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Highlights

• Detailed analysis of the shortcomings of the current state-of-the-art self-
explaining model ProtoPNet.

• A novel method improving the precision of prototype explanations: Pro-
totypical Relevance Propagation.

• Extensive qualitative and quantitative evaluation of the explanations re-
garding artifact detection.

• A multi view clustering approach to utilize PRP to detect and remove
artifactual data.
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Abstract

Current machine learning models have shown high efficiency in solving a wide variety

of real-world problems. However, their black box character poses a major challenge

for the comprehensibility and traceability of the underlying decision-making strategies.

As a remedy, numerous post-hoc and self-explanation methods have been developed to

interpret the models’ behavior. Those methods, in addition, enable the identification

of artifacts that, inherent in the training data, can be erroneously learned by the model

as class-relevant features. In this work, we provide a detailed case study of a repre-

sentative for the state-of-the-art self-explaining network, ProtoPNet, in the presence of

a spectrum of artifacts. Accordingly, we identify the main drawbacks of ProtoPNet,

especially its coarse and spatially imprecise explanations. We address these limitations

by introducing Prototypical Relevance Propagation (PRP), a novel method for gener-

ating more precise model-aware explanations. Furthermore, in order to obtain a clean,

artifact-free dataset, we propose to use multi-view clustering strategies for segregat-

ing the artifact images using the PRP explanations, thereby suppressing the potential

artifact learning in the models. The code will be made available on github upon accep-

tance.
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1. Introduction

When applying AI models, especially in safety-critical areas, such as medical ap-

plications, autonomous driving, or criminal justice, we need to understand their un-

derlying behavior to decide the model’s trustworthiness. Here, the field of explainable

AI (XAI) has established itself, where methods are being developed to illuminate the5

so-called black box models [1, 2]. XAI serves as an essential support in ethical, legal,

and social issues and ultimately also contributes to an increased acceptance by the end

user [3] by revealing the input features that led to a certain model prediction.

Using those XAI methods, recent work has shown that models can learn artifacts

that are present in the training data [4]. Such artifacts can be based on a so-called selec-10

tion bias in the training data, where, for example, objects of a class have a certain back-

ground, and as a result the background is learned instead of the object. Furthermore,

the training data can be manipulated by inserting a special trigger called “backdoor”

which, if present in a sample, always leads to the prediction of a specific target class

- i.e. a “backdoor” to this target class [5] In addition, a phenomenon called “Clever15

Hans”, refers to an artifact that is correlated with a certain class in the training data

and hence, used for classification such that the model could make a right prediction,

but for the wrong - the artifact - reason [4]. In order to guarantee a faithful use of AI

systems, it is important to find and suppress those artifacts either from the model, i.e.,

from the learnt representations or from the data itself, thereby enabling the retraining20

of the model with a clean dataset.

Recently, so-called post-hoc XAI methods, such as Layerwise Relevance Propaga-

tion (LRP) [6] were able to uncover this undesirable behavior of AI models [4]. Post-

hoc refers to the fact that the XAI method explains the prediction of the model after

(post) the prediction is made. However, [7] suggested to use an influential alternative25

to post-hoc explainability, called self-explaining neural networks, which can intrinsi-

cally explain their decision making process. Towards this goal, [8] recently proposed a
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network (ProtoPNet) that provides a transparent prediction by introducing a prototype

layer between the final convolution layer and the output layer. This prototype layer

consists of a fixed number of prototypes for each class, which can be thought of as30

representative instances for each class of the training data. During the classification

process, for each image that is passed through the network, prototype-specific activa-

tion maps are computed based on the similarity between the image and the prototypes.

The visualization is performed by upsampling the activation maps to the input size,

thus highlighting the most relevant pixels contributing to the classification. Doing this35

procedure for both, the prototype (training) images and the test image, the regions of

interest can be visualized, serving as a direct comparison for the user to capture the

relation between the test image and the prototype images from the training set. This

accordingly helps in comprehending the decision of the network by “this relevant fea-

ture of the test image looks like that relevant feature from the class-specific prototype40

image” (This looks like that).

