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Abstract: Optically thin layers of tiny ice particles near the summer mesopause, known as noctilucent
clouds, are of significant interest within the aeronomy and climate science communities. Ground-
based optical cameras mounted at various locations in the arctic regions collect the dataset during
favorable summer times. In this paper, first, we compare the performances of various deep learning-
based image classifiers against a baseline machine learning model trained with support vector
machine (SVM) algorithm to identify an effective and lightweight model for the classification of
noctilucent clouds. The SVM classifier is trained with histogram of oriented gradient (HOG) features,
and deep learning models such as SqueezeNet, ShuffleNet, MobileNet, and Resnet are fine-tuned
based on the dataset. The dataset includes images observed from different locations in northern
Europe with varied weather conditions. Second, we investigate the most informative pixels for
the classification decision on test images. The pixel-level attributions calculated using the guide
back-propagation algorithm are visualized as saliency maps. Our results indicate that the SqueezeNet
model achieves an F1 score of 0.95. In addition, SqueezeNet is the lightest model used in our
experiments, and the saliency maps obtained for a set of test images correspond better with relevant
regions associated with noctilucent clouds.

Keywords: noctilucent cloud (NLC); machine learning; convolutional neural network; transfer
learning; image classification; saliency map; guided back-propagation

1. Introduction

Noctilucent clouds (NLC) are the highest clouds in the earth’s atmosphere in the vicin-
ity of the mesopause, with an altitude range of 80–85 km. The extremely cold temperature
during the summer in this region permits the formation of tiny ice particles of sizes in
the range of 20–150 nm. NLCs are observed with the naked eye from the ground surface,
typically from latitudes between 50–65 degrees and facing north [1]. The mesosphere is
highly dynamic because it displays various types of waves and turbulence, which are influ-
enced by the lower atmosphere as well as variations that are influenced by solar–terrestrial
physics. Observations of the mesosphere are challenging because it lies above the heights
that can be reached with balloons and aircraft, and it lies below the heights of most satellites.
Satellites are, however, used for remote observations on large scales of the ice particles that
form the NLC [2]. Observations from the ground with optical cameras and lidars provide
more localized images, including spatial patterns. Investigating these clouds helps us to
better understand the upper atmosphere and its dynamics caused by several effects in this
region [3].

The NLC structures reveal, for instance, the influence of planetary waves [4]. The NLC
observations are also discussed as an indicator of climate change [5], and some studies show
an increased frequency of the NLC occurrence and NLC brightness suggested throughout
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1964–1994 that can arise from increasing water vapor concentration at these altitudes [6,7].
Although the origins of NLCs and the conditions leading to their formation are still actively
being investigated, there are various studies on the understanding of NLC in terms of
their size, shape, and formation [6]. The local observations, for instance, above Northern
Scandinavia, allow us to compare the NLC observations with radar studies. The radar
observation of these clouds is made in polar mesospheric summer echoes (PMSE), which
are observed at similar altitudes as the NLC and higher. They form as a result of several
processes and require the presence of ice particles that are electrically charged turbulence
in the neutral components of the atmosphere and free electrons. NLC, in contrast, merely
depends on the size of the ice particles. Despite these differences, it is helpful to have a
combined view of PMSE and NLC to investigate the local structures of these clouds. The
PMSE and NLC display similar wavy structures, as shown in Figure 1. The PMSE was
captured with an EISCAT radar at Tromsø, and an optical image from Kiruna, Sweden
(67.84N, 20.41E). The wavy pattern displayed in these NLCs possibly indicates the influence
of wave propagation on a scale, from a few kilometers to several kilometers [8].

