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ABSTRACT 

Southern elephant seals are abundant top trophic predators with a circumpolar distribution in 

the Southern Ocean. They spend up to 80% of their life at sea on long-ranging migrations to 

remote foraging grounds. During breeding and moulting they haulout on subantarctic islands. 

During these migrations they dive continuously to great depth, encountering various 

environmental conditions. They are further known to target frontal areas and mesoscale eddies. 

Due to ecosystems changing, with high latitude areas being especially sensitive, it is of major 

importance to understand behavioural drivers in order to predict how they will react. 

  

They display site fidelity (breeding), allowing for retrieval of telemetry tags collecting high 

resolution data. In this study, data from five adult female southern elephant seals tracked 

from Bouvetøya in 2015 were analysed. This data covered their post-moult foraging 

migration. By identifying changes in move persistence values along the tracks, behavioural 

transitions periods were extracted to study the post-moult foraging behaviour of female 

southern elephant seals. More specifically, the dive and feeding efficiency during transition 

zones, defined as significant changes horizontal movement persistence, was analysed as a 

function of depth and physical features such as the mixed layer depth, top of circumpolar 

deep water as well as subsurface maximum.  

 

 

Keywords: southern elephant seal, foraging behaviour, move persistence, animal telemetry   
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ABBREVIATIONS 

 

Abbreviation Definition 

ACC Antarctic Circumpolar Current 

ARS Area-restricted search 

CROPS Changepoints for a range of penalties 

CTD-SRDLs Conductivity-temperature-depth satellite relay data loggers 

DD Dive depth 

DE Dive efficiency 

FE  Foraging efficiency 

LME Liner mixed effects model 

MLD Mixed layer depth 

PELT Pruned Exact Linear Time 

PF Polar Front 

SAF Subantarctic Front 

STF Subtropical Front 

subMAX Subsurface temperature maximum 

topCDW Top of circumpolar deep water 
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1 INTRODUCTION  

The Southern Ocean, generally defined as the global ocean South of 35° S latitude, is 

characterised by the Antarctic Circumpolar Current (ACC) and its frontal structures (Chapman 

et al., 2020; Sokolov & Rintoul, 2009). Flowing in a clockwise direction around the Antarctic 

continent, the current plays a key function in global ocean circulation and productivity by 

controlling the mixing of the upper and deep waters of the world (Frölicher et al., 2015 Murphy 

et al., 2013). As a result, the ACC majorly impacts the climate and biogeochemical cycles at a 

global scale by regulating the oceans capacity to both store and transport carbon dioxide and 

heat (Rintoul, 2018). The fronts concentrated within the ACC can be considered as 

oceanographic boundaries between water masses with differing properties, such as salinity and 

temperature (Orsi et al., 1995; Sokolov & Rintoul, 2009). As a consequence, these act as a 

barrier for north-south exchange of water, resulting in the Southern Ocean being highly 

biogeographically isolated (Clarke et al., 2005). Three major fronts are recognized: The 

Subtropical Front (STF), the Subantarctic Front (SAF) and the Polar Front (PF) (Belkin & 

Gordon, 1996). The northern boundary of the ACC is distinguished by the STF, where the 

surface water properties are differentiated from the warmer and saltier waters of lower 

latitudes. Below this front, the ACC flows around the globe undisrupted, uniquely connecting 

ocean basins (Orsi et al., 1995). Further south, the SAF separates the Subantarctic zone in the 

north from the Polar frontal zone in the south, whereas the PF is identified as the area where 

cold Antarctic surface water sink below the Subantarctic water (Orsi et al., 1995). Fronts and 

other mesoscale features such as eddies are known to serve as favourable foraging grounds for 

top predators such as seabirds and marine mammals (Bailleul et al., 2010; Bakun, 2007; Dragon 

et al., 2010). This is mainly a result of locally enhanced primary production, which further 

attracts prey species to the area. Increase in prey abundance has also been suggested to be 

caused by convergence processes, transporting marine organisms to the frontal zones (Murphy, 

1995). 

 

Animal movement is driven by the need of an individual to fulfill its life history requirements, 

such as energy acquirement, mating, avoiding predators as well as staying within its 

physiological optima (Shaw, 2016). In marine predators, the spatial distribution and density of 

prey is a fundamental predictor of its movement patterns (Goldbogen et al., 2015; Womble et 

al., 2014). Vast ranging migrations are often costly due the high energetic need of locomotion, 
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but this behaviour persist as the overall fitness of the animal is increased (Dingle, 2014). This 

is also predicted by the optimal foraging theory, which states that an animal will adjust its 

movement behaviour to maximize net energy gain (MacArthur & Pianka, 1966; Pyke, 1984). 

