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Snow avalanches endanger lives and infrastructure in mountainous regions worldwide. 16 

Consistent and accurate datasets of avalanche events are critical for improving hazard forecasting 17 

and understanding the spatial and temporal patterns of avalanche activity. Remote sensing-based 18 

identification of avalanche debris allow for the acquisition of continuous and spatially consistent 19 

avalanches datasets. This study utilizes expert manual interpretations of Sentinel-1 synthetic 20 

aperture radar (SAR) satellite backscatter images to identify avalanche debris and compares 21 
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those detections against historical field records of observed avalanches in the transitional snow 22 

climates of Wyoming and Utah, USA. We explore and quantify the ability of an expert using 23 

Sentinel-1 (a SAR satellite) images to detect avalanche debris on a dataset comprised exclusively 24 

of dry slab avalanches. This research utilized four avalanche cycles with 258 field reported 25 

avalanches. Due to individual avalanches appearing in multiple overlapping Sentinel-1 images 26 

this resulted in 506 potential detections of avalanches in our SAR images, representing the 27 

possibility of multiple detections of a single avalanche event in different images. The overall 28 

probability of detection (POD) for avalanches large enough to destroy trees or bury a car (i.e., 29 

≥D3 on the destructive size scale) was 65%. There was a significant variance in the POD among 30 

the 13 individual SAR image pairs considered (15 – 86%). Additionally, this study investigated 31 

the connection between successful avalanche detections and SAR-specific, topographic, and 32 

avalanche type variables. The most correlated variables with higher detection rates were 33 

avalanche path lengths, destructive size of the avalanche, incidence angles for the incoming 34 

microwaves, average path slope angle, and elapsed time between the avalanche and a Sentinel-1 35 

satellite image acquisition. This study provides a quantification of the controlling variables in the 36 

likelihood of detecting avalanches using Sentinel-1 backscatter temporal change detection 37 

techniques, as specifically applied to a transitional snow climate. 38 

 39 
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Highlights: 42 

• Dry slab avalanches ≥D3 had a detection rate of 65%; 43 
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• Improved quantification of controlling variables on SAR based avalanche detection; 44 

• Path length, D size, and average slope correlated with higher detections; 45 

• Incidence angle and time between event and image acquisition also correlated with higher 46 

detections; 47 

 48 

 49 

1 Introduction 50 

Snow avalanches are a complex mountain hazard that endangers lives, threatens infrastructure, 51 

and closes transportation corridors (e.g. McClung and Schaerer 2006, Hendrikx et al., 2014, 52 

Birkeland et al., 2017). Timely knowledge about when and where avalanches occur is vital for 53 

avalanche risk assessment and forecasting (McClung, 2002a, 2002b). Currently, gathering data 54 

about the spatial distribution and magnitude of avalanche events most typically relies on human 55 

field observers and is consequently spatially and temporally limited. Other sources of avalanche 56 

records, such as airborne surveys or infrasound arrays, are cost prohibitive to implement 57 

consistently over large regions. However, human observations rarely cover an entire mountain 58 

range, are limited by low visibility or high danger conditions, and are biased towards accessible 59 

locations and convenient collection periods (Eckerstorfer and Malnes, 2015).  60 

Recent research has shown promising results from radar satellite-based avalanche detections as 61 

an alternative method to provide near real-time, consistent data about avalanche occurrences 62 

(Eckerstorfer et al., 2019; Leinss et al., 2020). Radar satellite-based detections provide a valuable 63 

supplement to field-based observations due to their large spatial coverage and the temporal 64 

consistency with which avalanches can be observed, allowing for more reliable comparisons of 65 
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avalanche activity. A sensor that has demonstrated specific utility in detecting avalanche debris 66 

is Synthetic Aperture Radar (SAR) (Eckerstorfer et al., 2016; Leinss et al., 2020; Yang et al., 67 

2020). SAR sensors emit energy in the microwave spectrum (wavelengths of 1 – 300 mm) which 68 

are not affected by cloud cover or darkness, allowing for temporally and spatially consistent 69 

remote sensing. 70 

SAR-equipped satellites have been used to detect avalanche debris since the early 2000s 71 

(Wiesmann et al., 2001). However, the recent introduction of freely available imagery from the 72 

Sentinel-1 SAR satellite constellation has vastly expanded opportunities for SAR-borne 73 

avalanche detection. Multiple studies exploited Sentinel-1 imagery to map avalanche cycles and 74 

create automatic detection systems (Abermann et al., 2019; Eckerstorfer et al., 2019; Leinss et 75 

al., 2020). Eckerstorfer et al. (2019), working in a maritime snow climate, provided one of the 76 

few studies comparing manual detections using SAR backscatter change detection against 77 

avalanche field observations. Their study compared field-observed datasets of avalanche activity 78 

against manual interpretations of SAR images and automated detections. They reported an 79 

overall probability of detection (POD) of 77.3%. Multiple factors, however, influenced the 80 

overall detectability of avalanches. Large avalanches resulted in a 100% POD and were more 81 

detectable than small avalanches (64.9%), as a consequence the spatial resolution of the Sentinel-82 

1 SAR sensor. Wet snow avalanches were more detectable than dry snow avalanches due to 83 

higher relative backscatter from rougher wet snow avalanche debris. Leinss et al. (2020) 84 

provided an important first exploration of the utility of Sentinel-1 in detecting avalanches in a 85 

transitional snow climate in Switzerland during a major avalanche cycle from January 2018. 86 

However, they did not quantify the accuracy of Sentinel-1 borne avalanche detections due to a 87 
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lack of field-based validation data. They manually delineated 104 avalanches in Sentinel-1 data 88 

compared to 164 in higher resolution TerraSAR-X data. They suggested a minimum detectable 89 

Sentinel-1 avalanche debris size of 2000 m2. They, moreover, noted that avalanches that 90 

descended “below the wet-snow line were much more visible than avalanches from the dry 91 

snow-zone”, suggesting that dry slab avalanches may be harder to detect. Finally, they suggested 92 

that higher incidence angles should provide higher detection rates, but did not test this theory 93 

directly. More recent research has explored this relationship between incidence angle and 94 

increased backscatter. Tompkin and Leinss (2021), exploring a dataset of exclusively wet snow 95 

avalanches, found that, compared to an optimal incidence angle of ~55°, backscatter was reduced 96 

by 4 dB for incidence angles below 40° in VV polarization (vertically transmitted and received 97 

signal). They also found that backscatter intensity also decreased for incidence angles over 70 98 

degrees. This study showed the importance of incidence angles and the utility of local resolution 99 

weighting that prioritizes higher incidence angles in multi-image composites. However, more 100 

research is necessary to confirm this relationship in other snow conditions and study sites. 101 

