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Recognition of polar lows in Sentinel-1 SAR
images with deep learning

Jakob Grahn∗, Filippo Maria Bianchi

Abstract—In this paper, we explore the possibility of detecting
polar lows in C-band SAR images by means of deep learning.
Specifically, we introduce a novel dataset consisting of Sentinel-1
images divided into two classes, representing the presence and
absence of a maritime mesocyclone, respectively. The dataset is
constructed using the ERA5 dataset as baseline and it consists
of 2004 annotated images. To our knowledge, this is the first
dataset of its kind to be publicly released. The dataset is used
to train a deep learning model to classify the labeled images.
Evaluated on an independent test set, the model yields an F-
1 score of 0.95, indicating that polar lows can be consistently
detected from SAR images. Interpretability techniques applied
to the deep learning model reveal that atmospheric fronts and
cyclonic eyes are key features in the classification. Moreover,
experimental results show that the model is accurate even if:
(i) such features are significantly cropped due to the limited
swath width of the SAR, (ii) the features are partly covered by
sea ice and (iii) land is covering significant parts of the images.
By evaluating the model performance on multiple input image
resolutions (pixel sizes of 500m, 1km and 2km), it is found that
higher resolution yield the best performance. This emphasises the
potential of using high resolution sensors like SAR for detecting
polar lows, as compared to conventionally used sensors such as
scatterometers.

Index Terms—Polar lows; Mesocyclones; Deep learning; SAR

I. INTRODUCTION

Polar lows belong to the class of mesoscale maritime cy-
clones (from now on referred to as mesocyclones) that form at
high latitudes, typically due to cold air outbreaks from sea ice
or snow covered regions [1]. They are characterised by rapid
development, small scale, strong winds and heavy snowfall.
This makes them both difficult to predict and extremely
hazardous for maritime activities such as fishing, shipping,
petroleum extraction, and offshore wind power production.
When making landfall, polar lows are prone to disrupt land
and air traffic, destroy infrastructure, and trigger high snow
avalanche activity in mountainous regions.

Due to their unpredictable and destructive nature, reliable
and precise methods for early detection and tracking of po-
lar lows are desirable. Meteorologists and scientists largely
rely on direct observations in terms of satellite imagery or
numerical weather prediction (NWP) models constrained by
observations for detecting polar lows [2]–[9]. In maritime and
polar regions, observations almost exclusively originate from
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satellites. Conventionally, data from scatterometers, radiome-
ters and optical sensors are assimilated into the NWP models
[10], [11]. However, these sensors either rely on sunlight or
have a coarse spatial resolution (typically a few to tens of
kilometres). Considering that polar lows often occur during
the polar night and are small scaled, featuring wind streaks,
sharp atmospheric fronts and precipitation cells, observations
at higher resolution regardless of light conditions could be
beneficial.

Synthetic aperture radars (SARs) are independent of solar
illumination and provide imagery at very high spatial reso-
lution (typically a few to tens of metres). Researchers have
already indicated that SAR data adds value to polar low
monitoring [12]–[14]. Assimilation of SAR data into NWP
models is however challenging, since the exact relationships
between radar measurement and geophysical parameters are
not trivial, especially at high wind speeds [14]–[16]. An
alternative approach to make use of SAR data is to rely on
data driven techniques, such as deep learning.

Deep learning has successfully been applied to several
remote sensing applications and achieved state of the art results
[17]–[20]. Cyclone type phenomena specifically, has been
considered in assimilated data [21]–[23], passive microwave
data [24], thermal infra-red (IR) data [25]–[29] and scatterom-
eter data [30]. With the exception of [31], deep learning has
however been largely overlooked for detecting mesocyclones
in SAR data.

This paper investigates the possibility of using deep learning
for detecting mesocyclones in general, and polar lows in
particular, in SAR images. We aim to answer two main
questions: (i) can a deep learning model recognise polar lows
in SAR images, and (ii) what significance does the image
resolution have on the performance?

To answer these questions, we first show that a training
dataset can be constructed from the Sentinel-1 data archive,
which is large enough for a deep neural network to be trained.
In order to make the dataset large enough, we relax the
definition of a polar low to the broader class of mesocyclones.
The constructed dataset contains image samples divided in
two classes, representing the presence and the absence of
mesocyclones, respectively. In the following, we explain in
detail how the dataset is built. To our knowledge, it is the first
of its kind to be publicly released.

Then, we show how a deep neural network can be trained on
the dataset to perform binary classification with very good per-
formance. The deep learning model and the training procedure
is carefully motivated by considering the training dataset size,
input image size, and class imbalance. The performance of
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the model is evaluated for multiple input image resolutions and
interpretability techniques are applied on the model to evaluate
what image features are most relevant for the classification.

II. SAR DATASET

This section describes the construction of the dataset for
classifying mesocyclones, observed by the Sentinel-1 satel-
lites. The dataset is publicly available (https://doi.org/10.
18710/FV5T9U) and consists of 2004 images divided in two
classes: the positive class (318 images with mesocyclones) and
the negative class (1686 images without mesocyclones).