As a prey aggregation is encountered, the predator will respond by altering its horizontal and 

vertical movement patterns in order to intensify foraging within the patch (Charnov, 1976; 

Thums et al., 2011). For several species, this is exhibited as a behaviour termed area-restricted 

search (ARS) (Kareiva & Odel, 1987) and can be observed as a decrease in swimming speed 

and increase in turning rates (Jonsen et al., 2005). As the prey aggregation becomes depleted, 

the animal is expected to alternate its prey species to transit to another prey patch (Van Baalen 

et al., 2001). The transitioning should occur in a way that minimizes time spent between 

foraging areas (Jonsen et al., 2005), and is characterised by lower turning rates and an increase 

in displacement speed (Fauchald and Torkild, 2003). As a result, changes in horizontal 

movement patterns have been used by several studies as proxies for identifying foraging 

behaviour in marine predators (Bailleul et al., 2008). However, this does not capture the four-

dimensional structure of the marine environment (time, depth, and space) and the way air-

breathing mammals utilize the vertical aspect of the ocean (Dragon et al., 2012). Vertical 

structuring of the ocean is of major importance for creating areas of high productivity due to 

its physical gradients, and the concentration of prey species is often targeted by predators 

(Dragon et al., 2012). These gradients, already touched upon earlier, are especially strong in 

polar areas due to the high seasonality (Nicholls et al., 2008).  

 

Quantifying spatiotemporal distribution and foraging effort of marine predators allows us to 

gain a greater understanding of ecological patterns and processes in marine environments such 

as resource availability (Melbourne-Thomas et al., 2013). Data collection in remote regions 

has previously been limited by logistical challenges. However, advances in animal-borne data 

loggers and satellite tracking technologies have transformed our ability to collect data in 

otherwise inaccessible areas (Aarts et al., 2008). As in situ oceanographic parameters, such as 

salinity, conductivity and temperature, are recorded simultaneously with diving and movement 

behaviour, we gain a better understanding of the effect of environmental variability on 

movement patterns exhibited (Costa et al., 2010). Equipping seals with environmental 

collectors is of great importance for studying the spatio-temporal dynamic ocean physics in 

remote and inaccessible regions such as many Southern Ocean areas (Fedak, 2004). These 

under-sampled areas are often the ones of high interest due to their physical and biological 

aspects, as well as role in regulating global climate (Pauthenet et al., 2018). Although animals 
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act as so called “adaptive samplers” and collect data in an irregular way, they often target areas 

of importance, such dynamic ocean structures where resource availability is high (Guinet et al., 

2001). Data gained from animal tracking has majorly improved out knowledge on seasonal 

distribution, movement ranges as well as allowing more reliable population estimates to be 

calculated for several species (Hays et al., 2019). This, together with a better knowledge of 

important foraging ground as well as resource distribution, is of high value for conservation 

policy and allows for designation of area protective boundaries and management programmes 

(Hays et al., 2019). 

 

Colony-based marine mammals that haul out for breeding and moulting are considered as 

central place foragers (CPF) during breeding (Olsson & Bolin, 2014). CPF are animals with a 

home range and are often associated with migrations to distant foraging grounds. A suggested 

cause for this behaviour is related to density dependence, resulting in prey depletion in 

proximity of the colony (Ashmole, 1963) or more profitable foraging areas being spatially 

separated (Oppel et al., 2015). For this reason, central place foragers are ideal subjects for 

telemetry studies, as retrieved tags allows for a much greater resolution of data collected 

compared to data transmitted via satellite (Hays et al., 2016). Case in point being the southern 

elephant seal (Mirounga leonina), the largest of the pinniped species (Le Boeuf & Laws 1994). 

These vast ranging predators haul-out on sub-Antarctic islands for breeding (early September 

to mid-November) and moulting (December to March), but spend up to 80% of their life at sea 

on long-ranging migrations to remote foraging grounds (Hindell et al., 1991; McIntyre et al., 

2010). In their pursuit of prey, consisting mainly of myctophid fish and cephalopods (Cherel 

et al., 2008) they perform some of the most impressive dives conducted by any mammalian 

species. They often reach depths of more than 1000 meters (McIntyre et al., 2010), and may 

remain submerged up to two hours (Le Boeuf & Laws 1994). In fact, most of their life is spent 

at depths of 300-400 meters, only to be punctuated by short two to three minute surface 

intervals (Hindell, Slip, et al., 1991). During their extensive dives and long migrations southern 

elephant seals encounter a wide range of differing environmental conditions and several studies 

has associated them with ocean features such as mesoscale eddies and fronts (Bailleul et al., 

2010; Campagna et al., 2006; Massie et al., 2016). Divergence in foraging strategies has also 

been noted between the sexes, as males seemingly target the Antarctic continental shelf and ice 

zone habitats more often, whereas females exhibit a more pelagic foraging behaviour (Authier 

et al., 2012; Biuw et al., 2007; Biuw et al., 2010; Hindell et al., 1991; Labrousse et al., 2015). 
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Further, they display high sexual dimorphism, with males being up to ten times larger than 

females (Le Boeuf & Laws 1994). 

