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A B S T R A C T   

The energy market relies on forecasting capabilities of both demand and power generation that need to be kept in 
dynamic balance. Nowadays, contracts and auctions of renewable energy in a liberalized electricity market 
heavily rely on forecasting future power generation. The highly intermittent nature of renewable energy sources 
increases the uncertainty about future power generation. Since point forecast does not account for such un
certainties, it is necessary to rely on probabilistic forecasts. 

This work first introduces probabilistic forecasts with deep learning. Then, we show how deep learning models 
can be used to make probabilistic forecasts of day-ahead power generation from a wind power plant located in 
Northern Norway. The performance, in terms of the quality of the prediction intervals, is compared to different 
deep learning models and sets of covariates. 

The findings show that the accuracy of the predictions improves by 37% when historical data on measured 
weather and numerical weather predictions (NWPs) were included as exogenous variables. In particular, his
torical data allows the model to auto-correct systematic biases in the NWPs. Finally, we observe that when using 
only NWPs or only measured weather as exogenous variables, worse performances are obtained. The work shows 
the importance of understanding which variables must be included to improve the prediction performance, 
which is of fundamental value for the energy market that relies on accurate forecasting capabilities.   

1. Introduction 

Making accurate predictions is of fundamental importance in the 
energy market where decisions are based on expectations about the 
future. Today, when it comes to renewable energy generation, such 
decisions are increasingly made in a liberalized electricity market 
environment, where future power generation must be offered through 
contracts and auction mechanisms, hence based on forecasts [1–3]. 
Since renewable energy sources (RES) are to eventually participate in 
market mechanisms under the same rules as conventional fossil-fuel- 
based generators, mismatches between contracted generation and 
actual deliveries may induce financial penalties [4]. Indeed, the energy 
production from RES can be predicted with limited accuracy. This, in 
addition to uncertainties in market prices, yield uncertain market 
returns. However, in market environments under such high levels of 

uncertainty, the relevant stakeholders may make better decisions if they 
are given the best possible estimates about the future. 

Forecasts in their most common form are to predict the next value 
that is most likely to occur. Forecasts in such form are called a point 
forecast. The main objective of making point forecasts is to train a model 
to predict a certain point in the future, and hopefully, the actual value 
will eventually be the same (i.e., a perfect prediction). However, it is not 
reasonable to expect that a model can perform 100% accurate pre
dictions. The models will therefore predict the most likely value based 
on what it has learned through the information that is given. However, 
when predicting the most likely value (or point) in the future, one does 
not consider the uncertainties in this forecast (how sure are we that this 
will be the next value). For the stakeholders that work in the energy 
market with a high degree of uncertainty, it is of interest to measure the 
uncertainty in a given forecast. For instance, the power production from 
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solar photovoltaic (PV) or wind power is highly intermittent and 
dependent on multiple features with a complex and non-linear nature 
(weather, power market, human activity) [5–7,1]. Making accurate 
point predictions from these technologies is almost impossible, espe
cially when considering short-term forecasts that range from 12-h to 36- 
h ahead, which is the day-ahead market the energy trading companies 
must relate to [6,8]. Therefore, it is of fundamental importance to be 
able to predict the distribution of the expected outcome to find a certain 
interval of possible outcomes. Probabilistic forecasts predict such dis
tributions where the interval of possible outcomes creates a prediction 
interval (PI). Probabilistic forecasts will allow market participants to 
consider the uncertainties in a given prediction. 

The increased share of RES technologies with fluctuating generation 
in the electricity market, and the rapid development within machine 
learning (ML), have motivated the development of research concerning 
probabilistic forecasts in energy applications with deep learning. Efforts 
have been done to construct deep learning models that create probabi
listic forecasts of expected generation from technologies such as PV and 
wind power [2,9,7,10,11]. 

In works by Sadeghi, Saleh, et al. [12,13] a novel deep learning- 
based approach to model the uncertainty in a virtual power plant 
(VPP) concept was proposed. The VPP concept is used to address the 
challenges related to the increased penetration of RES and electric ve
hicles in the electricity system, which has highly intermittent nature in 
generation and consumption [14]. 

Similar approaches have been used to make probabilistic forecasts of 
expected weather (such as wind speed), traffic, energy load, and spot 
prices in the electricity market [15–17,6]. 

The majority of former works have used different deep learning ar
chitectures such as Convolutional Neural Networks (CNNs) or Recurrent 
Neural Networks (RNNs) where different loss functions are optimized to 
compute predicted distributions. In addition, some works are proposing 
methodologies where original Neural Networks (NNs) are modified for a 
specific task to make probabilistic forecasts [18,8,10]. In [19] the au
thors compared deep learning models to make probabilistic forecasts on 
different datasets and showed that wind power generation was the most 
challenging one to predict with high accuracy due to the highly non- 
linear feature and randomness in power generation. Despite a large 
number of works on probabilistic forecasts with deep learning tech
niques in energy applications, there is a lack of research comparing the 
effect of using exogenous variables to obtain the best prediction per
formance of wind power generation. 

The electricity generation from wind power systems is directly 
affected by the amount of wind that hits the turbines, where the amount 
of power that is generated follows a wind-to-power conversion process, 
or the power curve [20]. Therefore, the majority of work uses numerical 
weather predictions (NWPs) as inputs to forecast the expected wind 
power generation in the short-term range (6–72 h ahead) [21–24]. When 
predicting wind power generation, a large part of the forecast error will 
therefore directly come from the NWPs. Predicting short-term weather 
(especially wind speed) is a complex task due to its non-linear and 
fluctuating nature [25–27]. Consequently, this gives large sources of 
error for making accurate short-term predictions of wind power gener
ation. The wind power case study considered in this work is in a region 
with complex terrain where it is large weather variations within small 
distances, making it increasingly difficult to have accurate NWPs 
available. In this work, we address the issue of inaccurate NWPs by 
constructing different configurations of datasets that could account for 
such failure sources. We perform prediction experiments using different 
sets of exogenous variables are compared to make probabilistic forecasts 
of wind power generation with deep learning models. The exogenous 
variables considered are the NWP (wind speed  + wind direction) and 
measured weather (wind speed  + wind direction) from instruments 
installed locally in the wind power plant. The wind power plant studied 
in this work lies in a region with a complex topography in Arctic weather 
conditions that potentially have a larger source for failure in the NWPs 

compared to other regions. Therefore it is a motivation in this work to 
use deep learning models that are trained to account for possible failure 
sources in weather predictions by using the measured weather to correct 
for such failures. In the end, we compare the accuracy of the probabi
listic forecasts for different sets of covariates and discover the variables 
that should be included to compute high-quality PIs. 