A. Positive class: Mesocyclone present

To build the positive class, polar lows monitored by the
Sentinel-1 satellites were required. Historic catalogs of polar
lows exist [32], [33], based on manual analysis of NWP model
data as well as satellite data (thermal infrared, passive mi-
crowave and scatterometer data). However, these catalogs are
regional and, more importantly, do not cover the time period
when the Sentinel-1 satellites were operational. On the other
hand, studies like [2], [3], [34] proposed objective criteria
based on meteorological parameters that produce results simi-
lar to the manually annotated catalogs. Such objective criteria
can be applied on reanalysis data, enabling identification of
candidate low pressures that were coincident with the Sentinel-
1 satellites.

Although a variety of objective criteria have been proposed,
they are typically associated to either: (i) the low pressure
intensity, (ii) the presence of a cold air outbreak, or (iii) the
location of the low pressure in relation to the polar front.
In [2], a combination of such criteria were imposed on the
ECMWF reanalysis Interim (ERA-I) dataset and the most
effective criteria for detecting polar lows were identified using
the manual catalog by [32] as reference. However, events
meeting all criteria are infrequent, since polar lows are rare.
For reference, in [32], only 12 events per year were recorded
over the Nordic seas on average, from year 2000 to 2009.
Moreover, considering the limited spatio-temporal coverage
of the Sentinel-1 satellites, not all events are imaged, making
the number of image candidates even lower. Therefore, to
include as many observed events as possible in our dataset,
the cold air outbreak and locality type criteria were neglected.
By considering only an intensity criteria, mesocyclones that
are not necessarily driven by baroclinic instabilities or located
in the polar air masses were included. Assuming that such
mesocyclones share substantial similarities to polar lows, they
can still provide valuable information to train a deep learning
model, which motivates their inclusion in the dataset.

The intensity criteria was imposed on the ERA5 dataset.
Specifically, it was formulated in terms of the depression in
the sea level pressure (SLP) relative to the local mean. This
type of criteria was considered by [2], where different SLP
depression thresholds were tested. In our study, the threshold
was set at 230 Pa and the local mean was computed within a
9×9 grid cell neighbourhood (corresponding to 270×270 km
at the equator). The spatio-temporal distributions of resulting
candidates and the subsequent matched SAR observations are

(a)

(b)

Fig. 1: The spatial distribution of ECMWF reanalysis version 5
(ERA5) candidates and Sentinel-1 matches in (a). The corresponding
temporal distribution, as counts per month, in (b). Background map:
© OpenStreetMap contributors/CARTO.

shown in figure 1. The highest concentrations of candidates
were found in the subtropical regions of the North Pacific
and North Atlantic. However, due to higher satellite revisit
frequencies at higher latitudes, most SAR observations were
found in the extra tropical and polar parts of the North
Atlantic.

The dataset construction process is illustrated in figure 2
and each step is described in detail below.

1) ERA5 filtering: The ERA5 dataset [11] consists of
hourly reconstructions of a large number of meteorological
variables, spanning from 1950 to present. The data can be
accessed on a geodetic grid, with a grid spacing of 0.25
degrees horizontally. Considering the global grid, candidate
low pressures were identified by: (i) low-pass filtering the SLP
using a 9×9 sliding average filter, (ii) selecting candidate grid
cells where the SLP was 230 Pa lower than the low-pass SLP,
(iii) grouping adjacent candidate grid cells and (iv) keeping
groups with an equivalent radius smaller than 200 km (i.e. with
an area less than 2002π km2, thus excluding very big weather
systems). Each such group was vectorised and constituted a
candidate area of interest (AOI). This filtering process was
done from 1 Januray 2015 to 31 December 2020 with a time

https://doi.org/10.18710/FV5T9U
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Fig. 2: The dataset construction process illustrated as a flow chart.
The starting point is the ERA5 SLP field that is filtered according
to our working definition of a polar low to form candidate AOIs.
These are used to search for Sentinel-1 data, which is processed (see
section II-A2) onto a UTM-grid. The processed images are validated
manually and offset corrected by refining the AOIs and reprocessing
the images onto a UTM-grid in which the image features are centered.
The polarisation channels for this image sample is HH/HV.

step of 3 hours.
2) Sentinel-1 lookup and processing: For each candidate

AOI at time t, we queried the Copernicus Open Access Hub
for Sentinel-1 ground range detected (GRD) products in the
time interval t ± 1.5 hours. Resulting products were down-
loaded from Alaska satellite facility (ASF) and processed1 by:
(i) calibrating the data to sigma-nought, (ii) removing thermal
noise, (iii) merging time-adjacent products to a common grid
in SAR geometry, (iv) multi-looking to 500 m resolution
in range and azimuth2, (v) geocoding to a 400×400 km
grid (centered at the AOI) in a universal transverse mercator
(UTM) coordinate system with a 500 m grid spacing and
(vi) generating red-green-blue (RGB) colour composites.

The RGB colour composites were generated by first re-
scaling the radar cross-section (assumed in decibel scale) to a
value x ∈ [0, 1]. Specifically, the 2nd and 98th percentiles of
each separate image and polarisation channel were re-scaled
to 0 and 1, respectively3.

1All SAR data processing was done using Generic DAta Raster (GDAR), a
python based library for processing raster data in radar geometries, developed
by Norwegian Research Center (NORCE)

2In terms of number of looks, EW mode products are in total multi-
looked by 60 × 20 looks in range and azimuth, while IW mode products
are multi-looked by 250 × 50 looks in range and azimuth. Speckle noise is
thus significantly suppressed in the processed images.