 

This abundant top-trophic predator has a circumpolar distribution in the Southern Ocean (Le 

Boeuf & Laws 1994). Currently, four genetically distinct populations are acknowledged: the 

Kerguelen population in south Indian Ocean, the Macquire population in the south Pacific 

Ocean, Peninsula Valdés population in Argentina and the South Georgia population in the 

south Atlantic Ocean (McMahon et al., 2005). Out of these, the South Georgia population is 

the largest, hosting more than half of the global population (Boyd et al., 1996). These 

populations experienced major declines between 1950s to 1990s, and a decrease is still to be 

observed in the Macquire population and some Kerguelen subpopulations (McMahon et al., 

2005). Observing changes in population size may be an indication of major changes within 

ecosystem function or structure (Barbraud & Welmerskirch, 2001). Currently, the Southern 

Ocean is experiencing a more rapid warming than the global average (Turner et al., 2014) with 

consequent increase in winds over the past decades (Meredith & Hogg 2006). It has been 

speculated that this could result in an increase in eddie activity and overall changes in frontal 

structures (Le Quere et al., 2007). As these features are known to be attractive foraging areas 

for southern elephant seal, it is important to gain an understanding of behavioural drivers, in 

order to predict how they will behave when facing differing environments. 

 

The main objective of this thesis is to study the post-moult foraging behaviour of female 

southern elephant seals. More specifically, the dive and feeding efficiency during transition 

zones, defined as significant changes horizontal movement persistence, was analysed as a 

function of depth and physical features such as the mixed layer depth, top of circumpolar deep 

water as well as subsurface maximum.  
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2 MATERIAL AND METHODS 

2.1 Study area and tag deployment 

In this thesis the at-sea movements of seals from a small South Georgian subpopulation, 

namely the colony at Bouvetøya (54°25´S, 03°20´E).  will be studied. The island is located at 

the Mid-Atlantic Ridge, south of the PF, with 1600 km to the Antarctic continent and 2600 km 

to Southern Africa. This colony has only been subject to a handful of previous studies (e.g. 

Biuw et al., 2010), therefore it is of great interest to grain a better understanding of the at sea 

movement patterns of these seals. In 2015, eight adult female southern elephant seals were 

tagged post-moult with conductivity-temperature-depth satellite relay data loggers (CTD-

SRDLs, Sea Mammal Research Unit, St Andrews, UK) with GPS at 

Nyrøysa/Westwindstranda. This area is recognized as the island’s largest suitable haulout area. 

The seals were immobilized and handled as described in (Baker et al., 1988; Field et al., 2002; 

McMahon et al, 2000) and animal handling occurred in accordance with the Regulation of 

Animal Experimentation of the Norwegian Animal Research Authority. The deployed 

instruments collect GPS and CTD data at very high resolution, but due to limited satellite 

bandwidth only a subset of the data was transmitted. Five tags were retrieved allowing the full 

dataset of GPS and CTD to be recovered and used for further analysis.  

 

 

2.2 Data analysis 

The collected data spans from the end of January to November and is covering their post-moult 

foraging migration. Locations on land and short post-breeding segments were removed. All 

analyses were performed using R Statistical Software (v4.1.1; R Core Team 2022). 

 

2.2.1 Move persistence analysis 

Horizontal changes in movement patterns were identified by estimating time-varying move 

persistence along the tracks using the fit_mpm function in the foieGras R package (Jonsen & 

Patterson, 2019). This model calculates the autocorrelation in speed and direction over 

successive locations, resulting in a continuum of move persistence values ranging from 0 (low 

persistence) to 1 (high persistence) across trajectories (Jonsen et al., 2019). Low move 
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persistence values are related to ARS behaviour, whereas high persistence values are indicative 

of travelling. This method represents the natural continuum of animal movements most 

accurately, as opposed to dividing transects into discrete behavioural states  (Breed et al., 2012; 

Michelot et al., 2017) 

 

To achieve regular location estimates along the tracks, a continuous-time correlated random 

walk state-space model was fitted to the data by using the fit_ssm function in the foieGras R 

package (Jonsen et al., 2019). Although the recovered GPS data is high in resolution, regular 

location estimates were considered more applicable for further analysis. As the above-

mentioned autocorrelation between successive locations is influenced by the time steps used, 

comparisons were made of predicted move persistence over different time intervals (1h, 2h, 3h 

and 6h). As the mean time difference of recovered GPS locations was below one hour for each 

seal, a 1h time step was considered most suitable. 