The optical cameras preprogrammed for taking images every few minutes during
favorable summer times collect the noctilucent cloud images from various locations in
the arctic north. The identification of the NLC occurrence in images demands an expert’s
evaluation and hence is a resource-intensive task. In the literature, there are several studies
on the analysis of NLC [9–14]; however, studies on its classification using deep-learning
techniques are lacking. In a recent study by [8], different feature-extraction strategies
on image patches of the size 50 by 50 pixels are implemented to classify these image
patches into different categories, such as NLC, tropospheric cloud, clear sky, etc. The
study compares the performance of LDA with different combinations of image features
(mean, standard deviation, HLAC, and HOG) with that of a convolution neural network
model. Although CNN achieves good classification accuracy and outperforms the rest of
the methods used in the paper, the experimental pipeline implemented using patches is
not common in practical applications.
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Figure 1. (a) The PMSE radar echoes associated with polar ice clouds [11]; and (b) optical image
consisting of NLC [8].

In this paper, we investigate the possibility of using state-of-the-art deep learning
models to classify NLC based on whole images rather than image patches, as performed in
the study of [8]. The state-of-the-art CNN architectures trained with transfer learning are
compared to the baseline SVM classifier trained with the histogram of oriented gradient
(HOG) features. In addition to the evaluation of their performance, we also visualize the
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pixel-level attributes for the test image to identify the pixels that contribute more to making
the classification decision. The main advantages of using whole images instead of patches
are: (1) it allows the use of existing state-of-the-art deep learning architectures and their
pre-trained weights with transfer learning, and (2) the selected classifier model offers a
real-world application.

The rest of the article is divided as follows: First, in Section 2, we outline the dataset
associated with experiments, methods, and procedures followed in this paper. In Section 3,
we explain the results obtained from our proposed method. In Section 4, we discuss the
results and, finally, we highlight the conclusions in Section 5.

2. Materials and Methods
2.1. Dataset

The dataset consists of images captured from three different locations: Kiruna, Sweden
(67.84N, 20.41E), Nikkaluokta, Sweden (67.85N, 19.01E), and Moscow, Russia (56.02N,
37.48E). The available dataset consists of images of various weather conditions and con-
trast levels of NLC activity. A total of 1177 images constitute the original dataset, with
362 belonging to the NLC category and 815 to the other category. The other category in-
cludes images with tropospheric clouds, twilight, clear sky, buildings, rain, and various
other environmental conditions, as shown in Appendix A, Figure A1. After preprocess-
ing and cropping, a total of 1540 and 4075 images are available as noctilucent and non-
noctilucent images, respectively. The few additional images from Novosibirsk, Russia, and
Scotland are used for testing but not for training.

2.2. Methods
2.2.1. Convolutional Neural Network

A convolutional neural network (CNN) is a class of deep neural networks widely used
for grid-like data, such as images and videos. A convolutional network combines three
architectural ideas to ensure some degree of shift and distortion invariance: local receptive
fields, shared weights (or weight replication), and, sometimes, spatial or temporal subsam-
pling (through pooling) [15]. A typical convolution neural network consists of repeating
convolutional blocks after the input layer and acts as a features extractor. Mostly, each
convolution block consists of three layers: convolution, non-linear activation, and pooling.

Since their introduction in 1989, convolutional networks have evolved from hand-
written digit classification [16] to object detection [17–19], image recognition [20–22], and
beyond. The continuous innovation in the architectural design of neural networks has
achieved state-of-art performances in many applications and has provided smaller but
equally powerful CNN models such as SqueezeNet [23], ShuffleNet [24], MobileNet [25],
Efficientnet [26], and Efficientdet [27].

SqueezeNet: SqueezeNet is a family of CNN architectures that has alexnet-level
accuracy with 50 times fewer parameters and a significantly smaller model size. The
new building block of SqueezeNet, called the fire module, replaces 3 × 3 filters with
1 × 1, decreases the number of input channels to 3 × 3 filters, and downsamples late in
the network so that the convolution layers have large activation maps [23]. With model
compression applied, the SqueezeNet model can be as small as 0.5 MB [23].