This paper is structured as follows. In Section 2, an introduction to 
the field of probabilistic forecasts is provided. Section 3 presents a re
view of relevant research in the field of probabilistic forecast within 
energy analytics. In Section 4, the wind power plant case study is pre
sented. Section 5 presents the methodology for making probabilistic 
forecasts. In Section 6 the results are presented in terms of the obtained 
quality of the PIs. Conclusions are given in Section 7. 

2. The concept of prediction intervals 

Although the field of probabilistic forecasts is based on well-known 
concepts in statistics, and there exists a vast amount of existing 
research on this field, some concepts have been shown to be confused 
and misused [28]. To avoid this, we start by defining and explaining 
some relevant concepts that will be used through the study. 

When making probabilistic forecasts, the goal is to make a PI that 
considers the uncertainties in the predictions. The PI is an estimate of an 
interval in which the future observation will fall with a certain proba
bility. For instance, for a 95% PI, there should be a 95% probability that 
the next value will fall within the lower and upper bounds. 

The generic form for computing the upper and lower bound of PIs is 

P(Yn ∈ C(Xn))⩾1 − α, (1)  

where Yn is the response variable, C(Xn) is the confidence interval 
centered on the covariate Xn, and α is the significance level. For a 95% 
PI, α is 0.05. 

PIs can either be of low quality, or of high quality. A high-quality PI 
will be sharp and well-calibrated (the PI contains the desired proportion 
of the samples 1 − α). A low-quality PI is too wide or is miscalibrated (the 
empirical quantiles do not match the theoretical ones). 

Examples of high-quality and low-quality PIs is given in Fig. 1. 
Here, we see an example of a point-and probabilistic forecast. The 

red dots represent the observed values, the blue dots are the point pre
dictions. The yellow line represents the PI, which in this case is the 95% 
prediction interval. Here, it is clear that the high-quality PI (uppermost 
Figure) fulfills two important criteria when computing PIs. Sharpness 
and calibration. The boundaries of the PI should be sharp to convey 
useful information about the uncertainity in the predictions. In addition, 
the PI should be calibrated, which means that for a 95% PI, 95% of the 
observed values should fall within the PI. Here, the PI contains exactly 
95% of the observed values, and hence we can trust that there is a 95% 
probability that the observed values will fall within this PI. 

The middle and lowermost examples on contrary, show examples of 
low-quality PIs. The example in the middle shows a PI with high 
sharpness, but it is not calibrated as it only contains 80% of the observed 
values, which is not adequate in a 95% PI. The lowermost exampled 
shows a calibrated PI as it contains 95% of the observed values. How
ever, it is not sharp, and PIs that are too wide do not convey any useful 
information about the variation in the observed values. 

3. Related works on probabilistic forecasting with deep learning 

There exists a vast amount of former research on probabilistic fore
cast in different applications, and it is outside the scope to review all of 
them in this work. Therefore, former works that have particularly 
focused on the application of probabilistic forecast with deep learning 
within energy applications are reviewed here. In the following, a few 
examples of some former popular reviews that have high relevance for 
energy applications is provided. 
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In [28], a comprehensive review on probabilistic forecast of the 
electric load was conducted. The authors offered a tutorial review of 
probabilistic forecasting and presented a brief introduction to common 
prediction horizon categories which are used in several works consid
ering forecasting within energy applications [20,21]. The typical 
forecast-horizons range from very short (second to minutes), short 
(hours to days), medium (days to weeks), and long term (weeks to 
years). Very short-term predictions are often used for power wind tur
bine control, and for such applications, only historical measurement 
data has shown to be sufficient to make accurate predictions. Short-term 
predictions are popular to use for intraday and day-ahead electricity 
market purposes. Here, information from NWPs are required to improve 
the forecast accuracy [20]. Medium and long-term predictions are often 
used for maintenance scheduling, power system planning, and resource 
(solar or wind) assessment. In addition, the authors presented some 
notable techniques, methodologies, and evaluation methods that could 
be valuable for researchers and practitioners in the area of probabilistic 
load forecasting. To improve the field of probabilistic forecasts, they 
underlined the need to invest in additional research, and they state the 
importance of considering emerging technologies and energy policies in 
the probabilistic forecasting process. 

Another relevant review was performed by [20]. The authors discuss 
the challenge of making accurate predictions of the highly intermittent 
electricity generation from wind power. They discuss the value of 
probabilistic forecasts in such tasks as it could provide additional 
quantitative information on the uncertainty. For actors that work with 
decision-making in an uncertain environment (for instance power 
traders), information about uncertainties in decisions is of interest. In 
this work, the authors presented a review of state-of-the-art methods and 
new developments within wind power probabilistic forecasting. They 
discuss different forecast methods and classified them into different 
categories in terms of uncertainty representation. Finally, they sum
marized requirements and the overall framework of uncertainty fore
casting evaluation. 

Notably, both these two famous reviews are quite mature (2016 and 

2014), and the field of probabilistic forecasting with deep learning in 
energy analytics has vastly developed in recent years. A recent review 
and comparison study was performed by Mashlakov et al. [19]. Here, the 
recent developments in the field of probabilistic forecasting, multivar
iate models, and multi-horizon time series forecasting were reviewed. 
The authors empirically evaluate the performance of novel deep 
learning models for predicting wind power, solar power, electricity load, 
and wholesale electricity price for intraday and day-ahead time hori
zons. They reviewed the performances of both point and probabilistic 
forecast approaches. This comprehensive comparison work could serve 
as a reference point for the quantitative evaluation of deep learning 
models for probabilistic multivariate energy forecasting in power 
systems. 

In addition to the above-mentioned reviews, Table 1 present an 
overview of some recent research works which have contributed to 
developing the field of probabilistic forecasting with deep learning in 
energy applications. 