 

2.2.2 Changepoint analysis  

To detect change in the seals migratory behaviour, changepoint analysis was applied to the 

derived move persistence values along the tracks. Changepoints are points where a change in 

statistical properties of a sequence of data can be observed and may therefore indicate 

transitions between different states (R. Killick et al., 2012). To identify multiple changepoints, 

the cost function was minimised over the possible number of changepoints and the locations 

of these (Eq. 1). 

 

∑ [𝐶(𝑦(𝜏𝑖−1+1):𝜏𝑖
)] + 𝛽𝑓(𝑚)𝑚+1

𝑖=1 ) Eq. 1 

 

C is the cost function of a segment, in which y is the signal and the 𝜏𝑖 is the number of splits. 

βf(m) is a penalty to guard against overfitting the data, as adding changepoints always reduces 

overall cost. For this project Pruned Exact Linear Time (PELT) (Killick et al., 2012) algorithm 

was chosen as changepoint search method. Due to the pruning step involved, PELT is 

computationally efficient without reduction in accuracy of resulting segmentation and was 

therefore used for this project. The PELT search algorithm requires a penalty constant to avoid 

under- or over-fitting the data. This constant is user defined and not always straight forward to 

determine. To reduce subjectivity when deciding penalty value, changepoints over a range of 
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penalties (CROPS) developed Haynes (Haynes et al., 2017a) was used. This method results in 

optimal segmentations across a continuous range of penalty values and further allows 

evaluation of suitable penalty choices by creating a diagnostic plot of number of changepoints 

against the change in test statistic. Lavielle (2005) suggests choosing the segmentation where 

the most significant decrease in cost due to the addition of changepoints occur. As the penalty 

value is initially increased, true changes can be detected and the cost decreases rapidly. 

Eventually false positives (changepoints due to noise) are added and the change in cost will be 

small. As the cost noticeably changes it can be seen as an “elbow” on the plot and these points 

can then be considered the plausible range of segmentations. By inspecting the elbow plots, a 

penalty value of 0.6 was decided upon to obtain an optimal number of changepoints (Appendix 

A). A minimum segment length (Minseglen) of 72h was assigned as it was found to most 

accurately identify transition periods of interest (for details on Minseglen function within 

PELT, see Qiu et al., 2021). Above mentioned algorithms are all integrated into the 

changepoint R package (Killick & Eckley, 2014), and for this study, the identification of 

changes of mean was used.  

2.3.3 Extraction of behavioural transition periods 

For extracting behavioural transition periods along the animal’s movement trajectory, a time 

buffer was added before and after each identified changepoint. To discard data noise, a spline 

was fitted to the move persistence values using the function smooth.spline in R and further by 

calculating the difference of consecutive smoothed values. The beginning and end of a 

transition zone were determined as where the differential crosses zero. On some occasions, 

visual inspection showed that the behavioural transition continued past the first zero crossing 

and here the time buffer was extended. Further, the segments were labelled as IN or OUT, 

depending on whether the seal was entering or leaving low move persistence behaviour.  

2.3.4 Diving parameters  

Depth was recorded continuously at a temporal resolution of 4 seconds throughout the track. 

Individual dives with associated dive summaries were obtained using the diveMove R package 

by Luque (2007) These summaries include information on maximum depth attained, start time 

of each dive, end of descent and start of ascent, duration of each of these phases as well as the 

time spent at bottom and post dive duration (surface interval). DiveMove identifies dive phases 

by fitting a cubic spline model to each dive, and in this study the default unimodal regression 
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model was used. End of descent is then considered to occur at the location of first minimum 

derivative, whereas the beginning of ascent is detected by the reversed sign of comparison.   

Further, it provides a measuring of vertical distance covered during descent, ascent, and the 

bottom phase of a dive. The latter is a measure of up and down movement or “wiggling”, a 

movement that has been linked to foraging or search for prey (Hindell et al., 1991). We 

considered bottom distance as a proxy for foraging efficiency, while acknowledging that 

irregularities during the bottom phase of a dive is not always related to feeding.  