3The 2nd percentile was clipped to the range -25 to -15 dB and the 98th

percentile was clipped to the range -10 to 0 dB. The clipping values were
chosen to harmonise the scaling across image samples. Pixels without data
were excluded when computing the percentiles and replaced by zeros.

For data with dual polarisation channels, the re-scaled
values were used to make RGB colour composites as:

R = G =
x|| + x×

2
, B = x||

where x|| and x× corresponds to the co- and cross-polarised4

channels, respectively. For single polarisation data, contain-
ing only the co-polarised channel, the colour channels were
defined as: R = G = B = x||. Both dual and single
polarisation data were thus considered jointly in the training
data set5, however, the dual polarisation data constituted the
great majority of the samples (see figure 5).

3) Manual validation and offset correction: Each RGB
colour composite was manually validated. Specifically, in each
positive image, we asserted the presence of distinctive features
(typically an eye or a comma shaped pattern). In general,
these features were not centered in the processed images, since
the image grid was centered at the candidate AOI originating
from ERA5. Therefore, offsets were corrected for by manually
centering the AOIs on the eye or comma shaped pattern. The
samples were then reprocessed with the refined AOIs.

B. Negative class: Mesocyclone absent

To obtain samples of the negative class, representing the
absence of a cyclone, we considered repeat-pass SAR acqui-
sitions successive to those of the positive image samples (i.e.
images acquired at the same relative orbit).

The motivation of our choice was twofold: (i) Sentinel-1
repeat-passes are separated by at least 6 days, which is
enough time for the sea state (and thus the image features)
to decorrelate, and (ii) the imaging geometry of repeat-pass
acquisitions is nearly identical, such that static/background
features appear similar. The second point is important in order
to factor out land features from the dataset. Indeed, if the same
land features appear in both the positive and negative class,
it is expected that a machine learning model will be able to
ignore them in the classification task.

As an example, a repeat-pass image set consisting of one
positive and eight negative samples is shown in figure 3. To the
left, the processed RGB composites are shown. The south tip
of Svalbard can be seen statically in all images, while ocean
features appear dynamically. The positive sample in the centre,
contains a distinct vortex structure. To the right, a map with
the footprints of the individual Sentinel-1 products involved is
shown, together with the footprint of the image grid. Typically,
due to the limited swath of the SAR, the products do not
cover the whole image grid across track, leading to missing
data in the RGBs in the cross-track direction. Occasionally,
some products are not captured, leading to missing data in the
along-track direction as well.

The distribution of SLP depression, defined as the difference
in SLP (extracted from ERA5) between the image wide aver-
age and the average of the centre 100×100 pixels, is shown
in figure 4. The positive samples have a strong depression,

4The co-polarised channel can be either HH or VV, and the corresponding
cross-polarised channel can be either HV or VH.

5A dedicated experiment using only the co- or cross-polarised channel
separately, can be found in the supplementary material.
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(a) (b)

Fig. 3: In (a), a repeat-pass set is shown, consisting of one positive (central image) and eight negative samples. All samples within a set are
processed onto the exact same grid, centered at the low pressure in the positive sample. The polarisation channels for this set are HH/HV.
In (b), the location of the individual products and the grid is displayed. Background map: © OpenStreetMap contributors/CARTO.

Fig. 4: The distribution of SLP depression for the two classes. The
depression is measured as the SLP averaged over the whole image,
minus the SLP averaged over the centre 100×100 pixels.

Fig. 5: Overview of the repeat-pass sets, in terms of distributions in
size (samples per set), imaging mode and polarisation mode. For each
positive sample, we extracted a maximum of 10 negative samples.

while the negative samples exhibit a symmetric distribution
centred around 0 Pa. This indicate that the negative class,
indeed, represents a sea state not biased towards a centered low

pressure. It should however be emphasised that no particular
features are excluded from the negative class.

In total, 1686 negative sample were generated from the
318 positive ones, resulting in a total of 2004 samples in the
dataset. The number of negatives per positive varied depending
on the existence of repeat-pass acquisitions, as shown in figure
5. Furthermore, most samples were acquired in the extended
wide-swath (EW) mode with two polarisations.

III. DEEP LEARNING

Three immediate challenges can be identified when choos-
ing and training an appropriate deep learning model to perform
classification on the dataset: (i) the input image size is rela-
tively large, (ii) the training dataset is relatively small, and
(iii) the classes are imbalanced. In the following, we discuss
how these were dealt with.

A. Deep learning architecture

One of the major benefits of using SAR data, compared to
e.g. scatterometer or passive microwave data, is the high image
resolution. Although the images in the training dataset were
already heavily downsampled from the original resolution of
10-40 m to 500 m, resulting in an image size of 800 × 800
pixels, they are relatively large in the context of many popular
deep learning models. These are often designed for images
of size 256 × 256 pixels or lower. To preserve details that
are specific for the SAR data, such as wind streaks, rain cells
or sharp atmospheric fronts, and to enable us to study the
added value of high input image resolution, we wish to avoid
further downsampling and rather let the model handle the
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high input image resolution. Convolutional neural networks
(CNNs) used for image classification usually consist of a
stack of convolutional layers followed by pooling. Each such
processing block sequentially increases the feature dimension-
ality through colvolutions, while reducing spatial resolution
through pooling. As such, relevant spatial information will
gradually become embedded in the feature space. If the input
image is large, the model must either apply an aggressive
downsampling in each processing block, or include many
blocks and, thus, become very deep. The former can be
obtained by large stride in the convolutional and pooling
layers, or by using Atrous convolutions [35]. These techniques
do, however, come at a cost of discarding spatial information,
which we wish to avoid. This leaves us with the option of
using a deep architecture, which gradually distill the spatial
information and embeds it into the feature space.