The works in Tab.1 are grouped according to which model they use 
to make either point-or probabilistic forecasts. The most common 
methodologies involve using either Convolutional Neural Networks 
(CNNs) or Recurrent Neural Networks (RNNs). 

The authors in [9] addressed the challenge of making accurate pre
dictions of electric generation from intermittent photovoltaics. They 
proposed a two-step methodology where the first step was to use wavelet 
transform to decompose the signal into several frequencies, where each 
frequency has better behavior and outlines. Then, a deep convolutional 
neural network was employed to extract the nonlinear features and 
invariant structures exhibited in each frequency. The point of the hybrid 
approach is that the final decomposed signal is easier to predict than the 
original time series and should result in better prediction accuracy. To 
perform predictions, the deterministic method and a spline quantile 
regression were developed to evaluate the probabilistic forecasts. The 
proposed deterministic and probabilistic methods were applied to real- 
world datasets from PV farms in Belgium, and the results demonstrated 
improvement compared to more conventional forecasting methods. In 

Fig. 1. Examples of PI with high (uppermost figure) and low quality. The red dots represent the observed values, the blue dots is the point predictions. The yellow 
line represent the PI, which in this case is the 95% prediction interval. 
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[29], a probabilistic forecasting framework were proposed. The frame
work is based on CNNs and can be applied to estimate the probability 
density under both parametric and non-parametric settings. The loss 
function in the non-parametric framework is obtained by quantile 
regression, while for the parametric approach, the negative log- 
likelihood function is constructed as the loss function. The authors 
stack residual blocs based on dilated causal convolutional nets to cap
ture the temporal dependencies of the time series, which creates a 
temporal convolutional neural network. The framework is able to learn 
latent correlations among series and should handle complex real-world 
patterns such as seasonality and holidays. The proposed method shows a 
high degree of flexibility and could include exogenous covariates such as 

weather forecasts. The authors demonstrate the framework on several 
real-world datasets and show that the results outperformed the state-of- 
the-art in both point and probabilistic forecasting. In [2], a two-stage 
training strategy is proposed to optimize the training procedure of 
quantile CNN (QCNN). The approach is developed with the aim to tackle 
the challenging task of making accurate probabilistic forecasts of PV 
power generation which has a high degree of variability. The two-step 
approach is as follows: First, the QCNN constructs a feature extraction 
network based on CNNs to mine the deep features of the PV power in
fluence factors. Thereafter, quantile regression is employed to generate 
the PV power probability distribution based on the extracted features. 
To tackle a common training problem of the QCNN, a CNN is trained 
using a deterministic forecasting method, and a QR is trained using a 
linear-programming method. This two-stage process ensures that the 
training problem of QCNN could be avoided. They demonstrate the 
method on a real-world PV power plant in Australia and show promising 
results compared to other forecasting methods. 

Instead of using CNNs, some authors used RNNs to make probabi
listic forecasts. In [30] they propose a flexible method for probabilistic 
modeling with conditional quantile functions using monotonic regres
sion splines. They parameterize the shape of the spline using a neural 
network. The parameters in the neural network are learned by mini
mizing the CRPS. By following this approach, they propose a method for 
probabilistic time series forecasting by combining the modeling capacity 
of RNNs with a spline-based representation of the output distribution. In 
addition, by minimizing the CRPS, they avoid the quantile crossing 
problem. Finally, the proposed approach does not require the parametric 
assumptions made on the output distribution and the observed data. The 
vast majority of techniques assume Gaussian distribution, which is often 
not adequate in real-world datasets. The authors in [16] proposed a 
method for making probabilistic forecasts with autoregressive recurrent 
neural networks (DeepAR). The proposed method learns a global model 
from historical data of all the time series in the dataset and produces 
probabilistic forecasts. The main contribution of the proposed DeepAR 
was twofold. First, they proposed an RNN architecture for probabilistic 
forecasting by incorporating a Negative Binomial likelihood for count 
data as well as special treatment for the case when the magnitudes of the 
time series vary widely. Second, they demonstrate the results empiri
cally on several real-world data sets and showed that this model pro
duces accurate probabilistic forecasts across a wide range of input 
characteristics. In [31], the challenging task of probabilistic forecasts of 
high dimensional multivariate time series is tackled. They introduce a 
novel temporal latent auto-encoder method that enables nonlinear 
factorization of multivariate time series. This method offers an efficient 
combination between flexible non-linear autoencoder mapping and 
inherent latent temporal dynamics modeled by a Long Short Term 
Memory (LSTM) RNN. This method is learned end-to-end with a tem
poral deep learning latent space forecast model. By imposing a proba
bilistic latent space model, complex distributions of the input time series 
are modeled via the decoder. They demonstrate through several exper
iments that their proposed model achieved state-of-the-art performance 
on many popular multivariate datasets. 

Besides the CNN and RNN architectures, several works have pro
posed approaches using Bi-directional LSTM or Bi-directional GRU 
models with promising results [8,15,38]. In addition, several works have 
proposed methodologies where original Neural Networks have been 
modified for the specific probabilistic forecasting task. We refer to the 
works that are listed in the “Modified NNs” section in Tab.1 for more 
detailed descriptions. Most works listed in Tab.1 have applied the fre
quentist approach where the main aim is to optimize a cost function 
(such as the quantile loss), but some works have also proposed a 
Bayesian approach to make probabilistic forecasts with deep learning 
(see the “Bayesian methods” section for more detailed descriptions). 

The final approach for making probabilistic forecasts that are listed 
in Tab.1 is the ensemble method. Ensemble techniques are a method 
where multiple learning algorithms are combined to obtain better 

Table 1 
Overview of different works.  