 

Diving efficiency (DE) was calculated in accordance to Ydenberg & Clark (1989): 

 

𝐷𝐸 =
𝑏𝑜𝑡𝑡𝑜𝑚 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

(𝑑𝑖𝑣𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛+𝑝𝑜𝑠𝑡_𝑑𝑖𝑣𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)
 Eq. 2 

 

2.3.5 Environmental parameters 

Four to twelve CTD profiles were generated daily, with data being collected every second 

during the ascent phase of dives. To examine how the elephant seals interact with or dive in 

relation to different water masses, the position of the mixed layer (MLD), the top of 

circumpolar deep water (topCDW) and the depth of subsurface maximum (subMAX) was 

inferred from water temperature readings. MLD and topCDW were identified using a 

derivative method. This approach requires a smoothing of the temperature profile, as results 

differentiating from a noisy profile can be hard to interpret (Kelley, 2018). Therefore, a 

smoothing spline using the smooth.spline function in R was fitted to the data and resulting 

maximum and minimum differentiated values were used to locate MLD and topCDW, 

permanent thermocline. For dives without CTD profiles, values for MLD, topCDW and 

subMAX were linearly interpolated using the approx function in R.  

 

Coordinates for each dive were estimated by fitting a correlated random walk as a continuous-

time model by the use of the fit_ssm function in R and by adjusting the time.step to the timing 

of each dive. As the coordinates were assigned, sun angle was assigned by the use of solarpos 

function in the maptools R package (APPENDIX B).  
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2.3.6 Modelling approach  

Linear mixed effects models (LME) was used to test whether dive depth (DP) during a 

transition, diving and foraging efficiency (DE and FE), was influenced by MLD depth 

topCDW, subMAX as well as time of day (day/night). The general form of the fixed effect part 

of the model is:  

g(μ) = ղ= α + β1MLDdepth + β2topCDW + β3subMAX + β4day/night + β5IN/OUT + 

β5IN/OUT:diveNO + ɛ Eq. 3 

Where g(.) is the link function, which transforms the expectation of the response variable to 

the linear predictor, μ is the expected value of the response (DP, DE and FE) and ɛ is the 

residuals that are assumed to be independent and identically distributed N(0,σ2). Individual 

was added as random effect. The models were fitted using the lmer function in the lme4 R 

package.Model residuals were extracted and checked to approximate normal distribution 

(APPENDIX C) . To investigate whether dive parameters change along a transit (rather than 

simply between IN and OUT transitions) we run a second model with diveNO as a continuous 

variable interacting with IN/OUT: 

g(μ) = ղ= α + β1MLDdepth + β2topCDW + β3subMAX + β4day/night + β5IN/OUT + 

β5IN/OUT:diveNO + ɛ Eq. 4 

 

To see whether MLD, topMAX and subMAX as well as time of day were important predictors 

for both IN and OUT transitions, as well as only IN segments. This was done by adding number 

of dive within each segment to the equation.  
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3 RESULTS 

3.1 Tracking  

Summary of tag duration and mean frequency can be seen in Table 1. Mean tag longevity was 

261 days with a range of 216 to 277 days, and a total of 41627 locations were recorded (mean 

8184.2 ± 535.3 locations). As tracks were trimmed to only cover post-moult migrations, these 

spanned on average 226 days (range 203 to 236). Overall mean GPS location frequency for 

these was 41.4 ± 29.4 min. High individuality was to be observed in the seals movement 

patterns as can be seen in Figure 1. Two of the seals migrated over to South Georgia to breed, 

arriving at the island only 5 days apart in beginning of October. Breeding at Bouvet was 

observed by one individual in the end of September. The tracks of the two remaining seals did 

not cover the breeding haulout. However, one of them stopped by Bouvet for a couple of days 

in May, to then continue its foraging trip.  

 

 

Figure 1 Map showing individual post-moult foraging tracks, colour coded for each animal. Polar front and 

Subantarctic front indicated by a black solid and dashed line, respectively. Map produced in Quantarctica 

(Matsuoka et al., 2018). 
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Table 1 Tag longevity and duration of trimmed tracks used for further analysis within the study (only covering 

post-moult migration), as well as mean frequency of trimmed GPS locations recorded.  

