6-1 encapsulated in Artemia franciscana and
revealed that total CFU in water was lower by encapsulation,
while larval gut microbiota was not significantly affected by
encapsulation. Schaeck et al. (2016) used a Vibrio lentus as
probiotic supplement in a study with gnotobiotic European sea
bass (Dicentrarchus labrax) larvae, and displayed improved
resistance against V. harveyi, but administration of Vibrio
proteolyticus did not revealed any effect on larval survival. In a
following study, Schaeck et al. (2017) revealed that V. lentus
administration to gnotobiotic European sea bass larvae
significantly modified gene expression did not affect apoptotic
and cell proliferative indexes. Aerts et al. (2018) evaluate the
probiotic potential of V. lentus, as inoculum into well water
containing gnotobiotic European sea bass larvae at day 8 post
hatching, and revealed significantly decreased glucocorticoid
baseline levels in larvae, and the authors suggested that their
findings provided a better insight into the hypothalamic-
Frontiers in Marine Science | www.frontiersin.org 13
pituitary-interrenal axis. Furthermore, Vibrio species, such as
Vibrio natriegens which show high capacity to hydrolyze casein,
could increase feed efficiency and improve the growth rate of fish
(Rahman et al., 2016).
GRAM-POSITIVES

The beneficial effects of Gram-positive probiotic bacteria used in
finfish aquaculture, and studies discussed in the review of De
et al. (2014); Hayatgheib et al. (2020); Tran et al. (2020) and van
Doan et al. (2021) are only briefly presented in Table 2.

Arthrobacter
Genus Arthrobacter, has no spores and capsule, utilizes a wide
and diverse range of organic substances, and has ability to
produce antimicrobial compounds (O’Brien et al., 2004;
Papaleo et al., 2012). They are reported in finfish intestine
(e.g., Ringø et al., 2006a; Ringø et al., 2008; Nayak, 2010;
Wang et al., 2019b), but less information is available on their
use as probiotic to finfish (Lauzon et al., 2010). Some information
is available on its use in a multi-strain probiotic mixture (Geng
et al., 2012a; Peixoto et al., 2018).

An Arthrobacter sp. strain that showed inhibitory potential
against fish pathogens in vitro was used in a bath treatment of
Atlantic cod larvae (Lauzon et al., 2010), and regularly
administration to the rearing water, revealed that the
bacterium could establish in the larval intestine.

Bifidobacterium
Numerous health benefits have been claimed for genus
Bifidobacterium , the “good bacteria” . Compared to
Lactobacillus acidophilus, are bifidobacteria less acid tolerant as
they do not grow below pH 5.0 (Shah, 1997), while Lb.
acidophilus grow below 4.0. Bifidobacterium are reported in the
GI tract of finfish (Vlkova et al., 2012; Piazzon et al., 2019; Wang
et al., 2020b), but Bifidobacterium is less incorporated into diets
or added to the rearing water in finfish aquaculture (Sahandi
et al., 2017; Sahandi et al., 2019). In addition, Bifidobacterium
bifidium was administrated to Siberian sturgeon (Acipenser
baerii) in combination with Lactobacillus spp. and B. subtilis,
and the results revealed improved growth performance,
hematological and immune parameters (Hassani et al., 2020).

In two studies with rainbow trout, Sahandi et al. (2017; 2019)
used two bifidobacteria, Bifidobacterium animalis PTCC-1631
and Bifidobacterium animalis subsp. lactis PTCC-1736, isolated
from rat feces and fermented milk, respectively, and
administration of 107 CFU g-1, revealed positive effect on
growth, nutrient utilization, digestibility, feed conversion ratio,
red and white blood cell content, serum biochemical and
reduction of cortisol level of rainbow trout.

in vitro Brochothrix
Genus Brochothrix is non-spore-forming, non-motile catalase-
positive, facultative anaerobic, rod-shaped bacteria that show
characteristic changes in cell morphology during growth. Sneath
and Jones (1976) proposed the genus for some meat spoilage
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TABLE 2 | Effect of Gram-positive bacteria on growth performance, gut health, immune system and disease resistance in finfish, and an in vitro study.