Model Year Network Forecasts Metrics Dataset 

CNNs 
[9] 2019 CNN Point, 

Prob. 
MAPE, RMSE 
QL 

PV power 

[29] 2020 TCN Prob, 
Point 

QL, NRMSE Retailers 

[2] 2020 CNN Prob. RMSE, MAPE 
PCIP, PINAW 

PV power  

RNNs 
[30] 2019 RNN Prob QL, NRMSE demand, traffic 

finance 
[16] 2020 RNN Prob. QL, NRMSE demand, traffic, 

electricity 
[31] 2021 RNN Prob CRPS, MSE traffic, energy 
[32] 2020 NN library Prob QL energy, PV  

Modified NNs 
[8] 2018 Bi-LSTM Prob RMSE, QL Power market 
[15] 2020 BiGRU Point, 

Prob. 
RMSE, QL Wind speed 

[7] 2020 IDMDN Prob NRMSE Wind power 
[18] 2020 GRU +

CNN 
Point, 
Prob 

RMSE, CRPS Wind speed 

[17] 2018 iQRNN Prob. QL, WS Energy load 
[33] 2020 sDAEs +

ANN 
Point RMSE, MAPE 

MAE, R2 
Wind speed 

[34] 2021 PCFM Point, 
Prob 

RMSE, MAE 
PINAW, PCIP 

Wind speed 

[35] 2019 WT + CNN Point, 
Prob 

RMSE, MAE, 
MAPE PINAW, 
PCIP, CWC 

Wind speed 

[36] 2018 NARX Point, 
Prob 

RMSE, MAE 
PINAW, PCIP 

Wind speed 

[37] 2019 LSTM +
GPR 

Point, 
Prob 

RMSE, MAE, 
CRPS 

Wind speed 

[38] 2021 MC + Bi- 
LSTM 

Point MAE, MAPE, 
RMSE 

Load demand 
Electricity price 
Wind speed 

[38] 2020 SDAEs +
SR-NNs 

Point MAE, MAPE, 
RMSE 

Wind speed  

Bayesian methods 
[6] 2019 Bayesian Prob. RMSE, MAPE 

CRPS 
Energy prices 

[1] 2020 STNN Point, 
Prob. 

RMSE, CRPS Wind speed 

[39] 2020 Bayesian 
NNs 

Point, 
Prob 

RMSE, CPRS Energy load 

[40] 2019 Calibrated Prob. MAPE, QL UCI datasets  

Ensemble methods 
[10] 2017 WT + CNN Prob RMSE, PICP Wind power 
[5] 2016 7 ML 

models 
Prob RMSE, MAE 

QL 
Solar power 

[11] 2021 SEFMGPR Prob RMSE, R2 Wind power 
[41] 2020 EPS Prob CRPS Solar irradiance 
[42] 2020 MDE Prob QL Wind power  
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prediction performance than could be obtained from a single learning 
algorithm alone. For instance, the authors in [5] tackled the challenging 
task of predicting electric power generation from PVs using seven 
different ML models that are ensembled together to compute probabi
listic forecasts. The findings show the ensemble methods outperformed 
the individual ML models. 

All works in Tab.1 have tested the performance of their proposed 
methodology on energy-related datasets, and the prediction perfor
mances are presented with popular probabilistic metrics such as the QL, 
CRPS, PCIP, and PINAW (some of these metrics are defined and used in 
the result section in this work). Noteworthy, among all works, there is no 
specific model or method that seems to consistently achieve the best 
results, apart from the DeepAR model which has shown promising re
sults in several works [19,16,32]. 

In a recent review and comparison work by [19], the authors 

highlighted the need of testing more automated deep learning models to 
progress the research within the field of probabilistic forecasts in energy 
applications. The authors suggested using open source libraries for 
modeling, such as the GluonTS toolkit [32]. The aim of the GluonTS 
library developed by [32] is to provide a flexible tool for probabilistic 
time series modeling with deep learning-based models. Motivated by the 
suggestion in [19], we implement deep learning models from the 
GluonTS library to make probabilistic forecasts of wind power 
generation. 

4. Wind power plant case study 

4.1. The wind power plant located in Northern Norway 

In this work, the power generation from a wind farm in the region of 

Fig. 2. Altitude map where the different colors indicate the altitude level. Green color is altitudes between 75 and 230 MASL. The highest mountains around in the 
region close to the wind park is up to 1032 MASL. The 18 turbines in the wind farm are marked in red dots. 
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Northern Norway is predicted. This wind farm consists of 18 turbines 
with a maximum power generation capacity of 3 MW, giving a 
maximum capacity of 54 MW for this power plant. In Fig. 2, an altitude 
map is created for the region of the wind power plant. 

The different colors in the altitude map indicate the interval in Meter 
Above Sea Level (MASL). Here, the green color is all altitudes between 
75 and 230 MASL. The highest elevation in the mountains to the right 
has an altitude between 632 and 1,032 MASL. The red dots are the 
geographical positions of the different turbines. Most of the turbines are 
approximately at the same altitude below 230 MASL. The two turbines 
at the rightmost positions are slightly below an altitude of 75 MASL. 

Such a complex topography where the altitude varies from 0 to above 
1000 MASL within small regions, is a typical phenomenon for the terrain 
in Northern Norway. This terrain has a huge impact on the local weather 
variation, and this particular wind power plant is highly affected by 
local variations in the wind. The owner of this wind power plant re
ported that the leftmost turbine produced 25% less energy than the 
rightmost turbine during the year 2020. The reason is that the turbines 
located to the left are shielded by the large mountains (indicated by the 
white color in the altitude map) which reduce the amount of wind that 
hits the turbine. On the other hand, the turbines located to the right are 
close to the ocean where there are few objectives that could reduce the 
wind. This power plant is a perfect example of where it can be large 
differences in production between the turbines. This can increase the 
difficulties in making predictions for the whole park, as the total power 
output from the park will be even more fluctuating compared to wind 
farms in flat regions where the weather conditions are more equal 
throughout the whole farm. 

4.2. Dataset and and technical properties of wind turbines 

The data available from the wind park is the historical measured 
power generation, wind speed, and wind direction measured on each 
turbine from the year 2020. The measured wind speed and wind di
rection variables are collected from the weather stations mounted on the 
nacelle on the turbine that is located in the middle of the wind park. The 
data are in a 1-h resolution and are received from the Troms Kraft Power 
company, the owner of the wind power plant. This gives a dataset of 
totally 8,784 samples. In addition to measured data, the NWP from the 
AROME-Arctic model is collected. This model is developed by the 
meteorological institute of Norway (MET) and provides weather fore
casts with a spatial resolution of 2.5 km and a temporal resolution of 1 h. 
Similar to the weather measurements, the predicted wind speed and 
wind direction variables are collected from the AROME-Arctic model. 
Using only wind speed and wind direction as additional input variables 
to the prediction experiments has been shown to provide the most ac
curate forecasts in former wind power forecast literature [21]. This is 
due to the fact that wind power generation is directly affected by the 
amount of wind that hits the turbine blades. Hereafter, the weather data 
is referred to the wind speed and wind direction. Fig. 3 illustrate a map 
with the AROME-Arctic simulated wind speed for a randomly selected 
hour on the 1st of March in 2020. The colors in the map represent the 
simulated wind speed in each cell (spatial resolution of 2.5 km). It is 
clear that the turbines in the wind power park are distributed over two 
different cells, and there are differences in the wind speed for the two 
cells. 

