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Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how an antibi-
otic’s mechanism of action influences the emergence of resistance would aid in the design of new drugs
and help to preserve the effectiveness of existing ones. To this end, we developed a model that links bac-
terial population dynamics with antibiotic-target binding kinetics. Our approach allows us to derive
mechanistic insights on drug activity from population-scale experimental data and to quantify the inter-
play between drug mechanism and resistance selection. We find that both bacteriostatic and bactericidal
agents can be equally effective at suppressing the selection of resistant mutants, but that key determi-
nants of resistance selection are the relationships between the number of drug-inactivated targets within
a cell and the rates of cellular growth and death. We also show that heterogeneous drug-target binding
within a population enables resistant bacteria to evolve fitness-improving secondary mutations even
when drug doses remain above the resistant strain’s minimum inhibitory concentration. Our work sug-
gests that antibiotic doses beyond this ‘‘secondary mutation selection window” could safeguard against
the emergence of high-fitness resistant strains during treatment.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The emergence and spread of antibiotic-resistant bacterial
pathogens is an urgent global problem that threatens to undermine
one of the most essential components of modern medicine [1].
Antibiotic resistance is also expensive, adding an average of US
$1400 to the costs of treatment for each of the 2.8 million patients
who become infected with a drug-resistant bacterium in the Uni-
ted States annually [2–4]. The scarcity of promising new antimicro-
bial drugs with novel mechanisms of action further exacerbates the
challenges associated with managing the spread of resistance [5,6].
Given the increasing incidence of resistant bacterial infections and
the lack of new drugs on the horizon, clinicians, researchers, and
global leaders must act to preserve the effectiveness of the world’s
existing antibiotic drug arsenal [1].

Antibiotic treatment induces a strong selective pressure on
bacterial populations to evolve resistance [7,8]. Resistance muta-
tions raise the minimum inhibitory concentration (MIC) of an
antibiotic, the amount of drug needed to suppress the growth of
a bacterial culture [9]. However, alleles that confer drug resistance
also frequently carry fitness costs [10–12], predominantly because
antibiotics target vital cellular functions (such as DNA replication
and protein synthesis). Resistance mechanisms reduce the ability
of a drug to disrupt its target, but do so at the expense of optimal
physiological function [13].

With few exceptions [14], resistance-causing alleles induce
fitness impairments in both drug-free and drug-containing
environments, though resistant strains may only suffer a strict
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competitive disadvantage (i.e. a slower growth rate) against sensi-
tive strains in drug-free conditions. A range of antibiotic concentra-
tions therefore exists within which drug-resistant strains have a
selective advantage over their drug-susceptible counterparts.
Drugs dosed within this ‘‘resistance selection window” (also called
the ‘‘mutant selection window”) favor the proliferation of drug-
resistant subpopulations [15–17]. Recent advances in antimicro-
bial pharmacodynamics have leveraged resistance selection
windows to design dosing strategies that minimize the selection
of resistant pathogens without sacrificing treatment efficacy
[17–19].

The existence of resistance mutations that confer fitness
impairments in both drug-free and drug-containing environments
implies that resistant strains face selective pressures to evolve sec-
ondary mutations that alleviate these impairments, and that these
selective pressures exist even under continuous drug exposure
[20,21]. Secondary mutations can increase bacterial fitness
(through faster growth rates) in the absence of drugs, or they can
confer elevated levels of drug tolerance to preexisting resistant
subpopulations (through attenuated drug-target interactions, fas-
ter growth rates in the presence of drugs, or both). In the case of
increased bacterial fitness, secondary mutations enable drug-
resistant mutants to compete against drug-susceptible strains in
resource-limited, antibiotic-free environments [10,22,23], and are
implicated in the spread of drug resistance across a wide range
of timescales and clinical settings [24]. In the case of increased
drug tolerance, secondary mutations can be the underlying cause
of treatment failure [25,26]. Elucidating the dynamics of secondary
mutation emergence during treatment is thus crucial for managing
the spread of resistance.

Since resistance mutations are frequently associated with fit-
ness costs [11,12] both in vivo [27] and in vitro [28], studies on
the resistance selection window and on secondary adaptation have
yielded valuable insights into the emergence of drug-resistant bac-
teria during treatment. However, the design of optimal resistance-
mitigating drug dosing strategies remains challenging for two rea-
sons. One obstacle is that bacteria may acquire resistance through
a multitude of mechanisms that reduce antibiotic efficacy [29].
These molecular mechanisms may themselves influence the fitness
landscape of resistance mutations (that is, the relationship
between the fitness cost of resistance and the selective advantage
conferred by the resistance mutation in drug-containing environ-
ments) [30]. A second challenge is that an antibiotic’s mechanism
of action may affect the strength of selection for resistant strains
over drug-susceptible strains during treatment. One important fea-
ture of an antibiotic’s cellular-level mechanism of action is
whether the drug controls bacterial populations by increasing the
rate of bacterial killing (i.e. bactericidal action) or by decreasing
the rate of bacterial replication (i.e. bacteriostatic action). Clini-
cians and researchers alike have argued that these modes of
antimicrobial action influence the dynamics of resistance selection
[31,32].

The design of resistance-mitigating antibiotic usage therefore
depends on an understanding of how a drug’s mechanism of action,
a pathogen’s mechanism of resistance, and the fitness landscape of
resistance affect selection pressures during treatment. Tractable
and quantitative strategies for systematically exploring all of these
factors have so far been lacking. To address this gap, we developed
a dynamical model that simulates the growth and death of bacte-
rial populations under antibiotic exposure using molecular-scale
descriptions of drug-target binding kinetics and cellular-scale
descriptions of a drug’s mechanism of action. In our model, higher
numbers of inactivated drug-target complexes within a cell lead to
increases in antibiotic effect (either bacteriostatic, bactericidal, or a
combination of the two). The relationship between drug-target
inactivation and antibiotic effect can take the shape of a linear
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(i.e. gradual) or stepwise (i.e. sudden) function, as well as other
intermediate forms (Supplementary Fig. S1). The model enables
us to estimate critical pharmacodynamic parameters from experi-
mental datasets as effectively as with classical approaches [33], to
simulate the fitness landscapes of resistance mutations against
drugs with diverse mechanisms of action, and to quantify the prob-
ability of secondary mutation emergence within resistant subpop-
ulations of bacteria during treatment.

The mathematical model described here is a linear case of a
nonlinear formulation (COMBAT) reported previously to study
the influence of drug-target binding kinetics on optimal antibiotic
dosing [34]. Linearization results in a > 102-fold computational
speed-up that enables us to robustly fit experimental kill-curve
data and to simulate antibiotic dose–response relationships at high
resolution. Our linear formulation also allows us to calculate an
antibiotic’s MIC directly from experimentally measurable molecu-
lar parameters. We leverage the mathematical tractability and
computational efficiency of our model to investigate the selective
pressures that antibiotics with diverse mechanisms of action
induce on growing bacterial populations, a task that would be
impractical with previous approaches.

We find that bacteria with resistance mechanisms that confer
even modest reductions in drug-target binding affinity can incur
strikingly high (80–99 %) fitness costs while still maintaining
higher drug tolerances than their susceptible counterparts, regard-
less of the antibiotic’s mechanism of action. We also find that drugs
with stepwise effects on bacterial growth and death as a function
of target inactivation have narrower resistance selection windows
than do drugs with linear effects. However, our model suggests
that whether a drug acts primarily through bactericidal or bacte-
riostatic action has comparatively little influence on the strength
of resistance selection during treatment. We further demonstrate
that, even with aggressive treatment regimens, heterogeneous
drug-target occupancy within a population enables fitness-
impaired resistant strains to develop secondary mutations that
can lead to treatment failure. Our work cautions that fitness costs
may not limit the emergence of resistant strains that evolve
through reductions in drug-target binding affinity. We propose
the ‘‘secondary mutant selection window” as a novel pharmacody-
namic characteristic of a drug that should be assessed alongside
other classic parameters such as the MIC and the resistance selec-
tion window when designing robust resistance-mitigating antibi-
otic dosing strategies.
2. Results

2.1. A model that links bacterial population dynamics with molecular
mechanisms of antibiotic action

We developed a linear dynamical model to describe the effect of
antibiotic exposure on the growth and death rates of a bacterial
population (Fig. 1A) (see Methods, Model formulation and analysis
for a mathematical description of the model). We assume that each
bacterial cell in the population carries an identical number N of
intracellular proteins that the drug targets for inactivation. Drug
molecules inactivate target proteins by binding to them with a rate
kF and can dissociate from the target with a rate kR. The affinity KD

of the drug is thus the ratio of off-rate to on-rate, KD = kR/kF. The
model assumes that the growth and death rates of a bacterial cell
depend on its drug-target occupancy (that is, the number of inac-
tivated drug-target complexes it contains) [34,35]. We denote
drug-target occupancy with the index i, which ranges from 0 to
N. The model is a system of N + 1 ordinary differential equations;
the ith equation of the system describes the change in the size of
the bacterial subpopulation with i inactivated drug-target com-