Species Isolated from Doses and duration Finfish species
investigated

Parameters investigated References

Arthrobacter sp. Atlantic cod larval
rearing water

1010 CFU mL-1,
added regularly to
the rearing water,
38 days

Atlantic cod
larvae

Can establish in larval GI tract Lauzon et al.
(2010)

Bifidobacterium
animalis PTCC-1631
and Bifidobacterium
animalis subsp. lactis
PTCC-1736

PTCC-1631 rat
feces and PTCC-
1736 fermented
milk

107, 2x107, 3x107,
CFU g-1, 60 days

Rainbow trout ~
0.6 g

↑ growth, red and white blood cell content, serum biochemical
↓ reduction of cortisol level

Sahandi et al.
(2017)

B. animalis PTCC-
1631 and B. animalis
subsp. lactis PTCC-
1736

PTCC-1631 rat
feces and PTCC-
1736 fermented
milk

107 (T1) 2x10
7,

3x107, CFU g-1, 8
weeks

Rainbow trout ~
0.6 g

↑ growth, nutrient utilization, digestibility (T1)
↓ feed conversion ratio (T1)

Sahandi et al.
(2019)

Brochothrix
thermosphacta

Unknown,
laboratory strain

1010 CFU g-1,
14 days

Rainbow trout ~
25 g

↑ respiratory burst activity and resistance against Aeromonas
bestiarum, a bacterium cause skin infection

Pieters et al.
(2008)1

Clostridium
autoethanogenum

Single cell protein
of C.
autoethanogenum

Inclusion level, 0,
4.85, 9.7, 14.55,
19.4, 38.8, and
58.2% replacement
of fish meal (FM)

Black sea bream
~
6 g

! growth performance, antioxidation and digestive enzyme
activities
↓ total superoxide dismutase in serum of fish fed the highest
inclusion level

Chen et al.
(2019a)

C. autoethanogenum Single cell protein
of C.
autoethanogenum

Inclusion level, 0, 25,
50 and 75%
replacement of FM

Largemouth
bass ~
15 g

With increasing inclusion level, ↓ the total antioxidant capacity
of liver, ↑ plasma phosphatase activity

Lu et al. (2021)

C. autoethanogenum Single cell protein
of C.
autoethanogenum

Inclusion level, 0, 50,
100, 150 and 200 g
kg-1 replacement of
soybean meal

GIFT; Nile tilapia
~ 0.7 g

Affected whole-body crude protein, plasma triglycerides,
upregulated mRNA expression of growth-related insulin growth
factor (IGF-1), intestinal absorption, antioxidant status and
immune response

Maulu et al.
(2021a;
2021b)

C. butyricum Commercial strain 300 µg kg fish-1,
3 days

Rainbow trout,
10 or 50 g

↑ resistance against V. anguillarum Sakai et al.
(1995)2

C. butyricum Isolated from
chickens

104, 105, 107, 109

CFU g-1, 8 weeks
Chinese drum,
200 – 260 g

↑ growth and humoral immune responses Song et al.
(2006)2

C. butyricum CB2 Isolated from
chickens

108 CFU g-1, 30 days Chinese drum,
200 -260 g

↑ resistance against V. anguillarum and Aeromonas hydrophila,
and immune responses

Pan et al.
(2008)1,2

C. butyricum MIYAIRI
II588

Commercial strain In vitro study using
intestinal epithelial
cells

Epithelial cells
crucian carp

Prevented and treated Salmonella enteritidis and Vibrio
parahaemolyticus infections

Gao et al.
(2013)2

C. butyricum MIYAIRI
II588

Commercial strain Silver pomfret ~
5.3 g

↑ growth, digestive- and innate immunity enzymes
! feed conversion ratio and survival