Fig. 3 show large differences in wind speed within a few kilometers, 
ranging from zero wind (blue color in southernmost part) to almost 30 
m/s wind (red color in northernmost part). The AROME-Arctic weather 
forecast for this particular example shows that the rightmost part of the 
wind power plant has a wind of 5.5 m/s, and the leftmost part has a wind 
of 4.9 m/s. To consider possible local differences in wind speed and wind 
direction, the weather data from both cells in the AROME-Arctic 
weather simulation map is included as exogenous variables. 

Before proceeding to the prediction methodology, some technical 
features of wind power generation must be highlighted. Wind power 

generation is a (RES) technology that has a highly intermittent power 
generation due to the strong dependency on weather conditions. In 
addition, the power generation from the wind turbines is dependent on 
the power curve. The power curve from one of the turbines in the wind 
farm analyzed here is given in Fig. 4. 

As seen in Fig. 4, the wind turbine has zero production between 0 m/ 
s to 3/4 m/s. At the cut-in wind speed around 4 m/s, the power gener
ation increases towards a wind speed of 12–13 m/s. At this wind speed, 
the power production reaches the maximum limit (or the rated power) of 
3 MW around and produces at maximum it suddenly drops towards zero 
in the cut-off interval around 25 m/s. The reason for this drop is due to 
safety. If the blades at the turbine rotate too quickly, it can damage the 
equipment. Therefore, the turbines are forced to stop. 

5. Methodology 

5.1. Dataset configuration, preliminary analyses and deep learning 
models 

In this work, the aim is to predict the day-ahead wind power gen
eration. The day-ahead market closes at 12:00 where the market par
ticipants must submit their final bids to the electricity market about the 
expected amount of power generation the next day. Therefore, in this 
work, the forecast horizon is 36 h to consider all hours in the next day 
(12 h  + 24 h). 

First, in order to identify the time varying patterns in the time series, 
some statistical analyses are performed by computing the autocorrela
tion function (ACF) and the partial autocorrelation function (PACF). 
Fig. 5 shows the ACF and PACF graphs for the time series of the wind 
power generation and wind speed in the year of 2020. The ACF and 
PACF plots show no repetitive patterns, which indicate lack of season
ality in the time series. Interestingly, the time series show short-term 

Fig. 3. The Arome Arctic weather simulation map where the red dots represent 
the position of each wind power turbine. Each square represent the spatial 
resolution of 2.5× 2.5 km. 12 turbines and 6 turbines are located in the left
most and rightmost cell, respectively. 
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dependencies as the ACF show correlations outside the 95% confidence 
interval for all time lags (depicted as a blue area in Fig. 5). The values 
outside of the blue cone are very likely actual correlations. The PACF 
plots do not show any strong correlations except from the first three lags, 
and the correlations in the ACF plot after lag 3, are indirect correlations 
that can be explained by the first three time steps. Noteworthy, the ACF 
and PACF plots capture only linear dependencies in the wind power 
generation and wind speed, but there could be non-linear dependencies 
in the time series in addition. The deep learning models used in this work 
provide the capability to capture such non-linear relationships. 

The correlation in the ACF and PACF plots shows that historical data 
on wind power generation should be used as input to the deep learning 
models to make predictions of the expected power generation. In addi
tion, as wind power generation is directly affected by the amount of 

wind that hits the turbines, it is of interest to investigate which variables 
should be included (or excluded) as covariates to potentially improve 
the prediction performance. The exogenous variables included in addi
tion to the historical data on wind power generation are the historical 
measurement data on weather conditions and the NWP from the 
AROME-Arctic model. The measured weather is included as input due to 
the complex terrain in the region of the wind farm, and the weather 
model with a spatial resolution of 2.5 km might be too coarse to capture 
local variations in the wind. Therefore, the information from measured 
wind from the nacelle could provide important additional information. 

The prediction experiments are summarized as; 1) Use historical 
measurement data on power generation with historical measurement 
data on weather, and the 36 h ahead NWP as exogenous variables to 
predict the future power generation. 2) Use historical measurement data 

Fig. 4. Power curve from a wind turbine in the wind farm studied in this work with the cut-in, rated and cut-off wind speed marked. The zero production above 4 and 
below 25 m/s wind represent periods where the turbine is shut down due to turbine failure or maintenance. 

Fig. 5. ACF and PACF of the time series on wind power generation and wind speed in the year of 2020. The correlation outside the standard deviations are cor
relations and not a statistical fluke. 
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on power generation, where only measured weather data is used as 
exogenous variables. 3) Use historical measurement data on power 
generation, where only the 36-h ahead NWP data is used as exogenous 
variables. 

In Fig. 6 the example on the first prediction experiment where both 
measured weather (MW) and predicted weather (PW) is used as addi
tional inputs to predict the future power generation is illustrated. In 
prediction experiments 2) or 3), either PW or MW is removed as input. 

To make predictions with the different covariates, the DeepAR model 
proposed by [16] is selected as it has outperformed other models in 
several recent works on probabilistic forecasts with deep learning 
[19,16,32]. The inputs to the DeepAR models are the time series values 
(historical wind power generation) until t − 1 and potential covariates 
(such as measured and predicted weather) at time t. The covariates and 
the time series values are thereafter concatenated before being fed into 
the internal units, which can either be LSTM or GRU layers. The output 
from the internal units is fed into two different linear layers. One for 
computing the mean, and one for computing the standard deviation. 
When computing the standard deviation, the linear layer is fed into a 
SoftPlus layer to ensure positive values. In the end, the computed mean 
and standard deviation are used as input to a Gaussian likelihood model 
where predictive samples are generated. During training, the model 
learns by maximizing a Gaussian log-likelihood function and is opti
mized via stochastic gradient descent with respect to the model pa
rameters. The DeepAR model is described more in detail in Section 4 in 
[16]. 