Training a very deep network poses two fundamental chal-
lenges. Firstly, the gradients of the loss used to update the
parameters may gradually vanish as they are backpropagated
through the network. Secondly, an architecture with many lay-
ers contain many trainable parameters. This makes the model
prone to overfitting, unless the training set is exceptionally
large, which was not the case in our study.

A solution to address the first problem is to use residual
connections, popularized by architectures such as ResNet [36],
which facilitate the flow of the gradients during the backprop-
agation.

Considering the second problem, a ResNet is unfortu-
nately characterized by many trainable parameters. There
are, however, more recent deep architectures which include
residual connections but have fewer parameters. For example,
MobileNet [37] and Xception [38] implement separable 2D
convolutions (Sep2DConv), which allows to greatly reduce the
number of trainable parameters6.

Therefore, we opted for a customized Xception architec-
ture7, whose details are depicted in figure 6. The entry block
consists of a convolutional layer, followed by a batch normal-
ization layer [39] and a ReLU activation function. There are L
residual blocks, each one including Sep2DConv layers, batch
normalization, ReLU activations and a max-pooling layer. The
max-pooling output is combined with the input of the residual
block through a skip connection. The convolutional layer in
the middle of the skip connection has no activation function
and simply applies a kernel of size 1 with stride 2, to match
the shape of the input with the one of the output. A global
pooling layer reduces the feature map generated by the last
residual layer to a single vector, which is processed by the
final classifier consisting of a dropout layer [40], a dense layer,
and a softmax activation.

6The basic idea behind a Sep2DConv is to replace a matrix of parameters
W ∈ RN×M with an outer product of two unidimensional vectors, W̃ =
uT ⊗ v, where u ∈ RM and v ∈ RN , reducing the number of parameters
from M · N to M + N . This is, actually, a simplification. In practice, a
Sep2DConv splits the traditional convolution with a kernel of size H×W ×
Fin×Fout with a depth-wise convolution with Fin kernels of size H×W ×1,
followed by a point-wise convolution with a kernel of size 1× 1× Fout.

7A comparison with other popular deep learning architectures is presented
in the supplementary material.

Entry block

Residual block 1

Residual block L

Global Pooling

Classifier

{0,1}

Conv2D

BatchNorm

Activation

SepConv2D
BatchNorm

Activation

MaxPool

Conv2DSepConv2D
BatchNorm

Activation

+

Dropout

Dense

Softmax

Fig. 6: Architecture details.

B. Data augmentation

Augmenting the training data by applying random transfor-
mation is a common technique used to prevent overfitting. By
exposing the deep learning model to perturbations of original
inputs, it is possible to improve the robustness of the model.
In addition, data augmentation allows to get rid of some bias
in the dataset and increase the generalization performance on
new unseen data.

Our dataset has been designed by keeping image augmen-
tation in mind. Each low pressure is centered in the image
and has a wide area around that can be partially cropped.
Each time a batch of images is fetched to our deep learning
model, the following random transformations are applied on
the fly; (i) horizontal and vertical translation (between 0
and 10% of the image size), (ii) horizontal and vertical flip,
(iii) rotation (0 to 40 degrees), (iv) zoom (-10% to 10% of the
original scale) and finally (v) cropping to the centre 512×512
pixels. If after the transformation some points fall outside the
boundaries of the original input image, these are filled with
zeros. Notably, after data augmentation the low pressures are
no longer centered in each image. Figure 7 shows an example
of augmented images randomly generated during training.

C. Class imbalance

While the number of positive samples were restricted by the
number of matches found on the Sentinel-1 archive, multiple
negative samples could be generated for each positive sample.
This lead to a natural skewness in the distribution of classes
in the dataset: 84% of the samples belong to the negative
class and 16% to the positive. We tested and compared three
different approaches to train the deep learning model in the
presence of class imbalance.
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Fig. 7: Examples of random image augmentation. The top-left image
is the original. The polarisation channels for the image are VV/VH.

1) Class-weighting: We re-weighted the loss function ac-
cording to class frequencies. Denoting the number of samples
in the negative and positive classes respectively by n0 and
n1, the loss for samples in the corresponding classes were
weighted by w0 = 1

n0

n0+n1

2 and w1 = 1
n1

n0+n1

2 . This means
that each error on the positive class affects the optimization
of the model weights to a greater extent.

2) Oversampling: We ensured that in each batch there
were always the same amount of samples of both classes.
Specifically, this was obtained by designating half of the batch
to the negative class, and half to the positive. In each epoch8,
samples from the negative class are seen only once, while
samples from the positive class are repeated. We made sure to
observe all samples of the negative class at least once during
an epoch and to not sample any image twice within a batch.