Gao et al.
(2016)2

C. butyricum CBG01 Unknown,
laboratory strain

109 CFU g-1, 60 days Hybrid grouper
~ 44 g

↑ serum superoxide activity
! growth performance, digestive and non-specific immune
enzymes activities

He et al.
(2017)2

C. butyricum Unknown,
laboratory strain

104, 105, 106, 107

CFU g-1, 56 days
Tilapia ~ 56.2 g Suitable dose enhance growth performance, elevated humoral

and intestinal immunity, modulated the diversity of the intestinal
microbiota, by increasing Bacillus, while relative abundance of
Aeromonas, Cetobacterium and Gamma-proteobacteria
decreased
↑ resistance against Streptococcus agalactiae

Li et al.
(2019c)2

C. butyricum Fish diet 104 CFU g-1 and 106

CFU L-1, 56 days
Gibel carp ~ 5 g ↑ immune responses and survival against Carassius auratus

herpesvirus
Li et al.
(2019d)2

C. butyricum Commercial 1, 2, 4 and 8 g kg-1

of 1.5 x 108 CFU g-1,
8 weeks

Tilapia ~ 14 g ↑ weight gain, apparent digestibility coefficient, villus height in
anterior intestine, resistance against
A. hydrophila
↓ feed conversion ratio, numbers of Escherichia coli

Poolsawat
et al. (2020)2

C. butyricum Unknown,
laboratory strain

3x1010, 1.5x1011 and
3x1011 CFU kg-1, 90
days

Tilapia ~ 3.2 g ↑ growth performance, amylase, lipase and trypsin activities at
1.5x1011 CFU kg-1, antioxidant capacity
Modulation of the gut microbiota, functions related to nitrogen
metabolism, phosphorylation and proteinases

Zhang et al.
(2020)

C. butyricum Unknown,
laboratory strain

0.25x107 and 107

CFU g-1, 8 weeks
Common carp ~
90 g

↑ intestinal enzyme activity, short chain fatty acids, intestinal
gene expression, intestinal histology and diversity of intestinal
microbiota
! growth performance

Meng et al.
(2021)

(Continued)
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bacter ia , previously designated as Microbacter ium
thermosphactum. The scientific interests have mostly focused
on Brochothrix thermosphacta as the bacterium is associated with
off-odour development in meats, especially in prepacked
products held at refrigeration temperatures. They are isolated
from the GI tract of finfish (Ringø et al., 2006a; Ringø et al., 2008;
Higuera-Llanten et al., 2018), but less information is available on
their use as probiotics in aquaculture (Pieters et al., 2008).
Frontiers in Marine Science | www.frontiersin.org 15
Administration of B. thermosphacta BA211 at 1010 g-1 in
rainbow trout diet for 2 weeks increased fish survival against
challenge with Aeromonas bestiarum (Pieters et al., 2008).

Clostridium
Genus Clostridium is a butyric‐acid producer, and butyrate is the
preferred energy source for the colon epithelial cells, contributes
to the maintenance of the gut barrier functions, and has
TABLE 2 | Continued

Species Isolated from Doses and duration Finfish species
investigated

Parameters investigated References

Kocuria AP4 Clownfish 105 mL-1 Clownfish larvae ↑ survival Vine (2004)
Kocuria sp. SM1 Rainbow trout

intestine
108 CFU g-1, 2
weeks

Rainbow trout,
10-15 g

↑ resistance against V. anguillarum and Vibrio ordalli Sharifuzzaman
and Austin
(2010b)3,4

Kocuria sp. SM1 Rainbow trout
intestine

0.1 mL of 2.0 ± 0.5
mg mL-1 ECPs,
CWPs and WCPs
fish-1, 7 days

Rainbow trout,
10-15 g

↑ resistance against V. anguillarum Sharifuzzaman
et al. (2011)4

Kocuria sp. SM1 Rainbow trout
intestine

~ 108 CFU g-1,
14 days

Rainbow trout ~
15 g

↑ in epidermal mucus and goblet cells in hindgut
! growth performance, gut histology in pyloric caeca and
foregut, digestive enzymes activity (API ZYM test), and serum
biochemical parameters
↓ in vacuole-containing enterocytes