Building on the avalanche detections in Switzerland, Hafner et al. (2021) detected avalanches 102 

using Sentinel-1 and the optical Sentinel-2 and SPOT-6. Using Sentinel-1 imagery they were 103 

able to detect 90% of avalanches large enough to destroy substantial forest, but only 4% of those 104 

harmless to people. Conversely to other studies Hafner et al. (2021) found higher detection rates 105 

for the dry-snow conditions relative to the mixed wet and snow avalanche cycle. The suggested 106 

that in scene-wide dry-snow only conditions the “avalanches were the most prominent changes 107 

in the backscatter signal”. The larger scene-wide backscatter changes in wet to dry snow 108 

conditions could make detections more challenging. 109 
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While backscatter change detection is valuable for detecting avalanche debris, important 110 

questions remain about the strengths and limitations of this technique. Without a thorough 111 

understanding of the benchmark avalanche detection rate and how it varies as a function of 112 

topographic and SAR-specific variables, we cannot accurately communicate the global utility of 113 

this technique or accurately assess the performance of automated detection systems. 114 

Therefore, the purpose of this study is to compare Sentinel-1 SAR manual detections to field-115 

observations of exclusively dry slab avalanches in a transitional snow climate in two different 116 

regions of the western United States. We address the following questions: 117 

1. What are the manual detection rates of dry slab avalanches using change detection techniques 118 

on Sentinel-1 SAR backscatter images in the transitional snow climates of Utah and 119 

Wyoming, U.S.A.? 120 

2. How do topographic (elevation, path length, slope, curvature, tree coverage), SAR (incidence 121 

angle, layover, shadow, and days between images) and avalanche characteristics (destructive 122 

size) affect SAR avalanche detection rates? 123 

 124 

  125 



7 
 
2 Methods and datasets 126 

To answer our research questions, we consider two primary sources: 1) field observations of 127 

avalanches, and 2) manual detections in Sentinel-1 data (Figure 1). For processing and analysis, 128 

we consider three ancillary data sources: Global Forest Cover Change Tree Cover (Sexton et al., 129 

2013), USGS National Elevation Dataset (Gesch et al., 2002), and auto-Avalanche Terrain 130 

Exposure maps (Larsen et al., 2020) (Figure 1). 131 

 132 

 133 

Figure 1: Flowchart of data collection and processing steps. Green shows input datasets, yellow 134 
shows processing and analysis steps, and orange shows statistical analysis steps. 135 

 136 
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2.1. Sentinel-1 datasets: 137 

The Sentinel-1 constellation is a pair of polar-orbiting, sun-synchronous satellites with a 6-day 138 

orbit repeat interval. Due to overlapping image footprints between orbital geometries at higher 139 

latitude this image frequency can be as little as 1 day at higher latitudes. Both satellites are 140 

equipped with C-band SAR sensors (wavelength ~5.54 cm) that acquire SAR images with 141 

roughly 20 m pixel resolution in interferometric wide swath mode (IW) in both co-polarized (e.g. 142 

VV) and cross-polarized (e.g. VH) polarization.  143 

 144 

We downloaded Sentinel-1 backscatter intensity images (ground range detection – GDR 145 

products) from Google Earth Engine (GEE) (Gorelick et al. 2017) that matched the timing of 146 

major avalanche cycles (see section below) and processed them as follows:  147 

- Sentinel-1 imagery was preprocessed by GEE via the application of a precise orbit file, 148 

removal of border and thermal noise, application of radiometric calibration, and terrain 149 

correction (Gorelick et al., 2017).  150 

- For each Sentinel-1 image, we created and applied layover and shadow masks using the 151 

United States Geological Survey's (USGS) National Elevation Dataset at 1/3 arc-second 152 

resolution (Gesch et al., 2002). During this step, we also extracted local incidence angles 153 

for each pixel. This processing workflow used a python script adapted from Vollrath et 154 

al. (2020) (please refer to the supplemental materials).  155 

 156 

To visualize temporal backscatter intensity change necessary for manual avalanche detection, we 157 

paired Sentinel-1 images of same orbital geometry (ASC- ascending or DES – descending) and 158 
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track number (e.g. DES 100). Sentinel-1 image pairs contained a reference and an activity image. 159 

For our study these are 12 or 24 days apart instead of 6 due to lower imaging frequency over 160 

these areas in the ESA’s operational plan. 161 

 162 

2.2 Field-observed avalanche datasets 163 

We used records of field-observed avalanches in a transitional snow climate in the USA (Mock 164 

and Birkeland, 2000), from the Utah Department of Transportation (UDOT) and the Bridger 165 

Teton Avalanche Center (BTAC). The BTAC records covered their avalanche forecasting region 166 

near Jackson, Wyoming. UDOT avalanches were from Little Cottonwood Canyon outside of Salt 167 

Lake City, Utah (168 
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169 

Figure 2). 170 

These records included written descriptions of location, date, avalanche type, and destructive (D) 171 

size. The records were predominantly dry (88% for BTAC and 87% for UDOT) and slab (95% 172 

for BTAC and 85% for UDOT) avalanches. Slab avalanches result from the failure of an 173 

underlying weak layer and the release of a cohesive “slab” of snow, compared to loose 174 

avalanches where surface snow loses cohesion (Gaume et al., 2017). To focus our analysis 175 

exclusively on dry slab avalanches we filtered the records to only those avalanche types. We 176 

examined only avalanche records between 2016	–2020, covering the operational period for both 177 

satellites of the Sentinel-1 constellation. 178 
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 179 

180 
Figure 2: Avalanche locations for the a) BTAC (n = 134) and b) UDOT (n =124) avalanche 181 
databases. 182 

 183 

We calculated avalanche activity indexes (AAIs) according to Schweizer et al. (2003) for each 184 

database to identify significant avalanche cycles. The AAI is the sum of observed avalanches 185 

weighted by their destructive size (D1: 0.01, D2: 0.1, D3:1, D4:10) for each day (Figure 3). Our 186 

study investigated the two most significant cycles using AAI scores from the BTAC (Figure 3(a): 187 

AAI = 120; (b): AAI = 41) and UDOT (Figure 3 (c): AAI = 80; (d): AAI = 111). These cycles’ 188 

AAI scores exceed the 99th percentile for each respective dataset.  189 
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 190 

