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Abstract

Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarc-
tion, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has
been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidia-
betic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field
has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the
purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the
human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advan-
tages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will
review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related ather-
osclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to
select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.

cardiac function; diabetic cardiomyopathy; obesity; type 1 diabetes; type 2 diabetes

INTRODUCTION

Diabetes continues to increase at an alarming rate, with
current estimates now indicating that there will be�700mil-
lion people worldwide living with diabetes by 2045 (1).

Despite effective control of glycemia (targeting glycated he-
moglobin <7.0%) being positively associated with reduced
risk for microvascular complications (2), the majority of
deaths in individuals with diabetes are due to macrovascular
complications (3–5). Big data studies totaling over 1.9 million
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people showed that diabetes increases the risk of angina and
myocardial infarction, with peripheral arterial disease and
heart failure being the most common initial manifestations
of cardiovascular disease in type 2 diabetes (T2D) (6).
Therefore, there is currently an unmet need for cardiovas-
cular therapies for patients with diabetes. Furthermore,
major health regulatory agencies (e.g., US Food and Drug
Administration and European Medicines Agency) have
mandated that all new therapies in development for diabe-
tes undergo rigorous assessment of cardiovascular risk
through large-scale cardiovascular outcome trials before
approval. This has resulted in a greater demand for better
preclinical models of diabetes not only for the develop-
ment of cardiac therapies but also for the early identifica-
tion of deleterious cardiac side effects.

In the past 10–20 years, the field has made great strides in
identifying key mechanisms driving diabetes-related heart
disease (extensively reviewed in Refs. 4 and 7), which has
been greatly aided by the development and improved char-
acterization of models of diabetes, primarily in animals. The
requirements of a model of diabetic heart disease depend
upon the specific scientific question being asked, but broadly
the model needs to replicate the human condition, replicate
the mechanistic changes occurring within the heart of a per-
son with diabetes, or replicate the drivers of diabeticmyocar-
dial dysfunction. The model must be reproducible, easily
accessible, and fall within the remit of animal guidelines
within the country of research. Although there is currently
no specific model of diabetes whose associated cardiac dys-
function perfectly models the human disease, the purpose of
this guidelines document is to provide the field with infor-
mation on which aspects of cardiovascular disease are best
represented by the available models. This review aims to
emphasize the advantages and disadvantages of using these
models to investigate mechanisms and potential treatments
of cardiovascular diseases, and to highlight the practical
challenges and technical considerations involved. We will
herein review the preclinical models of diabetes according to
their method of induction—dietary, pharmacological, and
genetic—focusing first on T2D and then on type 1 diabetes
(T1D). A discussion of models of diabetes-related atheroscle-
rosis and heart failure is also included, as well as in vitro
models of diabetes.

THE CLINICAL PICTURE OF DIABETIC HEART
DISEASE

Diabetes is a major risk factor for vascular disease includ-
ing both microvascular (retinopathy, nephropathy, coronary
microvascular, and neuropathy) and macrovascular mani-
festations (peripheral vascular disease, cerebrovascular, and
coronary artery disease). Patients with diabetes have a two-
to fourfold increased risk of coronary heart disease and is-
chemic stroke, and a 1.5- to 3.6-fold increase in mortality. As
such, diabetes is a major risk for adverse cardiovascular
events, and is such a powerful risk factor that it has been
considered a “cardiovascular risk equivalent” (i.e., patients
with diabetes but without coronary heart disease have a sim-
ilar coronary mortality to patients without diabetes who had
a previous coronary event) (8).

The term diabetic cardiomyopathy refers in the broadest
sense to cardiac morphological and functional changes that
occur because of diabetes, and importantly in the absence of
other etiologies that exert their own independent effects, for
example, independent of coronary artery disease, hyperten-
sion, valvular, or congenital heart disorders. One of the
major challenges is the lack of a universally accepted and
consistently applied definition of diabetic cardiomyopathy,
with several definitions being used that cover the whole
spectrum of diabetic heart disease from subclinical changes
to overt heart failure. It is further complicated by the bidirec-
tional link between diabetes and heart failure in humans,
where diabetes increases the risk of heart failure, and heart
failure itself increases the risk of T2D. With no universally
accepted definition, it is difficult to assess the true incidence
of diabetic cardiomyopathy.

Although they may vary in severity, it is now widely
accepted that several common cardiac structural changes
are seen in humans with diabetes. Left ventricular (LV) hy-
pertrophy (defined for the purposes of this review as elevated
total LV mass) is commonly seen in adults with diabetes,
with around 70% showing some form of hypertrophy (9).
Although both eccentric hypertrophy (elevated LV cavity
size and preserved wall thickness) and concentric hypertro-
phy (normal or reduced cavity size and elevated wall thick-
ness) are both reported, it is now generally accepted that
reduced LV cavity size and concentric LV hypertrophy repre-
sent the main structural characteristics of diabetic heart dis-
ease (10). However, any cardiac hypertrophic remodeling
must be taken in the context of the patients’ sex (11), ethnic-
ity (12), body habitus (13), and arterial blood pressure (14).
Patients with diabetes have evidence of diffuse myocardial
fibrosis and expanded extracellular volume (15), as detected
usingmagnetic resonance imaging (MRI) techniques.

Diastolic dysfunction is the earliest functional change in
diabetic cardiomyopathy. Observational studies have found
an increased frequency of diastolic dysfunction in T2D with
prevalence varying from 20% to 78% depending on the crite-
ria used (16, 17). Heart failure with preserved ejection frac-
tion (HFpEF) is emerging as a major complication for
patients with diabetes, with 30%–40% of patients with
HFpEF also having diabetes (18). However, the mechanisms
linking diabetes to this growing prevalence of HFpEF are
currently undefined. There is a clear epidemiological rela-
tionship between T2D and heart failure with reduced ejec-
tion fraction (HFrEF), however, there are very few, if any,
studies linking diabetes per se, in the absence of myocardial
infarction, to progressive systolic decline. Most of the human
studies reporting systolic dysfunction describe subclinical
changes in systolic strain (12), rather than global changes in
LV ejection fraction (LVEF).

Traditionally, cardiac dysfunction in diabetes is thought
to progress along a spectrum from subclinical diastolic dys-
function to subclinical systolic dysfunction and then to overt
systolic dysfunction and HFrEF. Although all are seen in dia-
betes, the evidence for this progression, in humans, is weak.
Rather than being successive stages of diabetic cardiomyop-
athy, it is now thought that the HFrEF (dilated cavity and
reduced systolic function) and HFpEF (reduced cavity size,
concentric LV hypertrophy, and diastolic dysfunction) are
not successive stages, but rather develop as separate
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phenotypes. The latest theories suggest that in the HFpEF
phenotype, the central pathology is concentric LV remodel-
ing resulting from coronary microvascular dysfunction,
myocardial fibrosis, and metabolic dysregulation, whereas
in HFrEF eccentric LV remodeling results from cardiomyo-
cyte cell death, fibrosis, and microvascular rarefaction (19).
What determines whether someone with diabetes develops
HFpEF or HFrEF is unknown but is likely multifactorial and
influenced by both genes and the environment.

Cardiac metabolic changes are almost universally reported
in human studies and involve ametabolic shift away from uti-
lization of glucose toward a greater utilization of fatty acids.
Using positron emission tomography, diabetes has been
shown to be associated with increased myocardial fatty acid
utilization, increased oxygen consumption, and reduced car-
diac efficiency (20, 21). When coupled with the evidence of
reduced carbohydrate uptake and metabolism and the recent
hyperpolarized 13C study showing reduced pyruvate dehydro-
genase flux (21–23), this suggests a shift in cardiac energy sub-
strate utilization from carbohydrate to lipids in humans.
Although lipid accumulation is commonly reported in diabe-
tes (24, 25) and is linked to diastolic dysfunction (26), the evi-
dence for lipotoxicity as the causative mechanism is not well
developed in humans. Similarly, glucotoxicity, as shown by
changes in the receptor for advanced glycation end products,
is associatedwith cardiovascular disease andmortality in peo-
ple with diabetes. However, mechanistic studies showing a
causative relationship are lacking (27, 28). With 31P magnetic
resonance spectroscopy, a decreased myocardial phosphocre-
atine (PCr)-to-adenosine triphosphate (ATP) ratio has been
described (23, 24), suggesting that myocardial energetic
impairment is a key component in the pathophysiology of
human diabetic heart disease. In addition, impaired meta-
bolic flexibility in response to increased cardiac workload has
been demonstrated by a decreased PCr-to-ATP ratio in exer-
cising patients with diabetes compared with when at rest (24).

MODELS OF DIABETIC HEART DISEASE

There are numerous experimental models now available
for studying the heart in diabetes, from in vitro systems in
isolated cells to in vivo models in small rodents. In addition,
larger animal species such as pigs, dogs, and even nonhu-
man primates have now been characterized for their validity
in modeling diabetes. There are important differences
between these models in terms of their ability to reproduce
key features of diabetic heart disease. Although our primary
focus will be on rodent models of diabetes, we will begin by
discussing the growing development of more humanized
translational cell models using inducible pluripotent stem
cell-derived cardiomyocytes.