Sharifuzzaman
et al. (2014)

Microbacterium Atlantic cod
larvae

104and 107 mL-1 in
wells

Atlantic cod
larvae

↑ resistance against V. anguillarum 02a Fjellheim et al.
(2010)

Micrococcus MCCB
104

Unknown,
laboratory strain

103 CFU animals-1

day-1, 28 days
Pearl spot and
tilapia, equal size
(length 5-6 cm
and 60-70 days
old)

Affected digestive enzyme activities in both fish species Sankar et al.
(2017)

Micrococcus luteus
A1-6

Fish intestine, no
specification

106 – 108 cells g-1,
56 days

Rainbow trout ~
9 g

↑ resistance against A. salmonicida, lysozyme activity and
macrophages in kidney
! numbers of erythrocytes and leucocytes

Irianto and
Austin
(2002b)1,4

M. luteus NI 107 CFU g-1, 90 days Nile tilapia ~
21 g

↑ resistance against A. hydrophila
! growth performance, and hemato-logical and biochemical
parameters

Abd El-Rhman
(2009)3,4

Paenibacillus
ehimensis

Water of tilapia
culture pond

106 and 107 CFU g-1,
2 months

Nile tilapia ~
5.6 g

↑ growth performance, immune parameters, and resistance
against A. hydrophila and S. iniae

Chen et al.
(2019b)1

Paenibacillus
polymyxa

Unknown,
laboratory strain

109 CFU g-1, 80 days Common carp
fry ~ 0.33 g

↑ growth performance, non-specific innate immune
parameters, and resistance against A. hydrophila

Gupta et al.
(2014)

Paenibacillus
polymyxa

Unknown,
laboratory strain

Added to tank water,
103, 104 and 105

CFU mL-1, 8 weeks

Common carp ~
32.2 g

↑ water quality, fish survival, innate immune response, and
resistance against A. hydrophila

Gupta et al.
(2016)

Rhodococcus SM2 Rainbow trout
intestine

0.1 mL of 2.0 ± 0.5
mg mL-1 ECPs,
CWPs and WCPs
fish-1, 7 days

Rainbow trout,
10-15 g

↑ resistance against V. anguillarum Sharifuzzaman
et al. (2011)

Rhodococcus SM2 Rainbow trout
intestine

~ 107 CFU g-1,
14 days

Rainbow trout ~
15 g

↑ in epidermal mucus and goblet cells in hindgut
! growth performance, gut histology in pyloric caeca and
foregut, digestive enzymes activity (API ZYM test), and serum
biochemical parameters
↓ in vacuole-containing enterocytes

Sharifuzzaman
et al. (2014)4

Rhodococcus sp. Skin mucus of
brook charr

Added to tank water,
twice a day at a
concentration of 105

mL-1

Brook charr 16
± 5.8 g

The probiont did not colonize the skin mucus, but was
detected in the biofilm of the tank
↓ population level of Flavobacterium psychrophilum