Fig. 1. Features of a model that links bacterial population dynamics with themolecular mechanisms of antibiotic drug action. (A) Illustration of the model. We consider
a population Bi of bacterial cells harboring i inactive drug-target complexes. The change in the size of Bi is a function of cellular growth and death rates (each of which is
determined by the value of i, Supplementary Fig. S1), and of the molecular kinetics of the drug binding and unbinding to its protein target. The total bacterial population is
given by the sum B0 + B1 + . . . + BN-1 + BN, where N is the number of drug targets per cell. (B) Dynamics of a bacterial population exposed to a drug dose above the minimum
inhibitory concentration (MIC). The black line represents the total bacterial population; shaded lines represent subpopulations with X and fewer inactivated drug-target
complexes. Population dynamics as a function of drug concentration are shown in Supplementary Fig. S2. (C) Proportion of the bacterial subpopulation Bi as a share of total
population for the first three hours of the curve shown in panel (B). (D) Pharmacodynamic curves derived from the model for a wild-type (light purple) and drug-resistant
(dark purple) bacterial strain. The MIC is denoted as the drug concentration at which the net bacterial growth rate is zero. Inset: the resistance selection window (purple
shading) is given by the drug concentration range within which the drug-resistant strain exhibits a higher—but still positive—net growth rate compared to the wild-type
strain. G0 denotes the growth rate of the wild-type strain in the absence of antibiotic (i.e. the growth rate for subpopulation B0). DN denotes the maximum death rate of
bacterial strains when all N cellular targets are inactivated (i.e. the death rate of subpopulation BN). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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plexes as a function of time. Cells harboring successively larger
numbers of inactivated drug-target complexes have successively
faster death rates and/or slower growth rates, depending on the
mechanism of action of the drug (see Results, Classification of drug
action). We thus define the growth rate (G[i]) and death rate (D[i])
of each subpopulation as discrete monotonic functions of drug-
target occupancy. In practice, G[i] and D[i] take the form of con-
strained logistic functions each controlled by a steepness and
inflection point parameter, allowing us to define quasi-linear,
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quasi-stepwise, quasi-exponential, and sigmoid curves (Supple-
mentary Fig. S1).

The model tracks the growth and death of all N + 1 bacterial
subpopulations, each denoted Bi, over time (Fig. 1B). Drug concen-
tration determines the net growth rate of the entire bacterial pop-
ulation (Supplementary Fig. S2). In the absence of drug, the
population grows exponentially at a rate equal to the difference
between the drug-free growth and death rates (G0 and D0, respec-
tively). When drug is present, the composition of bacterial subpop-
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ulations asymptotes towards a steady state after a transient phase
during which drug molecules bind to their targets (Fig. 1C). At
steady state, the relative composition of bacterial subpopulations
does not depend on the total size of the population.

We can calculate the MIC of a drug directly from model param-
eters when assuming a drug concentration that is constant in time
(see Methods, Calculation of the minimum inhibitory concentration).
We can also simulate clinically observed drug resistance mutations
by modulating the parameters of the model that influence the
value of the MIC. Changes in the binding kinetics of the drug (i.e.
kF and kR) simulate target modification mutations that decrease
the affinity of an antibiotic molecule to a cellular target [36–38].
Changes to the value of N represent changes in the number of pro-
tein targets per cell, equivalent to target up- or downregulation
[39–41]. We assume that fitness costs associated with resistance
alleles take the form of reduced growth rates, and we simulate this
cost by reducing the drug-free growth rate of resistant strains by a
factor cR such that the maximum growth rate of a resistant strain
(G0,RES) relative to that of a wild-type strain is G0,RES = G0(1–cR).
When cR ranges from 0 (no cost) to 1 (no growth), the resistant
strain exhibits a slower growth rate relative to that of the wild-
type. If cR is negative, the resistant strain exhibits a faster drug-
free growth rate than does the wild-type strain, as has been
observed in rare cases with some fluoroquinolone-resistant Escher-
ichia coli isolates [42]. The model also enables us to generate phar-
macodynamic curves by calculating the net growth rates of
simulated bacterial populations over a range of drug concentra-
tions (Fig. 1D). The resistance selection window constitutes the
range of drug concentrations over which a drug-resistant mutant
strain has a higher but strictly positive net growth rate relative
to that of its wild-type counterpart (Fig. 1D, inset). By leveraging
biochemical descriptions of drug-target kinetics to simulate the
growth and death of bacterial populations under antibiotic expo-
sure, our approach enables us to model a diversity of antibiotic
mechanisms of action, bacterial mechanisms of resistance, and
clinically relevant pharmacodynamic parameters.

2.2. Inferring antibiotic mechanisms of action from population-scale
data

To test the utility of our biochemical model for gaining cellular-
scale insights into antimicrobial drug mechanisms from
population-scale experiments, we calibrated our model to experi-
mental time-kill curves of the gram-negative bacterium Escherichia
coli challenged to ciprofloxacin, a fluoroquinolone first brought to
market in 1987, and ampicillin, a b-lactam introduced in 1961.
Ciprofloxacin has two known molecular targets in bacteria, both
of which are heterotetrameric type-II topoisomerases: the DNA
gyrase complex (GyrA2B2) and DNA topoisomerase IV (ParC2E2).
However, ciprofloxacin preferentially binds to the GyrA2B2 com-
plex in gram-negative bacteria [43]. We used a mass-
spectrometry based estimate for the number of GyrA2B2 complexes
per E. coli cell (N � 183) as the number of drug targets within each
bacterium [44]. The targets of ampicillin are the penicillin binding
proteins (PBPs), which play critical roles in peptidoglycan synthe-
sis [45]. Ampicillin and other b-lactams inactivate PBPs by acylat-
ing a catalytic serine residue. Of the > 10 PBPs that have been
described in E. coli, the high-molecular mass (HMM) PBPs
(1a/1b/2/3) are known to play essential physiological roles [46].
When fitting our model to ampicillin time-kill curve data, we used
a measurement for the number of HMM-PBPs per E. coli cell
(N � 600) as the number of drug targets within each bacterium
[47].

We implemented an adaptive simulated annealing algorithm to
calibrate the parameters of our model to time-kill curves (Meth-
ods, Model calibration via simulated annealing). Simulated anneal-
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ing is a global optimization method that seeks to minimize the
value of an objective function (in our case, the difference between
experimental data and model predictions) by modifying model
parameters according to a probability distribution that resembles
a Boltzmann distribution. At each iteration, the algorithm accepts
a new set of model parameter values with a probability defined
by the objective function value given by the parameter set from
the previous iteration, the objective function value given by the
parameter set from the current iteration, and a characteristic sys-
tem temperature that controls the probability with which the algo-
rithm accepts a new parameter set. As the temperature of the
system is reduced with each iteration, the algorithm converges
on a parameter set that minimizes the difference between experi-
mental data and model predictions (see Supplementary text for a
more detailed description of the algorithm) [48]. For the ciproflox-
acin dataset, we performed 249 independent parameterizations
using the algorithm and selected the parameter set that yielded
the lowest objective function value (Fig. 2A, Table 1, Supplemen-
tary Fig. S3). Bacterial persistence [49,50] likely plays a role in
the slower-than-expected population decline that we observe
experimentally at high drug concentrations. At antibiotic doses
below those that elicit persistence, the calibrated model accurately
recapitulates the pharmacodynamic curve derived from experi-
mental data (Supplementary Fig. S4).

We compared our biochemical model’s ability to capture critical
pharmacodynamic characteristics of a drug against that of an EMAX

model [33]. The EMAX approach describes net bacterial growth rate
directly as a function of drug concentration and does not accom-
modate molecular descriptions of drug-target interactions. Such
models have been used extensively to estimate pharmacodynamic
parameters, to design drug dosing regimens, and to predict the
strength of resistance selection at nonzero drug concentrations
[17,55]. Our formulation delivers performance comparable to that
of the EMAX model for fitting experimental time-kill curves (Fig. 2B,
left panel) and more accurately estimates MIC (which we calcu-
lated to be 8.8 � 10�3 lg/ml for ciprofloxacin) from these data
(Fig. 2B, right panel). We note that the eigenvalue-based method
for estimating MIC using our model seeks to calculate the drug
concentration at which a bacterial population undergoes zero net
growth at infinite time and can thus be interpreted as a lower
bound on the experimental MIC (see Methods, Calculation of min-
imum inhibitory concentration). If we use the Clinical & Laboratory
Standards definition of MIC as the concentration of drug that yields
zero net growth at 18 h, our model predicts an MIC of 9.4 � 10�3

lg/ml. This is within 20 % of the mean of experimental MIC
measurements.