IN VITRO MODELS OF INSULIN RESISTANCE
AND TYPE 2 DIABETES

Human Inducible Pluripotent Stem Cell-Derived
Cardiomyocytes

Cell models offer valuable tools to study the underlying
molecular mechanisms of insulin resistance and T2D in
greater detail. In 2006, Takahashi and Yamanaka (29)

demonstrated that human somatic cells can be reprog-
rammed into a developmental “ground state” (i.e., induced
pluripotent stem cell, iPSC), before being differentiated and
matured into human-iPSC-derived cardiomyocytes (hiPSC-
CMs) (30). This exciting breakthrough in cell research has
opened new avenues for translational studies, investigating
disease mechanisms, high-throughput drug testing, and
advancing the potential for personalizedmedicine.

The use of hiPSC-CMs to study complex multifactorial, life-
style-related disorders like diabetes has been minimally
explored when compared with monogenic diseases and re-
generative medicine. The few available studies primarily
make use of healthy donor-derived hiPSC-CMs and expose
these to a diabetic-like environment, bymimicking the hyper-
glycemia, hyperlipidemia, hyperinsulinemia, or other circu-
lating factors including cortisol and endothelin-1 (31–37). An
advantage of this approach is that different developmental
stages within the diabetes pathogenesis can be mimicked,
and the different circulating factors can be independently
manipulated (Fig. 1). hiPSC-CMs exposed to high palmitate
conditions showed reduced expression of proteins involved in
insulin signaling, and reduced insulin-stimulated glucose
uptake, together with increased non-insulin stimulated fatty
acid uptake (31–33, 37). hiPSC-CMs exposed to a diabetic-like
media showed increased hypertrophic markers, cellular hy-
pertrophy, and reduced contractility (35–37). This experimen-
tal approach has been used to screen for new therapeutic
compounds as well as to investigate themechanisms of action
of existing drugs used in the treatment of diabetes (34–36).

A few studies have generated iPSC-CMs directly from
patients with T2D (T2D hiPSC-CMs) (36, 38). One study used
skin biopsies from two patients with diabetes, one patient
with slow disease progression without cardiovascular dis-
ease, and one patient with fast disease progression with car-
diovascular disease (36). Both studies showed that iPSC-CMs
obtained from patients with diabetes contained features
similar to that seen in the diabetic heart, suggesting
genomic or epigenomic predisposition to the disorder that
is retained during the reprogramming/maturation proto-
col. T2D hiPSC-CMs exhibited a hypertrophic phenotype,
increased brain natriuretic peptide release, and sarco-
meric disarray (37, 38). In addition, the patient-derived
cells showed increased lipid accumulation and peroxida-
tion, reduced mitochondrial number, abnormal mitochon-
drial structure, and decreased oxygen consumption rates
(38). The cellular changes seem to correspond to the clinical
status of the donor (36), although the disease phenotype at
the cellular level seems to precede clinical manifestations
(38). Therefore, both healthy hiPSC-CMs that are exposed to
a diabetogenic environment and iPSC-CMs from patients
with T2D show some features like those seen in diabetic car-
diomyopathy and therefore may be valuable models to study
its pathology.

The advantages of hiPSCs are that they are of human ori-
gin, readily available, collected in a noninvasive manner,
potentially able to form any cell type, and have relatively few
ethical issues. However, there is greater heterogeneity
obtained during cell culturing when compared with other
widely used in vitro models of insulin resistance and diabe-
tes, such as rodent cardiomyocytes or immortalized cardiac
cell lines. Differences in individual donors, genetic stability,
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and experimental variability (e.g., in reprogramming, dif-
ferentiation, and maturation protocols) cause variation
(39). To account for this variability, the use of multiple
patient and control cell lines, as well as multiple clones is
recommended. Another limitation of hiPSC-CMs is their
relative immaturity on a metabolic, structural, and elec-
trophysiological level when compared with human adult
cardiomyocytes. Engineered heart tissue and self-assem-
bling organoids are now being used in the field to provide
models to investigate disease pathogenesis as well as for
early stage drug testing but are in the infancy of their devel-
opment and utilization for diabetic heart disease (40–42).
Taken together, this hiPSC-CMmodel approach holds exciting
promise for diabetic heart disease research. Technological
improvement of hiPSC-CMmaturity, standardization of exper-
imental protocols for generating hiPSC-CM models, and crea-
tion of three-dimensional engineered heart tissue will help
bridge the gap between model and clinical practice. In addi-
tion, it is advised to consider the disease development stage of
the hiPSC-CM model and to report information on genetic
background, possible epigenetic modifiers (e.g., lifestyle), gen-
der, and clinical phenotype of the donor whenever possible.

Cardiomyocyte Models of Animal Origin

Before the development of iPSCs, most in vitro studies on
insulin resistance and diabetes have been performed using
neonatal and adult rodent cardiomyocytes. Cells are typi-
cally isolated from control animals and exposed to diabetic-
like conditions, or cells can be directly isolated from insulin-
resistant/diabetic animal models. Alternatively, immortal-
ized rodent cell lines, such as the mouse atrial cell line HL-1
and the rat cardiomyoblast cell line H9C2, have been used
following exposure to a diabetogenicmilieu.

Immortalized cell lines have unlimited cell renewal
capacity and are relatively easy to transfect, enabling molec-
ular biological manipulations. However, they present with a
tumor-like metabolic phenotype with suppression of oxida-
tive metabolism and triggered glycolytic metabolism, con-
trasting that of the adult heart. Approaches to promote an
insulin-resistant state in primary and immortalized cardio-
myocytes are similar to those used in hiPSC-CMs by expos-
ing them to metabolic stimuli, including high amounts of
palmitate (31), glucose (43), insulin (44), and uric acid (45).
Furthermore, activators of the inflammatory response like
lipopolysaccharide (46) and tumor necrosis factor-a (47)
have been used to induce insulin resistance. Paralleling
hiPSC-CMs, exposure of rodent cardiomyocytes to dia-
betic-like conditions generally leads to reduced insulin
signaling and insulin-stimulated glucose uptake, a meta-
bolic shift to fatty acid metabolism and lipotoxicity (48).
Decreased contractile function has also been demonstrated
in adult rat cardiomyocytes exposed to lipid surplus (31).
Isolated rodent cardiomyocytes incubated with high concen-
trations of glucose have demonstrated glucotoxic phenotypes,
characterized by increased apoptosis, NADPH oxidase activa-
tion, and flux through the polyol and hexosamine biosyn-
thetic pathways (49, 50). Of note, palmitate-induced insulin
resistance models of hiPSC-CMs, human embryonic SC-CMs,
HL-1 cells, and primary adult rat cardiomyocytes have been
compared in the literature (33). Despite their differences in
degree of maturation, all model systems showed similar
responses to lipid exposure regarding changes in fatty acid
uptake, glucose uptake, and insulin signaling.

Primary cardiomyocytes from rodent models of diabetes
maintain their diabetic-like phenotype after isolation (51–
53), although it is unclear for how long. Although cells that

Figure 1. In vitro models of type 2 diabetes (T2D). Advantages and disadvantages of human-induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs) with details on key aspects relating to phenotypic features of diabetic heart disease.
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are isolated from a streptozotocin (STZ)-induced rat model
of T1Dmaintain a blunted insulin-stimulated glucose uptake
following overnight culturing (43), cells isolated from Zucker
obese (ZO) fatty rats appear to lose their metabolic phenotype
toward increased fatty acid oxidation after 48 h in culture
(54). Caution should therefore be taken when culturing iso-
lated cardiomyocytes of in vivo models of (pre)diabetes, as
their diabetic-like phenotype may disappear. Often neonatal
cardiomyocytes are used, because of their greater cell yield,
ease of transfection, and spontaneous beating when com-
pared with isolation from adult animals (55). However, neona-
tal cardiomyocytes are more metabolically and functionally
immature than their adult cardiomyocyte counterparts.

IN VIVO MODELS OF INSULIN RESISTANCE
AND TYPE 2 DIABETES

Dietary Manipulation to Induce Insulin Resistance and
Type 2 Diabetes

High-fat diet-induced obesity (prediabetes).
One of the most frequently used models of obesity/insulin
resistance in rodents involves provision of a high-fat diet,
with the time frame of dietary provision usually ranging any-
where from as little as 4 wk to as long as 1 year. There are a
variety of commercial vendors that supply high-fat diets
containing different fat percentages and sources of fat (e.g.,
saturated fat-based and unsaturated fat-based). One of the
most popular vendors in North America is Research Diets,
with their 45% kcal from lard and 60% kcal from lard high-
fat diets being frequently used to study the pathology of obe-
sity and/or prediabetes.

The diet-induced obesity (DIO) model is widely used in
rodents as it recapitulates numerous features of human obe-
sity, including a progressive weight gain involving expansion
of visceral adipose tissue and whole body insulin resistance
(Fig. 2) (56). However, there are also a multitude of variables
one must consider when using the DIO model. Strain is
highly important, as certain strains are resistant to DIO [such
as the inbred SWR/J and A/J mice (56, 57)], whereas others
are highly susceptible, such as the inbred C57BL/6J strain
from Jackson Laboratories, which is one of the most widely
used strains for DIO studies (56, 58). Yet despite being highly
susceptible to DIO, only a proportion of C57BL/6J mice de-
velop significant obesity in response to high-fat diet supple-
mentation, with males being more susceptible than their
female counterparts (59, 60). The most common rat strains
used for DIO studies include Sprague–Dawley, Wistar, and
Long-Evans rats, but unlike the previously described mouse
strains, these rat strains are all outbred, and thus one needs
to consider potential genetic variation in the strain between
studies. In parallel to their mouse counterparts, Sprague–
Dawley rats also demonstrate significant variability regard-
ing the progression of obesity in response to DIO (61, 62),
though their progression is much more comparable between
males and females (61). Another area of consideration in DIO
studies involves the control diet of comparison, as investiga-
tors frequently use animal facility standard chow for their
lean control mice, which are often included within an insti-
tution’s operating animal housing costs. A commercial

provider’s DIO-associated control diet will usually be
matched to the high-fat diet for micronutrients and protein.