Boutin et al.
(2013)
June 2022 | Volume 9
NI, no information given; GI tract, gastrointestinal tract. ↑ - increase; ! no effect; ↓ - decrease.
Atlantic cod (Gadus morhua); Rainbow trout (Oncorhynchus mykiss); Sea bass (Dicentrarchus labrax); Black sea bream (Acanthopagrus schlegelli); Largemouth bass (Micropterus
salmoides); Chinese drum (Miichtys miiuy); Crucian carp (Carassius carassius); Silver pomfret (Pampus argenteus); Hybrid grouper (Epinephelus lanceolatus ♂ X Epinephelus
fuscoguttatus ♀); Nile tilapia (Oreochromis niloticus); Gibel carp (Carassius auratus gibelio); Nile tilapia (Oreochromis niloticus); Common carp (Cyprinus carpio); Clownfish
(Amphiprion percula); Atlantic cod (Gadus morhua); Pearl spot (Etroplus suratensis); Brook charr (Salvelinus fontinalis).
1
– discussed in the review of Hayatgheib et al. (2020); 2 – Tran et al. (2020); 3 – discussed in the review of De et al. (2014); 4 - discussed in the review of van Doan et al. (2021).
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immunomodulatory and anti-inflammatory properties (Riviere
et al., 2016; Guo et al., 2020). Clostridium are isolated from finfish
intestine (e.g., Wu et al., 2012; Abdelhamed et al., 2019; Pérez-
Pascual et al., 2020; Rimoldi et al., 2020), and some strains are
frequently used as probiotics to enhance growth and immune
response in finfish (for review see Tran et al., 2020; Table 2) as
well as in shellfish aquaculture (Ringø, 2020; Tran et al., 2020).

Single cell protein of Clostridium autoethanogenum has been
evaluated in four recent studies (Table 2). Chen et al. (2019a)
evaluated the effect of partial replacement of fish meal with C.
autoethanogenum single-cell protein (CAP) fed to juvenile black
sea bream (Acanthopagrus schlegelli) and revealed that dietary
treatments did not significantly affect malondialdehyde, catalase,
total antioxidant capacity and digestive protease, lipase and
amylase activities. On the other hand, total superoxide
dismutase in serum of fish fed the highest inclusion CAP level,
58.2%, was significantly lower than that of control fed fish.

An overview on the use of C. butyricum as probiotics was
presented by Tran et al. (2020) and to avoid overlaps, the results
discussed in the abovementioned review are only summarized in
Table 2. He et al. (2017) noted no effect on growth performance,
digestive enzyme activities, serum- lysozyme, catalase and
glutathione peroxidase activities, but only improved serum
superoxide activity by feeding hybrid grouper (Epinephelus
lanceolatus ♂ x Epinephelus fuscoguttatus ♀) C. butyricum, at
inclusion level of 109 CFU kg-1, compared to fish fed only Lb.
acidophilus or a combination with Lb. acidophilus, Bacillus cereus
and C. butyricum. In a recent study, Meng et al. (2021)
administrated a commercial C. butyricum at two inclusion
levels; 0.25 x 107 (LVB) and 107 (HCB) CFU g−1, for 8 weeks
to address the effect on intestinal enzyme activity, SCFAs,
intestinal gene expression and diversity of intestinal microbiota
of common carp (Cyprinus carpio). A substantial beneficial effect
was noticed, probiotic administration by HCB significantly
enhanced intestinal catalase and lysozyme, positively affected
mucin secretion and the height of microvilli, and intestinal gene
expression of IL-10, TLR-2, MyD-88, ZO-1 and Occludin.
Butyric- and propionic acid content were elevated in both
clostridia treatments. Furthermore, the intestinal content
microbiota was affected, with improved abundance of
Bacteroides and a significant decrease in Fusobacteria and
Proteobacteria. Zhang et al. (2020) used a commercial C.
butyricum strain, previously used in shellfish studies at three
administration levels. The authors revealed that inclusion level of
1.5x1011 CFU kg-1, improved growth performance, digestive
enzymes (amylase, lipase and trypsin), and antioxidant
capacity in spleen, head kidney and liver of tilapia.
Furthermore, modulation of the gut microbiota, functions
related to phosphorylation, proteinases, and nitrogen
metabolism were noticed.