In former works the default DeepAR configuration with internal 
LSTM units has been used [16,19,32]. In this work, the DeepAR model is 
tested with Gated Recurrent Units (GRU) [43] in addition to LSTM as 
internal units. A graphical illustration of the DeepAR model are pre
sented in Fig. 7. 

In this work, three models are selected to serve as benchmark 
models. The Auto-regressive Integrated Moving Average (ARIMA) 
model and two versions of a persistence model. The ARIMA (p,d,q) 
model can be used to define a large class of statistical models. The 
parameter p indicates the order of the auto-regressive component, 
d represents the initial differencing of the time series, and q the order of 
the moving average component. In addition, two versions of a persis
tence model are served as benchmarks for the DeepAR model. The 
persistence model assumes that the wind power generation at a certain 
future time will be the same as it is when the forecast is made (for 
instance, if the generation is 50 MW when the prediction is made, the 
persistence model assumes that the generation the next hour also is 50 
MW). The persistence model has been a popular model to use as a 
benchmark as it is a simple method to implement, and are often a 
difficult method to outperform, especially in the range of 1-6 h ahead 
[21]. In addition, a modified version of the persistence model is served 
as a benchmark model in this work. The authors in [44] proposed a 
modified persistence model for predicting wind power generation. This 
model is a combination of the mean of the time series, where the future 
value is weighted as a function of the correlation between the current 
and average power, respectively. In prediction experiments with a 
forecast horizon above 3 h, the modified persistence model has been 
shown to outperform the original one [44]. 

5.2. Prediction strategy 

To train and evaluate the models, the time series is split into a 
training set (85%) and a test set (15%). The training set is further 
divided into training (80%) and validation (20%). The training set is 
used to fit the model parameters by minimizing the prediction loss, and 
the validation set is used to find the optimal configuration of the 
hyperparameters. Each model is set to train on 500 epochs, and to avoid 
potential overfitting during training, an early stopping rate is 
introduced. 

5.3. Hyperparameter optimization with cross-validation 

In this work, to find the optimal hyperparameter configuration for 
the DeepAR model a grid search in the hyperparameter space was per
formed. The searched hyperparameters include the length of the rolling 
window, which is the number of time points that the model gets to see 
before making the prediction, the number of hidden units, the number of 
layers, the dropout rate, and the learning rate. The search space for the 
selected hyperparameters and the optimum configuration for each 

Fig. 6. The historical data on wind power generation (P) together with historical data on measured weather (MW) and predicted weather (PW) to predict the future 
wind power generation (target prediction). 

Fig. 7. Graphical illustration of the DeepAR structure. The time series values 
and the Covariates are concatenated (CAT) together before being fed into either 
the LSTM or GRU units. The block of internal units can vary between 1 and n 
layers depending on which configuration gives the highest prediction accuracy. 
The output is fed into different linear layers, one for computing the mean and 
one for the standard deviation (with a SoftPlus layer to ensure positive values). 
The output mean and standard deviation are used as input to a Gaussian like
lihood model where the predictive samples are generated. 

O.F. Eikeland et al.                                                                                                                                                                                                                             



Energy Conversion and Management: X 15 (2022) 100239

9

model is detailed in Table 2. The configuration that resulted in the 
highest accuracy on the validation set is selected. 

In order to determine the optimal order of the benchmark ARIMA 
model, a grid search of the different parameters was performed, and the 
model resulted in the best accuracy on the validation set in terms of the 
Akaike Information Criterion (AIC) was selected. For the time series of 
wind power generation, the ARIMA (2,0,1) configuration is the model 
providing the highest prediction performance. 

6. Experimental evaluation and results 

6.1. Evaluation metrics 

When making point predictions, the main aim is to minimize the 
discrepancy between the predicted and true output, respectively. For the 
purpose of probabilistic forecasts, it is more complicated. Here one 
wants to minimize the loss between the predicted and true value for a 
specific quantile level (or percentile which are the upper and lower 
bound of the PI), but at the same time, one wants to have a PI that 
contains the true outcome. In addition, one does not want to have a PI 
that is too wide as it will contain no useful information, so the PI should 
be as sharp as possible, but still contain the true values. In the following, 
some popular metrics that will be used in the result section to provide 
the skill score of both point-and probabilistic forecasts are described. 

A widely used metric to evaluate the performance of point forecasts is 
the root mean squared error (RMSE) and the Normalized RMSE 
(NRMSE). The RMSE is defined as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ŷi − yi)

2

√

, (2)  

where ̂y and y are the predicted and true values. The RMSE measures the 
discrepancy between the predicted values and observed values at time i, 
over n number of observations. The NRMSE relates the RMSE to the 
observed average value in the observation period and is defined as: 

NRMSE =
RMSE

y
, (3)  

where y is the average of the observed values in the time series. 
Another popular method to evaluate the accuracy of point forecasts 

are the mean absolute percentage error (MAPE). MAPE is defined as: 

MAPE =
100

n

∑n

i=1

⃒
⃒
⃒
⃒
⃒

yi − ŷi

yi

⃒
⃒
⃒
⃒
⃒
, (4) 

The common feature of all these metrics (RMSE, NRMSE, and MAPE) 
is that the lower value, the higher accuracy. 

The purpose of probabilistic forecasts is to have a PI that fulfills the 
calibration and sharpness criteria. In this section, some common metrics 
that are used to describe the performance of the PIs in terms of the 
sharpness and calibration criteria are presented. 

The pinball-loss (PL), or the quantile-loss (QL) function is a common 
metric to measure the performance of the PI. For each quantile level, the 
PL function returns a value that can be interpreted as the accuracy of a 

quantile forecasting model. Let q be the target quantile, y the real value, 
and ŷ the quantile forecast, then the PL for quantile q can be written as: 

PLq

(

y, ŷ
)

=

{
(y − ŷ)q y⩾ŷ
(ŷ − y)(1 − q) ŷ > y 

The PL function penalizes the forecast if the model is over or under- 
predicting depending on the quantile level that is computed. The large 
quantile level will be more penalized for under-predicting than a low 
quantile level. Similarly, a low quantile level will be more penalized for 
over-predicting than a large quantile level. This makes sense as in the 
high quantile level case, one expects most of the observed values to be 
smaller than the predictions, and at the low quantile level one expects 
most of the values to be above the predicted values. Similar to the point 
forecast metrics, the lower PL, the more accurate the quantile forecast is. 
If computing the PL over a set of different quantiles levels, the final 
quantile loss result will be the average of all levels (often denoted as 
QLm). 