Although obesity is a clear risk factor for the progression
of cardiovascular disease in humans, one of the primary con-
cerns with DIO models in animals, particularly in mice, is
that they do not consistently exhibit changes in cardiac func-
tion in vivo. Many studies have shown no changes in dia-
stolic or systolic function in obese C57BL/6J mice, regardless
of the type of diet used to induce obesity (e.g., lard-based,
hydrogenated coconut oil) (63–66). Nonetheless, there are
inconsistencies in the field with these diets, as others have
reported that they do promote cardiac dysfunction (67), and
in some cases they induce significant systolic dysfunction
(e.g., decreased LVEF) reminiscent of a HFrEF phenotype
(68). Similarly, some studies have suggested that high-fat-
based DIO models do promote in vivo diastolic dysfunction
(69, 70), but this still needs to be evaluated more extensively.
It is important to consider how these findings relate to the
human population being modeled, and the relationship
between cardiac dysfunction and the degree of obesity in
patients (71). Numerous mechanisms proposed to contribute
to diabetic heart disease are also exhibited in DIO models.
This includes alterations in cardiac metabolism [e.g.,
decreased glucose oxidation and increased fatty acid oxida-
tion (53, 65, 72, 73)], cardiac lipotoxicity [e.g., ceramide and/
or diacylglycerol (DAG) accumulation (63, 67, 74)], inflam-
mation (75), microvascular dysfunction (76), and endoplas-
mic reticulum stress (77, 78) to name a few. The fact that
these mechanisms are also evident in rodent models of T2D
would suggest that they are induced by obesity and may be
directly causal to the pathology of diabetic heart disease.

High fructose-induced insulin resistance/prediabetes.
A high-fructose dietary intervention has proven to be a use-
ful experimental tool to generate a preclinical rodent model
to study cardiac pathology associated with insulin resistance
and prediabetes (Fig. 2). These dietary studies have demon-
strated that dietary fructose confers adverse effects on sys-
temic metabolism and cardiac function, even in the absence
of marked hyperglycemia and obesity (for review, see Ref.
79). Tightly controlled dietary intervention studies compar-
ing fructose, glucose, and sucrose have advanced the propo-
sition that it is the fructose component of the sucrose dimer
that mediates the adverse metabolic response to sugar-
induced metabolic disease (80). The characteristics of fruc-
tose-induced systemic metabolic dysregulation in rodents
may be species-specific, and caution must be taken when
comparing between species, but in most settings rats are
more susceptible than mice. In general, the systemic pheno-
type induced by a high-fructose diet in rodents most com-
monly includes insulin resistance and dyslipidemia (81–83),
with fructose-induced hypertension and hyperinsulinemia
also reported in some studies (84, 85). Blood glucose is either
unchanged or mildly elevated in fructose-fed rats and mice,
recapitulating the very early stages of disease progression
(86, 87).

Reported methodology for fructose dietary interventions
varies in diet composition (% fructose, iso- vs. hyper-caloric),
administration (pellets vs. drinking water), and diet dura-
tion. Typically, studies in rats and mice use isocaloric diets
containing 60%–72% of energy from fructose, for 4–12 wk
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duration. A custom-control diet matched to the fructose
diet for energy, macronutrients and micronutrients allows
for a tightly controlled dietary intervention where the
effects of dietary fructose can be directly investigated.
Administration of the diet using pelleted food generally
provides stable food intake and ensures an isocaloric set-
ting. Interventions that add fructose to the drinking water
(usually 10% fructose) may result in higher (or variable) ca-
loric intake, depending on whether extra calories ingested
via the drinking water are offset by a reduction in food
intake. Housing conditions can also have an effect, and an
important consideration for fructose dietary studies is the
humidity of the animal housing unit. High humidity can
affect the consistency of the fructose diet pellets, and fre-
quent replacement of food is required to maintain palata-
bility (e.g., every 1 to 2 days). To preserve the integrity of
the fructose diet, the pellets should be refrigerated (or fro-
zen for long-term storage) in sealed containers because of
the susceptibility of high sugar content to support bacte-
rial growth.

The key practical advantages of the fructose diet model of
prediabetes are that it is relatively inexpensive, short term,
and can be easily applied to rodent models with underlying
genetic conditions. The model recapitulates clinical features
of insulin resistance and allows investigation into the impact

of a relatively mild prediabetic state, in the absence of
marked hyperglycemia and obesity. Despite this mild sys-
temic phenotype, a notable cardiac phenotype has been
reported. Cardiac tissue insulin resistance is evident as
demonstrated by downregulation of the insulin signaling
pathway in fructose-fed rodents (86). A high-fructose diet
has also been shown to induce cardiac hypertrophy, oxida-
tive stress, and apoptosis (82, 88, 89). Fructose-induced
cardiac dysfunction has been characterized by alterations
in cardiomyocyte excitation-contraction coupling and
Ca2þ handling (90). Although not yet extensively studied,
some evidence of diastolic dysfunction in fructose-fed
rodents has been reported using flow-Doppler echocardi-
ography (E/A ratio) (91, 92). However, further work is
required to fully characterize the structural and functional
changes that occur in response to a high-fructose diet
using in vivo imaging modalities.

Combination Dietary Manipulation and Pharmacology
to Induce Insulin Resistance and Type 2 Diabetes

High-fat diet/streptozotocin model of type 2 diabetes.
Although numerous dietary strategies are used to model in-
sulin resistance and/or a prediabetic state in rodents, the
addition of low-dose STZ injections (usually around 25 mg/

Figure 2. Dietary models of prediabetes/type 2 diabetes (T2D). Advantages and disadvantages of the primary dietary models of prediabetes/T2D, with
details on key aspects relating to phenotypic features of diabetic heart disease. While “nonobese” is listed as a disadvantage due to prediabetes/T2D
often been associated with underlying obesity, the absence of obesity can also be an advantage if one needs to address whether the cardiac phenotype
is independent of body weight gain. STZ, streptozotocin.
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kg in rats and 75 mg/kg in mice) to a modified diet is becom-
ing increasingly popular. STZ is a b-cell toxin, typically used
at higher concentrations to produce T1D (see Streptozotocin
Model of Type 1 Diabetes); however, when used at a lower
dose in combination with a high-fat diet, it can induce hy-
perinsulinemia and hyperglycemia. This model imparts sev-
eral practical advantages including its lower cost, its speed
to develop the disease, and the ability to modify the STZ
dose to generate a spectrum of disease severity (Fig. 2). The
diet incorporated is often a high fat or a combination of high
fat and high sucrose provided anywhere from 3 to 12 wk in du-
ration, with STZ administered at �2 wk in rats, and at �4 or 5
wk in mice. Solutions of STZ should be prepared freshly in a
citrate buffer at pH 4 and used immediately, because STZ rap-
idly precipitates out of solution (93). Fasting animals (for at
least 5 h or overnight) before STZ administration increases
reproducibility, by minimizing competition between STZ and
blood glucose for the islet b-cell glucose transporter (GLUT) 2
(56). The amount of STZ can be titrated to induce the extent
of hyperglycemia required and can either be given as a one-
off bolus or on multiple occasions. For example, in Wistar
rats, an STZ concentration below 30 mg/kg induces modest
increases in plasma glucose while maintaining the hyperinsu-
linemia produced by the high-fat diet, but above 30 mg/kg
the hyperglycemia becomes more severe and is accompanied
by hypoinsulinemia, weight loss, and hyperketonemia (94).
When one uses this model for the first time, it is recom-
mended that a pilot study is carried out to optimize the dose
of STZ needed, as strain, sex, and housing environment can
influence susceptibility.

The addition of low-dose STZ to a high-fat diet elicits a
highly reproducible diastolic dysfunction (4, 95–98), and
manifests as a reduction in the mitral E/A and tissue
Doppler e0/a0 ratios, or an elevation in the E/e0 ratio, the lat-
ter of which is often more reliable and reproducible than the
former (99). Using the isolated perfused heart, diastolic dys-
function is evident in response to stress such as hypoxia,
which induces an increase in end-diastolic pressure and can
be reversed by treatment withmetabolic therapy (100). Of in-
terest, the diastolic dysfunction observed in males does not
appear to be evident in females, though this could be due to
female C57BL/6J demonstrating resistance to the actions of
STZ (101, 102), and this will need to be further characterized
in future studies.