Kocuria
Kocuria was first reported by Kocuria is coccus shaped, and have
rigid cell walls and are either aerobic or facultative anaerobic
bacteria (Venkataramana et al., 2016), and has been isolated
from the GI tract of finfish (e.g., Bakke-McKellep et al., 2007;
Linh et al., 2018; Sharifuzzaman et al., 2018).
Frontiers in Marine Science | www.frontiersin.org 16
According to Vine (2004) Kocuria AP4 administrated to
clownfish larvae, improved survival. Rainbow trout orally fed
Kocuria SM1 (108 cells g-1) originally isolated from GI tract of
rainbow trout, has been administrated to rainbow trout in three
studies (Sharifuzzaman and Austin, 2010a; Sharifuzzaman and
Austin, 2010b; Sharifuzzaman et al., 2011). In a later study using
Kocuria SM1, Sharifuzzaman et al. (2014) revealed increase in in
epidermal mucus and goblet cells in hindgut, but growth
performance, gut histology in pyloric caeca and foregut, serum
biochemical parameters (hemoglobin, urea, creatinine and
glucose), and digestive enzymes activity (API ZYM test) were
not affected by probiotic feeding, while a notable decrease in
vacuole-containing enterocytes was noticed. Furthermore, an
interesting finding was that inflammation was not observed in
fish fed Kocuria SM1. In most probiotic studies, the frequency of
the probiont is evaluated after continuous feeding, but in the
study of Sharifuzzaman et al. (2014) probiotic feeding by Kocuria
SM1or Rhodococcus SM2 was stopped after 14 days and reverted
back to the control diet for 14 days. The results of both probiotic
bacteria revealed that percentage of the probiont in digesta
reached maximum, at the end of day 14, but disappear upon
switching to the control diet after 28 days. The authors
concluded that this observation indicate no primary
colonization in the GI tract, but to fully conclude the
autochthonous microbiota should be analyzed.

Microbacterium
Genus Microbacterium belongs to the family Microbacteriaceae
within suborder Micrococcineae. Microbacterium are non-spore-
forming, rod-shaped bacteria, and was classified according to the
amended genus description by Collins et al. (1983) and
redefinition of Takeuchi and Hatano (1998). They are isolated
from the GI tract of finfish (e.g., Ringø et al., 2006a; Ringø et al.,
2006b; Hu et al., 2015), used as probiotics (Fjellheim et al. (2010),
and in a multi-strain probiotic mixture with Pseudoalteromonas,
Ruegeria and Vibrio fed to Atlantic cod larvae (Skjermo
et al., 2015).

In a study to evaluate the selection of candidate probiotics,
Fjellheim et al. (2010) revealed that Microbacterium sp. ID-3-10
improved survival of Atlantic cod larvae exposed to V.
anguillarum 02a.

Micrococcus
Genus Micrococcus was divided into Micrococcus, Kocuria,
Nesterenkonia, Kytococcus and Dermacoccus based on
phylogenetic and chemotaxonomic studies by Stackebrandt
et al. (1995). Information is available on their presence in
finfish intestine (e.g., Ringø, 1993; Bakke-McKellep et al., 2007;
Hu et al., 2015), and furthermore information is available on the
potential of gut Micrococcus isolates as probiotics (e.g.,
Nurhidayu et al., 2012; Akayli and Urku, 2014; Akayli et al.,
2016), and their use as probiotics in finfish aquaculture (Irianto
and Austin, 2002b; Abd El-Rhman et al., 2009; Sankar
et al., 2017).

Feeding Micrococcus luteus to rainbow trout and Nile tilapia,
reduced mortality after challenged with A. salmonicida (Irianto
and Austin, 2002b) and A. hydrophila Abd El-Rhman et al.
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(2009). In a later study, Sankar et al. (2017) evaluated the effect of
Micrococcus administration on digestive enzymes (pepsin, a-
amylase, protease and lipase) activities, and revealed differences
in pearl spot (Etroplus suratensis) and tilapia after 60
days feeding.

Paenibacillus
Previously, Paenibacillus species were included in genus Bacillus
due to their common morphological and physiological
characteristics. However, based on 16S rRNA gene sequences
in 1993, Paenibacillus was reassigned as a new genus. Genus
Paenibacillus has been isolated from humans, animals, plants as
well as fish (Midhun et al., 2017; Ma et al., 2018; Wang et al.,
2019c), but their use as probiotics in finfish aquaculture is
less investigated.