3) Rejection sampling: This strategy drops samples until
a balanced distribution across the two classes is obtained.
Contrarily to oversampling, each sample is seen at most once
in each epoch, which makes the overall training faster.

By empirical comparison (see the supplementary material),
we found that oversampling yields the best performance and,
therefore, was the strategy adopted in our experiments.

D. Hyperparameter tuning

To find the optimal configuration of the deep learning
model, we searched several hyperparameters and selected
those giving the best performance on a validation set. As
validation set, we used 10% of the training set. The hy-
perparameter space and the optimal values found after the
optimization procedure are reported in table I. To reduce the

8One epoch is when the whole training dataset has been passed forward
and backward through the network once.

hyperparamers space, we only search the number of filters of
the first residual blocks and then we double the number in the
following blocks.

Hyperparam. Search space Optimal
Activation {ReLU, SeLU} ReLU
Conv2D filters {8, 16} 8
Kernel size {3, 5} 3
SepConv2D filters {8, 16, 24, 32} 8
Num. residual blocks [2, 8] 7
Global pooling {avg, flat, max} avg
Num. dense layers [1, 3] 1
Units in the dense layer {8, 16, 24, 32} 8
Dropout rate [0.1, 0.6] 0.5
Use batch normalization {True, False} True
Learning rate {1e-2, 1e-3, 1e-4} 1e-3

TABLE I: Hyperparameters space and optimal values found.
“Conv2D filters” and “kernel size” refer to the entry block. “Sep-
Conv2D filters” refers to the 1st residual block, since the number of
filters is double each time in the following blocks.

Since the dataset contains large images and we consider
deep models with many parameters, evaluating each hyperpa-
rameter configuration is computationally expensive. Therefore,
rather than performing an exhaustive search with grid search
or evaluating a large number of configurations with a random
search, we opted for a more efficient approach. In particular,
we used Bayesian hyperparameter optimization [41].

We used a batch size of 16 and the Adam optimizer [42].
During the hyperparameter tuning we trained the model for
50 epochs. After finding the optimal configuration, we trained
the final model for 200 epochs.

E. Model interpretability

Due to the presence of many non-linear transformations,
it is difficult to interpret the decision process of a neural
network and considerable research effort has been devoted to
improve our understandings. Gradient based approaches try
to find which inputs have the most influence on the model
scoring function for a given class [43]–[45]. This is usually
done by taking the gradient of the class activation score with
respect to each input features [46]. A drawback of gradient
based methods is that they give zero contribution to inputs that
saturate the ReLU or MaxPool. To capture such shortcomings,
a formal notion of explainability was introduced in [47] with
the axiom of conservation of total relevance, which states that
the sum of relevance of all pixels must match the class score
of the model. Specifically, the authors propose to distribute
the total relevance of the class score to the input features
with Layer-wise Relevance Propagation (LRP). While LRP
follows the conservation axiom, it does not specify how to
distribute the relevance among the input features. To address
this problem DeepLiFT [48] enforces an additional axiom on
how to propagate the relevance by following the chain rule.

In this work, we adopt two recent interpretability tech-
niques, that address some of the shortcomings discussed above
and are able to provide valuable insights into the decision
problem of our model.

1) Integrated Gradients: Integrated gradients (IG) [49] has
become a popular interpretability technique since it can be
applied to any neural network model, is easy to implement,
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and theoretically grounded. IG aims to satisfy two additional
axioms that are not jointly ensured by other existing attribution
schemes; (i) if the input and an uninformative baseline differ
in exactly one feature, such a feature should be given non-zero
attribution, (ii) when two models are functionally equivalent,
they must have identical attributions to input features.

Denoting the model scoring function F , the attributions
given by IG are

IG(x) := (x− x′) ·
∫ 1

α=0

∂F (x′ + α · (x− x′))
∂x

dα, (1)

where x is a sample in the dataset, x′ is the uninformative
baseline, and α is an interpolation constant used to perturb
the input features.

In our study, we let x′ be a black image (all zeros) as
the uninformative baseline. As empirically confirmed in our
experiments, such a baseline is classified with high confidence
to be negative. Let X be the set of interpolated images from x′

to x. The computation of the integral in (1) is approximated
with the sum of the partial derivatives of the images in X .
Figure 8 depicts a small interpolation set X from the mean-
baseline to a positive sample and shows how the classification
score changes. By summing the gradients ∂F (X )

∂xi
one quantifies

Fig. 8: Top row: linear interpolation from the zero-baseline (left) to
an actual sample of positive class (right). Bottom row: classification
probabilities assigned by the model at each step of the interpolation.

the relationship between the changes in the input features and
the changes in the predictions of the model F .

2) Gradient-weighted Class Activation Mapping: While IG
can be used on any neural network model, gradient-weighted
class activation mapping (Grad-CAM) is specific for CNNs.
It uses the gradients of a given target class flowing into
the final convolutional layer to produce a coarse localization
map, which highlights the important regions in the image for
predicting the class [50]. We summarize at a high level the
main steps of the algorithmic procedure and we refer the
interested reader to [50] for further details: (i) take a trained
model and cut it at the k-th layer, which is the layer for
which we want to create a Grad-CAM heat-map (usually, the
activation after the last convolutional layer), (ii) feed an input
image to the complete model and collect the total loss and the
output of layer k, (iii) compute the gradients of the output of
layer k with respect to the loss, (iv) take parts of the gradient
which contribute to the prediction and use to build a heatmap,
and (v) resize the heatmap so that it can be overlaid to the
original image.