Our model furthermore offers capabilities that the EMAX

approach lacks, including the ability to estimate molecular kinetic
parameters of drug-target binding from population-scale data. We
estimated the gyrase-ciprofloxacin unbinding rate (kR) to be
3.17 � 10�4 sec�1, near the experimentally measured value of
3 � 10�4 sec�1 [56]. We also analyzed the KD values for ciproflox-
acin binding to E. coli GyrA2B2 generated for the 249 independent
parameterizations described above. As our fitting method is
stochastic, not all model calibrations reach local minima. However,
the best 90 % of all calibrations (that is, the 224 fits with the lowest
objective function values) consistently converged upon a narrow
range of affinity values (95 % confidence interval: 7.2 � 10�8 to
1.6 � 10�7 M) (Supporting Data File S3). Our estimates lie within
the range of KD values of ciprofloxacin for E. coli GyrA2B2 reported
from experimental measurements, which span from 3.2 � 10�8 to
3.0 � 10�6 M [57–60] (see Supplementary Text for a discussion of
the convergence of other model parameters). These results suggest
that our model can estimate molecular kinetic parameters from
population-scale data, but that numerous simulated annealing



Fig. 2. Calibrating the model to experimental data reveals underlying mechanisms of drug action. (A) Comparison between calibrated biochemical model (solid lines)
and experimental data (shaded points). The experimental data (Supporting Data File S1) represent time-kill curves of Escherichia coli exposed to ciprofloxacin. A summary of
all independent model calibrations is shown in Supplementary Fig. S3. (B) Comparison of the calibrated biochemical model with the EMAX pharmacodynamic model [33]. We
fit the EMAX model to the same experimental dataset shown in panel (A) and compared Pearson correlation coefficients (R2) and MICs. Red points in the MIC panel denote
experimentally-measured ciprofloxacin MICs for E. coli strains isolated prior to the widespread emergence of quinolone resistance (Supporting Data File S2). The solid
horizontal line represents the mean of experimental measurements, and the dashed lines indicate the 95% confidence interval. A comparison of the pharmacodynamic curves
obtained from the models is shown in Supplementary Fig. S4. (C) Cellular growth and death rates as a function of ciprofloxacin-GyrA2B2 complex number (i) for the model
calibrated to the experimental data shown in panel (A). (D) Four extreme schemes of drug action resulting from two characteristics (activity and steepness) of a drug’s effect
on growth and death rates as a function of drug-target occupancy. Supplementary Fig. S5 shows the simulated bacterial kill curves for these schemes at 4x MIC. Model fits for
drug-free growth rate (G0) and drug-saturated death rate (DN) are shown in Supplementary Fig. S6. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Model parameterization to ciprofloxacin time-kill curves. We obtained the values of kF, kR, aG, aD, cG, and cD by calibrating the model to experimental data (Fig. 2). We inferred
antibiotic-free growth rate and antibiotic-saturated death rate (G0 and DN) by fitting an exponential curve to ciprofloxacin kill curves using 0 and 2.19 lg/ml of drug, respectively
(Supplementary Fig. S6). We use a constrained logistic function to model the growth and death rates of bacterial cells as a function of inactivated target number, where a controls
the steepness of the logistic function and c controls the inflection point of the logistic function (Supplementary Fig. S1). Parameters not obtained from model calibrations to
experimental data were retrieved from the literature. For the bacterial death rate in the absence of drug (D0), we used the mean of death rates reported in Wang et al., 2010 [51].

Model parameters

Name Description Value Units Source

N Number of target proteins per cell (i.e. GyrA2B2 copy number) 183 cell�1 [44]
G0 Bacterial growth rate in the absence of drug 0.526 hr�1 Fit by

model
GN Bacterial growth rate in saturating concentrations of drug 0 hr�1 Fit by

model
D0 Bacterial death rate in the absence of drug 5.40 � 10�3 hr �1 [51]
DN Bacterial death rate in saturating concentrations of drug 7.53 hr �1 Fit by

model
kF Drug-target binding rate 5.23 � 103 M �1 sec �1 Fit by

model
kR Drug-target unbinding rate 3.17 � 10�4 sec �1 Fit by

model
aG Steepness of growth rate function G[i] 16.8 # drug-target

complexes�1
Fit by
model

aD Steepness of death rate function D[i] 7.29 # drug-target
complexes�1

Fit by
model

cG Inflection point of growth rate function G[i] 24.9 # drug-target complexes Fit by
model

cD Inflection point of death rate function D[i] 359 # drug-target complexes Fit by
model

B Initial size of bacterial population at the start of drug treatment Varies cell ml�1 n/a
lR Mutation rate for drug resistance emergence 2.00 � 10�7 cell�1 division�1 [52,53]
lC Mutation rate for emergence of secondary mutations in resistant strains 2.00 � 10�6 cell�1 division�1 [52,53]
cR Cost of resistance mutation, such that the antibiotic-free growth rate of a resistant mutant is G0 (1 -

cR)
0.25 Non-dimensional [54]
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runs are required to robustly identify a global minimum within
parameter space.

We also fit our model to time-kill curves of E. coli exposed to
ampicillin (Supplementary Table S1, Supplementary Fig. S7).
Ampicillin acts predominantly as a bactericidal agent [61]; we thus
assumed that bacterial growth rate is invariant to the number of
acylated HMM-PBPs per cell (G[i] = G0 for all values of i) and fit
the death rate function (D[i]) to experimental data. Because b-
lactams acylate HMM-PBPs at different rates, we also used exper-
imental measurements for the acylation and deacylation rates of
E. coli PBP1b exposed to ampicillin [62]. As with the ciprofloxacin
time-kill curves, we observed persistence at high antibiotic con-
centrations, but our calibrated model accurately recapitulates
experimental data at lower (�96 lg/ml) drug concentrations. The
death rate function inferred by the model is similar to that inferred
by COMBAT on separate experimental replicates of ampicillin
time-kill curves [34], suggesting that our linear model can fit
parameters to experimental data as robustly as COMBAT. These
results indicate that our model can fit experimental time-kill
curves of bacterial populations exposed to antibiotics with distinct
mechanisms of action, predict MICs in close agreement with exper-
imental measurements, and recapitulate results inferred by more
computationally intensive nonlinear models.

2.3. Classification of antibiotic action

Another unique feature of our approach is the ability to describe
bacterial growth and death rates as a function of drug-target occu-
pancy. For ciprofloxacin, the calibrated model predicts three
regimes of bacterial subpopulation dynamics in relation to GyrA2-
B2 inactivation: a growth regime in which bacterial replication
dominates among subpopulations with low numbers of inactivated
targets, a stalling regime for intermediate numbers of drug-target
complexes in which neither growth nor death is appreciable, and
a killing regime at high numbers of inactivated targets in which
bacterial death increases quasi-exponentially (Fig. 2C). The forms
of G[i] and D[i] that we obtain here suggest that ciprofloxacin
has a multimodal mechanism of action, a result consistent with
prior experimental studies [43,63,64] and with COMBAT [34].
The drug stalls cellular replication at intermediate target occupan-
cies and induces killing only at higher doses. Like many antibiotics,
ciprofloxacin thus exhibits both bactericidal and bacteriostatic
effects on microbial populations [64,65]. Our biochemical model
represents this explicitly.

Most drugs nonetheless demonstrate a greater degree of bacte-
ricidal or bacteriostatic activity at clinically relevant doses [66],
and we hypothesized that the ability of a drug to stall growth or
to accelerate death may affect the selection for resistant strains
and the emergence of secondary mutations. We also suspected that
the relationship between drug-target occupancy and antibiotic
effect—reflected in the steepness of the G[i] and D[i] functions—
could further shape the dynamics of resistance selection.

These two characteristics (bactericidal versus bacteriostatic
activity and drug effect steepness) represent two general dimen-
sions along which a drug’s mechanism of action can affect the
growth and death of bacterial populations. Four extreme cases of
drug action thus exist (Fig. 2D). In the case of a purely bacterio-
static antibiotic, death rates are a constant function of inactivated
drug-target complex number (that is, D[i] = D0 for all values of i).
For a purely bactericidal antibiotic, the growth rate of all bacterial
subpopulations remains constant (G[i] = G0 for all values of i). The
steepness of the drug effect is reflected in the form of the function
D[i] for bactericidal antibiotics and G[i] for bacteriostatic antibi-
otics (Supplementary Fig. S1). We defined linear and stepwise
onset of action as our two extremes, as other monotonic forms
are intermediate cases of these curves.
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2.4. The opposing effects of increased drug resistance and decreased
cellular fitness

Strains with mutations that confer resistance against antibiotics
often have reduced growth rates compared to those of drug-
susceptible strains [10,11]. The balance of replication and death
determines bacterial net growth both in the absence and in the
presence of antibiotics, and very high fitness costs associated with
resistance can prevent bacterial viability at any drug concentration
[67]. We sought to elucidate the quantitative basis for the trade-off
between drug resistance and cellular growth and to investigate
how the drug mechanisms defined above influence the range of
permissible fitness costs that a drug-resistant mutant can incur
while still maintaining a drug susceptibility that is lower than that
of a wild-type strain. In the simplest case of the model, where the
number of target molecules per cell is 1, the expression for the MIC
captures the opposing effects of drug resistance and cellular
growth (see Methods, Calculation of minimum inhibitory concentra-
tion for derivation):

MIC ¼ kR þ DNð Þ
kFDN

G0 ð1Þ

The MIC increases with reductions of the on-rate kinetics of
drug-target binding (kF) and with increases in the off-rate kinetics
of drug-target binding (kR), but decreases with fitness costs that
manifest as reductions in the drug-free growth rate (G0). These
proportionalities hold for any number N of drug targets.