2.3 Comparison between Sentinel-1 avalanche detections and field-observed avalanche 191 

activity 192 

We downloaded 14 Sentinel-1 image pairs. 7 image pairs spatially and temporally overlapped the 193 

BTAC avalanche cycles and 7 overlapped the UDOT avalanche cycles (Figure 3). The image 194 

pairs with matching orbital geometries and paths were all either 12, or 24 days apart. 195 

 196 

Figure 3: Avalanche activity index for the two databases from 2016-2020 with the two largest 197 
cycles for each region (four total) noted. The dashed lines show 99th percentile of the avalanche 198 
activity index for BTAC (AAI = 36) in beige, and UDOT (AAI = 78) in blue, showing the 199 
extreme nature of these events. Insets show each avalanche cycle with capped lines showing the 200 
imagery dates of all utilized Sentinel-1 image pairs. Note that insets a-d have different y-axes. 201 
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 202 

We analyzed all the avalanches that released between a reference and activity Sentinel-1 image. 203 

In total, we used 7 descending and 7 ascending Sentinel-1 image pairs in this study (204 
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Table 1). Within the time periods these Sentinel-1 image pairs covered, a total of 258 field 205 

reported avalanches were recorded in the two study regions. There were 124 UDOT avalanches. 206 

Of the UDOT avalanches, 23 (19%) were natural avalanches, and 101 (81%) were artificially 207 

triggered. For the BTAC dataset, there were 134 avalanches. Ninety-four were naturally 208 

triggered (69%), and 40 (31%) were artificially triggered. The destructive size distribution of 209 

both the UDOT and BTAC was centered on D2 (53%) and D3 (23%) (please refer to the 210 

supplementary material). Given the temporal overlap of the satellite orbits, these 258 field 211 

reported avalanches had the potential to be detected and counted in multiple pairs of images. 212 

This resulted in a final dataset of 506 potentially detectable avalanche events, representing 213 

multiple opportunities to count the 258 unique field observed events.  214 

 215 

216 
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Table 1: Studied avalanche cycles from both study regions and orbit direction and satellite path 217 
number of the Sentinel-1 image pairs that match in space and time. The final column shows the 218 
total field reported avalanches that could have been detected in each pair of images. This number 219 
varies due to the varying spatial footprints and temporal coverage of each pair of images relative 220 
to the field reported avalanches and adds up to 506 total possible avalanche detections. 221 

Activity Image Date Reference Image Date Orbit Direction Sat. Path # 
Possible 
Avalanche 
Detections 

BTAC Feb. 5th, 2018 Cycle     

February 8th, 2018 January 27th, 2018 Ascending 49 31 

February 12th, 2018 January 31st, 2018 Descending 27 43 

February 17th, 2018 1 January 24th, 2018 1 Descending 100 19 

BTAC Jan. 14th, 2020 Cycle     

January 14th, 2020 January 2nd, 2020 Descending 100 41 

January 17th, 2020 January 5th, 2020 Ascending 49 28 

January 21st, 2020 January 9th, 2020 Descending 27 41 

January 22nd, 2020 January 10th, 2020 Ascending 122 40 

UDOT Jan. 2nd, 2020 Cycle     

January 3rd, 2020 December 22nd, 2019 Ascending 20 44 

January 9th, 2020 December 28th, 2019 Descending 27 18 

January 10th, 2020 December 29th, 2019 Ascending 122 42 

UDOT Feb. 7th, 2020 Cycle     

February 7th, 2020 January 26th, 2020 Descending 100 41 

February 8th, 2020 January 27th, 2020 Ascending 20 45 

February 14th, 2020 February 2nd, 2020 Descending 27 26 

February 15th, 2020 February 3rd, 2020 Ascending 122 47 
1 Only pair with 24 days instead of 12 days between imaging dates 222 

2.4 Avalanche path identification 223 

Avalanche paths, defined here as the potential region affected by a 1 in 100-year avalanche from 224 

a specific start zone, were necessary to extract spatial averages of Sentinel-1 backscatter change 225 

and potential explanatory variables (Mears, 1992). For the UDOT region we used a pre-existing 226 

catalog of avalanche paths. An avalanche atlas was not available for the BTAC region. 227 
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Consequently, we delineated avalanche paths for each BTAC event based on the field recorded 228 

location, written descriptions and photographs of the avalanche and automatic Avalanche Terrain 229 

Exposure (auto-ATES) maps of the regions (Larsen et al. (2020). The starting zone and track 230 

were defined using the field description and photographs of the avalanche when available and 231 

otherwise following topographic constraining features (ridgelines). We drew the runout extent 232 

using auto-ATES maps to terminate the path at a 23-degree alpha angle from the starting zone 233 

(Larsen et al. 2020). These auto-ATES maps use alpha angles from the nearest starting zones to 234 

map potential avalanche hazard and were used to identify likely runout extent using the 235 

workflow in Larsen et al. (2020). We drew these avalanche paths before SAR debris detections 236 

to avoid biasing of the path characteristics. 237 

 238 

2.5 Manual avalanche detection  239 

To facilitate manual interpretation of the SAR images we created RGB composites, where we 240 

put the reference image in the red and blue channels and the activity image in the green channel 241 

(Figure 4). A temporal backscatter increase appears in green while a decrease appears in purple 242 

in these RGB composites. The RGB composites contained SAR images with the same geometry 243 

and path number, ensuring changing scattering properties resulted from changes in surface 244 

conditions and not from different incidence angles (Wynne and Campbell, 2011).  245 

According to Eckerstorfer and Malnes (2015) avalanche debris exhibits higher backscatter than 246 

the surrounding undisturbed snow due to a higher contribution from the rougher surface-air 247 

interface, as well as some higher contribution from increased volumetric scattering within a 248 

thicker snowpack. Thus the occurrence of avalanche debris covering a pre-existing snowpack 249 
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leads to increase in backscatter that is visible as green, elongated features in the RGB composites 250 

(Figure 4) (Leinss et al., 2020; Malnes et al., 2013; Wiesmann et al., 2001). We examined all the 251 

RGB images for regions with increased backscatter within the marked avalanche paths. If these 252 

regions of localized backscatter increase matched the description and photos of the field-253 

observed avalanches, and had at least a 2–3 decibels backscatter increase across the likely debris 254 

zone, then we marked them as ‘detected’. The UDOT dataset included multiple reported 255 

avalanches per avalanche path, while the BTAC dataset did not. These overlapping avalanches 256 

were either all marked "Detected" or "Not detected". The average avalanches per path in the 257 

