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Abstract

Recently, subgraphs-enhanced Graph Neural Net-
works (SGNNs) have been introduced to enhance
the expressive power of Graph Neural Networks
(GNNs), which was proved to be not higher than
the 1-dimensional Weisfeiler-Leman isomorphism
test. The new paradigm suggests using subgraphs
extracted from the input graph to improve the
model’s expressiveness, but the additional complex-
ity exacerbates an already challenging problem in
GNNs: explaining their predictions. In this work,
we adapt PGExplainer, one of the most recent ex-
plainers for GNNs, to SGNNs. The proposed ex-
plainer accounts for the contribution of all the dif-
ferent subgraphs and can produce a meaningful ex-
planation that humans can interpret. The exper-
iments that we performed both on real and syn-
thetic datasets show that our framework is success-
ful in explaining the decision process of an SGNN
on graph classification tasks.

1 Introduction

Recent work on Graph Neural Networks (GNNs)
focused on improving their expressiveness, which
is the ability of the GNN to distinguish be-
tween topologically different graphs. Notably,
[10] and [8] proved that GNNs can be expressive
as 1-dimensional Weisfeiler-Leman (WL) isomor-
phism test [9]. To design more expressive GNNs,
some works took inspiration from more power-
ful, higher-order k-WL tests, while subgraphs-
enhanced Graph Neural Networks (SGNNs) try to
improve the expressive power of GNNs by reason-
ing on subgraphs. In this work, we focus on a
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recent SGNN framework called Equivariant Sub-
graph Aggregation Network (ESAN) [1]. The basic
intuition in ESAN is that a structural difference be-
tween two non-isomorphic graphs that is not appar-
ent when processing the whole graph with a GNN,
could instead be detected by looking at their sub-
graphs. ESAN represents each graph with a set of
subgraphs obtained with some predefined fixed pol-
icy, e.g., by removing one node or one edge, which
is then processed to provide an embedding of the
original graph to be used for the downstream task.

The message-passing framework allows GNNs to
learn graph representations that capture both node
features and relational information of the graph.
Since GNNs perform nonlinear transformations and
aggregations, their predictions are not immediately
intelligible. Therefore, a challenging yet important
task is to develop explainability tools to fully un-
derstand the GNN behaviour, allowing researchers
to interpret the decision process in critical applica-
tions, to fix mistakes, or to improve the GNN de-
sign. Explaining the context of GNNs means high-
lighting both patterns in node features and node re-
lations that mostly correlate with the output. One
of the first attempts was made in [11] with GNNEx-
plainer, which produces for each input a subgraph
and a subset of node features. Since the output
of GNNExplainer is instance-dependent, it strug-
gles to capture the decision process of the GNN
for the whole downstream task. The only proposed
workaround to explain a set of predictions is to ag-
gregate multiple individual explanations. On the
other hand, a more recent method called PGEx-
plainer [6] can learn how to sample subgraphs that
highlight the most relevant parts of the input that
influence the GNN output.

So far, explainers have been applied only to

https://doi.org/10.7557/18.6796

© The author(s). Licensee Septentrio Academic Publishing, Tromsø, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

1

https://doi.org/10.7557/18.6796
http://creativecommons.org/licenses/by/4.0/


GNNs operating on a single graph, and an inter-
pretability framework for models consuming multi-
ple subgraphs is still missing. To fill this gap, in
this work we extend the PGExplainer framework
to provide a post-hoc explainer for SGNN models
that, like ESAN, directly operate on subgraphs.
We tackle two main challenges: i) how to inter-
face PGExplainer to the ESAN framework, so that
it can handle subgraphs, and ii) how to meaning-
fully combine the learned subgraph explanations to
obtain a single explanation for the original graph.
The results show that our framework successfully
overcomes the complexity added by the use of sub-
graphs, and it is able to produce meaningful expla-
nations for an SGNN.

2 Preliminaries

2.1 Notation

Using standard notation, a graph is a pair G =
(V, E), where V is the set of vertices and E ⊆ V ×V
is the set of edges. The structure of a graph can
be also represented with an adjacency matrix A
where Aij = 1 if (i, j) ∈ E , and it’s zero otherwise.
Associated to each node we have a d-dimensional
feature vector collected in a matrix X. In a graph
classification setting, each graph Gi is associated
with a label yi and the dataset consists of pairs
{Gi, yi}.

2.2 Graph Neural Networks

GNNs generalize the approach of convolutional
neural networks to the graph domain, using
message-passing to aggregate information flowing
along edges to learn node embeddings [5]. The for-
mula of a generic message-passing layer in a GNN
is

X
(k)
i = γ(k)

(
X

(k−1)
i ,□jϕ

(k)
(
X

(k−1)
i ,X

(k−1)
j

))
,

where k is the layer index, ϕ is an MLP representing
the propagation step that computes the message of
each edge in the neighbourhood of node i (N (i)),
□ is the aggregation operator, and γ is another

MLP which updates the node feature X
(k)
i .