We modeled the opposing effects of biochemical changes that
reduce drug susceptibility (i.e. altered drug-target binding kinetics
or target overexpression) and the fitness costs of these biochemical
changes. To model different drug mechanisms, we considered a set
of six antibiotics (Supplementary File S2, Supplementary Fig. S5).
Two antibiotics in the set feature growth and death dynamics
derived from the model calibration to ciprofloxacin and ampicillin
time-kill curves. The other four antibiotics are hypothetical and
feature growth and death dynamics that represent four extremes
of antibiotic action (Fig. 2D). These hypothetical drugs use molecular
kinetic parameters (N, kF, kR) identical to those used for ciprofloxacin
simulations. We simulated mutant strains of E. coli that acquire drug
resistance phenotypes either through changes in the molecular
kinetics of drug binding (kF or kR) or by increasing the copy number
N of the drug’s cellular protein target. Each of these resistance mech-
anisms has been observed in clinical isolates of drug-resistant, gram-
negative bacteria [11,29,68]. We then simulated fitness costs associ-
ated with the resistance mutation and calculated the mutant strain’s
MIC relative to that of the wild-type strain.

For resistance acquired through changes in the kinetics of drug-
target binding (kF and kR), we found that mutants can tolerate
strikingly high (80–99 %) fitness costs while still maintaining an
MIC that is greater than that of the drug-susceptible wild-type
(Fig. 3, top and middle rows). This permissibility of fitness costs
exists for all six of the drug mechanisms we simulated, although
ampicillin and drugs that act with linear effects (Bacteriostatic/Lin-
ear and Bactericidal/Linear) have a narrower range of permissible
fitness costs than do ciprofloxacin and drugs that act with stepwise
effects. For all drug mechanisms, mutant strains make larger gains
in MIC by decreasing the on-rate kinetics of drug-target binding
(kF) than they do by increasing the off-rate kinetics of drug-
target binding (kR) by the same amount (Supplementary Fig. S8).
That is, mutations that lead to the same change in drug-target
affinity (as quantified by the dissociation constant KD = kR/kF)
through different changes in the on– and off-rate binding kinetics
do not necessarily have the same range of permissible fitness costs.
This has biological significance—limiting the opportunity for a drug
to bind to its target, thereby preventing the drug from actuating its
effects on cellular growth and death, should lead to lower drug sus-



Fig. 3. Drug mechanism influences the fitness landscapes of resistance mutations. We calculated the MIC, expressed as a fold-change relative to the MIC of the wild-type,
for mutant strains carrying (top row) drug targets with reduced binding kinetics (kF), (middle row) drug targets with accelerated unbinding kinetics (kR), or (bottom row)
increased numbers of drug target molecules (N). Mutant strains also carry fitness costs, expressed as a fractional reduction in drug-free growth rate relative to wild-type.
Cost-free MIC as a function of kF and kR for all mechanisms of action are shown in Supplementary Fig. S8.
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ceptibilities than would accelerating the rate at which an already-
formed drug-target complex disassociates. The difference in the fit-
ness effects of mutations that modify kF and kR is especially pro-
nounced for ampicillin, where a larger number of target
molecules results in smaller incremental changes to the death rate
with each successive drug deacylation event. We conjecture that
affinity-reducing mutations to target proteins within resistant bac-
terial strains may occur preferentially through reductions in on-
rate kinetics, especially for bactericidal agents that target abundant
cellular components (such as PBPs or ribosomes), although further
experimental studies will be required to validate this hypothesis.

Biochemical experiments have shown that ciprofloxacin exhi-
bits a bactericidal effect by permitting GyrA2B2-mediated cleavage
of DNA but preventing DNA re-ligation, resulting in the formation
of toxic DNA double-stranded breaks [43,69]. When simulating the
overexpression of target proteins in resistant cells (Fig. 3, bottom
row) we therefore assumed that bacterial killing increases when
a fixed number of inactivated drug-target molecules form within
a cell (that is, we assume a toxicity threshold whereby cD remains
constant with changing N). This assumption is consistent with
experiments that have observed a positive correlation between
the number of quinolone-stabilized DNA-gyrase complexes and
the rate of bacterial killing [70]. Conversely, we assumed that a
resistant cell requires a fixed number of active, non-complexed tar-
get proteins in order to maintain its maximum growth rate (that is,
a survival threshold). cG thus changes in step with N such that N-cG
remains constant. We made these same assumptions for the four
hypothetical antibiotics. Contrary to ciprofloxacin, ampicillin does
not stabilize a toxic molecular intermediate and instead exerts a
bactericidal effect by inhibiting the transpeptidase activity of PBPs
[46,71]. When assessing the effects of PBP overexpression on ampi-
cillin resistance, we therefore simulated a survival threshold on the
death rate function whereby a constant number of uninhibited tar-
gets is required to maintain a minimum death rate.
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We found that target overexpression has a diversity of effects
on resistance that depend on the mechanism of action of the
drug. Overexpression leads to substantial gains in resistance
against bacteriostatic drugs that exhibit stepwise effects, even
at very high fitness costs. The effect of target overexpression on
drug resistance is negligible for bactericidal drugs and for bacte-
riostatic drugs with a linear effect on growth stalling. For cipro-
floxacin, small (2–3-fold) increases in target number can lead
to modest increases in MIC. However, larger increases in target
number lead to increased antibiotic susceptibility. This result is
consistent with experimental studies on target amplification, in
which the overexpression of gyrAB in E. coli resulted in increased
susceptibility to ciprofloxacin but did not induce reductions in
growth rate [40].

Our model also suggests that, in the absence of fitness costs,
PBP overexpression confers increased resistance to ampicillin.
Increased resistance due to target overexpression is an
expected—and clinically observed—phenomenon for antibiotics
whose primary mode of action is simple protein inhibition with-
out toxic product formation [71,72]. However, experimentation
has shown that E. coli exhibits reduced growth rates when over-
expressing PBPs and that these fitness costs lead to reduced b-
lactam resistance when PBPs are overexpressed beyond certain
thresholds [40]. Indeed, our model suggests that the MIC of a
strain with increased PBP expression can be lower than that of
the wild-type if fitness costs are sufficiently high. Our model thus
recapitulates the experimentally observed effects of target over-
expression on resistance to two clinically relevant antibiotics
with distinct mechanisms of action: Overexpression confers
reduced resistance to drugs that induce toxic intermediates even
in the absence of fitness costs (as is the case for ciprofloxacin),
and overexpression confers reduced resistance to drugs that inhi-
bit protein function only in the presence of fitness costs (as is the
case for ampicillin).
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2.5. Drug mechanism shapes the resistance selection window

To understand how a drug’s mechanism of action affects the
propensity to select for resistance during treatment, we simulated
the pharmacodynamics of wild-type and drug-resistant strains
challenged to each of the six drugs in the set outlined above. MICs
for clinical isolates of ciprofloxacin-resistant E. coli strains with sin-
gle point mutations in GyrA, which may reduce the affinity of
ciprofloxacin to GyrA2B2, range from 10 to 16 times greater than
the MIC of a drug-susceptible wild-type [36,68,73,74]. Data on
the fitness costs associated with mutant GyrA-mediated ciproflox-
acin resistance in E. coli are sparse, but studies of rifampicin-
resistant clinical isolates of Mycobacterium tuberculosis with point
mutations in the rpoB gene have suggested that a 20–30 % reduc-
tion in growth rate is approximately the maximum fitness cost that
drug-resistant mutants can incur before facing extinction in com-
petitive drug-free environments [54]. To model drug-resistant
strains, we therefore scaled kF and kR such that the MIC of the resis-
tant strain is 12 times that of its drug-susceptible counterpart
given a 25 % fitness cost (cR = 0.25) (Fig. 4A). We applied the same
strategy to ampicillin-resistant strains.

A nearly linear relationship exists between drug resistance and
fitness cost for strains resistant to drugs with a linear effect on
growth or death (Fig. 4B, Bacteriostatic/Linear and Bactericidal/Lin-
ear). By contrast, drugs with stepwise effects on growth and killing
(Bacteriostatic/Stepwise and Bactericidal/Stepwise) exhibit only
modest reductions in MIC until they incur very high (>90 %) fitness
costs. For ciprofloxacin and ampicillin, the relationships between
fitness cost and drug resistance lie in between these extremes.
We determined resistance selection windows for strains resistant
Fig. 4. The propensity to select for resistant mutants depends on drug mechanism. (A
to ciprofloxacin (Fig. 2) and ampicillin (Supplementary Fig. S7) time-kill curves. (B) Re
fitness cost of resistance. Horizontal dashed lines indicate the MICs of the wild-type and
cost at which all resistant strains have the same fold-increase in MIC relative to that of
strains described in panel (A). (D) Resistance selection windows for drug-resistant strains
drug concentration range in which the resistant strain has a positive net growth rate
proportion of the resistant strain’s growth rate in the absence of drug (G0,RES). Suppleme
window and the steepness of a drug’s pharmacodynamic curve. CIP: ciprofloxacin; AMP:
bactericidal/stepwise effect; C/L: bactericidal/linear effect; MICWT: MIC of the wild-type
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to the six drugs in our set by simulating pharmacodynamic curves
for wild-type and resistant strains (Fig. 4C). To quantify the magni-
tudes of selection for resistant strains, we calculated the difference
in net growth rates between wild-type and susceptible strains over
the concentration range that defines the resistance selection win-
dow for each drug (Fig. 4D). For linear-effect bacteriostatic drugs
(Bacteriostatic/Linear), we found that the resistance selection win-
dow begins at drug concentrations as low as 200x below the MIC of
the susceptible strain. Drugs with stepwise effects on growth or
killing (Bacteriostatic/Stepwise and Bactericidal/Stepwise) have
narrower resistance selection windows than their counterparts
with more linear activity profiles.