UDOT dataset was 2.3. 258 
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 259 

Figure 4: Reference, activity, and RGB composite images for (a) two and (b) one field reported 260 
avalanches in the BTAC region. Red dots show the field reported crown locations, polygons 261 
represent the manually detected debris outlines. Temporal change analysis compares the 262 
reference image to the activity image to identify increased backscatter areas. The diagonal black 263 
line across (b) is an artifact of merging two Sentinel-1 images into one. Other regions of 264 
significant increases in (a) and (b) are likely more avalanche debris that was not reported from 265 
the field due to their distance from roads or ski areas, though other possibilities include wind-266 
drifted snow, ground roughness changes, and freezing or unfreezing of lakes or snow. 267 
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2.6 Explanatory variables for manual avalanche detection 268 

We extracted possible explanatory variables for every recorded avalanche event, regardless of 269 

SAR detection. The avalanche databases from the BTAC and UDOT contained standard 270 

avalanche descriptive data, including dates, D-size, wet vs. dry debris, slab vs. loose type, and 271 

natural vs. artificial release for all included avalanche observations (Greene et al., 2016). In order 272 

to focus on dry slab avalanches we began by filtering out all wet and loose snow avalanches 273 

from these databases. To explore topographic effects on detection rates, we extracted: ‘average 274 

elevation of the avalanche path’, the ‘average slope’, ‘average profile curvature’, ‘path length’, 275 

and ‘path width’ (using a minimum bounding geometry on the paths from step 2.4) (Gesch et al., 276 

2002). The Global Forest Cover Change Tree Cover Multi-Year Global Dataset (GFCC), i.e. the 277 

horizontal percentage of ground covered by woody vegetation greater than 5 meters in height in 278 

2015, provided the average tree coverage within each avalanche path (Sexton et al., 2013). C-279 

band SAR backscatter is heavily affected by tree cover, so we chose this variable to explore if 280 

tree cover in the debris zone negatively affected the detection rates (Vreugdenhil et al., 2018). 281 

Finally, we extracted the ‘percentage of the path affected by radar layover effects’ (phenomena 282 

that occur in steep topography due to the side-looking geometry of the SAR sensor), ‘percentage 283 

affected by radar shadow’ (no-data zones from lack of returning SAR energy), ‘lag time’ (the 284 

number of days between the avalanche’s field observation and the acquisition of the activity 285 

image), and the ‘average local incidence angle’ (angle between the incoming microwave energy 286 

and the normal to the ground surface) within each avalanche path from the Sentinel-1 image pair 287 

(Table 2).  Geometric terrain correction cannot unfold layover areas so that successful avalanche 288 

debris detection is limited in heavily affected regions. 289 
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 290 

Table 2: Explanatory Factors with data sources, spatial resolutions, and shortened names. 291 

Explanatory Factor Source Resolution Alias Range 

Destructive size of avalanche BTAC, UDOT   D-size 1–4.5 

Mean tree coverage percentage in the path GFCC 30 m Tree Perc 0–47% 

Average elevation of avalanche path USGS NED 10 m Elevation 1857–3823 m 

Average slope in the path USGS NED 10 m Slope Angle 15–55° 

Avalanche path length USGS NED 10 m Path Length 0.19–3.2 km 

Avalanche path width USGS NED 10 m Path Width 0.13–1.8 km 

Average profile curvature in the path USGS NED 10 m Curvature 0–0.175 

Average local incidence angle within the path USGS NED, Sentinel-1 20 m 
Incidence 
Angle 11–83° 

Percentage of the path affected by radar 
layover 

Sentinel-1 20 m Layover Perc 0–77% 

Percentage of the path affected by radar 
shadow Sentinel-1 20 m Shadow Perc 0–54% 

Days between avalanche and the activity 
image acquisition Sentinel-1 1 day Lag Days 1–11 

 292 

2.7 Statistical analysis  293 

For our statistical analysis, we used the entire dataset of possible detections from all 14 image 294 

pairs. This resulted in 506 potential detections for the 258 field reported dry avalanche events. 295 

The increased number of possible detections relative to field reported avalanches is due to the 296 

combined effects of multiple opportunities to detect a unique event and the varying spatial 297 

footprint and temporal coverages of the different image pairs. The varying spatial and temporal 298 

footprints means that a single unique event could be included in one or more image pairs, hence 299 

resulting in a final dataset of 506 detectable avalanche events. Table 1 details the possible field 300 

reported avalanches that could have been detected in each pair of images. We calculated the 301 
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covariance of our quantitative variables using Spearman's rank correlation test (Wilks, 2019). If 302 

two variables were strongly correlated (p <0.05 or |rs| > 0.5), we retained the variable that 303 

appeared most directly in the conceptual model of avalanche debris backscatter (Eckerstorfer and 304 

Malnes, 2015). We also performed Shapiro Wilk’s test for normality on all quantitative 305 

variables. All variables failed the test for normality. 306 

We then identified explanatory variables with significant variance between the detected and 307 

undetected avalanches. We used thresholds of p<0.05 as significant and p<0.1 for marginally 308 

significant. Since all variables failed the test for normality, we performed the non-parametric 309 

equivalent of the Student t-test: the Mann Whitney U (MWU) test. We use the MWU to analyze 310 

if values from each explanatory variable from our detected avalanches were larger or smaller 311 

than values from our non-detected avalanches (Wilks, 2019).   312 

We split the full dataset (n = 506) of potential detections into those appearing in either ascending 313 

or descending image pairs. We again used the MWU to compare detection rates, destructive size, 314 

and average local incidence angles between our different directions (Wilks, 2019).  315 

Finally, we wanted to investigate the dataset for non-linear variable importance. Consequently, 316 

we trained a random forest model to identify detectable vs. non-detectable avalanches (Breiman, 317 

2001). The random forest used the entire dataset of possible detections with 10-fold cross-318 

validation (n = 506). Additionally, we inserted a random variable to assess which variables were 319 

more important than a random variable. We tuned the hyperparameter based on maximizing 320 

validation accuracy to optimize the number of decision trees (250) and the network’s max depth 321 