Despite the dietary/low-dose STZ model producing a
highly reproducible diastolic dysfunction in rodents, for the
most part, LV systolic function remains normal when com-
pared with lean, healthy controls (96, 97), but whether pro-
longed duration of the model yields systolic dysfunction
remains to be determined. In unpublished findings by the
Ussher group, male and female C57BL/6J mice following 18
wk of dietary supplementation with a high-fat diet (STZ
administered at the 5-wk time point) are still devoid of any
notable systolic dysfunction. Although baseline cardiac
function is normal in rodents subjected to the dietary/low-
dose STZ model, the response following ex vivo ischemia-
reperfusion is abnormal, with decreased recovery of rate
pressure product (34). However, it has not been determined
how rodents subjected to this model recover following in
vivo myocardial infarction or heart failure produced via sur-
gical intervention.

Importantly, the dietary/low-dose STZ model in rodents
recapitulates a number of molecular mechanisms indica-
tive of diabetic cardiomyopathy in humans, including
impaired energetics and mitochondrial dysfunction (103,
104), often accompanied by elevations and reductions in
myocardial fatty acid oxidation and glucose oxidation,
respectively (94–97, 100). In addition, this model presents
with impaired metabolic flexibility in response to stress,
including an impaired ability to upregulate glycolytic flux
in response to both acute and chronic oxygen restriction
(100, 105). Increases in cardiac fibrosis, inflammation, and
oxidative stress, as well as impaired calcium handling are
also observed in hearts of rodents subjected to dietary/
low-dose STZ-induced T2D (103, 106, 107). This model is
highly responsive to most major therapies used in the
treatment of T2D, including the first-line therapy metfor-
min (108), the glucagon-like peptide-1 receptor (GLP-1R)
agonist liraglutide (95), and the sodium-glucose cotrans-
porter-2 (SGLT2) inhibitor empagliflozin (109), verifying
its validity as a translational model. However, a limitation
with this model is the inherent toxicities associated with
STZ use (e.g., hepatic genotoxicities). There is also a dearth
of published information with this model in female
rodents, as well as in older rodents, and it will be impor-
tant for investigators to take this into consideration, given
the demographic of individuals affected by T2D.

Genetic Models of Insulin Resistance and Type 2
Diabetes

ob/ob and db/db mouse models of type 2 diabetes.
There are two genetic mouse models of T2D that are fre-
quently used to study the pathophysiology of diabetic heart
disease: the obese ob/ob mouse and the diabetic db/db
mouse (Fig. 3) (110). Leptin is a peptide hormone secreted by
mature adipocytes that regulates food intake and energy ex-
penditure, and these two mouse models are congenitally de-
ficient in either leptin (ob/ob) or the leptin receptor (db/db).
Consequently, both the ob/ob and the db/db mice are hyper-
phagic with development of severe obesity due to increased
energy intake and reduced metabolic rate. The increase in
body weight plateaus at �2 mo of age, approximately double
the weight of their lean genetic controls. Although there may
be some quantitative and chronological differences, the
overall metabolic alterations appear very similar in both
ob/ob and db/db mouse strains (111), but with the db/db
being more extreme phenotypically. Both models exhibit
early signs of hyperinsulinemia due to insulin resistance,
euglycemia which progresses to overt hyperglycemia, and
dyslipidemia which presents by �15 wk of age (111).

These two models exhibit a cardiac metabolic phenotype
with high reliance on myocardial fatty acid oxidation,
reduced glucose oxidation rates, mitochondrial dysfunction,
and impaired insulin-stimulated glucose uptake (112–114).
Another consistent finding is impaired cardiac energetics
with reduced energy status (115, 116). Studies addressing the
progression from prediabetic state (around 4–6 wk of age) to
overt insulin-resistance state (around 12–15 wk of age), sug-
gest that the alterations in myocardial metabolism precede
the development of ventricular dysfunction (111, 117, 118),
findings which are concordant with observations made in

MODELS OF DIABETIC HEART DISEASE

H182 AJP-Heart Circ Physiol � doi:10.1152/ajpheart.00058.2022 � www.ajpheart.org
Downloaded from journals.physiology.org/journal/ajpheart (193.213.195.017) on November 23, 2022.

http://www.ajpheart.org


clinical studies (20). Studies on cardiovascular pathophysio-
logical processes in older db/db and ob/ob animals report
common traits of diabetes-induced cardiovascular pathology
such as increased vascular and myocardial oxidative stress,
fibrosis, apoptosis, impaired calcium handling, endothelial
dysfunction, and impaired vascular compliance (112, 119–
124). As these models are quite severe, the progression to
cardiac complications is rapid in these genetic models,

facilitating time-effective studies when compared with
less severe models of obesity-induced insulin resistance.
Careful assessment of ex vivo ventricular function in older
db/db mice with established hyperglycemia reports LV
systolic and diastolic dysfunction with reduced cardiac
output and impaired parameters of ventricular function
(116, 125, 126). In vivo assessment of cardiac function with
echocardiography or MRI are not conclusive, reporting

Figure 3. Genetic models of type 2 diabetes (T2D). Advantages and disadvantages of the primary genetic models of T2D, with details on key aspects
relating to phenotypic features of diabetic heart disease. While “nonobese” is listed as a disadvantage due to T2D often been associated with underly-
ing obesity, the absence of obesity can also be an advantage if one needs to address whether the cardiac phenotype is independent of body weight
gain. TAC, transverse aortic constriction.
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both impaired (118) and unaltered in vivo cardiac function
(115, 126) in db/db mice, which could be explained by sys-
temic adaptations to sustain cardiac function.

The db/dbmouse has been used extensively to study anti-
diabetic treatments, including established drugs used in
clinical practice (e.g., biguanides, a-glucosidase inhibitors,
sulfonylureas, thiazolidinediones, dipeptidyl peptidase-4
inhibitors, GLP-1R agonists, and SGLT2 inhibitors), as well as
experimental compounds. Branded drugs are commonly
used as positive controls and produce plasma glucose and in-
sulin lowering effects in db/db mice (127–129). Of interest,
the effects on hyperglycemia of these antidiabetic drugs are
not always sufficient to preserve insulin secretory capacity
in the db/db mouse (129), most likely due to the severity of
this model. In terms of cardiovascular effects, many studies
have shown that antidiabetic treatments attenuate cardiac
pathological remodeling in db/db mice (128, 130–133), even
in the absence of glucose-lowering effects (134).

The db/db and the ob/ob models are extreme models of
hyperphagia, obesity, and eventually uncontrolled diabetes,
and the progression from obesity to b-cell dysfunction in the
db/db mouse is extremely rapid when compared with
patients (and mechanistically most patients with obesity/di-
abetes do not have genetic mutations in leptin or its recep-
tor). If planning longer-term treatment/aging studies in the
db/db mouse, care must be taken in older mice as they de-
velop additional systemic complications, which challenges
both housing and handling of these animals. They show
early signs of cold intolerance, are susceptible to several
stressors, and with age they frequently develop subcutane-
ous inflammation, abnormal liver, kidney and spleen mor-
phology, weight loss, lymphomas, peripheral neuropathy,
and poor wound healing. This can have practical implica-
tions, for example, limiting tail vein cannulations in older
mice to avoid tail necrosis and consideration of the humane
endpoint for terminating experiments. There are also chal-
lenges concerning breeding as these monogenic obese ani-
mals are functionally infertile, which makes breeding
between the heterozygotes costly.

Zucker diabetic fatty rat model of type 2 diabetes.
This obese T2D model originates from the identification by
Theodore and Lois Zucker of a missense mutation in the lep-
tin receptor gene in outbred Merck-M rats, leading to the de-
velopment of obesity. This strain was named Zucker-Leprfa/fa

and is commonly referred to as the fatty or ZO rat.
Selective inbreeding of ZO rats over several generations
led to the identification of a new substrain of ZO rats with
a more diabetic-like phenotype referred to as the Zucker
diabetic fatty (ZDF) rat. When compared with their lean
equivalents, namely, lean fa/þ or lean Zucker (LZ) rats,
ZO rats exhibit increased caloric intake from the age of
4 wk and progressively develop obesity (135). From 6 to 7 wk
of age, sustained hyperinsulinemia is sufficient to maintain
normoglycemia in most ZO rats, with some reports demon-
strating a mild to moderate increase in blood glucose in
some ZO rats later in age (136, 137). In contrast, ZDF rats
become insulin resistant at 6 to 7 wk of age and have ele-
vated concentrations of insulin (138, 139), which pro-
gresses to a robust hyperglycemia by 10–14 wk of age (138,
140). As ZDF rats age, an imbalance between b-cell

hyperplasia and apoptosis results in the progressive
decrease of insulin secretion, paralleled by an increase in
glycemia that can reach >700 mg/dL at 24 wk of age (141,
142). Accordingly, ZDF rats reproduce the course of human
T2D from the prediabetic to the diabetic state, as well as
other key features of the human metabolic syndrome
including dyslipidemia (142, 143) and a mild elevation in
blood pressure (Fig. 3) (144).