In [16], the authors evaluated the sharpness, or the quantile risk for 
different quantile levels by considering the normalized sum, wQL of 
quantile losses. The wQL for a quantile q is computed as all pinball losses 
divided by the sum of true output: 

wQLq

⎛

⎝y, ŷ

⎞

⎠ = 2

∑

i
PLq

(

yi, ŷi

)

∑

i
yi

(5) 

A low wQL indicate a sharper PI. 
Besides sharpness, it is important to compute how calibrated the PI 

is. A popular calibration metric for probabilistic forecasts is the Pre
diction Interval Coverage Probability (PICP) [2]. The PICP is employed 
to compute the probability that the true outcome is within the PIs. The 
PCIP is defined as 

PCIP =
1
n
∑n

i=1
ui, (6)  

where n is the total number of samples. When the true output is within 
the upper and lower bound, ui = 1, otherwise ui = 0. To obtain a well- 
calibrated PI, the coverage should be close as possible to the PI that is 
specified. For instance, for a 95% PI, the PCIP should be 0.95. 

The final metric that is used to measure the quality of the PIs is the 
Mean Scaled Interval Score (MSIS). This metric was used as the preferred 
one in the M4 forecasting competition, where 100,000 time series and 
61 forecasting methods were compared [45]. The MSIS score was pro
posed by [46] and evaluate the performances of the generated PIs as 

MSIS =
1
h

×

∑n+h

t=n+1

(

Ut − Lt

)

+ 2
α

(

Lt − Yt

)

1Yt < Lt +
2
α

(

Yt − Ut

)

1Yt > Ut

1
n− m

∑n

t=m+1

⃒
⃒
⃒
⃒Y − Yt− m

⃒
⃒
⃒
⃒

,

(7)  

where the lower and upper bounds of the PI are denoted by Lt and Ut, 
respectively. Yt is the future observed values, h is the forecast horizon, 
and 1 is the indicator function (1 if Yt is within the PI and 0 otherwise). 
Here α is the significance level, and for a 95% PI, α is set to 0.05. The 
MSIS metric deals with the sharpness and calibration criteria. It both 
penalize wide PIs (since Ut and Lt will be large), and penalize non- 
coverage. Here, a lower MSIS score indicates a better PI in terms of 
sharpness and calibration. 

6.2. Results and discussion 

In Table 3 the results are given. In this work, the 95% PI is computed 
as it is a widely used choice for economic, financial, and energy-related 

Table 2 
Details of the hyperparameter search space and optimal configurations for 
different models.  

Parameter Search space Optimal 
DeepARGRU 

Optimal 
DeepARLSTM 

Rolling window 
length 

36, 72 36 36 

Layers 1, 2, 3 2 2 
Hidden units 32, 64 32 64 
Dropout rate 0.0, 0.1, 0.2 0.0 0.2 
Learning rate 10− 4,10− 3,10− 2 10− 2 10− 3  
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forecasting applications [45]. The point prediction scores for predicting 
the 36-h ahead power generation is given in terms of NRMSE and MAPE 
(Eq. (3) and (4)). For probabilistic forecasts, the scores are given in terms 
of MSIS, PCIP, and the wQL (Eq. (5)–(7). In Table 3, the mean wQL for 
quantile level 0.025 and 0.975 is computed. 

Table 3 shows that the DeepAR model with LSTM units resulted in 
the best accuracy for all experiments. As a downside, the training time 
for this model was significantly larger than the DeepAR model with GRU 
units. The training time per epoch was approximately 17–18 s and 
39–40 s with GRU and LSTM units, respectively. To obtain the optimized 
models, the models were trained for approximately 230 epochs. This 
results in a total training time of 65 and 150 min with GRU and LSTM 
units, respectively. The models were trained on a NIVIDA Tesla K80 
hardware. Among the benchmark models, the ARIMA model obtained 
the best prediction performance, but is less accurate than the DeepAR 
model. The Persistence models obtained the worst prediction perfor
mance for all experiments. The probabilistic scores are not reported for 
the persistence models as they do not provide the capability to make 
probabilistic forecasts. 

The best performance was obtained with the dataset configuration 
where both measured and predicted weather was included as exogenous 
variables. With this configuration, the DeepARLSTM model computed the 
sharpest PI as the mean wQL and the MSIS are low. In addition, this 
model computed a PI that is well-calibrated as the PCIP is close to the 
quantile levels that are specified. For instance, for PCIP2.5, the computed 
PI resulted in a PCIP of 2.7%, which indicates that it is a probability of 
2.7% that the true outcome is below this quantile level. The PCIP for the 
upper boundary is also close to the specified quantile level. 

Using only measured weather as exogenous variables resulted in the 
worst prediction performance for both models. The computed PI for this 
configuration is neither sharp nor calibrated, as the MSIS and wQL are 
large and the PCIP97.5 value is 0.55. This shows that the true outcome is 
below the upper PI boundaries only 55% of the time, which is not 
adequate in a 95% PI interval. 

When the NWP is used as the only exogenous variable, acceptable 
prediction performances were obtained for the day-ahead predictions. 
However, indicated by the MSIS and wQL scores, the PI is less sharp in 
this case. In addition, the PI is not fully calibrated for both models as 
there is zero probability that the true outcome is below the lower PI 
boundary. 

The results indicate that combining historical measurement data and 
NWPs helps improve the day-ahead prediction of wind power genera
tion. This shows that adding historical data on measured weather allows 
the DeepAR model to auto-correct systematic biases in the NWPs. 

In Fig. 8 the 36-h ahead predictions with the best DeepARLSTM model 
in terms of calibration and sharpness is provided (configuration 1 with 
measurements and NWPs combined). In addition, the DeepARLSTM for 
configuration 2 and 3 is shown. These are two examples of PI results that 
are miscalibrated and have low sharpness. In the following illustration, 
the 50% PI and the median prediction are included. 