Recalling the artifacts issue, the solution now appears to be clear when using self-

explaining neural networks, such as ProtoPNet: If the model learned a feature corre-

sponding to the artifact, then it must be reflected by at least one of the prototypes of the

class consisting of such artifacts. Consequently, once the artifact prototypes have been45

identified, their influence on the prediction can be stopped by pruning.

Interestingly, in this work we demonstrate that this idea of removing the artifact

prototypes is not feasible owing to the coarse and spatially imprecise explanations

provided by ProtoPNet, which is, due to its model-agnostic upsampling. Therefore,

building on the principles of the post-hoc explanation method LRP, we propose a novel50

method referred to as Prototypical Relevance Propagation (PRP) to attain more accu-

rate model-aware explanations (example shown in Figure 1). We demonstrate that PRP

efficiently captures the learned artifact, which might go unnoticed otherwise. Addi-

tionally, in this work, we go one step further and suppress the potential artifact learned

by the models: using PRP, we illustrate that artifact information is entangled within55

the ProtoPNet, such that most prototypes capture artifact related features, making the

above-mentioned pruning procedure not applicable. Therefore, we propose to clean

the data instead of pruning the network. Knowing the ability of PRP of generating
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Original Image

Prototype learned by
ProtoPNet: is it looking
at the grass or the text?

Prototype looking
strongly at part of the
text as depicted by PRP.

Test Image Activation by
learned prototype

PRP explanation

(a) (b) (c)

(d) (e) (f)

Figure 1: (a) Visualization of a horse image from the PASCAL VOC 2007 dataset [9] , (b) activation for

a prototype of class horse learned by ProtoPNet, and (c) its PRP explanation. A Clever Hans artifact is

present in the form of a watermark at the bottom of the image. Both, the ProtoPNet and the PRP explanation

yield relevance to the bottom of the image, however, in the case of ProtoPNet, it remains unclear if the green

grass, the text, or both together, were relevant for the prediction. Whereas the PRP explanation clearly shows

that the text was used as relevant feature for the model’s prediction. For a test image (d), the ProtoPNet’s

explanation and the PRP explanation for the learned prototype (b) are given in (e) and (f), respectively.

The PRP explanation again corroborates the emphasis on the watermark text as opposed to ProtoPNet’s

explanation which is more widely spread across the image. The ProtoPNet explanation in (e) thus exhibits

‘This looks like that’ behavior i.e explanation in (e) looks like prototype in (b). The PRP explanation in (f)

exhibits ‘This looks more like that’ behavior i.e, enhanced explanation in (f) looks more like that in (c).

multiple views of the input in terms of learned prototypical explanations, we filter out

the data points containing the artifact using multi-view clustering approaches. Our pre-60

sented approach preserves the strength yielded by ProtoPNet of obtaining “This looks

like that” explanations, while at the same time suppressing potentially learned artifacts.

Moreover, we show that utilising multiple views through multi-view clustering is more

efficient than a single-view LRP-based clustering approach, SpRAy [4].
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Our main contributions are as follows:65

• We identify and address key issues with inaccurate explanations provided by the

self-explaining model, ProtoPNet.

• We propose a novel PRP method for enhancing ProtoPNet’s explanations by

generating more precise model-aware explanations.

• We compare PRP with ProtoPNet’s explanation heatmaps, both qualitatively and70

quantitatively and show that eradicating learned artifact features, such as the

Clever Hans and Backdoor artifacts, from ProtoPNet is unfeasible.

• We show the ability of PRP in utilizing multiple explanations from different

prototypes, which can be utilized to suppress artifacts from the data by using

multi-view clustering.75

2. Related work

2.1. Explainability methods

Recently, there has been increased interest in both post-hoc explanation methods

and self-explaining neural networks. Post-hoc explainability methods can be separated

into two overarching categories: model-agnostic and model-aware approaches. Model-80

agnostic approaches [10], such as LIME [11] and SHAP [12], consider the models as

black-boxes and are thus applicable to arbitrary model architectures and can be used

to compare models based on the explanations that they produce. In contrast, model-

aware approaches [13] take the internal structure of the model into account, yielding

more precise model based explanations. Here LRP [6] has been widely used to explain85

the decisions of various deep neural networks, such as convolutional neural networks,

recurrent neural networks and graph neural networks [14]. LRP assigns relevances to

the input features by backpropagating the prediction score, i.e., the output relevance,