ShuffleNet: This is an extremely computation-efficient CNN architecture specially
designed for very mobile devices with limited computing power. The new architecture
maintains the accuracy with reduced computation costs by employing pointwise group
convolution and channel shuffling [24].

MobileNet: A class of CNN architectures for mobile and embedded vision applications
that use depthwise separable convolutions. Two simple global hyperparameters introduced
in the architecture efficiently trade-off between latency and accuracy [25].

Resnet: Resnet is an effective CNN architecture to train substantially deeper neural
networks. The architecture reformulates the layers as learning residual functions with
reference to the layer inputs, instead of learning unreferenced functions [22].
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2.2.2. Support Vector Machine

Support vector machine is a supervised machine learning algorithm. In classification,
the algorithm puts all the input feature vectors on an imaginary plot and draws the
imaginary high-dimensional line (hyperplane) that separates the examples with different
categorical labels [28,29]. The equation of the hyperplane is given by two parameters: a
real-valued vector w of the same dimensionality as our input feature vector, and a real
number b as:

wx − b = 0 (1)

where the expression wx means w(1)x(1) + w(2)x(2) + · · ·+ w(D)x(D), and D is the number
of dimensions of the feature vector x.

The goal of the SVM learning algorithm during the training phase is to find the
optimal values for the weight and the bias terms of the separating hyperplane: w∗ and b∗,
respectively. After solving the optimization functions, the predicted label for any input
feature vector x is given by [29]:

y = sign(w∗ x − b∗) (2)

where the sign is a mathematical operator that takes any value as a real number and returns
+1 if the input is a positive number and −1 if the input is a negative number.

2.2.3. Metrics Used for the Evaluation

In classification, the F1 score is the accuracy of the test samples calculated with the
precision and recall. The precision of the model is the number of true positive test samples
divided by the number of all positive results. The recall value of the model, which is also
known as the sensitivity, is the number of true positive results divided by the number of all
the samples that should have been identified as positive (true positive + false negative).
The numerical calculation of precision, recall, and F1 score can be obtained using the
Equations (3)–(5), respectively [30].

Precision = TP/(TP + FP) (3)

Recall = TP/(TP + FN) (4)

F1-score =
2 × precision × recall

precision + recall
= TP(TP +

1
2
(FP + FN) ) (5)

2.3. Procedure

First, a high-resolution image (typically of size 2303 × 1690 and 3088 × 2056 pixels)
is converted to a lower resolution of 265 × 240 pixels. Next, a total of five cropped
images—four corner-crops, and a single center-crop—of the size 224 × 224 pixels are
obtained from each of these lower-resolution images. A non-noctilucent category, namely
the other category, is created by randomly selecting images with no NLC activity from the
dataset. The final dataset comprises 1540 NLC and 4075 other category images, respectively.
Approximately 23 percent of the images from each category are used for testing. Out of
the remaining 77 percent, 80 percent are used for training and 20 percent are used for the
validation of the classifier models.

To train an SVM classifier, HOG features are extracted from the resized training sample
of the size 224 by 224 pixels. For a given image, a 6272-dimensional HOG features vector
is obtained by selecting 8 by 8 pixeled cells with eight orientations per cell. The SVM
algorithm is trained on a batch of 100 samples (see Figure 2 for flow diagram).
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Next, four different deep learning-based image classification models with their pre-
trained weights are fine-tuned with the image dataset available in two categories: NLC
and Others (non-NLC). The mean of [0.1938, 0.2742, 0.3568] and standard deviation of
[0.1456, 0.1660, 0.1646] computed over the training dataset are used to normalize each
image before passing it to the classifier model. All deep learning classifiers are trained
with binary cross-entropy loss and an Adam optimizer with the learning rate of 0.001 for
twenty epochs.

Finally, we obtain pixel attribution maps (saliency maps) associated with the different
deep learning models used in the paper for a few selected test images containing noctilucent
clouds. The attribution map signifies the contribution of image pixels in classification
decisions and is computed with a guided backpropagation algorithm [31].