Unfortunately, there has been a relative lack of compari-
son between male and female ZDF rats, likely because the
spontaneous diabetic phenotype in males is not observed in
female ZDF rats. Despite female ZDF rats being obese and
hyperinsulinemic, they need to be fed an obesogenic diet to
induce T2D (141, 145). The recommended obesogenic diet
comprises 48% kcal from fat, which if provided to females
induces T2D and if provided to male ZDF rats will further
exacerbate their diabetic phenotype (145). The mechanisms
explaining these sex-specific differences in diabetes suscep-
tibility remain unknown and will need to be resolved. This is
particularly important if using ZDF rats as a model for study-
ing diabetic cardiomyopathy, as in humans diabetic cardio-
myopathy and HFpEF are more prominent in women with
T2D than in men (146). From 2 mo of age, male ZDF rats
demonstrate decreased heart capillary density, and an
increase in cardiomyocyte area by 8 mo of age (141, 144). In
contrast, echocardiography analysis demonstrates that ZDF
rats exhibit no changes in LV end-diastolic diameter or sep-
tal and posterior wall thickness (143), and no changes in
heart weight-to-tibia length or body weight ratios have been
reported in multiple studies using male ZDF rats (138, 143,
147). Millar catheter pressure/volume studies identified the
presence of diastolic dysfunction in ZDF male rats at 16 wk
of age, which was further exacerbated at 36 wk of age and
accompanied by an increased end-diastolic volume (147).
Similarly, diastolic dysfunction has also been reported in
ZDF rats at 44/45 wk of age, reflected by an increase in LV
end-diastolic pressure (148). Of interest, diastolic dysfunc-
tion and cardiac hypertrophy have been identified in female
ZDF rats, but only when fed on an obesogenic diet (141).

ZDF male rats also recapitulate the changes in myocardial
metabolism characteristic of diabetic cardiomyopathy, includ-
ing decreased rates of glucose metabolism (149, 150), as
well as an increase in palmitate metabolism (151). The
increased palmitate oxidation in ZDF rats is unable to
match the elevated rate of palmitate uptake, such that
myocardial triacylglycerol (TAG) and other fatty acid
intermediates such as DAG and ceramide accumulate,
mediating cardiac lipotoxicity. Of clinical relevance, ZDF
rats do respond to the majority of antidiabetic therapies
including metformin (152), the GLP-1R agonist liraglutide
(153), and the SGLT2 inhibitor empagliflozin (154), high-
lighting their utility as a translational model of T2D.

An important limitation in using ZDF rats relates to
their cardiac phenotype being potentially dependent on
their spontaneous development of hydronephrosis, which
is characterized by a swelling of the kidney due to an
obstructed bladder, a clinical symptom that is absent in
humans with T2D (147, 155). Moreover, LV systolic wall
stress positively correlates with blood urea nitrogen levels,
consistent with the notion that the diabetes-related car-
diac dysfunction in ZDF rats may be biased by the
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presence of underlying kidney disease (155). Therefore, it
is recommended that users of the ZDF rat strain rigorously
evaluate renal morphology and function to exclude the
presence of hydronephrosis as a confounding factor when
evaluating the onset of diabetic cardiomyopathy. Similar
to what has been previously described for db/db mice, ZDF
rats are functionally infertile, which makes breeding
costly as heterozygotes (Zucker-Leprfa/þ ) are needed to
maintain the strain.

Goto–Kakizaki rat model of type 2 diabetes.
The Goto–Kakizaki (GK) rat was generated by selective
breeding of Wistar rats over numerous generations with glu-
cose intolerance used as a selection index (156). The GK rats
manifest the major features of the metabolic, hormonal, and
microvascular disorders described in T2D (Fig. 3). GK rats
show basal hyperglycemia, hyperinsulinemia, and impaired
secretory response to glucose as early as 3 to 4 wk of age, and
insulin resistance, dyslipidemia, and T2D at �12–16 wk of
age (157–159). There are no apparent differences linked to
sex regarding basal circulating glucose and insulin levels in
GK rats (159), and nondiabetic Wistar rats are the optimal
control group for comparison. The GK rats show b-cell dys-
function even in the absence of glucose intolerance from the
first 3 wk after birth, a prediabetes period, which cannot be
reversed by normal postnatal nutrition and nursing behav-
ior, indicating a genetic basis of T2D (159, 160). They also dis-
play late diabetic complications, such as neuropathy (161),
retinopathy (162), and polycystic ovary syndrome (163).
Genetic linkage analysis suggests that distinct combinations
of genetic loci are responsible for different physiological
characteristics associated with the diabetic phenotypes,
which is consistent with the features of polygenic T2D in
humans (164, 165).

Cardiac morphology and function of the GK rat largely
mimic those of patients with T2D, including hypertrophy,
contractile dysfunction, and metabolic alterations. Cardiac
hypertrophy assessed by heart weight to body weight ratio,
wall thickness by echocardiography, and individual cardio-
myocyte size by histology can be detected as early as at 8
wk of age (166). Functional contractile analyses have gener-
ated mixed results. Female GK rats have reduced myocar-
dial blood flow and contractility at the age of 8 to 13 mo, as
assessed by perfusion and cine MRI (167). Ultrasound echo-
cardiography studies have demonstrated that male GK rats
have preserved systolic but reduced diastolic function at 6
to 7 mo of age, indicative of a diabetic cardiomyopathy phe-
notype (168, 169), whereas systolic function declines at 12
mo of age (170). Other studies show preserved basal con-
tractility in isolated perfused hearts (171) and in isolated
ventricular myocytes (172). Despite this, male GK rats show
increased susceptibility to ischemic injury in isolated per-
fused hearts (171, 173) and accelerated cardiac remodeling
after myocardial infarction (174). The male GK rat shows
decreased myocardial glucose utilization and nearly a two-
fold increase in fatty acid oxidation (169). A limitation of
the GK rat is that they are costly and nonobese, with mini-
mal fat accumulation in the liver (160, 175). This absence of
obesity does not replicate the classical presentation in most
patients. However, feeding the GK rat with a high-fat diet
can be an alternative approach to induce obesity, which

exacerbates the defects in metabolism and cardiac ultra-
structure (176, 177).

Other monogenic models of type 2 diabetes.
Several other mouse models of T2D have been used over the
years with various benefits and limitations, some of which
have value in replicating aspects of diabetes but have not yet
been examined extensively for cardiovascular phenotypes.
The KKAy mouse was first described in 1970 (178) and gener-
ated from the spontaneously diabetic Kuo Konodo (KK)
mouse (179), which was bred to also carry the yellow obese
gene (Ay) (178). The KKAy mouse model has predominantly
been used to study diabetic kidney disease (180, 181), with
only a few studies fully exploring its impact on diabetic car-
diomyopathy (182). This model has been shown to respond
to empagliflozin treatment, thereby improving cardiac fibro-
sis and oxidative stress markers (182).

More recently, the TallyHo (TH) mouse strain was derived
from mice showing polyuria and glucosuria, with genetic
mapping identifying three quantitative trait loci focused on
regions of chromosome 19 including Tanidd1, chromosome
18 Tanidd2, and a locus on chromosome 16 (183). Relatively
little work has been carried out on the cardiovascular pheno-
type of these mice, making them another novel model for
potentially studying the impact of T2D on the heart. A limi-
tation of the THmouse is its relatively late onset of hypergly-
cemia [�26 wk of age (183)] and that only males develop
overt hyperglycemia, which is not 100% penetrant (184).

Other investigators have focused on specific aspects of di-
abetes and have generated targeted approaches to specifi-
cally define metabolism and signaling in the heart, such as
overexpression or loss of function of key metabolic regula-
tors (e.g., peroxisome proliferator-activated receptor a, insu-
lin receptor) and have been previously reviewed in detail
(185, 186). Finally, in the attempt to address precision medi-
cine approaches, investigators have examined common
monogenic mutations that are linked to obesity and diabe-
tes. One example is the generation of mouse models for
mutations in the melanocortin 4 receptor, a G protein-
coupled receptor. Specifically, the recent development of
melanocortin 4 receptor hypermorphic mice revealed obeso-
genic and diabetogenic effects but did not characterize heart
function (187).

IN VIVO MODELS OF TYPE 1 DIABETES

Streptozotocin Model of Type 1 Diabetes

STZ is derived from the Gram-positive bacterium Strept-
omyces achromogenes, and primarily damages insulin-pro-
ducing pancreatic b-cells because of its affinity for GLUT2,
producing a T1D phenotype (188, 189). As described in
COMBINATION DIETARY MANIPULATION AND PHARMACOLOGY TO

INDUCE INSULIN RESISTANCE AND TYPE 2 DIABETES, STZ must be
freshly prepared in acidic citrate buffer and administered in
the fasted state to increase the homogeneity of diabetes. The
detailed methodology for STZ treatment for mice and rats
has been elaborated in a recent publication (190). It is im-
portant to note that mice and rats have different suscepti-
bilities to STZ-induced diabetes, with mice requiring a
higher dose than rats. There are two frequently used
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methods of STZ administration to induce T1D, which
include either a single, high-dose treatment or a multiple,
lower-dose treatment protocol. In mice, a single intraperi-
toneal injection of 200 mg/kg STZ can induce hyperglyce-
mia, whereas, in rats, a single dose of 65 mg/kg STZ can be
sufficient (190). This method increases blood glucose lev-
els to >500 mg/dL within 2 days through nearly complete
destruction of pancreatic b-cells (191). As high-dose STZ
causes massive and rapid b-cell death, the risk of mortal-
ity within the initial 24 h postadministration is high,
therefore, animals must be monitored closely. In addition,
10% sucrose water should be provided following STZ
administration, to help avoid hypoglycemia caused by the
destruction of pancreatic b-cells. To slowly develop a T1D
phenotype, which more closely mimics an autoimmune
insulitis, low-dose (40–50 mg/kg body wt in mice) intra-
peritoneal injections of STZ for five consecutive days can
be used (190). This method causes less STZ-induced toxic-
ity and has reduced mortality risk (and supplementation
of sucrose water can also be applied to this approach).