successively layer by layer until it is distributed over the input features. Hence, the

distribution of relevance is based on how much a particular node contributed to the90

output.
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Another new and promising category of explanation methods are self-explaining

networks, which inherently explain the decisions they make, thereby making the mod-

els transparent by design. These include networks that align the latent space to known

visual concepts in order to increase transparency in the decisions [8, 15]. These also in-95

clude models that utilize attention mechanisms [16] and thus also provide some form of

self-explainability. Other works consider self-explainability in terms of concept learn-

ing [17, 18]. Further, recently, some research has been originated to develop frame-

works with a joint architecture consisting of an explainer and a classifier which learn in

conjunction [19, 20]. ProtoPNet [8] proposes to learn a specific number of class based100

prototypes as a part of the architecture. These are then used for visualizing lower spa-

tial dimensional concepts from the training images, thus providing explanations during

the decision process itself. SENN [21] is a type of general self-explaining model that is

fully transparent and designed by progressively generalizing linear classifiers to com-

plex models. Although the self-explainable concepts in SENN are using prototypes105

similar to ProtoPNet, the former only shows which training images are important for a

decision. ProtoPNet, on the other hand, additionally shows what part of the test image

looks like which part of the training images, thus providing more comprehensible in-

formation. The Classification-By-Components (CBC) network [22] is designed based

on Biederman’s theory in psychology, which assigns positive, negative, and indefinite110

reasoning to different components used for classification. Unlike CBC, ProtoPNet is

more flexible in terms of i) learning components (prototypes) of varying sizes in the

input domain, and ii) having the capability of being incorporated into any network

architecture.

Inspired by ProtoPNet, XProtoNet [23] was recently introduced for automated di-115

agnosis in chest radiography. It addresses the issue that ProtoPNet looks at fixed patch

sizes in the feature map while computing its similarity with the prototypes. As a rem-

edy, [23] adds an occurrence module in the network for learning features of dynamic

size for the prototypes. However, the issues that we address in this work do remain

in XProtoNet, making it prone to misleading explanations due to the model-agnostic120

upsampling used for prototype visualizations.
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2.2. Artifacts

Real-world data used for training deep neural networks are prone to containing

spurious, incomplete, or wrongly labeled samples thus leading to unwanted artifactual

data. In this work, we acknowledge this inherent problem and focus on two common ar-125

tifacts, Clever Hans and Backdoor, whose suppression is the focus of this work. Clever

Hans artifacts refer to the unintentional spurious correlations present in the training

data, which a model might use to base or strengthen their decisions on and is thus

likely to fail in a real-world scenario, where the artifact is absent. This undesirable

setting has also been explored recently by [4], in which they propose a semi-automated130

method, SpRAy, based on spectral cluster analysis on LRP maps, to discover predic-

tion strategies based on an artifact. In other scenarios, the network might be forced to

learn undesirable features based on the malicious addition of hidden associations in the

data with the goal to produce incorrect inference results, referred as backdoor attacks.

These kinds of attacks — where, in contrast to the Clever Hans scenario, both the data135

and labels are intentionally modified — are addressed in detail in [5, 24].

3. An Evaluation of ProtoPNet

While the effectiveness of post-hoc explainability methods has been investigated

extensively [25, 26] and their benefit has been questioned [7], there is a significant gap

in the research for the analyses of the effectiveness of self-explainable approaches re-140

garding quantitative analysis of the provided explanations [27]. Therefore, in this sec-

tion, we provide a detailed analysis of ProtoPNet and its inherent explanations using a

case study of Clever Hans artifact detection. As a representative for the self-explaining

model, we focus on ProtoPNet as it claims to provide easily comprehensible case-based

reasoning and is applicable to arbitrary CNN architectures by inserting a single proto-145

type layer [8]. Additionally, it not only provides information about the features that the

model’s decision is based on, but also links this information to similar features in the

training data, captured by the prototypes, thus imitating human decision making.
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3.1. ProtoPNet

ProtoPNet introduces self-explanation in a deep learning network by incorporating150

a prototype layer between the last convolutional layer and the output layer. Thereby,

each class is associated with a fixed number of prototypes. The output of the prototype

layer is connected linearly to the output layer to generate class logits. The network

is optimized by iterating the following three steps: 1) The whole network, except the

last layer, is trained using stochastic gradient descent. For each prototype, the squared155