The red line represents observed values, while the green line repre
sents the median value (or point forecast) of the probabilistic forecast. It 
is seldom a perfect match between the predicted point forecast and the 
actual value. This is not surprising as making accurate point forecasts of 
the day-ahead wind power generation is a very difficult problem. The 
green nuances in the graphs represent the different PIs. The uppermost 
graph in Fig. 8 show the resulting prediction with the DeepARLSTM 
model using configuration 1. In this prediction, the 95% PI indicated by 
the bright green color shows that the actual measurements fall within 
the interval approximately 95% of the time and therefore show a well- 
calibrated PI. The observed values fall outside the interval at some 
points in the period between 12:00 and 18:00 the 30-Dec. This is 
acceptable, as given by the 95% requirement, some values may fall 
outside the range. The rest of the time the observed values are within the 
95% PI. The graph also shows that the model is more confident at the 
beginning of the prediction period as the PI boundaries are very sharp, 
but the uncertainties increase as longer ahead in the future the pre
dictions are made. 

On contrary, the graph in the middle shows the DeepARLSTM model 
for the configuration using only measured wind. This shows a low de
gree of sharpness and is not calibrated as several observations are 
outside the PI boundaries. The lowermost graph shows the result from 
the DeepARLSTM model where only the predicted wind is used as exog
enous variables. This result shows a well-calibrated PI as most obser
vations are within the boundaries, but the PI is less informative as is it 
wide and consequently provides less useful information about the var
iations in output. 

Due to technical limitations, the wind power plant can maximum 
produce 54 MW (18 turbines × 3 MW). However, all models in Fig. 8 
compute a PI that has upper boundaries that exceed this value. This is 
not possible due to the theoretical maximum of 54 MW, and one can be 
sure that there is zero probability that the total wind power generation 
will exceed this value. Therefore, all values above 54 MW in the upper 
boundary of the computed 95% PIs can be replaced by the theoretical 
maximum power generation. In Fig. 9 the modified 95% PI of the 
DeepARLSTM with the best prediction performance is provided. Here all 
values above the theoretical maximum are replaced by the theoretical 
maximum of 54 MW. 

Fig. 9 show that replacing the upper PI boundaries with the theo
retical maximum power output from the wind farm generates a PI that is 
much sharper and is very accurate at several time steps. This indicates 
that when making a probabilistic forecast of power output from wind 
farms, knowledge regarding technical limitations could contribute to 
achieving even more accurate PIs. The scores of the original and 
adjusted 95% PI for the DeepARLSTM for configuration 1 is given in 
Table 4. 

From Table 4 the MSIS and mean wQL show that the adjusted PI is 
sharper than the original PI. The PCIP for the upper and lower bound
aries are the same for both PIs and are not reported. 

7. Conclusions 

In this work, we investigated the performance of deep learning 
methods for probabilistic forecasting of wind power production, which 
is characterized by a highly intermittent nature. We focused on one day- 
ahead forecast with the DeepAR model, which has achieved state-of-the- 
art performances in several time series forecasting tasks. 

Our experiments focused on evaluating which covariates that are 
useful for the prediction performance and we investigated the impor
tance of including historical measurements of wind and power 

Table 3 
36-h ahead prediction scores with different dataset configurations.  

Model NRMSE MAPE MSIS PCIP2.5 PCIP97.5 Mean 
wQL 

Configuration 1: Measured and predicted weather (wind speed + wind direction) 
DeepARGRU 0.17 0.16 3.56 0.00 1.00 0.028 
DeepARLSTM 0.16 0.15 2.53 0.027 0.972 0.020  

Configuration 2: Measured weather (wind speed + wind direction) 
DeepARGRU 0.45 0.41 10.73 0.00 0.55 0.084 
DeepARLSTM 0.40 0.35 10.16 0.00 0.55 0.080  

Configuration 3: Predicted weather (wind speed + wind direction) 
DeepARGRU 0.24 0.21 5.32 0.00 1.00 0.042 
DeepARLSTM 0.29 0.25 4.03 0.00 0.972 0.032  

Benchmark models 
ARIMA 0.52 0.44 4.34 0.00 1.00 0.037 
Persistence 1.06 6.17 – – – – 
Modified 

Persistence 
0.79 5.09 – – – –  
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generation. We tested two different Recurrent Neural Network layers in 
the DeepAR model, namely LSTM and GRU, and evaluated the quality of 
the PI generated by the model. We also compared against ARIMA and 
two baseline models, commonly used to perform wind power fore
casting, which do not leverage historical information. The DeepAR 
model with LSTM units obtained the most accurate prediction perfor
mance for all experiments and outperformed the baseline models. 

Among the different configurations, the best performance in terms of 

sharpness and calibration was obtained when both historical data on 
measured weather and the NWPs were used as exogenous variables, 
resulting in an MSIS of 2.53. When using only the predicted weather as 
exogenous variables, worse results were obtained with an MSIS of 4.03 
and 10.16, respectively. This could be due to the highly complex 
topography of the region where the wind farm is located, which makes it 
increasingly difficult to make accurate weather forecasts. We hypothe
size that using the historical measured wind allows the deep learning 

Fig. 8. 36 h ahead predictions of wind power generation. The uppermost Figure show the DeepARLSTM model for configuration 1, the Figure in the middle shows the 
DeepARLSTM model for configuration 2, and the lowermost Figure shows the result from the DeepARLSTM model for configuration 3. 
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model to correct systematic biases, which are common in the NWP of 
certain regions as RES technologies are directly affected by the current 
weather. Using historical weather measurements as input allows the 
prediction model to compensate for the errors in weather predictions, 
which is something that could improve the forecast of power generation. 
In addition, knowledge of the physical properties and the technical 
limitations of the wind power plant is extremely important to calibrate 
and correct the output of a machine learning model. Remarkably, we 
adjusted the upper limit of the PI, based on the maximum power output 
of a turbine, and obtained a much sharper PI. 

The results from our study can serve as a reference for both the 
research community and industry, as it shows the importance of care
fully selecting the factors to be considered when training a machine 
learning model for energy analytics applications. 
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