ID 
Tag longevity 
start - end 

Trimmed 
start - end 

Mean GPS location 
frequency (trimmed) 

Breeding and  
other haulout 

bv3-240R-14 2015-01-27 
2015-10-30 

2015-02-14 
2015-10-01 

37.61 ± 16.76 min South Georgia 

bv3-242R-14 2015-01-27 
2015-09-01 

2015-02-10 
2015-09-01 

47.22 ± 28.01 min Breeding not covered, at Bouvet end 
of May 

bv3-243R-14 2015-01-23 
2015-09-15 

2015-01-23 
2015-09-15 

47.43 ± 47.33 min Breeding not covered, at Bouvet end 
of April  

bv3-246R-14 2015-01-27 
2015-11-24 

2015-02-10 
2015-10-06 

41.43 ± 19.01 min South Georgia 

bv3-248R-14 2015-01-27 
2015-10-31 

2015-02-07 
2015-09-30 

40.29 ± 26.96 min Bouvet 

 

3.2 Movement characteristics 

Move persistence along the seals movement trajectories can be seen in Figures 2a-e.  

 

Seal bv3-240R-14 (Figure 2a) began its foraging migration on the 14th of February in a south-

eastern direction, and first low move persistence movement occurred approximately seven days 

after leaving Bouvetøya on the 2nd of February. This was followed by several periods of moving 

in and out of high persistence, and in the end of August the movement changed to be highly 

directional during its migration to South Georgia, arriving there on the 1st of September. 

 

Seal bv3-242R-14 (Figure 2c) left Bouvetøya 10th of February. Heading in an eastern direction, 

first lower move persistence was encountered on the 14th of February. This seal did a loop in 

north-eastern direction and returned to Bouvet for a couple of days in end of May. This was 

followed by another round trip in north-eastern direction, crossing its previous movement 

trajectory. The track ended on the 1st of September before haulout could be recorded, and the 

seal did not change its heading towards Bouvet at that point.  

 

Seal bv3-243R-14 (Figure 2d) left Bouvetøya on the 23rd of January, moving with high 

persistence in a north-western direction. Lower move persistence behaviour was first exhibited 

mid-February, and it remained within this area until the middle of May. It then continued its 

migration to the north-east, doing a U-turn in beginning of May and moving in a directional 

manner back towards Bouvetøya with lower move persistence values noted at the end of the 

track. The collected data did not cover breeding haulout and ended on the 15th of September. 
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Seal bv3-246R-14 (Figure 2b) began its foraging migration on the 10th of February and first 

behaviour of lower mover persistence was to be observed approximately four days later. The 

migration was headed in an eastward direction with several periods of moving in and out of 

lower move persistence. Around the 8th of August it began its highly directional migration over 

to South Georgia in the west, reaching the island on the 6th of October. 

 

Seal bv3-248-14 (Figure 2e) left Bouvetøya on the 7th of February, headed in a south-eastern 

direction. First lower move persistence was exhibited on the 16th of February. It changed its 

heading towards north in end of March, reaching Bouvet on the 23rd of April and remaining 

there for a couple of days. This was followed by five months of lower move persistence spent 

south-west in proximity of Bouvetøya. The seal hauled out to breed to breed on the 30th of 

September.  

 

 

Figure 2a-b Post-moult migration of individual bv3-240R-14 & bv3-246R-14. High move persistence values 

(travelling) indicated by yellow, whereas low move persistence values are indicated by green-blue colour. Map 

produced in Quantarctica (Matsuoka et al., 2018). 
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Figure 2c Post-moult migration of individual bv3-242R-14. High move persistence values (travelling) indicated 

by yellow, whereas low move persistence values are indicated by green-blue colour. Map produced in 

Quantarctica (Matsuoka et al., 2018). 

 

Figure 2d Post-moult migration of individual bv3-243R-14. High move persistence values (travelling) indicated 

by yellow, whereas low move persistence values are indicated by green-blue Map produced in Quantarctica 

(Matsuoka et al., 2018).  
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Figure 2e  Post-moult migration of individual bv3-242R-14. High move persistence values (travelling) indicated 

by yellow, whereas low move persistence values are indicated by green-blue colour Map produced in Quantarctica 

(Matsuoka et al., 2018). 