(3). The random forest's performance was assessed with an accuracy score and F1 score, a 322 
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weighted average of precision and recall (Liu et al., 2014). We finished by extracting feature 323 

importance from the trained random forest. 324 

  325 
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3 Results 326 

3.1 Image pairs and field location detection rates 327 

Overall, we achieved a POD of 49% by successfully identifying 250 of our potential 328 

opportunities to detect avalanche debris and missing 256. This total set is larger than the 258 329 

field observed avalanches, as a single avalanche can be observed, or not observed, in multiple 330 

temporally overlapping images. However, the detection rates varied between the two field 331 

locations and between image pairs.  332 

The average POD of avalanches in the BTAC dataset was 41% and of avalanches in the UDOT 333 

dataset 57%. As mentioned earlier, the UDOT dataset contained multiple avalanche reports per 334 

path. Since we did not know which avalanche debris was detected in the Sentinel-1 images, all 335 

field-observed avalanches in a particular path were marked either as ‘detected’ or ‘not detected’. 336 

When extracting avalanche paths that had only one avalanche observation (N=48), the POD of 337 

this subset of single UDOT avalanches was 46%. 338 

POD for individual image pairs for both regions ranged from 15% up to 86%. The number of 339 

avalanches in individual image pairs ranged from 18 to 47. There were significant differences 340 

between the two orbit directions of the image pairs. Ascending image pairs averaged a POD of 341 

54%, while descending image pairs averaged 41% (p = 0.0058). There were also significantly 342 

higher incidence angles in ascending image pairs (53°) vs descending images (42°) pairs (p < 343 

0.0001). Finally, the mean destructive size of the avalanches was also significantly higher (p = 344 

0.01) in ascending images (2.3 vs 2.5). We extracted the following explanatory variables for 345 
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analysis of image pair variability further below: the number of avalanches, median destructive 346 

size of avalanches, and the median local incidence angle (Table 3).  347 

Table 3: Image Pairs with PODs. Darker colors show larger incidence angles or higher POD.  348 

Site Ref Date Act Date Direction Orbit # aval. D-Size Incidence 
Angle Detection % 

BTAC 1/24/18 2/5/18 Descending 100 19 2.0 36 21 

BTAC 1/27/18 2/8/18 Ascending 49 31 2.5 50 52 

BTAC 1/31/18 2/12/18 Descending 27 43 2.5 38 47 

BTAC 1/2/20 1/14/20 Descending 100 41 2.0 32 20 

BTAC 1/5/20 1/17/20 Ascending 49 28 2.0 51 39 

BTAC 1/9/20 1/21/20 Descending 27 41 2.5 40 54 

BTAC 1/10/20 1/22/20 Ascending 122 40 2.5 56 48 

UDOT 12/22/19 1/3/20 Ascending 20 44 2.5 59 87 

UDOT 12/28/19 1/9/20 Descending 27 18 2.5 50 50 

UDOT 12/29/19 1/10/20 Ascending 122 42 2.5 51 52 

UDOT 1/26/20 2/7/20 Descending 100 41 2.0 48 78 

UDOT 1/27/20 2/8/20 Ascending 20 45 2.5 59 80 

UDOT 2/2/20 2/14/20 Descending 27 26 2.5 50 15 

UDOT 2/3/20 2/15/20 Ascending 122 47 2.5 51 19 

 349 

 350 

3.2 Covariation between explanatory variables for manual avalanche detection 351 

We evaluated quantitative variable covariance with a Spearman's rank correlation test. Three 352 

pairs of variables (Table 2) showed correlations over our threshold (p <0.05 or |rs| > 0.5): 1) the 353 

‘percentage of the path in shadow’ with ‘local incidence angle’ (r = 0.65), 2) ‘average elevation’ 354 

with ‘tree percentage’ (r = 0.50), and 3) ‘path width’ with ‘path length ‘(r = 0.59). For the first 355 
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pair we retained ‘path length’ due to its higher correlation with detection rates. For the second 356 

pair we retained ‘tree percentage’ also due to its higher correlation to detection rates.  357 

For the ‘percentage of the path in shadow vs. local incidence angle’ – we retained ‘local 358 

incidence angle’ because the ‘percentage of path in shadow’ was less correlated to detection rates 359 

and had a seemingly nonintuitive sign of correlation. As the ‘percentage of the path in shadow’ 360 

increased, the detection rates also increased, which is not a logical trend for these two variables. 361 

However, when considering the positive relationship between higher incidences angle and 362 

detection rates this relationship between shadow percentage and detection rates is clarified. The 363 

higher incidence angles that led to increased detection rates would also lead to greater 364 

percentages of the path being affected by radar shadow. 365 

 366 

3.3 Importance of explanatory variables on detection rates 367 

We performed the non-parametric MWU tests on the full dataset and separate subsets for BTAC 368 

and UDOT regions since our variables were not normally distributed (please refer to 369 

supplementary material). The significant variables between our detected and undetected 370 

avalanches were generally the same between our full and regional datasets with ‘destructive 371 

size’, ‘incidence angle’, ‘path length’, and ‘lag days’ being the most important variables (  372 
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Table 4).  373 

 374 

  375 
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Table 4: Mann Whitney U test results for the full dataset, UDOT, BTAC. For all marginally 376 
significant or significant results, the detected and undetected median relative values are noted 377 
below the p-value. Darker green shows higher significance. 378 

 379 

Variable D-Size Tree 
Perc 

Incidence 
Angle Slope Curvature Path 

Length 
Layover 
Perc Lag Days 

Full Dataset 

p-value 7.3E-11 0.39 2.2E-05 0.0038 0.61 1.9E-16 0.97 2.5E-06 

  det > 
undet   det > undet det > 

undet   det > undet   det = undet 

BTAC 

p-value 1.3E-13 0.76 0.0099 0.64 0.068 1.7E-07 0.15 0.43 

  det > 
undet   det > undet     det > undet     

UDOT 

p-value 0.07 0.33 0.019 0.0052 0.032 3.4E-09 0.16 1.4E-05 

      det > undet det > 
undet 

det < 
undet det > undet   det < undet 

 380 

 381 

For the four explanatory variables with significant variance, we show the difference between 382 

‘detected’ and ‘non detected’ in Figure 5 for the entire dataset. Our individual regional datasets 383 

showed similar patters to the overall dataset. There is considerable overlap in the interquartile 384 

range for all explanatory variables with significantly higher medians for ‘detected’ vs ‘non 385 

detected’. 386 
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 387 

Figure 5: Boxplots showing the median, interquartile ranges, whiskers, and outliers for detected 388 
and undetected avalanches in the full dataset. Whiskers extend to the last data point that is within 389 
1.5 times the interquartile range above (below) the upper (lower) quartile, and outliers are data 390 
points beyond that 1.5 times the interquartile range from the lower or upper quartile. 391 