Almost every MP layer can be seen as a gen-
eralization of the above expression. For example,

GIN [10] implements message-passing as follows:

X
(k)
i = γ(k)

(1 + ϵ)X
(k−1)
i +

∑
j∈N (i)

X
(k−1)
j

 , (1)

where ϵ is a learnable parameter.

2.3 ESAN framework

A key element in the ESAN framework is a pre-
processing step where a bag of M subgraphs
{S1, . . . ,SM} is extracted from each graph G in the
dataset. The subgraphs are obtained with one of
the following policies:

• Edge Deletion: one edge is randomly removed;

• Node Deletion: one node is randomly removed,
along with all its incident edges;

• Ego Network: for each node, one builds an ego-
network of predefined depth k, which is the
neighbourhood of order k;

• Ego Network+: a slightly modified version of
the ego-network approach, where the central
node is provided with a special feature to dis-
tinguish it from the others.

Afterwards, the bag of subgraphs is used to train
a model that consists of three parts: an Equivariant
Feature Encoder fEFE, a Subgraph Readout Layer
fSRL, and a Set Encoder fSE. The whole ESAN
framework can be summarized as follows

G 7→ {Si}
fEFE7−−−→ {Ei}

fSRL7−−−→ {zi}
fSE7−−→ g.

The Equivariant Feature Encoder (fEFE) is com-
posed of message-passing layers and is designed to
preserve the symmetry with respect to permuta-
tions of subgraphs in the bag and of nodes within
a graph; in output, it produces for all the nodes
in subgraph Si an embedding Ei ∈ RNi×h, where
Ni is the number of nodes in Si and h is the em-
bedding dimension. The node embeddings are then
processed by the Readout Layer (fSRL), which out-
puts a single feature vector zi for each subgraph
Si. Finally, the Set Encoder (fSE) aggregates all
the feature vectors and returns an embedding g of
the original graph G, which is used for the given
task (e.g., graph classification).
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The encoder fEFE comes in two possible main
configurations. The most general one is DSS-GNN,
where subgraph Si, with adjacency matrixA(i) and
node featuresX(i), is transformed by each layer into

Ei = fEFE1

(
A(i),X(i)

)
+fEFE2

(∑
i

A(i),
∑
i

X(i)

)
,

where both fEFE1
and fEFE2

are a composition
of GNN layers and fEFE2 allows subgraphs in the
bag to share information. A simpler variant is
DS-GNN, where each subgraph is treated indepen-
dently so that information is shared only at the
end within the Set Encoder. The original paper
uses GIN and some small variants to implement
the layers in fEFE1 and fEFE2 .

2.4 PGExplainer

The intuition behind PGExplainer is that one can
split an input graph into two subgraphs, G =
Gex +∆G, where Gex is the explanation subgraph,
i.e., it contains most of the information which is rel-
evant for the GNN’s prediction. At the core of the
explainer, there is an MLP that takes as inputs the
graph structure and the node representations pro-
duced by the GNN to be explained, and it outputs
for each edge a latent variable ωij . During training,
the explainer produces the subgraph Gex by sam-
pling for each edge (i, j) ∈ E a weight eij ∈ (0, 1)
that, when it is zero, masks out the unimportant
edges. The authors let eij follow a Bernoulli dis-
tribution, which they reparametrize with a binary
concrete distribution [7] to allow gradient compu-
tation:

eij = σ((ωij + (log(u)− log(1− u)))/τ), (2)

where σ is the sigmoid function, τ is a temperature
parameter, and u ∼ U(0, 1).
The loss function of PGExplainer consists of:

Lce a cross-entropy term between the prediction
obtained from the original graph G and the
prediction obtained from the explanation Gex;

Lℓ1 a ℓ1 regularization term which encourages Gex

to be sparse;

Lent an element-wise entropy term, which encour-
age eij to be either 0 or 1;

Lcon an (optional) cross-entropy term between ad-
jacent edges, which encourages the subgraph
Gex to be connected.

The total loss function is given by

Lexp = Lce + Lℓ1 + Lent(+Lcon). (3)

3 Methods

A schematic representation of our workflow is pic-
tured in Figure 1. The source code implementing
our workflow is publicly available online.1

In the present work we use ESAN in both the
configurations described in Sec. 2.3 – DSS-GNN
and DS-GNN – and we use a modified version of
GIN to implement fEFE1

and fEFE2
. The original

GIN layer in (1) treats the graph edges as binary
in computing the message-passing, which makes
the whole network agnostic to the edge weights
eij sampled by PGExplainer. To avoid this, we

modify the propagation step from ϕ(k) = X
(k−1)
j to

ϕ(k) = X
(k−1)
j eij .