 

3.3 Changepoint analysis & extraction of transition zones 

Changepoint detection was applied for identifying where a change in movement patterns 

occurred. The PELT algorithm identified a total of 67 changepoints, ranging from 9 to 21 

between individuals. Further, a time buffer was added before and after each changepoint and 

the generated transition zones had a mean duration of 5.53 ± 3.02 days (see table 2 for transition 

summaries). Due to lack of CTD and TDR data in two of transition zones for seal bv3-243-14, 

these were removed from further analysis. The first excluded transition occurred in the 

beginning of the track, and the other at the end the due to irregular TDR and CTD recordings, 

likely because of the tag reaching the end of its battery life. Out of the 65 remaining transitions, 

35 were labelled IN, and 30 were labelled OUT. The mean duration for the IN segments (4.91 

± 2.23 days) were shorter than the OUT ones (6.74 ± 3.79 days). Location of identified 

changepoints together with associated changepoints are summaries in figure 3a-e. 
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Table 2 Mean and standard deviation of duration of behavioural transition zones expressed in days, together with 

total amount of transitions  

 Total duration 

IN & OUT 

No of 

transitions 

Duration  

IN 

No of 

transition IN 

Duration 

OUT 

No of 

transition OUT 

Bv3-240R-14 7.90 ± 4.26 9 6.93 ± 2.58 5 9.12 ± 6.00 4 

Bv3-242R-14 5.14 ± 2.69 15 5.32 ± 3.12 8 4.94 ± 2.31 7 

Bv3-243R-14 7.32 ± 3.07 8 5.55 ± 0.96 5 10.25 ± 3.25 3 

Bv3-246R-14 4.56 ± 2.53 21 3.25 ± 0.92 11 6.00 ± 3.00 10 

Bv3-248R-14 4.75 ± 1.86 12 5.19 ± 2.19 6 4.31 ± 1.53 6 

Total 5.53 ± 3.02 65 4.91 ± 2.23 35 6.74 ± 3.79 30 

  
 

 

Figure 3a Horizontal move persistence with identified changepoints along transect for seal bv3-240R-14. 

Changepoints are indicated as black vertical lines with shaded area representing behavioural transition zones. 

Move persistence is shown as a red line, whereas the difference of consecutive move persistence values are shown 

as a green line. Dashed vertical lines represent zero differentials that were ignored to cover whole transition zones.  

 

 

Figure 3b Horizontal move persistence with identified changepoints along transect for seal bv3-242R-14. 

Changepoints are indicated as black vertical lines with shaded area representing behavioural transition zones. 

Move persistence is shown as a red line, whereas the difference of consecutive move persistence values are shown 

as a green line. Dashed vertical lines represent zero differentials that were ignored to cover whole transition zones.  
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Figure 3c Horizontal move persistence with identified changepoints along transect for seal bv3-243R-14. 

Changepoints are indicated as black vertical lines with shaded area representing behavioural transition zones. 

Move persistence is shown as a red line, whereas the difference of consecutive move persistence values are shown 

as a green line. Dashed vertical lines represent zero differentials that were ignored to cover whole transition zones. 

 

 

 

Figure 3d Horizontal move persistence with identified changepoints along transect for seal bv3-246R-14. 

Changepoints are indicated as black vertical lines with shaded area representing behavioural transition zones. 

Move persistence is shown as a red line, whereas the difference of consecutive move persistence values is shown 

as a green line. Dashed vertical lines represent zero differentials that were ignored to cover whole transition zones. 
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Figure 3e Horizontal move persistence with identified changepoints along transect for seal bv3-248R-14. 

Changepoints are indicated as black vertical lines with shaded area representing behavioural transition zones. 

Move persistence is shown as a red line, whereas the difference of consecutive move persistence values is shown 

as a green line. Dashed vertical lines represent zero differentials that were ignored to cover whole transition zones. 

 

3.4 Dive & environmental parameters  

Overall, 49086 dives were recorded (9817.2 ±1379.2). The deepest dive of every seals 

measured more than 1000 m, with deepest dive recorded being 1388.2 m performed by seal 

bv3-246R-14. Average maximum depth attained was 455.2 ± 181.9 m, whereas most time was 

spent at depths of 404.4 ± 165.8 m. The longest dive recorded lasted for 125.5 minutes (seal 

bv3-242R-14), and mean duration of dives were 31.2  ± 12.3 min. Mean duration of post-dive 

surface intervals was 2.1 ± 1.2 min. In total 15478 dives were covered by the extracted 

transition zones and used for further analysis. A total of 2127 CTD profiles were generated for 

the behavioural transition zones.  

 

3.7 Modelling results 

Summary of LME results can be seen in Table 3.  

Table 3 Summary of LME results to test whether mean dive depth (DP) during a transition was influenced by 

depth of MLD, topCDW and subMAX. Individual added as random effect. 