Consistent with prior studies on the pharmacodynamic profiles
of antimicrobial agents [17,19,75], we find that the size of the
resistance selection window is associated with the steepness of a
drug’s pharmacodynamic curve. Given a cellular effect (i.e. bacte-
riostatic or bactericidal), drugs with steeper pharmacodynamic
curves tend to have narrower selection windows. This holds true
for the antibiotics we investigated experimentally as well—com-
pared to ciprofloxacin, ampicillin has both a steeper pharmacody-
namic curve (as measured by a Hill coefficient) and a narrower
resistance selection window (Supplementary Fig. S9). However,
we also find that strains resistant to drugs with narrower resis-
tance selection windows have higher net growth rates within the
resistance selection regime than do strains resistant to drugs with
wider resistance selection windows (Fig. 4D). This finding has clear
clinical significance: drugs with steeper pharmacodynamic profiles
feature relatively small concentration ranges that select for resis-
tance, but the negative consequences of dosing within the resis-
tance selection window are higher for these drugs.
) We modeled wild-type strains using the parameters obtained from the model fits
lationship between MICs of resistant strains (expressed as multiples of MICWT) and
resistant strains described in panel (A); the vertical dashed line indicates the fitness
wild-type (cR = 0.25). (C) Pharmacodynamic curves for the wild-type and resistant
. The fitness advantage of resistant strains over wild-type strains is shown within the
that is larger than that of the wild-type. The fitness advantage is expressed as a
ntary Fig. S9 illustrates the relationship between the size of the resistance selection
ampicillin; S/S: bacteriostatic/stepwise effect; S/L: bacteriostatic/linear effect; C/S:
strain; MICRES: MIC of the resistant strain.
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2.6. The secondary mutant selection window is narrower for
bacteriostatic antibiotics

The genotypic space for mutations that confer resistance to
antibiotics by modifying the binding kinetics of a drug to its target,
such as those described in Fig. 4, is typically highly constrained
[22,76]. Accordingly, a return to a drug-susceptible state requires
reversion of the specific genetic changes that conferred resistance
in a bacterial population. In contrast to resistance reversion, sec-
ondary mutation accumulation can involve a wider range of
genetic changes that affect a cell’s metabolic, transcriptional,
and/or translational states [23]. Therefore, the probability that a
bacterial population evolves secondary mutations that compensate
for the fitness costs of a resistance mutation is often higher than
the probability that a bacterial population will revert to suscepti-
bility in drug-free environments [20,77]. During treatment, resis-
tant bacterial populations may also accumulate secondary
mutations that further raise MIC. In order to understand how drug
mechanism influences such secondary adaptation, we simulated
the emergence of secondary mutants from drug-resistant subpop-
ulations of a bacterial population faced with antibiotic challenge
(Supplementary Fig. S10; Methods, Simulating the emergence of
secondary mutations).

At a given antibiotic concentration, the probability of secondary
mutation emergence is substantially higher for drugs with linear
effects on cellular growth and death than it is for drugs with step-
wise effects (Fig. 5A). This holds true for both bactericidal and bac-
teriostatic agents. Counterintuitively, then, the suppression of
secondary mutation emergence is not necessarily guaranteed by
Fig. 5. Emergence of secondary mutations among resistant subpopulations of infec
emerging from an infecting bacterial population before the infection is cleared (i.e. befo
The initial population size for this simulation is 109 cells. Inset shows probabilities of seco
used is 2x MICRES. (B) Frequency distributions of inactive drug-target complexes for drug
Growth and death rate distributions for these populations are shown in Suppleme
subpopulations with i inactivated drug-target complexes, shown for ciprofloxacin and a
bacterial subpopulations as a function of drug dose, shown for ciprofloxacin. Probabilit
probability of compensation for the entire bacterial population over the course of trea
different drug action mechanisms. The resistance selection window (middle purple) is
growth advantage over the wild-type. The secondary mutant selection window (dark p
resistant strain with secondary mutations emerging before infection clearance exceeds 10
mutations). Dashed lines indicate the MICs of the wild-type and resistant strain
bacteriostatic/linear effect; C/S: bactericidal/stepwise effect; C/L: bactericidal/linear eff
interpretation of the references to colour in this figure legend, the reader is referred to
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rapid killing as suggested by earlier studies [78]. Likewise, rapid
attenuation of cell division does not halt the emergence of sec-
ondary mutations. We studied the basis for this result by investi-
gating the steady-state target occupancy distributions of cells
under antibiotic exposure. By accounting for the kinetics of drug-
target binding, our biochemical model shows that target occu-
pancy among cells follows a distribution and is not a single value
even in otherwise clonal bacterial subpopulations (Fig. 5B). This
results in heterogeneous replication rates within the drug-
resistant subpopulation (Supplementary Fig. S11) that allow some
bacteria to mutate. Classical population-dynamic models of antibi-
otic action [33,78], which assume that a drug affects the net
growth rate of all cells equally, overlook this phenomenon.

For ciprofloxacin and ampicillin doses only slightly above the
MIC of the resistant strain ([Drug] = 2x MICRES), we found that sec-
ondary mutations are most likely to emerge once the bacterial pop-
ulation has reached a steady-state target occupancy distribution
(Fig. 5C). For ciprofloxacin, a considerable probability of secondary
mutation emergence nonetheless exists among bacterial subpopu-
lations with low numbers of inactivated drug-target complexes.
These low-occupancy subpopulations have faster growth rates
and thus higher mutation rates (for ampicillin, where we assume
only bactericidal action, all subpopulations have equal growth
rates and thus equal mutation rates). Low-occupancy subpopula-
tions are also present in very large numbers during the initial
stages of treatment, when drug molecules are binding to their cel-
lular targets and before the overall population begins to decline
(Fig. 1C). We found that drug concentration influences the likeli-
hood of a secondary mutant arising from a steady-state or a low-
ting bacteria. (A) Probability of a drug-resistant strain with secondary mutations
re the total bacterial population decreases to less than 1, Supplementary Fig. S10).
ndary mutation emergence before infection clearance when the drug concentration
-resistant subpopulations undergoing steady-state exponential decline at 2x MICRES.
ntary Fig. S11. (C) Probability of secondary mutant emergence from bacterial
mpicillin dosed at 2x MICRES. (D) Probability of secondary mutant emergence from
ies are shown as absolute values (left panel) and as values normalized to the total
tment (right panel). (E) Resistance and secondary mutant selection windows for
defined as the drug concentration range over which a drug-resistant strain has a
urple) is defined as the drug concentration range over which the probability of a
�4 (see Supplementary Fig. S12 andMethods, Simulating the emergence of secondary
s. CIP: ciprofloxacin; AMP: ampicillin; S/S: bacteriostatic/stepwise effect; S/L:
ect; MICWT: MIC of the wild-type strain; MICRES: MIC of the resistant strain. (For
the web version of this article.)
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occupancy subpopulation (Fig. 5D). While the overall probability of
secondary mutation emergence decreases with higher drug dose
(Fig. 5D, left panel), the relative probability that a secondary muta-
tion arises from a low-occupancy population is greater for higher
drug doses (Fig. 5D, right panel). This implies that secondary muta-
tions are more likely to emerge very early during treatment (i.e.
within the first few hours) when high doses of drugs with bacterio-
static effects are used.

Prior studies have estimated that the probability of the exis-
tence of a fitness cost-free bacterial pathogen prior to treatment
ranges from 5 � 10�5 to 3 � 10�4 per infection [79]. We sought
to determine the range of drug concentrations over which the like-
lihood of secondary mutation emergence during treatment is at
least as high as the likelihood for preexisting secondary adaptation.
We therefore determined the drug concentration at which the
probability of secondary mutation emergence before population
extinction equals 10�4 (that is, each treatment course has a 1 in
10,000 chance of giving rise to a resistant strain bearing secondary
mutations). We used this value as an upper boundary for the ‘‘sec-
ondary mutant selection window,” the range of drug concentra-
tions over which the probability of the emergence of a drug-
resistant bacterial strain with secondary mutations is substantial
(Supplementary Fig. S12). The secondary mutant selection win-
dow extends the range of drug concentrations defined by the resis-
tance selection window over which drug-resistant strains may be
selected (Fig. 5E).

As with the resistance selection window, we found that the size
of the secondary mutant selection window varies dramatically
depending on a drug’s mechanism of action. The secondary mutant
selection window for ampicillin is nearly-two orders of magnitude
larger than that for ciprofloxacin. Drugs that fully suppress cellular
replication above MIC (i.e. Bacteriostatic/Stepwise) have small sec-
ondary mutant selection windows, as the probability that addi-
tional mutations emerge over the course of treatment is equal to
the probability that a resistant strain with secondary mutations
emerges during the transient phase of drug-target binding imme-
diately after treatment onset, which lasts on the order of a few
hours (Fig. 1C).