The output of ESAN is an embedding vector rep-
resenting the whole graph. However, as mentioned
in Sec. 2.4, the explainer does not work with an em-
bedding of the whole input graph but it takes as in-
put the graph structure and the node embeddings.
The node embeddings required by the explainer are
produced by ESAN at an early stage by the Equiv-
ariant Feature Encoder (called Ei in the figure) be-
fore they are passed to the Subgraph Readout Layer
that aggregates and makes the node-wise informa-
tion indistinguishable.

For the same reason, the explainer is trained to
produce a mask Mi that explains each individual
subgraph Si. In order to produce an explanation
Gex for the whole input graph, and not just to its
subgraphs separately, we have to merge each mask,
being careful to keep the correspondence between
nodes and edges. The merging could be done by
taking, for each edge (i, j) ∈ E , the average of the
M weights eij learned by the explainer for each
replica of (i, j) in each subgraph. If the edge (i, j)
is missing in one of the subgraphs, we simply set
eij = 0 for that subgraph. Besides the average,
the masks of the subgraphs could be merged by
taking the maximum value, or by summing them

1https://github.com/MicheleUIT/Explaining_SGNN
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Figure 1: Illustration of the workflow to explain ESAN. The green components represent modules from the
standard ESAN network, the part in blue is PGExplainer. Starting from the left: the input graph G is first
decomposed in a bag of subgraphs {Si} according to the chosen policy (in the example, we deleted one edge),
then the EFE processes each subgraph providing a representation for all nodes, which PGExplainer uses to
sample a bag of masks {Mi}. The masked embeddings are then passed to the SRL and SE components, which
provide the masked output g used to train PGExplainer itself. The masks Mi are then merged to produce the
final explanation Gex.

and then rescaling the overall mask so to have val-
ues between 0 and 1. We opted for the latter ap-
proach because it gives more importance to those
edges consistently associated with a high weight eij
across different masks.
Our implementation of PGExplainer departs

from the original one in some aspects.
We reformulated the reparametrization trick

in (2) as follows

eij = σ

(
ωij + ξ

τ

)
,

with ξ = − log(− log(u)) and u ∼ U(0, 1). Empiri-
cally, we found that such a reparametrization leads
to values in eij that are slightly closer to 0 or 1.
To circumvent the problem of “introduced evi-

dence” [2] generated by the presence of soft masks
(i.e., masks with weights lying in the [0, 1] inter-
val), we devise a way to force each edge weight
during training to assume a binary value in {0, 1}
(commonly called “hard” mask) using a straight-
through estimator [3] that, at the same time, al-
lows the flowing of gradients. In particular, during

forward pass we first sample the soft mask using
the reparametrization trick described above; then,
we binarize the soft mask by applying a thresh-
old (an operation that is not differentiable) and
we obtain a hard mask that is applied to the sub-
graphs. In the backward step, gradients are com-
puted with respect to the soft mask, ignoring the
non-differentiable step that produces hard masks.

We modified the loss function in (3) by drop-
ping the element-wise entropy term Lent since, in
our experiments, it did not appear to be helpful
thanks to the straight-through estimator described
above. We also noticed that the produced expla-
nations did not require an additional constraint to
encourage connectivity and, thus, we did not in-
clude regularization terms such as Lcon. Therefore,
the deployed loss function has only a cross-entropy
term between the original classification prediction
produced by ESAN and the one given with the
masked subgraphs, and the ℓ1 regularization term
to encourage the sampling of smaller masks:

Lexp = Lce + Lℓ1 .
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Dataset BA-2motifs Mutagenicity

Motifs

Table 1: Description of the two datasets used.

4 Experiments

4.1 Datasets

We used two datasets for graph classification that
provide a ground-truth explanation for each graph
(see the summary in Table 1):

• a synthetic dataset, BA-2motifs [6], which con-
tains 1000 graphs divided into two classes ac-
cording to the motif they contain: either a
“house” or a five-node cycle;

• a real-world dataset, Mutagenicity [4], which
contains 4337 graphs that represent mutagen
drugs, if they have NH2 or NO2 groups, and
non-mutagen drugs if they don’t.

4.2 Metrics

Finding an explanation motif can be seen as a bi-
nary classification problem for edges: either they
are part of the explaining motif, or they are not.
This justifies the use of AUC as an evaluation of the
accuracy of the explainer. In Table 2 we also report
the average size of the explanations, expressed as a
percentage with respect to the whole input graph.
If it is too large the masked input is likely to pro-
duce the same output given by the original graph,
but the mask is less explanatory because it contains
a lot of uninformative edges. On the other hand,
if the size is too small, the masked input could not
capture all the relevant information to produce the
right output.