 

 Effects on Mean Dive Depth Diving Efficiency  Vertical Bottom distance 

Predictors Estim. CI p Estim. CI p Estim. CI p 

(Intercept) 326.61 285.21 – 368.01 <0.001 0.26 0.22 – 0.29 <0.001 138.65 112.97 – 164.33 <0.001 

topCDW -0.05 -0.12 – 0.03 0.214 0.00 -0.00 – 0.00 0.107 0.38 0.26 – 0.50 <0.001 

MLD 0.53 0.41 – 0.64 <0.001 0.00 0.00 – 0.00 <0.001 0.93 0.74 – 1.12 <0.001 

subMAX 0.24 0.20 – 0.31 <0.001 0.00 -0.00 – 0.00 0.305 0.12 0.03 – 0.20 0.007 

Day/Night -106.21 -111.03 – -101.38 <0.001 -0.02 -0.03 – -0.01 <0.001 -50.89 -58.75 – -43.04 <0.001 

IN/OUT 16.21 11.07 – 21.01 <0.001 0.01 0.00 – 0.01 0.016 20.74 12.67 – 28.81 <0.001 
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Effects on Mean Dive Depth 

 

 

 

 

 
     

   

 

  

Figure 4a-c Result of LME to test whether mean dive depth (DP) during a transition was influenced by depth 

of MLD, topCDW and subMAX. Individual added as random effect. 

 
 

Effects on diving efficiency 
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Figure 5a-c Result of LME to test whether diving efficiency (DE) during a transition was influenced by depth 

of MLD, topCDW and subMAX. Individual added as random effect. 

   
 

Effects on Vertical Bottom distance 
 

 

 

 
   

 

  

Figure 5a-c Result of LME to test whether vertical bottom distance (here as FE) during a transition was 

influenced by depth of MLD, topCDW and subMAX. Individual added as random effect. 
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Table 4 Model of interaction – testing whether MLD is important for both  IN and OUT transitions, or only IN. 

 

 

Table 5 Model of interaction –  testing whether trend is different for IN and OUT segments 
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4 DISCUSSION 

4.1 Movement characteristics 

This study sheds light on the movement patterns and transitioning behaviour of southern 

elephant seals belonging to a seal colony subject to only a few previous studies. High 

individuality of movement patterns was to be observed as previously has been acknowledged 

by Biuw et al., 2010. As two seals migrated over to Bouvet,   

 

Several multiple changepoint search methods have been proposed for minimising Equation 1, 

such as the approximate but computationally fast binary segmentation method (Scott & Knott, 

1974) the exact but computationally costly segment neighbourhood algorithm (SN) (Auger & 

Lawrence, 1989) and Pruned Exact Linear Time (PELT) (R. Killick et al., 2012). PELT is 

based on the optimal partitioning algorithm proposed by (Jackson et al., 2005) and is similar 

to SN as it is an exact method. Due to the pruning step involved, PELT is computationally 

efficient without reduction in accuracy of resulting segmentation and was therefore chosen for 

to identify changepoints in the move persistence values along the seals movement paths. The 

PELT search algorithm requires a penalty constant to avoid under- or over-fitting the data. This 

constant is user defined and not always straight forward to determine. To reduce subjectivity 

when deciding penalty value, changepoints over a range of penalties (CROPS) developed 

Haynes et al., (2017) was used. This method results in optimal segmentations across a 

continuous range of penalty values and further allows evaluation of suitable penalty choices by 

creating a diagnostic plot of number of changepoints against the change in test statistic. 

Lavielle (2005) suggests choosing the segmentation where the most significant decrease in cost 

due to the addition of changepoints occur. As the penalty value is initially increased, true 

changes can be detected and the cost decreases rapidly. Eventually false positives 

(changepoints due to noise) are added and the change in cost will be small. As the cost 

noticeably changes it can be seen as an “elbow” on the plot and these points can then be 

considered the plausible range of segmentations. Due to individual differences in movement 

behaviour these plots look different for each seal, and some level of subjectivity is unavoidable 

in case of choosing individual penalty values. Therefore, it was decided that a set penalty value 

together with a minimum segment of would be used for all seals. By trying out different penalty 

values corresponding to the elbow of the plots, together with different segment lengths, the 

most plausible values were determined.  
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APPENDIX 

APPENDIX A: Changepoints over a range of penalties (CROPS) 

Diagnostic elbow plot generated by the CROPS function in the changepoint R package. Chosen 
penalty value of 0.6 is indicated by red line. 
 

CROPS elbow plot 
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APPENDIX B:  

Sun angle was assigned to each dive by the use solarpos function in the maptools R package.  

 

Timing of sunrise and sunset  
            
               Bv3-240R-14 

         
             Bv3-242R-14 

  
             
                Bv3-243R-14 

          
               Bv3-246R-14 

  
                
                 Bv3-248R-14 
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APPENDIX C: Residuals (measure of error) for linear mixed models 
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