We find that, for a given effect steepness (linear or stepwise),
bacteriostatic drugs have narrower secondary mutant selection
windows than do bactericidal drugs. This is expected given that
secondary mutations arise from actively replicating bacterial pop-
ulations. This result nonetheless contrasts with the characteristics
of the resistance selection window, where we observed that drug
effect steepness plays a stronger role in determining the size of
the window than does bacteriostatic or bactericidal effect
(Fig. 4D). We therefore conclude that drugs with narrow resistance
selection windows are not necessarily effective at suppressing sec-
ondary mutation. This is indeed the case for the antibiotics we
investigated experimentally—ampicillin has a slightly narrower
resistance selection window than does ciprofloxacin, but a consid-
erably wider secondary mutation selection window.

2.7. Comparison with other modeling approaches

The model we describe in this study is a linear case of COMBAT,
a previously reported formulation for simulating the growth and
death of bacterial populations under antibiotic exposure using
chemical reaction kinetics [34]. To assess the precision and perfor-
mance of our model relative to COMBAT, we simulated pharmaco-
dynamic curves with both COMBAT and our linear model using
identical parameter sets and drug concentrations (Supplementary
Fig. S13A). With both models, we simulated bacterial populations
for two hours and calculated net growth rates. We found that both
models predicted similar net growth rates across a range of drug
concentrations, and that they predicted MIC values within 0.01 %
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of one another. However, our linear model simulated its pharmaco-
dynamic curve > 1000 times more rapidly than did COMBAT (mean
computation time of 0.017 sec for the linear model vs 46 sec for
COMBAT) (Supplementary Fig. S13B). Additionally, COMBAT relies
on numerical schemes to solve a set of partial differential equa-
tions. Its computation time therefore increases with increasing
simulation time. Because our model relies on an eigenvector repre-
sentation of a system of ordinary differential equations to simulate
bacterial populations under a constant drug concentration, compu-
tation time does not increase with increasing simulation time
(Supplementary Fig. S13C). Because of these attributes, we recom-
mend the linear model reported in this study for fitting experimen-
tal data where drug concentration can be assumed to be constant
(such as laboratory-derived time-kill curves) and for simulation
tasks that require the exploration of parameter space at high reso-
lution (such as those reported in Fig. 3).
3. Discussion

The increasing prevalence of first line- and multi-drug resistant
bacteria [1,2] signals the need for new antibiotics and robust drug
dosing strategies that minimize the emergence and spread of resis-
tance [4]. Despite this need, little is known about the role that a
drug’s mechanism of action plays in the evolution of antibiotic
resistance. We studied the relationship between drug mechanism
and drug resistance using a mathematical model that connects
bacterial population dynamics with molecular-scale descriptions
of drug-target inactivation kinetics (Fig. 1A). Our biochemical
model allows us to describe bacterial replication and death as func-
tions of drug-target inactivation, enables us to estimate molecular
kinetic parameters from population-scale data, and delivers perfor-
mance on par with that of classical pharmacodynamic models
(Fig. 2B).

We calibrate the model to experimental datasets of ciprofloxa-
cin and ampicillin time-kill curves, and we show that drug-
resistant strains can incur strikingly high fitness costs associated
with mutations that reduce drug-target binding kinetics (Fig. 3).
We find that the relationship between drug-target inactivation
and antibiotic effect (i.e. bacterial killing, growth stalling, or both)
exerts a strong influence on the strength of selection for resistant
strains during treatment, regardless of whether the drug is bacte-
ricidal or bacteriostatic (Fig. 4D). We also show that the molecular
kinetics of drug-target binding within cells results in heteroge-
neous replication rates among members of an otherwise homoge-
nous population (Fig. 5B). This enables some drug-resistant strains
to develop secondary mutations that can further reduce drug sus-
ceptibility, increase resilience in drug-free environments, and ulti-
mately lead to treatment failure.

The clinical consequence of the frequently-observed trade-off
between bacterial fitness and drug resistance [10] is the existence
of a resistance selection window—a range of drug concentrations
that selects for the propagation of drug-resistant strains over their
drug-susceptible counterparts [5,15]. It is important to note that
numerous factors not captured by the resistance selection window
can contribute to resistance selection in clinical settings, most
notably ecological interactions between drug-susceptible strains,
drug-resistant strains, and host physiology [80]. Our approach
nonetheless enables us to isolate the roles that a drug’s mechanism
of action play in driving the emergence of resistance.

We show that the resistance selection window is narrower for
drugs that exert their effects on growth or death in a stepwise
(i.e. sudden) manner, resulting in a steeper pharmacodynamic
curve (Fig. 4C-4D, Supplementary Fig. S9). This result is consistent
with other studies on the pharmacodynamics of antimicrobial
agents, which have found that the size of the resistance selection
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window is associated with the steepness of the pharmacodynamic
curve [17,19,75]. The characteristics of antimicrobial agents that
enable steeper pharmacodynamic curves nonetheless remain
poorly described. Models that capture the effects of antibiotic
drugs on multiple scales, such as that described in this study and
elsewhere [34,35], could serve as helpful tools for studying the
interplay between a drug’s molecular mechanism and its effect
on bacterial population dynamics, enabling the design of new
antimicrobial agents with narrow resistance selection windows.

Mutations that alleviate the fitness costs associated with drug
resistance and/or that further raise a strain’s MIC play a major role
in driving the spread of antimicrobial resistance across bacterial
populations and clinical settings [24]. Our study sheds quantitative
light on the mechanistic factors that govern the emergence of these
secondary mutations during treatment. We propose the use of the
secondary mutant selection window (Supplementary Fig. S12) as
a tool for assessing the likelihood of further mutation acquisition at
nonzero drug concentrations. As with the size of the resistance
selection window, the size of the secondary mutant selection win-
dow varies greatly depending on the mechanism of action of the
antibiotic (Fig. 5E). We stress that the secondary mutant selection
window does not necessarily indicate a region on the pharmacody-
namic profile of a drug over which the selection of a resistant strain
with secondary mutations is favored. The strength of selection
depends on the physiological effect of the secondary mutation
itself—that is, whether the mutation accelerates growth rate, slows
drug-target binding, or exerts a multitude of other possible effects.
Indeed, secondary mutations that act strictly by restoring growth
rates to wild-type levels lead only to modest (usually sublinear)
increases in MIC (Fig. 4B), implying that strains with cost-free
resistance phenotypes would still have MICs well below the upper
boundary for the secondary mutant selection windows shown in
Fig. 5E. Rather, the secondary mutant selection window defines
the drug concentration range within which the accumulation of
secondary mutations is substantial and therefore clinically
significant.

Suppressing secondary mutation is nonetheless crucial for
reducing the survival of drug-resistant mutants in antibiotic-free
environments, where drug-resistant strains enter into direct com-
petition with other microbial organisms for limited resources
[10,23]. We demonstrate that dosing drugs at or slightly above
the MIC of a resistant strain may not be sufficient for preventing
the spread of resistance, and that—for purely bactericidal drugs
and/or drugs with low bacteriostatic potency—there exist appre-
ciable risks of selecting for secondary mutations even at doses sub-
stantially above the MIC of the resistant strain. Reassessing the
range of drug concentrations that selects for resistant mutants as
a composite of the resistance selection window and the secondary
mutant selection window (Fig. 5E, Supplementary Fig. S12) could
facilitate the design of drug dosing strategies that holistically mit-
igate the emergence and spread of resistance.

Our study shows that both bactericidal and bacteriostatic drugs
can exhibit narrow resistance selection windows and low probabil-
ities of secondary mutation emergence in bacterial populations
subjected to antibiotic treatment. This finding challenges the
long-accepted notion that bactericidal agents are superior to bacte-
riostatic agents in suppressing the emergence of resistance during
treatment [31], and signals the need to look beyond a drug’s ability
to kill or stall bacterial replication to assess the risks of resistance
emergence. The relationship between drug-target inactivation and
overall antibiotic effect has a much stronger influence on the
strength of resistance selection than does the drug’s bacteriostatic
or bactericidal activity (Fig. 4D). The processes that may dictate
such a relationship for any given antibiotic nonetheless remain
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enigmatic. This underscores the need for deeper experimental
and theoretical research on the molecular processes that govern
the pharmacodynamics of antibiotic drugs.

Several similarities and differences between the model
described in this study and the simpler EMAX pharmacodynamic
model [33] are worth discussing. For both ciprofloxacin and
ampicillin time-kill curves, we observed that both our model
and the EMAX model were capable of fitting experimental data
with high fidelity. Furthermore, our model predicts that drugs
with steeper pharmacodynamic curves have narrower mutant
selection windows, a pattern that has also been observed using
EMAX models [17]. However, the EMAX model describes the steep-
ness of the pharmacodynamic curve explicitly using a Hill coeffi-
cient, whereas our formulation models the steepness of the
pharmacodynamic curve indirectly via descriptions of growth
and death as a function of drug-target inactivation. Despite these
phenomenological similarities, our model offers three key advan-
tages over the EMAX approach. First, our biochemical model can
estimate molecular kinetic parameters from population-scale
data. We use this capability to infer the kF, kR, and KD values of
gyrase-ciprofloxacin interactions with good agreement to experi-
mental measurements. Second, whereas the EMAX model fits MIC
directly to data, our model provides a strategy for calculating MIC
from model parameters. This enables us to study the fitness land-
scapes of specific drug resistance mechanisms (such as changes
in drug-target binding kinetics and target overexpression) in a
manner that would be impossible to do using an EMAX model
(Fig. 3). Third, our biochemical model describes heterogenous
growth and death rates within bacterial populations as a function
of drug-target occupancy. This feature enables us to quantify the
probabilities of mutation and fitness compensation among bacte-
rial populations exposed to drugs with different mechanisms of
action (Fig. 5).