 392 

Previous research has established destructive size as a controlling variable on detection rate 393 

(Eckerstorfer et al., 2019, Hafner et al. 2021). We also found a strong relationship between 394 

increased POD and larger avalanches for the BTAC dataset and a marginal relationship for the 395 

UDOT (Table 5). When we consider avalanches large enough to destroy trees or bury a car, or 396 
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larger (i.e., ≥ D3) we obtained a POD of 65% (n = 164). Those smaller than D3 had a POD of 397 

42%.  398 

 399 

Table 5: Detection rates by destructive size. Darker green represents higher detection rates. Bold 400 
horizontal line marks the threshold between smaller (<D3) from relatively larger avalanches 401 
(≥D3). 402 

 403 

Destructive Size # Detected # Not Detection Rate   
1 4 23 15%   
1.5 26 43 38%   
2 78 100 44% < D3: 44% 
2.5 60 47 56%   
3 56 41 58%   
3.5 17 2 89% ≥ D3: 65% 
4 31 15 67%   
4.5 2 0 100%   

 404 

 405 

3.4 Random forest feature importance in detection rates 406 

Following hyperparameter tuning, the random forest attained a validation accuracy of 64% with 407 

10-fold cross-validation. The feature importance from the random forest results aligned with the 408 

findings from the MWU analysis with ‘path length’, ‘incidence angle’, ‘lag days’, and 409 

‘destructive size’ as the most significant variables (Table 6). 410 

  411 
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Table 6: Feature individual and cumulative importance in the random forest model. 412 

Feature Individual Importance Cumulative 
Path Length 33% 33% 
Lag Days 19% 52% 
Incidence Angle 13% 65% 
D- Size 12% 77% 
Slope 6% 83% 
Curvature 5% 88% 
Tree Percentage 5% 93% 
Layover Percentage 4% 97% 
Random Variable 3% 100% 

 413 

4 Discussion 414 

4.1 Manual avalanche detection using Sentinel-1 in a transitional snow climate 415 

Our study is the first to provide a large-scale analysis of detection rates for Sentinel-1 images 416 

relative to field observed datasets in the continental United States, which has a markedly 417 

different topography and snow climate from previous SAR avalanche detection studies.  418 

Our POD was 49% from two field locations utilizing SAR temporal change analysis on a dataset 419 

of dry slab avalanches (with 248 unique avalanche events, and 506 opportunities to detect in the 420 

images). However, when considering avalanches equal to or larger than D3 the manual detection 421 

rate rises to 65%. SAR temporal change analysis is effective for most avalanches large enough to 422 

do substantial damage to infrastructure or vegetation. However, we still miss around 35% of 423 

even these large avalanches. 424 

The detection rate for the UDOT avalanches (POD = 53%) is substantially higher than for the 425 

BTAC avalanches (POD = 41%). Considering only UDOT avalanche paths with single events, 426 
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the detection rate dropped to 46%, thus much closer to the BTAC POD, suggesting fairly similar 427 

results. Both field locations are in a transitional snow climate where wet and dry snow avalanche 428 

cycles can be expected. However, the vast majority of observed avalanches were dry snow 429 

avalanches, which is the focus of this study. 430 

Previous research on wet snow avalanches detected 100% of avalanches D3 and larger 431 

(Eckerstorfer et al., 2019). Our study, focused solely on dry snow avalanches, found a much 432 

lower detection rate (64%) for comparably sized avalanches. While there are topographic and 433 

climatic factors that may be influencing these results, our results suggest that a maritime snow 434 

climate dominated by wet snow avalanche activity may be better suited to Sentinel-1 temporal 435 

change analysis techniques. 436 

 437 

4.1.1 How did detection rates vary between image pairs?  438 

Detection rates differed between Sentinel-1 image pairs, with the lowest detection rate being 439 

15% and the highest being 87% (Table 3). This means that certain pairs of images are more 440 

suitable for detecting avalanche debris than others. A trend in detection rates was that ascending 441 

image pairs had higher detection rates (54%) compared to descending image pairs (41%) (p = 442 

0.0058). While there was a skew towards larger avalanches in ascending image pairs (p = 0.01) 443 

the difference in medians was only 0.5 and probably doesn’t fully account for the observed 444 

differences in detection rates. 445 

A more likely explanation for varying detection rates might be the trends in aspect of the active 446 

avalanche paths relative to the SAR sensor. Ascending image pairs had higher median incidence 447 

angles (53.2°) relative to descending image pairs (42.2°) (p < 0.001). In Wyoming and Utah, due 448 
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to prevailing wind direction and less solar warming, more avalanches are noted in field 449 

observations on east facing aspects. This predominance of east facing avalanches means that in 450 

ascending images, there were more paths that faced away from the sensor leading to higher 451 

incidence angles and, based on this study and Tompkin and Leinss (2021), to higher detection 452 

rates. Generally, this relationship suggests that depending on the predominant aspects of 453 

avalanches in a region, either flight direction (ascending or descending), will yield higher 454 

detection rates. 455 

 456 

4.2 Which explanatory factors correlated with successful detections? 457 

Several explanatory factors reached high significance in our MWU tests for one or more of the 458 

datasets. We present these explanatory factors in descending order of significance and the 459 

associated reason for an increased detection rate in   460 
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Table 7. Then we discuss each of the explanatory factors separately below. 461 

 462 

  463 
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Table 7: Summary of explanatory factors related to increased detection rates sorted by Mann-464 
Whitney U (MWU) test p-values. 465 

Explanatory factors Increased Detection Rates MWU P-Value RF Importance 

Path length Longer path length <0.001 1st  

Lag Days Fewer days elapsed <0.001 2nd  

Local incidence angle Increased local incidence angles <0.001 3rd  

Destructive size Larger destructive size  <0.001 4th  

Slope angle Steeper average slope angle 0.0038 6th  

Curvature More convex curvature 0.032 (UDOT only) 5th  

Layover Percentage 
 

>0.1 8th  

Tree Coverage   >0.1 7th  

 466 

4.2.1 Destructive size  467 

Our results show a strong and positive correlation between the field reported destructive size and 468 