IV. RESULTS

The dataset presented in section II was used to train the
model described in section III. Specifically, the dataset was
partitioned such that 79% of the samples were used for training
and validation and 21% for testing. The partitioning was done
by randomly assigning complete repeat-pass sets to either the
test or the training set. In such a way, positive and negative
samples with the same land features cannot appear both in
the training and test set. This, (i) encouraged the model to
factor land features out as irrelevant to the classification task,
(ii) allowed us to evaluate the generalization capability of the
model by testing on new locations, unseen during training.

The arguably most attractive property of SAR data, as com-
pared to e.g. scatterometer data, is the high spatial resolution.
In order to evaluate the added value of higher spatial reso-
lution, the model accuracy was examined for three different
input image resolutions9; 500 m, 1000 m and 2000 m (the
latter two obtained by bi-linear down sampling of the first).
Hyperparameter tuning was performed independently for each
resolution (see the supplementary material for details), and
the classification performance on the test set is shown in
table II. The table displays the mean and standard deviation
of true negatives (TNs), false negatives (FNs), false positives
(FPs), true positives (TPs) and F1 score obtained from 10
independent runs. It is clear that higher image resolution
significantly improves the classification results10. In fact, for
the highest input resolution, the model is misclassifying on
average less than 8 samples (as FN or FP) out of the 435
samples in the test set, with a mean F1 score of 0.94 (in the
supplementary materials, results of the performance for the
highest input image resolution using the co- or cross-polarised
channels separately are also presented).

Pixel size TN FN FP TP F1 score
2km 346.6±2.1 6.4±2.1 9.8±1.9 54.2±1.9 0.87±0.01

1km 364.4±2.1 6.6±2.1 7.4±2.1 56.6±2.1 0.89±0.02

500m 367.8±2.7 3.2±2.7 4.6±1.7 59.4±1.7 0.94±0.01

TABLE II: Classification performance on the test set when using
different input resolutions. It is evident that higher input image
resolution significantly improves the performance.

TN FN FP TP F1 score
366 2 5 62 0.95

TABLE III: Classification performance obtained on the specific run
where we apply the interpretability techniques.

A model trained on the 500 m resolution images was further
examined using the IG and Grad-CAM techniques presented in
section III-E. The performance of this specific model is shown
in table III and the images it classifies as TPs, FPs, and FNs
are discussed in the following. The deep learning model used

9The highest resolution here (500 m) is still considerably lower than the
original resolution of the SAR images. However, as discussed in section III-A,
the input image size is limited by the depth of the network architecture in
relation to the size of the training dataset. Therefore, we did not considered
even higher input image resolutions, even if the original data allowed for it.

10A detailed comparison based on Grad-CAM between the model trained
on 2000 m and 500 m resolution is presented in the supplementary materials.
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in our experiments and the code to apply the interpretability
techniques is available online11.

A. True positives

Of the 62 TP samples (i.e. low pressures correctly classified
as low pressures), 4 samples are displayed in figure 9. The first
column shows the input RGB colour composites, the second
column shows the IG in green and the third column shows the
Grad-CAM as a heat map. 3 out of these 4 samples are located
in polar regions, while the sample on the second row is an
extra-tropical cyclone observed off the coast of Japan. The IG
and Grad-CAM overlays indicate that the model is focusing
on the cyclonic eye features. The IG overlay has a slightly
higher emphasis on the wind fronts as compared to the Grad-
CAM. Both the IG and Grad-CAM indicate that the model
is effectively disregarding land features as well as the sea ice
features appearing in the top row. Notably, in the top row, a
large part of the cyclonic eye feature is also cropped due to the
limited swath width of the SAR. This is the case in multiple
samples classified as TP, indicating a certain robustness to
image features being cropped or obscured by e.g. sea ice.

B. False positives

The model classified 5 samples as FP (i.e. absence of low
pressures incorrectly classified as low pressures), of which 4
are shown in figure 10. The top two samples are presum-
ably difficult to classify correctly (or the ground truth label
could potentially be wrong), as they actually contain some
pronounced wind fronts. Considering the IG and Grad-CAM,
indeed the model is focusing on these wind features. The
sample on the third row also contains a pronounced wind front
that the model is focusing on, but the front is not curved. The
classification score is however only 0.57 for this sample. In
the forth sample, no wind front is visible, but the IG and Grad-
CAM reveal that the model focuses on a wind wake (formed
behind the Izu peninsula, Japan, located in the image centre),
which may be misinterpreted as a cyclonic eye.

Finally, we notice that IG and Grad-CAM highlight different
areas in the second and third image. Explainability techniques
for deep learning are tools meant for diagnostic, which require
a certain degree of subjective interpretation. Each technique
is based on specific heuristics, which put a bias on what
features are considered relevant. Indeed, even for samples
classified with high confidence two explainability techniques
might focus on different input features [51]. The discrepancy is
often exacerbated in samples classified with lower confidence.