3. Results

The comparison of the SVM classifier with various deep learning architectures is
shown in Table 1. The F1 score is used as the main metric to compare the performances
of various image classifier models. The SVM algorithm trained with the histogram of
oriented gradient (HOG) features achieved an f1 score of 0.55 with a precision of 0.25 and a
recall of 0.38. The lightweight deep-learning models used for the experiment, SqueezeNet,
ShuffleNet, and MobileNet, all achieved the same F1 score of 0.95. Among the deep learning
models used in our experiments, SqueezeNet has the smallest size of 21.81 MB. The widely
used and state-of-art image classification architecture ResNet has a larger model size of
81.11 MB. The comparison of various models according to their estimated model size,
precision, recall, and F1 score (for NLC category) is shown in Table 1.

Table 1. Comparison of SVM classifier with various deep learning architectures for NLC classification.

Model Estimated Total Size (MB) Precision Recall F1 Score

SVM 0.25 0.99 0.38 0.55

SqueezeNet (squeezenet1_1) 21.81 1 0.90 0.95

ShuffleNet (shufflenet_v2_x1_0) 35.13 0.99 0.91 0.95

MobileNet (mobilenet_v2) 24.90 0.98 0.92 0.95

Resnet (resnet18) 81.11 0.98 0.91 0.95

Table 2 shows the class predicted by different models on a few of the selected test
images. Our results show that SVM misclassifies the NLC images in rows 3–5 among the
selected test images. On the other hand, deep learning models show significantly better
class predictions. The predicted labels for the test images in rows 3–5 indicate that NLC
activity is not detected by all the deep learning models equally well. We also note that for
the test images in row 8, the MobileNet and Resnet models misclassify a non-NLC image
as NLC.
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Table 2. Test images with true labels and their predictions: label 0 represents NLC and label 1
represents other category.

Predicted Label

Test Image True Label SVM SqueezeNet ShuffleNet MobileNet Resnet

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 13 
 

 

class predictions. The predicted labels for the test images in rows 3–5 indicate that NLC 
activity is not detected by all the deep learning models equally well. We also note that for 
the test images in row 8, the MobileNet and Resnet models misclassify a non-NLC image 
as NLC. 

Table 2. Test images with true labels and their predictions: label 0 represents NLC and label 1 rep-
resents other category. 

  Predicted Label 
Test Image True Label SVM SqueezeNet ShuffleNet MobileNet Resnet 

 

0 0 0 0 0 0 

 

0 0 0 0 0 0 

 

0 1 0 1 0 0 

0 0 0 0 0 0

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 13 
 

 

class predictions. The predicted labels for the test images in rows 3–5 indicate that NLC 
activity is not detected by all the deep learning models equally well. We also note that for 
the test images in row 8, the MobileNet and Resnet models misclassify a non-NLC image 
as NLC. 

Table 2. Test images with true labels and their predictions: label 0 represents NLC and label 1 rep-
resents other category. 

  Predicted Label 
Test Image True Label SVM SqueezeNet ShuffleNet MobileNet Resnet 

 

0 0 0 0 0 0 

 

0 0 0 0 0 0 

 

0 1 0 1 0 0 

0 0 0 0 0 0

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 13 
 

 

class predictions. The predicted labels for the test images in rows 3–5 indicate that NLC 
activity is not detected by all the deep learning models equally well. We also note that for 
the test images in row 8, the MobileNet and Resnet models misclassify a non-NLC image 
as NLC. 

Table 2. Test images with true labels and their predictions: label 0 represents NLC and label 1 rep-
resents other category. 