One of the major advantages of the STZ model of T1D is
that it is simple, cost-effective, and expeditious (Fig. 4) (192).

However, one must consider when using this model that the
hyperglycemic effect of STZ can be highly variable within a
group of animals, and that STZ sensitivity varies between
different strains, where some are high responders and others
are low responders (193). The weight loss induced by high-
dose STZ can be extreme, so it may be worth using animals
with a higher starting body weight, and carefully considering
the window of time between STZ administration and final
experiments. Although STZ predominantly affects islets of
the pancreatic core, its cytotoxic effects are not restricted to
pancreatic b-cells but can also affect the liver and kidney
(194–196). In addition, STZ has T1D-independent cardiotoxic
effects that need to be considered if using this model to
study T1D-related cardiomyopathy (197). STZ can have geno-
toxic effects such as DNA methylation, DNA strand breaks,
and inhibition of DNA synthesis (188). Another important as-
pect of consideration involves the timing of STZ injection,
which can affect the progression of hyperglycemia in ani-
mals (strongest at 4:00 PM and weakest at 8:00 AM) (198).
There also appears to be sex-specific differences regarding
susceptibility to STZ, as female mice are less sensitive to
STZ-induced b-cell toxicity (199–201).

Figure 4. Models of type 1 diabetes (T1D). Advantages and disadvantages of the primary models of T1D, with details on key aspects relating to pheno-
typic features of diabetic heart disease. T2D, type 2 diabetes; TAC, transverse aortic constriction.
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Regarding the relevance of STZ-induced T1D in modeling
diabetic heart disease, it produces a cardiomyopathy with
increased nuclear chromatin condensation and mitochon-
drial swelling in cardiomyocytes, as well as a marked increase
in lipid droplets (202, 203). The metabolic profile of the heart
in T1D (increased fatty acid oxidation and decreased glucose
oxidation) is also evident in both mice and rats subjected to
STZ-induced T1D (116, 204–207). Although female mice may
be less sensitive to STZ-induced b-cell toxicity and associated
hyperglycemia, the progression of both systolic dysfunction
(decreased LVEF) and diastolic dysfunction (increased E/e0 ra-
tio and decreased e0/a0 ratio) appears to be more noticeable
than in their male counterparts (208). In general, the overall
decrease in LVEF and ensuing systolic dysfunction observed
in STZ-treated mice is relatively mild (204, 208), though
another study using male Wistar rats was reminiscent of an
HFrEF phenotype (209). STZ-induced T1D in male Sprague–
Dawley rats also results in systolic dysfunction assessed using
pressure-volume loop analysis with Millar catheters, as
reflected by decreases in LV pressure and the maximal rate of
LV pressure rise (210). Conversely, STZ-induced T1D in male
Wistar rats did not produce any systolic dysfunction
(decreased LVEF) or diastolic dysfunction (increased E/e0 ra-
tio and decreased e0/a0 ratio) as assessed by ultrasound echo-
cardiography (211). Similarly, ultrasound echocardiography
analysis did not reveal any notable systolic dysfunction
(decreased LVEF) in male and female mice subjected to STZ-
induced T1D (212). Despite some of these inconsistencies in
cardiac function profiles, the STZ model of T1D has been
invaluable for investigations of T1D-induced structural, meta-
bolic, and functional remodeling in the heart.

Akita Mouse Model of Type 1 Diabetes

Insulin 2 heterozygous (Ins2þ /�) Akita mice are a sponta-
neous, genetic, and nonobese model of T1D, due to a muta-
tion in Ins2 gene that causes a disruption in normal folding
of proinsulin, thereby inducing endoplasmic reticulum
stress and subsequent b-cell toxicity and loss. As such, Akita
mice exhibit decreased pancreatic b-cell density and ele-
vated blood glucose levels starting from the age of 3 to 4 wk,
achieving robust (>500 mg/dL) hyperglycemia at the age of
8 wk (213). Females show milder symptoms compared with
males with a marked increase in longevity (690 days of age
in females vs. 305 days of age in males) (213). Akita mice are
commercially available from the Jackson Laboratory, and
careful monitoring of their blood glucose levels is required.
Blood glucose levels often fluctuate in female Akita mice
whereby transient hyperglycemia is often seen during pu-
berty, which undergoes remission to more moderate hyper-
glycemia after sexual maturation (213).

Akita mice offer several advantages for studying T1D, with
one of the most notable being that they require no form of
pharmacological or surgical intervention to induce a T1D
phenotype (Fig. 4). Moreover, homogeneity of blood glucose
concentrations in Akita mice is notable, with their blood glu-
cose levels being very consistent among different age groups,
particularly in males. Akita mice also demonstrate signifi-
cant relevance to human T1D, as their diabetic phenotype
progresses with age in a manner that closely recapitulates
the pathogenesis in humans. Therefore, Akita mice are of
use to study the pathogenesis and progression of T1D in a

chronic fashion in different organs (214), such as the heart
(215–218), kidney (219), and liver (220, 221). They are fre-
quently used as a model to study the effect of insulin or anti-
diabetic drug treatments (219, 222–225). Another advantage of
the Akita mouse is that insulin resistance begins to manifest
by 13 wk of age (226), suggesting that Akita mice exhibit phe-
notypes observed in patients with advanced-stage T1D and in-
sulin deficiency combined with insulin resistance. When
using Akita mice, it is important to take into consideration the
strain. Akita mice are available in two strains, the Ins2þ /�

Akita mice on a C57BL/6J background, and the Ins2þ /C96Y

Akita mice with a C96Y mutation in the Ins2 gene on a 129/
SvEv and DBA/2 background, the latter of which demonstrates
enhanced kidney injury (227). As kidney function can influ-
ence heart function, it is important to put in context the
results andmention the Akita strain used in experiments.

Importantly, Akita mice exhibit several features that are
observed in diabetic cardiomyopathy in humans. This
includes increased lipotoxicity, metabolic remodeling, and
mitochondrial dysfunction leading to cardiac hypertrophy,
fibrosis, and cardiac dysfunction (215, 216, 228, 229). In terms
of cardiac function, 20-wk-old male Akita mice (background
strain not specified) demonstrate normal systolic function
(LV fractional shortening) as assessed via ultrasound echo-
cardiography (230). Certain parameters of systolic function
continue to remain normal (LVEF and stroke volume) even
at 1 year of age as assessed via invasive pressure-volume con-
ductance catheters, though reductions in cardiac output
were observed (230). Similarly, 4-mo-old Akita mice (129/
SvEv and DBA/2 background) also exhibit normal systolic
function (LVEF and fractional shortening) (231). Conversely,
4-mo-old male Akita mice (C57BL/6J background) have
decreased systolic function (LVEF) (232). These inconsisten-
cies in cardiac function profiles once more emphasize the
importance of specifying background strain when using
Akita mice. Diastolic dysfunction also appears to be present
in Akita mice regardless of background, as tissue Doppler
assessments indicated reductions in the e0/a0 ratio at 16 wk
of age in Akita mice on a C57BL/6J background (229), while
the E/e0 and deceleration time were increased in 3-mo-old
Akita mice on a 129/SvEv and DBA/2 background (215).

DIABETES-RELATED ATHEROSCLEROSIS
FOR STUDYING DIABETIC HEART DISEASE

High-Fat/High-Cholesterol Diet in Apolipoprotein E or
Low-Density Lipoprotein Receptor Knockout Mice

Although the previous sections provided key details on
models of insulin resistance and diabetes that can lead to
various forms of diabetic cardiomyopathy, none of these
models in isolation produce an atherosclerotic-mediated car-
diovascular disease. This is clinically relevant since an
increased burden of atherosclerosis is recognized as an
essential contributor to increased risk of cardiovascular dis-
ease in diabetes (8). Wild-type mice predominantly carry
cholesterol in high-density lipoprotein (HDL) fractions and
are thus protected from spontaneous atherogenesis. Genetic
engineering targeted to disrupt clearance of cholesterol-rich
lipoprotein particles together with aWestern-style, high-cho-
lesterol diet is needed to increase the exposure of vessels to
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lipid-rich particles, thereby allowing atherosclerotic lesions
to reproducibly develop in the aortic sinus and throughout
the aortic arch, proximal aorta, and trunk of the brachioce-
phalic artery (extensively reviewed in Refs. 233 and 234).
Elimination of the low-density lipoprotein (LDL) receptor
in mice (Ldlr�/� mice), which increases cholesterol within
the LDL particles, or genetic deletion of apolipoprotein E
(Apoe�/� mice), which prevents the clearance of TAG-rich
postprandial lipoproteins, have both proven to be invalu-
able tools in the pursuit of molecular mechanisms influ-
encing atherogenesis (235–237). Systematic evaluation of
risk factors for atherosclerosis and validation of several
human genome-wide association candidates involved in
coronary artery disease have determined that these mice
recapitulate most human-related mechanisms for athero-
sclerosis (238).