Sentinel-1 based POD for our whole dataset and for the BTAC subset (p<0.001) (Table 5). The 469 

marginal significance of destructive size in the UDOT dataset may have been due to overlapping 470 

avalanches in paths causing increased detections of smaller avalanches that occurred 471 

simultaneously with larger avalanches. This matches previous results reported by Eckerstorfer et 472 

al. (2019) and Hafner et al. (2021). Both studies found PODs around 90–100% for D4 and D5 473 

avalanches dropping off rapidly for smaller avalanches, with Hafner et al. (2021) reporting 474 

detection rates of only 4% for D1s. Our results match this general trend, with a 29% detection 475 

rate for avalanches D1.5, 47% for D2 to D2.5 and 65% for all D3 and larger. A probable 476 

explanation for our lower detection rates of large avalanches is our dataset was only dry 477 
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avalanches, unlike the dataset in Eckerstorfer et al. (2019) that was over 90% wet avalanches and 478 

Hafner et al. (2021) that was composed of a mixture of dry and wet snow avalanches. 479 

The correlation between destructive size and POD is likely due to the spatial resolution of the 480 

Sentinel-1 sensor. Larger avalanches will typically result in wider and deeper debris piles. These 481 

expanded debris piles are easier to detect with the relatively coarse resolution of the Sentinel-1 482 

sensor. Leinss et al. (2020) suggested a smallest detectable size of 2000 m2 for avalanche debris 483 

in their Sentinel-1 automated avalanche detection system, while Eckerstorfer et al. (2019) use a 484 

minimum cut-off size of 4000 m2. 485 

Avalanche inventories using Sentinel-1 are biased towards larger avalanches. Higher resolution 486 

sensors may improve the ability to detect smaller avalanches, as shown by Eckerstorfer and 487 

Malnes (2015) using very high resolution Radarsat-2 ultrafine data for avalanche detection. 488 

However, if infrastructure damage is the primary concern, accurate mapping of more significant 489 

avalanches with Sentinel-1 will be sufficient in most applications. 490 

 491 

4.2.2 Avalanche type  492 

Compared to previous studies, our results provide further supporting evidence that dry 493 

avalanches are more difficult to detect than wet avalanches. Our dataset was entirely dry 494 

avalanches and we consistently found lower POD rates than those in previous research on the 495 

detection rates for wet snow avalanches (Eckerstorfer et al. 2019, Hafner et al. 2021). 496 

Consequently, SAR-based avalanche detections may be best suited to regions dominated by wet 497 

snow avalanches. An overall lower POD can be expected in transitional or continental snow 498 

climates. 499 



36 
 
Dry snow is mostly transparent for C-band SAR, which means that an unknown contribution 500 

from the ground surface can be expected to the total backscatter signal. This results in minor 501 

relative backscatter difference between avalanche debris and surrounding undisturbed snow in 502 

dry snow conditions. In case of wet snow avalanches, the SAR signal does not penetrate the 503 

snow, leading to the majority of the backscatter signal stemming from the air-surface interface, 504 

that is typically rough in wet snow avalanches. A major difference in backscatter between the 505 

debris and the surrounding snow can thus be expected, which is more likely detectable in wet 506 

snow than in the case of dry snow. 507 

 508 

4.2.3 Path length  509 

Previous studies have not investigated the relationship between detection rates and ‘path length’. 510 

We found a strong relationship (MWU p-value <0.001 and first in the random forest feature 511 

importance), with longer paths having higher detection rates. Intuitively, longer paths may 512 

produce larger avalanches. However, we did not find path length to be significantly correlated 513 

with destructive size, suggesting that path morphology rather than total mass of the avalanche is 514 

more important. Future research is needed to confirm our findings, but our study suggests that 515 

certain regions with longer path lengths might lead to higher detection rates. 516 

 517 

4.2.4 Local incidence angle  518 

The average local incidence angle was significant in the MWU comparisons for every dataset 519 

(p<0.02, Table 4) and was the second most important feature in our random forest model (Table 520 

6). This relationship between high local incidence angle and high detection rates is based on a 521 
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few factors. First, due to the geometry of SAR images there is higher resolution in areas where 522 

the incidence angle is farther from zero. Also, this limits the effects of layover, which can 523 

obscure avalanche debris. This result matches the findings of Tompkin and Leinss (2021) whose 524 

work with exclusively wet snow avalanches showed a 4 dB increase in avalanche debris 525 

backscatter change for incidence angles between 40–70° for VV polarization and 2 dB for VH 526 

polarization. (Figure 6). 527 

 528 

 529 

Figure 6: Proposed conceptual model explaining the increased detection rates of avalanche debris 530 
at higher incidence angles. 531 

 532 

Future applications could also use this knowledge to differentiate paths with a high chance of 533 

detecting avalanches from those with a relatively low probability. Identifying paths with a high 534 

POD is valuable for suggesting when avalanches are not occurring instead of just being missed 535 

by this technique. 536 

 537 

4.2.5 Lag days  538 
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The elapsed days between the avalanche field observation and the acquisition of the Sentinel-1 539 

activity image was highly significant for our complete and UDOT datasets (p<0.001, Table 4), 540 

with fewer lag days correlated with higher detections. The median lag days for detected 541 

avalanches in the UDOT dataset was 2 compared to 8 for the undetected UDOT avalanches. 542 

Additionally, it was the 3rd most important variable in our random forest. 543 

This connection between fewer days elapsed and higher detection rates makes intuitive sense. 544 

The increased number of days leads to greater exposure to ablative meteorological factors such 545 

as: 1) increased temperatures that might reduce the chances of detection due to melting and 546 

smoothing of the rough avalanche surface, 2) increased cumulative precipitation, which might 547 

cover the rough surface of the debris and lead to a less dramatic contrast between the increased 548 

volumetric backscatter from the deeper avalanche debris and the surrounding snowpack, and 3) 549 

more exposure to wind redistribution, which might smooth the avalanche debris surface. In 550 

regions with less frequent Sentinel-1 imaging or high repeat frequencies (such as lower latitudes 551 

and outside of Europe), atmospheric weathering will likely cause lower detection rates. 552 

It is unclear why the BTAC did not have a significant effect from lag days. Potentially the 553 

atmospheric conditions of Little Cottonwood Canyon, Utah (generally warmer and less frequent 554 

intense storms) lead to greater reductions in detectability relative to Wyoming (generally more 555 

continually snowy, colder average temperatures) for these cycles. Future research into the 556 

specific meteorological conditions that lead to lower PODs with increased days of exposure may 557 

be valuable for understanding these underlying causes. 558 

 559 

4.2.6 Layover percentage 560 
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The percentage of the path affected by layover did not result in significant MWU results (p = 561 

0.42, Table 4) and was only slightly more important than a random variable in our random forest. 562 