  Predicted Label 
Test Image True Label SVM SqueezeNet ShuffleNet MobileNet Resnet 

 

0 0 0 0 0 0 

 

0 0 0 0 0 0 

 

0 1 0 1 0 0 0 1 0 1 0 0Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 13 
 

 

 

0 1 1 1 0 0 

 

0 1 0 0 1 1 

 

1 1 1 1 1 1 

 

1 1 1 1 1 1 

0 1 1 1 0 0

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 13 
 

 

 

0 1 1 1 0 0 

 

0 1 0 0 1 1 

 

1 1 1 1 1 1 

 

1 1 1 1 1 1 

0 1 0 0 1 1



Remote Sens. 2022, 14, 2306 7 of 12
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pixels forming NLC in test images. However, MobileNet architecture provided attribution
maps that are visually off with NLC features in test images.
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The trained SqueezeNet model is also tested with a few images from two different
locations: Novosibirsk, Russia, and Scotland. These test images constitute different back-
grounds, orientations, and camera settings that are not considered in the training phase.

For the SqueezeNet model, when tested with images from a known location (same
as the training dataset), nearly 10 percent (35 out of 343) of the noctilucent cloud images
are misclassified; for details please see the confusion matrix in Figure 6a. The same model,
when tested with images from two new locations (not included in the training dataset)
missed nearly 38 percent (18 out of 48) of noctilucent cloud images; for details please see
the confusion matrix in Figure 6b. The sample images from the new locations can be seen
in Appendix A, Figure A2.
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4. Discussion

We employ different state-of-art deep learning architectures to detect noctilucent
clouds and compare the performances of these models with the baseline machine learning
model (SVM classifier). We find that the baseline machine learning model trained with a
histogram of oriented gradient (HOG) features obtained the lowest F1 score of 0.55 for the
NLC class. We infer that, although HOG features can be effective for objects with rigid
boundaries and sharp contrast, they seem to be less effective in the case of fuzzy images,
such as noctilucent clouds. All convolutional neural network models that are considered in
the experiment have a significantly higher F1 score of 0.95. The sensitivity (recall value) of
the deep learning models is also significantly higher (0.90–0.92). Furthermore, the saliency
maps obtained with the guided-backpropagation algorithm for the test images (Figures 3–5)
show the robust features selection capability of the deep learning models. Although all the
deep learning models achieved a significantly high F1 score of 0.95, the sensitivity maps
produced by SqueezeNet, ShuffleNet, and Resnet show enough relevance with the visual
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features of noctilucent cloud. The saliency maps in Figures 3–5 are plotted for the top 15%
of the contributing pixels for the classification decision (NLC class).

MobileNet obtained the highest recall value of 0.92, but provided sensitivity maps
that differ from the visual understanding of NLC features (please refer to the column for
MobileNet in Figures 3–5). The test results in Figure 6 show that the SqueezeNet model
performs well for the seen data and performs relatively poorly in the case of unseen data.
The model missed a good number of NLC-containing images from a new geographical
location (see Figure 6b for more details). To improve the classification decision associated
with NLC on unseen images from new locations, we should try obtaining datasets from
as diverse locations as possible for training. Additionally, domain adaptation techniques
as mentioned in [32] can also be explored to develop a model that can generalize well for
unseen data.

5. Conclusions

In this paper, we employ different deep learning-based image classifiers to identify
images containing noctilucent clouds. The deep learning models are compared against a
machine learning model trained with support vector machine (SVM) algorithm. The dataset
includes optical images captured from different locations in northern Europe with varied
weather conditions. The SVM classifier is trained with a histogram of oriented gradient
(HOG) features, and deep learning models such as SqueezeNet, ShuffleNet, MobileNet,
and Resnet are fine-tuned based on the dataset. In addition, for a few test images, we
investigate the most informative pixels for the classification decision and visualize them as
saliency maps. These so-called attribution maps are obtained by employing the guided-
backpropagation method. Our results show that the SqueezeNet model achieves an F1
score of 0.95 and is the lightest among the various deep learning models used in this paper.
Additionally, the saliency maps obtained with SqueezeNet model are better-associated with
noctilucent cloud features. With our experiment and results, we identify SqueezeNet model
as a powerful and light model that can be implemented to identify noctilucent clouds.
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