Common carp fry administrated with Paenibacillus polymyxa
improved growth performance, non-specific immune (lysozyme,
respiratory burst and myeloperoxidase activities), and resistance
against A. hydrophila (Gupta et al., 2014). Later the same authors
(Gupta et al., 2016) revealed that P. polymyxa supplemented to
the water at three concentrations, improved water quality,
common carp survival, innate immune response (lysozyme,
respiratory burst, myeloperoxidase, catalase and superoxide
dismutase activities), and resistance against A. hydrophila, at
103 and 104 CFU mL-1 supplementation. In a recent study, Chen
et al. (2019b) demonstrated that administration of Paenibacillus
ehimensis enhanced growth performance, immune parameters,
and resistance against A. hydrophila and S. iniae.

Rhodococcus
Genus Rhodococcus is aerobic, nonsporulating, non-motile
b a c t e r i a c l o s e l y r e l a t e d t o Mycoba c t e r i um and
Corynebacterium. Few species are pathogenic and Rhodococcus
have been revealed in a broad range of environments, including
soil and water, as well as fish intestine (Tapia-Paniagua et al.,
2014a; Song et al., 2016; Sharifuzzaman et al., 2018). Strains of
Rhodococcus is experimentally advantageous due to its relatively
fast growth rate and simple developmental cycle.

In a study by Sharifuzzaman et al. (2011), the authors used
paraprobiotic (cellular components) of Rhodococcus SM2
isolated from the intestine of rainbow trout and displayed
enhanced trout immune response and a significant resistance
to V. anguillarum challenge. In a subsequent study,
Sharifuzzaman et al. (2014) revealed that administration with
Rhodococcus SM2, ~ 107 CFU g-1 for 14 days, epidermal mucus
and goblet cells in hindgut increased, while no significant effect
was noticed on growth performance, gut histology in pyloric
caeca and foregut, digestive enzymes activity, and serum
biochemical parameters. Inflammation was not observed in
fish fed Rhodococcus SM2.

In a study with brook charr (Salvelinus fontinalis),
Rhodococcus sp. originally isolated from skin mucus of brook
charr and added to the tank water twice a day at a concentration
of 105 mL−1, Boutin et al. (2013) observed that the bacteria did
not colonize the skin mucus, but was detected in the biofilm of
the tank. An interesting beneficial effect was noticed, the
population of the pathogen F. psychrophilum decreased in
Frontiers in Marine Science | www.frontiersin.org 17
water by modulating the water microbiota. Furthermore, the
bacterial communities in water samples were more diverse than
the skin mucus microbiota.

An interesting aspect of Rhodococcus was recently evaluated
by Garai et al. (2021), as they investigated degradation of
mycotoxin. This is highly relevant as mycotoxins are secondary
metabolites of fungi, which are common in food, and from time
to time also present in aquafeed (Pietsch, 2020).
MULTI-STRAIN PROBIOTICS

In aquaculture, multi-strain probiotics have been considered to
be more effective than a single strain in aquaculture, and readers
with special interest in this topic, are referred to the recent
reviews of Melo-Bolivar et al. (2021).
CONCLUSIONS AND FURTHER
DIRECTIONS

Nearly 90% of the global aquaculture production is carried out in
countries in Asia, and the development is so fast that infectious
disease outbreak happens regularly, and to solve this problem
antibiotics are used with few regulations. However, the abuse of
antibiotic treatment in aquaculture with tetracycline, b-lactams,
sulfonamides, quinolones etc. results in development of
antibiotic resistance in the pathogens, accumulation of residual
in finfish products, depression of immune system, and
translation of resistant genes to terrestrial animals and
humans. Therefore action for alternative treatment methods in
aquaculture are needed. In addition to the concept of probiotics,
paraprobiotic is relatively established in higher vertebrate models
and related food production sectors, but its application in
aquaculture is still in its early stage (Choudhury and Kamilya,
2019; Teame et al., 2020), and merits investigations. Another
alternative method is postbiotic that may be useful in
aquaculture (Ang et al., 2020; Cuevas-González et al., 2020;
Teame et al., 2020), a topic that merits further studies.