We note that the model reported here makes several simplify-
ing assumptions that limit its scope and generalizability. One key
assumption made is that growth and death rates are monotonically
decreasing and increasing functions, respectively, of drug-target
inactivation. Non-monotonic dose–response curves have been
described for numerous drugs since the early years of the antibiotic
era [81], and these imply the existence of non-monotonic drug-
target occupancy schemes or of drug-induced cellular responses
(such as reduced outer membrane permeability) that lower drug-
target occupancy at high antibiotic concentrations. Our model also
has limitations on the scope of resistance mechanisms that it can
recapitulate. While some classes of antibiotics (particularly fluoro-
quinolones and rifamycins) frequently elicit resistance through
altered drug-target affinity, other classes elicit resistance through
additional mechanisms (including drug efflux, enzymatic degrada-
tion of drug molecules, and off-target binding) not captured in the
linear model presented here. Other models have been devised that
link additional mechanisms of resistance (such as efflux pump
activity, membrane permeability, and cellular metabolic states)
with critical pharmacologic parameters (i.e. MIC) [30,82], but do
not accommodate explicit descriptions of an antibiotic’s mecha-
nism of action. Still other models have provided valuable insights
into the genotypic determinants of antimicrobial resistance fitness
landscapes [83]. Finally, we note that the origins of the fitness costs
of resistance mutations remain poorly understood, and models
that link resistance mechanisms with mechanistic descriptions of
impaired growth may yield valuable insights into the evolution
of resistance traits in bacterial populations. Adapting existing mod-
els to study the relationship between antibiotic mechanism, fitness
cost, and other mechanisms of resistance constitutes a promising
direction for future research.
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3.1. Conclusions

The proper use of antibiotics in clinical and non-clinical settings
constitutes a core action for addressing the worldwide threat of
antibiotic resistance [4]. The quantitative approach we present in
this study may prove useful for identifying strategies that manage
the emergence of resistance to existing and future antimicrobial
agents. We argue that dosing regimens should account for a drug’s
resistance and secondary mutant selection windows if they are to
minimize the selection of resistance phenotypes during treatment.
Our findings suggest that even drugs with seemingly straightfor-
ward pharmacodynamic classifications (i.e. bacteriostatic versus
bactericidal action) can set bacterial populations on complex and
sometimes counterintuitive evolutionary trajectories with respect
to resistance selection. In the clinic, there exists little evidence that
bactericidal antibiotics lead to more favorable outcomes than do
bacteriostatic antibiotics, especially for combatting uncomplicated
infections [65,84]. Yet it is precisely in the treatment of uncompli-
cated, drug-susceptible infections that the greatest gains are to be
made in mitigating the emergence of resistance. Mechanistic mod-
els such as that presented in this study can help to uncover clini-
cally useful drug characteristics that classical models may
overlook. We envision a coupling of our quantitative approach
with high-throughput experimental platforms [85,86] to aid in
the development of new drugs with optimal pharmacodynamic
profiles and to accelerate the discovery of drug- and pathogen-
specific dosing regimens that minimize resistance emergence.
4. Methods

4.1. Bacterial time-kill curve experiments

We obtained time-kill curves using Escherichia coli strain
BW25113 (Coli Genetic Stock Center #7636) for ciprofloxacin
time-kill curve experiments and E. coli strain MG1655 (Coli Genetic
Stock Center #7740) for ampicillin time-kill curve experiments
[87]. We diluted liquid overnight cultures of E. coli 1:1000 into
pre-warmed lysogeny broth (LB) and grew cells to an optical den-
sity at 600 nm (OD600) of 0.50. We then prepared dilution series of
ciprofloxacin (highest concentration: 2.19 lg/ml) and ampicillin
(highest concentration: 256 lg/ml) and added the antibiotics to
bacterial cultures. We quantified bacterial population sizes at reg-
ular (10–30 min) time intervals by plating a 1:10 dilution series of
liquid culture onto LB agar plates and counting colony forming
units. We performed colony counting blind to plate condition,
and we did not exclude any plates from the analysis. To keep shot
noise below 15 % during colony counting, we quantified plates
with 50 or greater colony forming units.

To further assess the biological reproducibility of our experi-
ment, we repeated ciprofloxacin cytotoxicity assays on different
days, once with a fixed timepoint measurement at 90 min post-
ciprofloxacin exposure, and another with a timecourse (i.e. that
presented in Fig. 2A and Supporting Data File S1). When com-
pared at matching timepoints of drug exposure (90 min), dose–re-
sponse data from these biological replicates collected on different
days were highly reproducible, with Pearson correlation of 0.987,
p less than 10�5. Each time the experiment was performed, counts
of colony forming units before drug treatment were conducted in
technical triplicate.

The time-kill curve obtained at the highest antibiotic concentra-
tion was used to determine the maximum death rate (DN) of bacte-
rial cells, and a growth curve obtained using the same protocol
with the omission of antibiotic was used to determine the maxi-
mum growth rate (G0) of cells in an antibiotic free environment
(Supplementary Fig. S6).
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4.2. Model formulation and analysis

Our biochemical model constitutes a system of linear ordinary
differential equations that describe how successive numbers of
inactivated drug-target complexes affect bacterial replication and
death. We consider a population of initial size B0 of phenotypically
homogenous bacteria exposed to an antibiotic. When no drug is
present, bacterial cells replicate at a rate G0 and die at a rate D0.
All cells have an identical number N of proteins that drug mole-
cules target for inactivation. We assume first-order kinetics for
drug-target binding: drug molecules bind to cellular protein tar-
gets within cells, thereby inactivating the protein, at a rate kF. Inac-
tivated drug-protein targets dissociate at a rate kR. The first-order
affinity of the drug to its protein target (KD) is therefore the ratio
of the molecular dissociation rate to the molecular on-rate (KD = kR/
kF).

We stratify the entire bacterial population into N + 1 subpopu-
lations according to the number i of inactivated drug-target com-
plexes within each cell (i.e. the drug-target occupancy), and we
assume that growth and death rates of each bacterial cell depend
on the drug-target occupancy. That is, bacterial subpopulations
with a higher drug-target occupancy have slower growth rates
and/or higher death rates than do bacterial subpopulations with
a lower drug-target occupancy. Growth rate is therefore a mono-
tonically decreasing discrete function of i (G[i]), and death rate is
a monotonically increasing discrete function (D[i]). We use gener-
alized logistic equations (Supplementary Fig. S1) to describe over-
all growth and death rates as a function of drug-target occupancy,
allowing these functions to take the form of a line, a sigmoidal
curve, an exponential curve, or a step function. We assume that
when a drug inactivates all N protein targets in a cell, growth rate
falls to zero (for bacteriostatic drugs), death rate attains a maximal
value DN (for bactericidal drugs), or growth and death rates are
both affected (for drugs with mixed bactericidal and bacteriostatic
action). In all of these cases, the maximal rate of killing or growth
attenuation can occur before all N target proteins are inactivated if,
for instance, G[i] and/or D[i] are step functions with inflection
points between 0 and N. During replication, a bacterial cell parti-
tions its inactivated drug-target complexes to two daughter cells
according to a binomial distribution.

If drug is assumed to remain at a constant concentration C0, the
change over time in the number of bacterial cells with exactly i
inactivated drug-target complexes (Bi) depends on the growth rate
Gi, the death rate Di, and the binding kinetics of the drug to its pro-
tein target:

dBiðtÞ
dt

¼ iþ 1ð ÞkRBiþ1 þ N � i� 1ð Þð ÞkFC0Bi�1 � ikRBi

� N � ið ÞkFC0Bi � DiBi � GiBi þ
XN
j¼i

2

j

i

� �

2j
GjBj

ð2Þ

The first four terms on the right side of Eq. (2) describe changes
in Bi due to drug-target binding and unbinding. The fifth term
describes bacterial death, the sixth term describes bacterial
growth, and the seventh term describes the partitioning of drug-
target complexes upon replication according to a binomial distri-
bution. Eq. (2) is a linear form of a model we have described pre-
viously that treats drug-target complex number as a continuous
variable rather than as a natural number [34]. Linearization allows
us to define B(t) as a vector whose elements comprise the set of all
bacterial subpopulations (B0, B1, . . ., Bi, . . ., BN-1, BN) at a given time t.
We can then describe the temporal dynamics of the entire bacterial
population as a system of linear differential equations:
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d B
!ðtÞ
dt

¼ A B
! ð3Þ

In the equation above, A denotes the matrix of coefficients
describing the system of equations for the vector B(t). The values
for the coefficients in A depend on the concentration C0 of drug,
on the drug’s binding kinetics, and on the growth and death rate
functions G[i] and D[i].

Eq. (3) represents an initial value problem. This system of linear
differential equations with a constant coefficient matrix has a
unique solution given by

B
!

tð Þ ¼ eAt B
!