Thus, our results do not provide evidence for a connection between layover effect and detection 563 

rates. However, layover can effectively obscure large portions of an avalanche path, leading to 564 

missed detections. Therefore, the conclusion that paths highly affected by layover would have 565 

lower detection rates seems reasonable. While this study did not find evidence for a relationship 566 

between layover and detection rates, we did note a few outliers, where layover did impact 567 

detection. The low significance of layover on detection rates may have been because our sample 568 

only had a median layover percentage of 3% suggesting that our paths may have had limited 569 

impacts from layover.  570 

 571 

4.2.7 Avalanche slope angle  572 

The average slope (across the entire path) was significant in the overall and UDOT dataset (p = 573 

0.0038, Table 4) and the fifth most important feature in our random forest (Table 6). The median 574 

slope was 33 degrees for detected avalanches and 31 degrees for the undetected avalanches. 575 

These results suggest a slight relationship between steeper slopes and higher detection rates but 576 

may also be due to steeper slopes generally having higher incidence angles in this study. The 577 

weaker relationship between slope and POD for the BTAC may be explained by the relatively 578 

larger spatial extent of the avalanche observations in the BTAC dataset, rather than the single, 579 

steep canyon for the UDOT data. 580 

 581 

4.4 Limitations and future work 582 
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This study assessed the detectability of avalanches in Sentinel-1 images in a transitional snow 583 

climate in the United States. We noted several limitations that may help guide future research: 584 

1) Our avalanches datasets covered only two regions of a similar snow climate. Expanding 585 

to other regions within the transitional snow climate, as well as purely continental or 586 

maritime snow climates in the United States would be useful. An excellent potential 587 

study area would be Alaska, which receives more Sentinel-1 overflights, reducing lag 588 

days and thus atmospheric influence on avalanche debris. The coastal climate and large-589 

scale topography with long avalanche paths in Alaska may also improve avalanche 590 

detectability. 591 

2) This research utilized only four avalanche cycles with 258 field reported avalanches, 592 

resulting in 506 potentially detections of avalanches in our SAR images. These four 593 

avalanche cycles were selected to maximize the number of avalanches in each pair of 594 

Sentinel-1 images but choosing events from these extreme avalanche cycles may have 595 

introduced other factors that skewed our results (e.g. more long runouts). Studies in the 596 

future with additional avalanche cycles may help to clarify if our findings hold for less 597 

extreme avalanche cycles. Additionally, exploring spring avalanche cycles will be 598 

valuable, considering also wet snow avalanche activity. 599 

3) We utilized avalanche records that were opportunistically collected. The BTAC records 600 

may have been incorrect due to non-expert public sources reporting. These records were 601 

potentially also skewed towards accessible locations, periods of high visibility, and larger 602 

events. Future studies could limit these biasing effects by performing randomized 603 

observations or confirming complete coverage of a region. 604 
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4) We focused exclusively on backscatter analysis of a single sensor. Future studies could 605 

explore other SAR sensors for avalanche detection, operating at different frequencies 606 

(e.g. X-band) and spatial resolutions. 607 

5)  We carried out manual detections, which are currently considered the gold standard of 608 

avalanche detection using SAR imagery (Bianchi et al., 2021). However, since only one 609 

person (the first author) performed the manual detections, there may have been biases 610 

that systematically or randomly affected the results. Future studies may want to compare 611 

multiple people independently detecting avalanche debris in SAR image to explore the 612 

variability of expert interpretation. 613 

6) Our techniques relied on manual detection but monitoring seasonal avalanche activity or 614 

a larger dataset of avalanche cycles will require automatic detection methods. Currently, 615 

classification of SAR images using neural networks shows promising results (Tompkin 616 

and Leinss, 2021, Bianchi et al., 2021). Future research combining these manual 617 

detections with machine learning techniques to explore automatic detections of dry snow 618 

avalanches will be valuable. This future machine learning work would also benefit from 619 

the establishment of a community-recognized dataset of manual detections and imagery 620 

to test new models against. This study and others have shown the wide range in site and 621 

event-specific PODs, so improvements in model performance are only meaningful if 622 

done against a common set of images and detections. 623 

7) While we assessed whether a single manual observer could use SAR imagery to detect an 624 

avalanche that had been observed in the field (our Probability of Detection or POD), we 625 

did not assess how often that manual observer might have identified an avalanche that did 626 
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not occur in the field (the false alarm rate or FAR).  Doing this requires the observer to 627 

start with SAR imagery with no knowledge of avalanche activity, and then to identify all 628 

areas that appear to be avalanche debris. It would also require a spatially and temporally 629 

complete data set of avalanche activity for the area, which was unavailable to us.  630 

Obtaining such datasets is critically important for furthering this research because 631 

quantifying this manual FAR is critical to provide context for automating future 632 

avalanche detection, which often relies on manually labeled training data.  633 

 634 

5 Conclusion 635 

This study examined the manual avalanche detection rates in Sentinel-1 backscatter intensity 636 

data relative to datasets of field observed dry snow avalanches from two locations in a 637 

transitional snow climate in the western United States. For the 506 potentially observable 638 

avalanche events in the SAR images, 250 (49%) were manually detectable in the Sentinel-1 639 

images, which were derived from the 248-field observed unique events examined in this study. 640 

This POD increased to 65% when considering only avalanches large enough to bury cars or 641 

break trees (≥D3). Thus, most dry snow avalanches larger than D3 can be detected by SAR-642 

based change detection analysis, though this technique still missed about 35% of these 643 

avalanches in our combined database. 644 

The primary variables showing a strong correlation with detection rates (both in our MWU and 645 

random forest analysis) are local incidence angle, path length, destructive size, slope angle, and 646 

elapsed days between the avalanche and the activity image. We also established a much weaker, 647 

and statistically insignificant relationship for the percentage of path affected by layover. Tree 648 
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coverage, average slope steepness, and the slope's curvature failed to reach a marginal 649 

significance.  650 

With further refinements, our methods may provide a first step toward automated avalanche 651 

detection using remote sensing.  This, in turn, would give avalanche practitioners in the United 652 

States much-needed feedback and researchers spatially extensive and relatively complete 653 

datasets of avalanche occurrences for machine learning techniques and trend analysis. Though 654 

the lower latitudes of the United States only have revisit intervals of ~2–4 days instead of the 655 

daily revisit interval near the poles, there is still reasonable temporal coverage for detection of 656 

major avalanche events in a reasonably timely manner. Within the United States there are 657 

specific regions, in particular Alaska, that may be better suited to immediate applications of this 658 

technology including manual mapping of major cycles and automated near-real time detection 659 

techniques. 660 
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