C. False negatives

Only two samples of the positive class were incorrectly
classified as negatives, i.e. mistaken as absence of low pressure
while being labeled as low pressures. These are shown in
figure 11. Here, IG are not computed, since a black image
cannot be used as a baseline for the negative class. Never-
theless, Grad-CAM can still be computed and is shown in

11https://github.com/FilippoMB/Recognition-of-polar-lows-in-Sentinel-1-
SAR-images-with-deep-learning

the second column. It can be noted that both images suffer
from lacking data due to the limited swath width of the SAR
acquisitions. Indeed, the Grad-CAM indicate that the model is
not focusing on the darker center features as was the case for
the TP samples in figure 9. It should however be emphasised
that this happens for only 2 of the 368 negative samples in
the test set.

V. CONCLUSIONS

In this study, we show that SAR images from the Sentinel-
1 satellites provide an attractive data source for automatic
and accurate detection of maritime mesocyclones, such as
polar lows. Specifically, we show that sufficiently many image
examples can be found to build a labeled dataset for a
deep learning model to be trained. By further comparing our
deep learning model when trained on different input image
resolutions, we find that higher resolution yields significantly
better performance. This highlights the added value of using
SAR data, as compared to conventionally used sensors of
lower resolution. In particular, at 500 meters resolution we get
an F1 score of 0.94, as compared to 0.87 at 2 km resolution
(comparable to modern scatterometers).

It should further be noted that the highest resolution tested
in this study (500 meters) is primarily limited by the size
of the training dataset and not the native resolution of the
SAR sensor (10-40 meters). Thus, even higher input image
resolutions could in principle be considered, potentially with
even better performance. Larger input image sizes, however,
ideally require deeper neural network architectures, with more
trainable weights. This in turn require larger training datasets
to avoid over-fitting. Even so, with an increasing amount of
SAR data being available from new satellites, larger training
datasets could be constructed in the future, enabling even
better performance.

By design, the training dataset contains spiral-form low
pressures in the positive class. By analyzing IG and Grad-
CAM on the trained model, we verify that the spiral shaped
atmospheric fronts and the low wind centres yield most of
the class attribution. Moreover, we conclude that: (i) these
characteristic wind features do not need to be fully covered in
the images, but can be substantially cropped due to the limited
swath width of the SAR, (ii) wind features can be partly
covered by sea ice and still be identified by the model, and
(iii) the model is able to ignore land features in the images. The
last point can be verified thanks to the procedure used to obtain
the negative samples, i.e. through repeat-pass acquisitions (see
section II-B).

In summary, we conclude that the application of deep
learning on SAR images for recognising matitime mesocy-
clones is promising. Further evaluation and comparison to
detection based on data from other sensors or NWP models is
encouraged as a future work direction.
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Supplementary material
I. COMPARISON WITH OTHER DEEP LEARNING ARCHITECTURES

Here, we report the results achieved with off-the-shelf deep learning architectures for image classification. In Tab. IV we
report the results obtained with VGG16 [52], ResNet50 [53], Xception [38], MobileNet [54], ViT [55], and MLPMixer [56].
The implementation of VGG16, ResNet50, Xception, and MobileNet is the one from Keras applications12.

Architecture TN FN FP TP F1 score
VGG16 371 64 0 0 0.0

ResNet50 366 5 11 53 0.87
Xception 365 4 6 60 0.92

MobileNet 369 11 2 53 0.89
ViT 350 9 21 55 0.79

MLPMixer 306 25 65 39 0.46

TABLE IV: Results obtained with popular architectures. The best performance in terms of F1 score obtained across 5 independent runs is
reported.

From the Table, we see that the best performance are obtained by Xception and MobileNet, the two popular deep learning
architectures using separable 2D convolutions. Such a result, encouraged us to adopt in our experiments an architecture with
residual connections and SepConv2D layers, similar to Xception and MobileNet.

II. COMPARISON OF DIFFERENT TECHNIQUES TO HANDLE CLASS IMBALANCE

Tab. V reports the classification performance and training times when using different techniques to handle class imbalance.
Despite being more computationally intensive, the oversampling technique yields the best classification performance and, thus,
is the one adopted in the experimental evaluation.

Balancing method Time/epoch TN FN FP TP F1 score
Class-weighting 18s 369.4±2.1 12.3±1.6 2.3±1.3 52.1±1.9 0.88±0.01

Oversampling 31s 367.8±2.7 3.2±2.7 4.6±1.7 59.4±1.7 0.94±0.01

Rejection sampling 22s 367.3±2.4 6.1±1.4 4.2±1.1 58.0±2.1 0.92±0.02

TABLE V: Classification performance obtained with different methods to handle class imbalance.

III. OPTIMAL HYPERPARAMETERS FOR MODELS TRAINED ON LOWER RESOLUTION IMAGES

We optimized the hyperparameters for the models trained on lower resolution by following the exact same procedure that
we used for the model operating on the higher resolution images. The optimal hyperparameters for the different models are
reported in the Tab. VI. We note that the optimal hyperparameters are the same for different image resolutions, except for:
Num. residual blocks, Dropout rate, and Learning rate.