4.3 Results

The results of our experiments are summarized in
Table 2, where we also show the baseline results
found using the original PGExplainer on a GIN.
Even though we used the original implementation
with the same settings, we obtained results that

Dataset EFE Policy Mask size (%) AUC

B
A
-2
m
o
ti
fs

DS ND 19± 6 0.88± 0.14
DS ED 33± 5 0.78± 0.15
DS EN 4± 13 0.70± 0.07
DS EN+ 17± 4 0.99± 0.00
DSS ND 22± 1 0.99± 0.00
DSS ED 21± 3 0.99± 0.00
DSS EN 1± 1 0.69± 0.05
DSS EN+ 0± 0 0.74± 0.06

Baseline – – 12± 0 0.99± 0.00

M
u
ta
g
en

ic
it
y

DS ND 47± 2 0.80± 0.03
DS ED 59± 8 0.77± 0.04
DS EN 6± 1 0.76± 0.13
DS EN+ 10± 0 0.88± 0.01
DSS ND 8± 8 0.86± 0.06
DSS ED 68± 4 0.90± 0.02
DSS EN 0± 0 0.58± 0.03
DSS EN+ 2± 2 0.60± 0.06

Baseline – – 30± 25 0.63± 0.18

Table 2: Results for the two datasets, BA-2motifs and
Mutagenicity. DS and DSS represent the two possi-
ble configurations of the Equivariant Feature Encoder
(fEFE). The possible policies described in Sec. 2.3 to ex-
tract subgraphs are: deleting one node (ND), deleting
one edge (ED), ego networks (EN), and ego networks
with a distinguishing feature on the node (EN+). Both
the AUC and the mask size (as a percentage of edges
in the original graph) are reported. Baselines refer to
PGExplainer applied to a regular GIN.

are different from those reported in the original pa-
per [6]. Some examples of explanations are shown
in Table 3. We notice that the explainer manages
to correctly and tightly identify the relevant motifs
in most scenarios, performing better or on par with
the baselines. Some deeper insights follow.

The explainer generally performs better on BA-
2 than on Mutagenicity, both in terms of AUC
and mask size (the expected mask size in BA-2 is
around 20%). This is expected, given the simplicity
and the synthetic nature of the dataset.

In both datasets and both versions of EFE, the
worst-performing subgraph policy is the one using
ego networks (EN), with a very low average mask
size. In our experiments, like in the original ESAN
paper, we used a depth of k = 2. In BA-2 the pro-
duced masks are too small to fully cover the ground
truths, and the explainer struggles to uncover com-
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Policy ND ED EN EN+
B
A
-2
m
o
ti
fs

D
S

D
S
S

M
u
ta
g
en

ic
it
y D

S
D
S
S

Table 3: Examples of explanations produced with our method in the two datasets with different subgraph
policies. DS has been used as Equivariant Feature Encoder.

pletely the target motif. In Mutagenicity on the
other hand motifs are small, but graphs are quite
large. When the masks Mi are too many, their in-
dividual contribution is washed out once they are
combined. This might explain why the explanation
Gex struggles to highlight all the actual motifs (see
figures in Table 3).
The EN+ policy performs slightly better than

the standard EN, but there is a strong dependence
on the architecture of EFE: it prefers the DS vari-
ant. This suggests that the improvement may be
due to ESAN’s performances rather than the ex-
plainer.
Unlike what we see for EN and EN+, edge and

node deletion policies on Mutagenicity often yield
a higher average mask size, especially on larger
graphs. The reason might be that with ED and
ND, as the input gets larger, each edge appears
more often in Mi, even if it is not part of any motif.

5 Conclusion

We extended PGExplainer to ESAN, a recently
proposed SGNN framework that leverages sub-
graphs to improve the expressiveness of GNNs. We

showed that it is possible to adapt PGExplainer, so
that it handles subgraphs and, with the right ag-
gregation method, it is able to produce meaningful
explanations for the whole input graph.

As in the original work, PGExplainer still re-
lies on what the model to be explained manages
to learn: it is able to produce trustworthy expla-
nations if ESAN identifies meaningful relations be-
tween nodes. In other words, the explainer fails if
the underlying classifier solely relies on node fea-
tures to predict the output. More research on in-
terpretability for GNNs is needed in this regard.

In our implementation, due to the structure of
ESAN itself, the explainer only works on a par-
tial embedding of the input graphs. In particular,
the explainer does not make use of what fSRL and
fSE learned. In future work, it could be interesting
to take full advantage of all the embeddings pro-
duced by ESAN to overcome the difficulties we en-
countered when dealing with large graphs or small
subgraphs. For example, the combination of all
the masks into a single explanation could be con-
ditioned on the final graph embedding.
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