To study diabetes-related atherosclerosis, both Ldlr�/� and
Apoe�/� mice are frequently subjected to the dietary and/or
pharmacological models of diabetes described in previous
sections. Although the exact composition of “Western style,”
atherogenic diets often varies, atherosclerotic lesion develop-
ment in the aortic arch and throughout the aorta did not dif-
fer between high-fat versus high-fat, high-sucrose dietary
supplementation (239). However, the addition of sucrose
increases insulin resistance, inflammation in peripheral tis-
sues, and accelerates lesion onset (239). Ldlr�/� mice gain
weight, develop adiposity, dysglycemia, and hyperinsulin-
emia more significantly than Apoe�/� mice when fed a high-
fat, high-carbohydrate diet (240). The breeding of Apoe�/�

mice with T1D Akita mice induces dysglycemia, decreases
body weight (both lean and fat mass), but increases fasting
and fed cholesterol levels while producing a more severe ath-
erosclerosis (221). Similarly, male Ldlr�/� mice bred with
Akita mice have elevated cholesterol and atherosclerosis rela-
tive to Ldlr�/� mice (241). Hyperglycemia can also be induced
by treating Ldlr�/� mice with STZ (50 mg/kg body wt via in-
traperitoneal injection for 5 days), which also heightens
hypercholesterolemia without significant changes to circulat-
ing TAG levels (242). Diabetes induced in Ldlr�/� mice with
viral-mediated destruction of insulin-producing cells also ex-
hibit hypercholesterolemia, accelerated lesion initiation, and
advanced stages characterized by intraplaque hemorrhage
(243). Studies with hyperglycemia in the absence of differen-
ces in plasma cholesterol have identified that diabetes can
change the morphology of the plaque with more significant
calcification in the proximal aorta (244). Glucose-oxidized
LDL also influences monocyte proliferation and migration,
suggesting a more complex intertwining between these risk
factors (245). It is worth remembering though that athero-
sclerotic lesions in humans are prothrombotic and result in
myocardial ischemia. However, this does not occur spontane-
ously in the plaques of Ldlr�/� or Apoe�/� mice without other
manipulations (further reviewed in Ref. 246), such as cross-
breeding Apoe�/� mice with scavenger receptor class B type 1
knockout mice, which results in spontaneous myocardial in-
farction (247). In addition, despite plaque development, nei-
ther Ldlr�/� nor Apoe�/� mice develop severe cardiac
dysfunction nor do they exhibit abnormal hemodynamic pa-
rameters (248). Cardiac hypertrophy has been reported in
some studies in aged Apoe�/� mice, which is worsened if the
animals are fed a high-fat diet (249).

EVALUATION OF CURRENT LITERATURE

We have also performed an extensive evaluation of previ-
ous research, published by the American Journal of
Physiology-Heart and Circulatory Physiology, relating to the
use of the aforementioned rodent models of diabetes and in-
sulin resistance. Our initial search [performed by J. R. Ussher
(April 23, 2022), followed by secondary searches by L. C.
Heather and E. E. Mulvihill for confirmation (April 26, 2022)]
focused on articles published from 2020 to 2022 using “dia-
betes” as our key word on the journal website. This search
yielded 256 articles, many of which were excluded for not
being “original research articles,” being performed in larger
animal models, humans, or other models not characterized
in this review, or published before 2020. Following the appli-
cation of these criteria, our search identified 24 original
research articles to include in our evaluation (Table 1) (64,
106, 209, 212, 250–269).

It is important to note that models of diabetic heart disease
are unique as they must model disrupted metabolism consist-
ent with that observed in clinical diabetes in humans while
also producing the cardiac dysfunction consistent with clini-
cal phenotypes. The purpose for selecting a model of diabetes
may relate to studying other mechanisms of diabetes and how
they may impact the cardiovascular system (e.g., inflamma-
tion, oxidative stress, and microvascular function). However,
our evaluation of these 24 studies relates to their utility in
studying the pathology of diabetic heart disease.

Only approximately half of the 24 studies (11 to be exact)
included in our evaluation measured parameters of cardiac
function. Importantly, for the 11 studies that did report on
parameters of cardiac function, the majority did include an
assessment of both systolic and diastolic function. Of the 24
included studies, only seven reported on parameters of gly-
cemia beyond simple measurement of fasting or ad-libitum
blood glucose and insulin levels (e.g., glucose and/or insulin
tolerance testing). The most frequently used model in our 24
included studies was the use of a high-fat diet to promote
weight gain and ensuing obesity. However, as discussed pre-
viously, high-fat diet-induced obesity in rodents produces
an insulin resistant, prediabetes phenotype, but not a true
T2D phenotype while lacking notable cardiac dysfunction
(56). There was also often variation in diet composition and
duration for those studies that used a high-fat diet to pro-
mote weight gain and obesity, and it is necessary for
researchers to provide these details for all diets (including
the control diets) used in their studies. Other relevant con-
cerns with the 24 included studies are the reliance on pri-
marily young male animals (only 6 reported use of females),
with multiple studies not reporting sex at all. It is readily
apparent that the issues we observed in the 24 included stud-
ies in our evaluation of the current literature, published by
the American Journal of Physiology-Heart and Circulatory
Physiology, are persistent throughout the field. Therefore,
our general recommendations are that researchers using
these models need to provide more details regarding the ra-
tionale for their choice of diabetes model while providing
sufficient details on the strain, age, and sex of the animals
studied. Furthermore, the elevation of blood glucose levels
does not definitively indicate diabetes, and additional indi-
ces of glucose homeostasis need to be reported (e.g., glucose
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tolerance and insulin tolerance testing). Finally, if an investi-
gation is studying diabetic heart disease per se, regardless if
it be the specific mechanisms involved or assessing a poten-
tial pharmacotherapy, it is critical that parameters of both
systolic and diastolic function are measured. By applying
these criteria, it is the hope of all authors of this review that
the details provided herein will allow researchers to select
the most relevant model to address their specific questions
relating to the study of diabetic heart disease.

MODELING ISCHEMIC INJURY AND HEART
FAILURE IN DIABETES MODELS

Although many of the aforementioned dietary, genetic,
and pharmacological-based models reproduce key features of
diabetic heart disease, additional interventions are required
to studymyocardial infarction and heart failure in the context
of diabetes. In this particular section, we will not describe in
detail the methodologies behind the various experimental
models of myocardial infarction and heart failure, which have
already been extensively described in the following reviews
(270–276). Instead, we will focus on their application to rodent
models of prediabetes and diabetes, discussing in each case
both their advantages and limitations.

To study acute changes in cardiac function in response
to myocardial ischemia, the most frequently used techni-
ques are the ex vivo isolated Langendorff and the isolated
working heart perfusion methods. Ischemia is often

implemented in these models by inducing a temporary
global no-flow or low-flow ischemia for 20–30 min, fol-
lowing which one can assess contractility via LV-devel-
oped pressure and cardiac work/power upon reperfusion
(270, 273). These approaches interrogate the response to
ischemia in diabetes, but also facilitate therapeutic stud-
ies by prior treatment of T2D animals with compounds or
acute administration of compounds into the perfusion
apparatus. Despite diabetes increasing the risk for ische-
mic heart disease in humans, both poorer and improved
cardiac adaptation to hemodynamic and ischemic stress
have been reported in diabetic models, which may be due
to variations in the severity of the diabetic phenotype
and experimental conditions between studies (34, 117,
125, 151, 251, 277, 278). Isolated perfused heart studies in
ob/ob mice, db/db mice, ZDF rats, mice/rats subjected to
high-fat diet plus STZ-induced T2D, mice/rats with STZ-
induced T1D, and Akita mice have consistently reported an
elevation in myocardial fatty acid oxidation and correspond-
ing decline in glucose oxidation (53, 95, 100, 111, 149, 215).
Although increases in myocardial fatty acid oxidation are of-
ten thought to be detrimental to the pathology of diabetic car-
diomyopathy, the addition of exogenous high levels of
palmitate was reported to confer beneficial functional effects
and improve redox balance in isolated working hearts from
db/dbmice under conditions of high glucose and isoprenaline
stress (279). An advantage with isolated heart perfusion tech-
niques is that they offer a highly controlled environment for

Table 1. Evaluation of publications on diabetes published by the American Journal of Physiology-Heart and
Circulatory Physiology

Criteria Results and Comments

Model of diabetes Total: 24 publications: high-fat diet alone in mice/rats (12 publications), high-fat diet plus low-
dose STZ in mice/rats (2 publications), high-fructose diet in mice/rats (1 publication), db/db
mice (2 publications), ZDF rat (1 publication), Apoe�/� mice plus high-fat diet (2 publications),
and STZ in mice/rats (4 publications).

Rationale provided for selection of diabetes model Vast majority of studies provided a rationale centered on the theme of diabetes increasing the
risk for cardiovascular disease, with limited focus on why the specific model of diabetes was
selected vs. other models.

Sex, age, strain, and sample size information 15 studies used only young male animals (only 6 reported females, 3 did not report sex stud-
ied, 1 did not report strain studied, and 1 did not report the age of the animals). Sample sizes
were always clearly provided with majority of studies using an “n” of at least 5 or greater,
and some studies reporting an “n” as high as 28.

Glucose homeostasis assessed 12 studies only provided data on fasting or ad libitum blood glucose and insulin levels (only 7
reported on additional indices of glucose homeostasis, e.g., glucose tolerance, insulin toler-
ance). A control group was included in several studies to demonstrate that the dietary inter-
vention, genetic model, or STZ treatment exhibited the intended metabolic phenotype.