Hyperparam. 500m 1km 2km
Activation ReLU ReLU ReLU
Conv2D filters 8 8 8
Kernel size 3 3 3
SepConv2D filters 8 8 8
Num. residual blocks 7 5 4
Global pooling avg avg avg
Num. dense layers 1 1 1
Units in the dense layer 8 8 8
Dropout rate 0.5 0.4 0.6
Use batch normalization True True True
Learning rate 1e-3 1e-2 1e-3

TABLE VI: Optimal hyperparameters for the models trained on different image resolutions.

IV. COMPARISON BETWEEN CO- AND CROSS-POLARISED CHANNELS

Here, results using only one polarisation channel are presented for the 500 m resolution images. Specifically, the F1-score is
presented in table VII (averaged over 5 independent runs), obtained when using the co- or cross-polarised channels separately.
For the co-polarised case, both HH and VV are used jointly, while for the cross-polarised chase, the VH and HV channels
are used jointly. The results show that the cross-polarised channels yields better performance compared to the co-polarised
channels. A possible reason for this could be that the cross-polarised channels better captures high wind speed features. At

12https://keras.io/api/applications/

https://keras.io/api/applications/
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high wind speeds, the co-polarised backscatter saturates faster as a function of wind speed [57]. Another factor that could
play a role is that the two co-polarisations (HH and VV) typically behaves differently as a function of incidence angle and
target properties, making the dataset somewhat heterogeneous. The cross-polarisation (VH and HV) dataset is on the other
hand homogeneous, since, theoretically these channels are identical for reciprocal targets, like the ocean.

The best performance is however still obtained using both polarisation channels, as shown in table II in the main manuscript.

Co-pol (x||) Cross-pol (x×)
F1-score 0.886±0.016 0.916±0.013

TABLE VII: Results obtained using only co- or cross-polarised channels separately.

V. TRAINING TIME FOR DIFFERENT IMAGE RESOLUTIONS

Tab. VIII reports the training times of the proposed deep learning architecture when images of different resolutions are used
in training. The training times are measured on an Nvidia RTX 3090. Clearly, lower resolutions result in a much faster training.
However, even when using 500m resolution, the neural network can be trained reasonably fast.

About the differences in time for the inference phase, they are negligible when using different image resolutions (a fraction
of a second in each case). Considering the whole process from satellite acquisition, data downlink/download, SAR focusing,
pre-processing (in particular geocoding) etc, the inference time of the neural network model is by all means negligible in an
operational setting.

Pixel size 500m 1km 2km
Time/epoch 31s 9s 5s

TABLE VIII: Training times for different image resolutions.

VI. INTERPRETABILITY FOR A MODEL TRAINED ON LOW-RESOLUTION IMAGES

An interesting question when comparing model performance between input image resolutions (500, 1000 and 2000 metres),
is if the interpretability metrics (IG and Grad-CAM) can indicate why the performance is worse for the lower resolutions. By
comparing the results of the high-res model trained on the 500m resolution images to the results of the low-res model trained
on the 2000m resolution images, we find that the low-res model miss-classifies 11 FNs and 7 FPs. Among these, there are 9
FNs and 5 FPs that the high-res model classifies correctly. Therefore, we compare the low-res FNs to corresponding high-res
TPs, and low-res FPs to high-res TNs.

Since we cannot compute IG on samples classified as negatives (as explained in section IV-C), we only consider the Grad-
CAM. It should however be noted that the Grad-CAM heat map is a result of gradients at the last layer in the model (see
section III-E2 for details). Since each layer in the model contains pooling, the heat map will be of lower resolution than the
input image itself. The Grad-CAM heat map thus provide little or no information about fine detailed differences. Yet, it is
expected that differences between the high- and low-res results are primarily fine details (which disappear when the resolution
is lowered). Despite this limitation in the analysis, differences in the interpretability results with regard to Grad-CAM are
presented below.

A. Low-res FNs versus high-res TPs

The FNs of the low-res model (that the high-res model classifies correctly), could give insights into what key features of the
input images are lacking at the lower resolution in order to correctly classify an image with a mesocyclone. The low-res FNs
and the corresponding high-res TPs are shown in figure 12 (3 of the total of 9 cases are shown). It is clear that the low-res
model does not attribute the same importance to the cyclonic eye or wind front features as the high-res model. This could
indicate that at the cyclonic eye or at the wind front, high-res features are of particular importance. If these are lacking, the
model focuses elsewhere in the image. In the shown examples, the attribution of the low-res model appears considerably more
scattered, which could indicate that there are not sufficiently strong features to attract the model attention.

B. Low-res FPs versus high-res TNs

The low-res FPs and the corresponding high-res TNs are shown in figure 13 (3 of the total of 5 cases are shown). It is clear
that the low-res model now puts the main attribution to the image centres, while the attribution of the high-res model is more
scattered. In the top sample, part of the image is covered by sea ice, which is rich of fine details. At the lower resolution,
these features could potentially be sufficiently blurred for the low-res model to be confused, e.g., with a wind front. In the
second sample, a slight wind front seems to be picked up, but it is unclear what the low-res model actually is focusing on.
The situation is similar in the third example, where no clear feature is shown at the centre.
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Fig. 12: Grad-CAM heat maps for the FNs of the low-res model to the left, and the corresponding TP of the high-res model to the right.
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Fig. 13: Grad-CAM heat maps for the FPs of the low-res model to the left, and the corresponding TN of the high-res model to the right.
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