Moreover, peptides and exopolysaccharides revealed
antimicrobial properties against bacterial pathogens, and
SCFAs display both antimicrobial activities against bacterial
pathogens and immune stimulating effects to aquatic organism,
and cell surface proteins and teichoic acid can act as vaccine.
Furthermore, it is well known that dietary manipulation affect
the gut microbiota and improve fish health (e.g., Ringø et al.,
2016; Turchini et al., 2022).

Dose as defined as the concentration (number of probiotic cells)
must be carefully determined, as overdosing may result in lower
efficacy with increasing costs, and under dosing could reduce the
efficacy of the probiont. Previously, administration doses between
104 and 106 cells mL-1 to the total culture volume was suggested to
be sufficient in introducing a probiotic capable of dominating the
intestinal microbiota (Vine et al., 2006), but nowadays doses
between 107 and 109 cells mL-1 are used. However, in order to
maintain the desired probiotic concentration in the culture water,
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additional doses may be required, and its frequency may depend
on the probiotic species, stage of fish development, diet, culture
conditions (Verschuere et al., 2000).

Even though focus has been directed towards LAB and bacilli
within probiotics in aquaculture (e.g., Ringø et al., 2018; Ringø
et al., 2020a; James et al., 2021; Nayak, 2021), we strongly
recommend the scientific community to focus on other
interesting probionts. They play important roles in mediating
and stimulating GI development, aiding digestive function,
maintaining mucosal tolerance, enhance the immune response,
and provide protection against diseases, development of
metabolic syndrome, vitamin synthesis, modulation of the gut
microbiota, and interactions on the gut-brain axis and gut-
kidney axis. In addition, multistrain probiotic administration
increased the gut microbiota diversity (Halkjær et al., 2020)
illustrating that the gut microbiota merits further investigation in
finfish aquaculture.

Probiotic applications may be extended in aquaculture
with the use of exo-enzymes producing strains in
bioprocessing of the complex feed ingredients and diverse
microbial bio-active compounds and/or metabolites (e.g.,
antimicrobial compounds, quorum quenching enzymes, SCFA
as functional feed additives. Along with probiotic potential,
studies should be directed to develop the probiotic-products as
synbiotics or postbiotics and their efficacy in culture condition
are required to be evaluated.

The beneficial effects of LAB and Bacillus and their
bacteriocins as alternatives to antibiotic growth promoters in
animal production is well known (e.g., Caulier et al., 2019; Vieco-
Saiz et al., 2019). However, as no information is available on
bacteriocins from other promising probiotics in aquaculture, we
highly recommend that this topic receive more attention.

Bacteria communicate with one another using chemical signal
molecules, a process, and termed quorum sensing (QS), the
enzymatic degradation of AHLs, has been suggested as a
promising strategy to control bacterial diseases (e.g., Defoirdt,
Frontiers in Marine Science | www.frontiersin.org 18
2018; Ghanei-Motlagh et al., 2020). For example, Ghanei-
Motlagh et al. (2020) revealed that Shewanella isolated from
Asian sea bass showed high ability to degrade synthetic- and
natural AHLs produced by V. harveyi and V. alginolyticus.

Within the probiotic bacteria discussed in the present study, a
topic that merits investigation is the interactions between
probiotics and antioxidant properties, a topic reviewed by
Wang et al. (2017).

Even though probiotic inclusion in the diet is the most
frequently used administration method, several studies have
administrated probiotics in the water (Jahangiri and Esteban,
2018; the present study). However, to fully conclude that water
administration is a suitable method, further studies need to be
conducted in intensive production.

In the conclusion, application of beneficial microbes is a
sustainable approach.
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