Cardiac physiology assessed 13 studies did not report on parameters of cardiac function (though this is not always a relevant
end point to assess, e.g., studies whose primary goal is to study indices of atherosclerotic
plaque formation or vessel function). When cardiac function was assessed, the primary
method was ultrasound echocardiography, which frequently measured parameters of both
systolic and diastolic function (9 studies reported on parameters of diastolic function),
whereas invasive hemodynamics was also used in some studies.

Recommendations to Improve Standardization
1. Provide a more robust rationale for choice of model and explain why a specific model of diabetes is selected vs. another (e.g., the study is

addressing diabetic heart disease specifically and the development of reproducible diastolic dysfunction is necessary).
2. Ensure accurate reporting of strain, sex, and age details. It is important to study both sexes, as there are sex-specific considerations regarding

cardiac function and sex-specific considerations with glycemic status.
3. More thorough investigations of the glycemic status of the animals should also be included to validate the model, especially if a pharmacother-

apy is used.
4. Details on the duration and composition of the control diet and the high-fat diet need to be reported.
5. If status of diabetic heart disease is a major end point, both systolic and diastolic function should be measured.

STZ, streptozotocin; ZDF, Zucker diabetic fatty.
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one tomanipulate the substrate and hormonal concentrations
to which the heart is exposed. A limitation is that the meta-
bolic milieu the heart sees in diabetes is vastly different from
that of a healthy heart. However, for comparative purposes,
substrate and hormonal levels are kept identical between
hearts from lean versus diabetic animals. It is also important
to acknowledge that these ex vivo perfusion modalities are
not equivalent to in vivo measurement of cardiac function,
but allow interrogation of different research questions.

To study diabetes-related myocardial infarction and
heart failure, surgical procedures involving either ligation
of the left anterior descending (LAD) coronary artery or
transverse aortic constriction (TAC), respectively, are used
with the various animal models of diabetes described ear-
lier. Although both surgical models have been validated
with their own strengths and limitations (53, 95, 100, 111,
149, 215), there are several factors one must consider when
choosing which diabetes model to use in tandem. For
example, halogenated anesthetics should be avoided dur-
ing temporary ligation of the LAD coronary artery to
model acute myocardial infarction, because of their cardi-
oprotective effect in nondiabetic animals, which have
been reported to be attenuated with diabetes (280, 281). In
addition, variations in experimental parameters such as
duration of the diabetic state, changes in circulating insu-
lin concentrations, but also differences in dietary compo-
sition (e.g., dietary fat content) can markedly influence
outcomes, with infarct sizes in the animal models
described earlier reported to be larger, smaller, or similar
to that of nondiabetic controls (282–284). Regarding TAC
surgery, although most studies demonstrate an exacer-
bated cardiac hypertrophic response in the setting of dia-
betes, a major criticism is that the rapid increase in
afterload created by the surgery more closely mimics aor-
tic stenosis than the progressive rise in blood pressure
associated with diabetes. Because of the relative early de-
velopment of obesity and insulin resistance, LAD coronary
artery ligation or TAC is often performed using db/db mice
as the animal model of choice. In line with diabetes wor-
sening myocardial infarction outcomes in patients, db/db
mice exhibit a worsening of systolic function versus their
nondiabetic controls in response to a 45-min LAD coro-
nary artery occlusion followed by 28 days of reperfusion
(285). Conversely, db/db mice demonstrate robust protec-
tion against TAC-induced HFrEF (115). Because the failing
heart is often thought to be energy-starved and character-
ized by reduced fatty acid oxidation rates (286), it has been
proposed that the marked elevation in myocardial fatty
acid oxidation in db/db mice is responsible for their cardi-
oprotection against TAC (115). Similarly, mice with T2D in
response to a high-fat diet plus low-dose STZ do not de-
velop systolic dysfunction following TAC surgery (287), which
may also be related to T2D-mediated increases in myocardial
fatty acid oxidation (95, 100). Despite T1D also being associ-
ated with increased risk for heart failure (288), mice subjected
to STZ-induced T1D are also protected against TAC-induced
heart failure, as the decline in systolic function and ensuing
cardiac hypertrophy are not as robust as that observed in their
nondiabetic counterparts (289).

In general, a major limitation with the vast majority of
LAD coronary artery ligation or TAC studies in animal

models of diabetes is that both female mice and aged mice
are often overlooked. Furthermore, many of the aforemen-
tioned animal models of diabetes have not been extensively
validated regarding their response to LAD coronary artery li-
gation or TAC. A reason for the lack of validation relates to
the increased cost, time, and expertise involved with per-
forming surgical interventions in animal models of diabetes,
which necessitates the requirement of additional control
groups. Thus, investigators will frequently not include low-
fat diet-fed lean control groups and simply study cardiovas-
cular outcomes in diabetic animals following either sham
surgery or LAD coronary artery ligation/TAC surgery, or in
response to vehicle control versus pharmacological interven-
tion. Nonetheless, because of the growing appreciation of
monitoring cardiovascular outcomes in diabetes, it is our
hope that the next decade will lead to much-needed
advancement of knowledge in this area.

LARGE ANIMAL MODELS OF DIABETES

In general, mouse models of diabetes are more frequently
used to study diabetic heart disease because of their overall
low-cost, ease of use due to development of specialized
equipment, and ease of genetic manipulation. Nonetheless,
they do have their own limitations as a model species to
study, which from a diabetes standpoint was nicely high-
lighted in a recent study by de Cabo and coworkers (290).
They observed in comparisons of >1,000 mice from the
Study of Longitudinal Aging in Mice, >250 nonhuman pri-
mates (NHPs) from the National Institute of Aging and the
Wisconsin National Primate Research Center, and >3,000
humans from the Baltimore Longitudinal Study of Aging,
that aging-related increases in fasting plasma glucose corre-
late positively with risk for mortality in both NHPs and
humans. In contrast, aging is associated with a reduction in
fasting plasma glucose in mice. Moreover, numerous novel
pharmacotherapies that show promise for the treatment of
obesity and/or T2D in rodents often fail to translate to
humans. Hence, it is imperative that pharmacological effec-
tiveness and safety/toxicology also be assessed in larger ani-
mal models.

The use of NHPs and swine models have proven useful for
the study of obesity and diabetes (both T1D and T2D).
Rhesus and Cynomolgus macaques can be susceptible to
spontaneous obesity that progresses to insulin resistance
(291, 292), whereas dietary manipulations inmacaques, simi-
lar to what has been described in rodents, can also be used to
induce obesity and insulin resistance (293). With regard to
swine, minipig species (Ossabaw, Gottingen, and Yucatan)
are frequently used to study obesity/T2D in response to die-
tary manipulations, where they can be maintained into
adulthood at somewhat reasonable costs while also being
amenable to genetic manipulation (294). STZ and alloxan
can also be used to induce T1D in the aforementioned
models, though because of variability of response to these
chemicals, surgical methods to induce partial or complete
pancreatectomy have also been used (294). Despite these
larger animal models having strong translational rele-
vance to that of humans, there has been surprisingly mini-
mal exploration of in vivo cardiac function in obese and/or
diabetic NHPs and swine. Accordingly, how accurately
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these larger animal models recapitulate key features of di-
abetic heart disease (e.g., early diastolic dysfunction seen
in diabetic cardiomyopathy) is underexplored.

FINAL SUMMARY AND IMPORTANT
CONSIDERATIONS FOR THE FUTURE

A wide variety of models to study both the pathology, as
well as the development of new therapies for both T1D and
T2D, have been developed, each of which comes with their
own unique set of advantages and disadvantages (sum-
marized in Figs. 1–4). Due to the growing recognition of
the importance of also managing cardiovascular disease in
diabetes, it is imperative that we also validate these mod-
els of diabetes on their ability to reproduce features of dia-
betic heart disease in humans. Furthermore, since these
models for most part do not result in atherosclerosis, myo-
cardial infarction, and heart failure, it also necessitates
validating how responsive they are to surgical models of
these macrovascular cardiovascular diseases. One notable
example highlighting the importance of this issue is seen
with db/db mice, which appear to exhibit diastolic dys-
function in a multitude of studies, indicating that they are
a valid model for studying diabetic cardiomyopathy in
humans. On the contrary, due to their resistance to TAC-
mediated impairments in systolic function, they are not
an ideal model to study T2D-related HFrEF.

Although some models of diabetes have interrogated sex-
specific differences with regard to their ability to produce di-
abetic heart disease, it is imperative that this be more exten-
sively characterized in all models, considering that diabetic
cardiomyopathy is more prevalent in women (295). For mod-
els where cardiac dysfunction is absent in female animals,
an important aspect to consider relates to housing tempera-
ture. The vast majority of referenced literature in this review
encompasses mice studied at room temperature, but ther-
moneutrality for mice is between 27�C and 30�C. Of rele-
vance, female mice are highly resistant to obesity-induced
nonalcoholic fatty liver disease and subsequent steatohepa-
titis, but this resistance is extinguished if the mice are
housed at thermoneutrality (296). More recently, studies in
malemice housed at either room temperature or thermoneu-
trality have demonstrated that thermoneutrality lowers
heart rate and mean arterial pressures in lean mice, whereas
these actions are blunted in mice subjected to high-fat diet-
induced obesity (252). Taken together, as the field continues
to collaborate and refine the current models of diabetes,
while also developing new models, this should result in fur-
ther improvements in our ability to clinically manage diabe-
tes-related cardiovascular disease.
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