0 ð4Þ

where the vector B
!

0 denotes the initial composition of bacterial
subpopulations at t = 0. The solution can also be written as a linear
superposition of a product of complex exponentials (with argu-
ments determined by eigenvalues) and polynomials (whose degree
is determined by the geometric multiplicity of these eigenvalues
and whose coefficients are uniquely determined by the initial con-
ditions). In practice, B(t) describes a family of exponential growth
and decay curves that represent the replication and death of all
N + 1 bacterial subpopulations over time (Fig. 1B). We solve for B
(t) numerically by calculating the matrix exponential of A using a
scaling and squaring algorithm implemented in MATLAB (Math-
Works, Newton, MA) [88].

4.3. Calculation of minimum inhibitory concentration

We define the MIC as the concentration C0 of an antibiotic such
that any concentration of drug at or above C0 is guaranteed to
cause the eventual extinction of the bacterial population. This
occurs precisely when one eigenvalue of matrix A (from Eq. (3))
is zero and all other eigenvalues have a negative real component.
For this calculation, we assume that C0 is constant in time. We
express the MIC as

MIC ¼ inf C0 > 0jmax Re eig Að Þð Þð Þ ¼ 0f g ð5Þ
With this formulation, finding the MIC amounts to finding the

value of C0 such that the greatest real component of the eigenval-
ues of A is zero. Deriving the expression for the MIC in the simplest
case of the model, when N = 1, serves to illustrate this approach.
For the purposes of this derivation, we consider a drug that elicits
both a bactericidal and a bacteriostatic effect, so G[i = 1] = 0 and D
[i = 1] = DN. However, the approach for finding the MIC is identical
for any mechanism of drug action. The matrix A describing all bac-
terial subpopulations (Bi=0 and Bi=1) in this simple case is

A ¼ G0 � kFC0 kR
kFC0 � kR þ DNð Þ

� �
: ð6Þ

We wish to find the concentration CMIC of antibiotic that yields
negative real components of all but one eigenvalues k of matrix A.
For the 2-by-2 matrix given by Eq. (6), the characteristic polyno-
mial is given by k2 - tr(A)k + det(A), and the Routh-Hurwitz stabil-
ity criterion needed to satisfy the negative value constraints on k is
tr(A) � 0 and det(A) � 0. For the matrix described in Eq. (6), these
expressions correspond to

G0 � kFC0 � kR � DN � 0 ð7Þ
and

G0 � kFC0ð Þ �kR � DNð Þ � kFkRC0 � 0 ð8Þ
Solving for the concentration Co in both of these cases yields.

C0 � G0 � kR � DN

kF
ð9Þ
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in the case of Eq. (7) and

C0 � kR þ DNð ÞG0

kFDN
ð10Þ

in the case of Eq. (8). We expect the value of the death rate at
saturating drug concentrations (DN) to be nonzero, positive, and
larger than G0. Therefore, Eq. (9) is guaranteed to be satisfied if
Eq. (10) is also satisfied. We thus find the expression for the MIC
to be

CMIC ¼ kR þ DNð ÞG0

kFDN
: ð11Þ

From this expression, we can infer the following proportionali-
ties for the value of the MIC relative to the values of other model
parameters:

CMIC / G0

CMIC / 1=kF
CMIC / kR

ð12Þ

Polynomial expressions for the MIC, as shown in Eq. (11),
become exceedingly complex beyond N = 3. However, we conjec-
ture (although we have not been able to prove) that the structure
of the linear system shown in Eq. (3) guarantees the existence of
the MIC for any N. For larger values of N, we leverage numerical
schemes to calculate the eigenvalues of matrix A. We use
MATLAB’s eig() function, which calculates eigenvalues using the
QZ algorithm [89].
4.4. Model calibration via simulated annealing

Numerical values for the model parameters N, D0, lR, and lC

were obtained from the literature (Table 1). For ciprofloxacin, the
values for G0 and DN were obtained by fitting experimental kill
curves at drug concentrations of zero and 2.19 lg/ml, respectively,
to exponential functions (Supplementary Fig. S6). For ampicillin,
the values for G0 and DN were obtained by fitting experimental kill
curves at drug concentrations of zero and 256 lg/ml, respectively,
to exponential functions. We leveraged an adaptive simulated
annealing algorithm coupled with local gradient descent to obtain
the remaining parameters (kF, kR, aG, aD, cG, and cD). Detailed
descriptions of the adaptive simulated annealing algorithm are
available elsewhere [48,90]; in brief, simulated annealing is a glo-
bal optimization algorithm capable of escaping local minima. It is
therefore well suited to applications involving the optimization
of many parameters. Adaptive simulated annealing is a variant
on the classical simulated annealing algorithm that probes global
parameter space with greater efficiency by accounting for each
parameter’s magnitude when formulating a new parameter set at
every iteration of the algorithm. We used adaptive simulated
annealing to minimize the difference between experimental
time-kill curves and model simulations of bacterial populations
challenged to the same antibiotic doses. The difference between
experimental observation and simulation is expressed through
the objective function, whose value w the algorithm seeks to
minimize:

w ¼
X
i

X
j

W E � Bj jð Þ2: ð13Þ

E denotes an m-by-n matrix of experimentally-measured popu-
lation sizes at m drug concentrations and n timepoints, B denotes
simulated population sizes at the same drug concentrations and
timepoints, and W denotes an m-by-n weighting matrix (for our
application, simply a matrix of ones). B is a function of the param-
eters being optimized (that is, B = f(kF, kR, aG, aD, cG, cD)).
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Coupling the adaptive simulated annealing optimization with a
local gradient descent assures that our calibration procedure
always converges on a local minimum. We used an exponential
cooling schedule for the simulated annealing algorithm, which
allows the optimization to run ergodically [90]. That is, repeating
the optimization many times from random initial starting condi-
tions in parallel yields roughly the same results as running the
optimization once for a very long time. This allowed us to paral-
lelize the optimization procedure by running the algorithm repeat-
edly across several cores of a computer and to characterize the
distributions of parameter values obtained from these calibrations
(Supplementary Fig. S3). After performing 249 independent
model calibrations, we selected the parameter set with the lowest
objective function value to use in subsequent simulations. The
parameter values for this set are shown in Table 1. Parameter sets
for all model optimizations performed are available in Supporting
Data File S3.

4.5. Simulating the emergence of secondary mutations

We assumed that drug-resistant bacterial strains with sec-
ondary mutations that compensate for fitness costs and/or that fur-
ther increase MIC emerge from preexisting drug-resistant
subpopulations present in the initial population at the start of
treatment (Supplementary Fig. S10). The size of the drug-
resistant subpopulation in the absence of antibiotic (B0,R) is given
by the mutation-selection balance, which expresses the equilib-
rium at which the rate of emergence of drug resistance alleles by
spontaneous mutation equals the rate of elimination of those alle-
les due to competitive fitness costs [91]:

B0;R ¼ B0lR

cR
ð14Þ

Here, lR denotes the mutation rate for drug resistance emer-
gence per unit time.

In order to quantify the probability of secondary mutation
emergence from this drug-resistant subpopulation, we adapted a
formulation that Lipsitch and Levin developed to study the evolu-
tion of drug-resistant bacterial strains during antibiotic treatment
[78]. We assumed that secondary mutations emerge exclusively
due to errors in DNA replication during bacterial growth. The
expected number of resistant cells with secondary mutations that
emerge from a bacterial population with i inactivated drug-target
complexes (E(MRC,i)) is proportional to the total number of replica-
tions that the subpopulation undergoes before extinction and the
rate of secondary mutation emergence:

E MRC;i
� � ¼ lC

Z tEXT;i

0

GR;iBR;i tð Þdt ð15Þ

In this equation, lC denotes the secondary mutation rate, GR,i

represents the growth rate of a resistant strain with exactly i inac-
tivated drug-target complexes, BR,i(t) describes the population
dynamics of the ith drug-resistant bacterial subpopulation, and
tEXT,i describes the amount of time elapsed from treatment onset
until the bacterial subpopulation is eliminated (BR,i = 1 when
t = tEXT). The total number E(MRC) of resistant mutants with sec-
ondary mutations that we expect to observe over the course of
treatment is thus the sum of Eq. (15) over all values of i, and the
probability PRC that a compensated resistant mutant will emerge
over the course of treatment follows from the Poisson assumption
that secondary mutations arise stochastically and independently of
other mutations:

PRC ¼ 1� e�
PN

i¼0
E MRC;ið Þ

� �
: ð16Þ
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The summation term in Eq. (16) describes the total number of
resistant strains with secondary mutations expected to emerge
before extinction. This equation thus quantifies the Poisson proba-
bility that at least one resistant strain with a secondary mutation
will emerge over the course of treatment.

4.6. Code and data

We wrote all code in MATLAB. All of the code used to imple-
ment and solve our model, to analyze experimental data, and to
generate simulation data shown in all figures is available as a soft-
ware package in Supplementary File S1. Experimental data repre-
sented in Fig. 2A & 2B and in Supplementary Fig. S4 are available
within Supporting Data Files S1, S2 & S4, respectively, and the
parameter values for all iterations of model optimization are avail-
able in Supporting Data File S3.
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