L2 similarity between the patches of the convolutional output from the backbone and

the prototype is calculated, thus generating an activation map. Global max pooling is

applied to the activation map to generate a single similarity score corresponding to a

single prototype. The loss function is a combination of the cross entropy loss, a cluster

loss and a separation loss. The cluster loss encourages the training images to have a160

patch close to at least one of their own class prototypes. The separation loss, on the

other hand, encourages the training image patches to be far from the prototypes of

other classes [8]. For completeness, the losses are provided in the Appendix. 2) All

prototypes are projected onto the patch of the training image from the same class as the

prototype with the highest similarity score, thus maintaining inherent interpretability.165

These can be visualised in the input space by upsampling the activation map of the

prototype image to the input size. 3) Finally, a convex optimization of the last layer

is performed to further improve accuracy, while keeping the learned prototypes fixed.

The prototype activations are visualized by upsampling the similarity between the pro-

totypes and the embedded input image to the input image size. This highlights the parts170

of the image which strongly activate the respective prototype, thus creating a concept

of “this looks like that” while making the decisions.

3.2. Evaluation of ProtoPNet’s explanations

Although self-explaining models as ProtoPNet appear promising, as more transpar-

ent alternatives to the typical black-box neural networks, we demonstrate that, atleast175

for ProtoPNet, the explanation capability still lacks precision. In the case of ProtoPNet,

the relevant areas on which the model decision is based on do not concisely depict the

relevant features of a prototype as shown in Figure 1. The original image (a) in Figure
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1 shows a horse image containing a watermark in the lower left corner. One of the 10

prototypes for class Horse was learned by ProtoPNet from image 1(a). The ProtoPNet’s180

explanation for this prototype is shown in Figure 1(b). From 1(b), we can observe that

the lower left corner was important for the model to predict the image as a horse. How-

ever, the exact pixels, that significantly contributed to the predictions remain unknown.

Now, using the model-aware PRP method, we backpropagate the prototype informa-

tion from the prototype layer through the network to the input image, which allows us185

to reveal and visualize the model-aware, faithfully distributed relevance scores on the

input image as shown in Figure 1(c). From the PRP explanation, we observe that high

relevance (dark red pixels) was allocated to parts of the text. Thus, the PRP explanation

leads to an increased understanding of the underlying behavior of the model. For a ran-

domly chosen test image, shown in Figure 1(d), the activation for the learned prototype190

1(b) as visualized by ProtoPNet and PRP are given in Figure 1(e) and 1(f), respectively.

The PRP explanation identifies the watermark (Clever Hans) as a relevant feature for

predicting the horse class, in contrast to the ProtoPNet explanation, which is too crude

to identify important features and is therefore widely spread across the entire image.

Accordingly, we detect and address the following drawbacks of ProtoPNet:195

• The activation maps used for the prototype visualizations in ProtoPNet have a

low resolution due to downsampling and feature aggregation functions in the

network. From this significantly low resolution activation map, ProtoPNet per-

forms model-agnostic upsampling using bilinear interpolation to the size of the

input image, thus leading to very coarse explanations.200

• The effective receptive field of a position in the activation map tends to cover

large parts of the image, which is not captured by the naive upsampling. Con-

sequently, there is no truthful spatial localization of the relevance to the correct

input area, leading to spatially imprecise explanations.

In the next subsection, we discuss in detail these drawbacks of ProtoPNet’s expla-205

nations using the Clever Hans artifact as an example.
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Figure 2: CH-100: Visualization of the prototypes learned for the stop sign class for the scenario where

Clever Hans artifacts were inserted in 100% of the stop sign class images for the modified LISA dataset. As

observed, while prototype 6 and 8 can be considered as artifact prototypes, none of the prototypes clearly

highlight the artifact.

3.3. Case Study: Clever Hans artifact detection with ProtoPNet

Ideally, ProtoPNet should capture any artifact in the data as an “artifact prototype”

if it is using the artifact for prediction. However, due to its coarse and spatially im-

precise explanations, the heatmaps of ProtoPNet hinder the detection of artifact pro-210

totypes. In the following, we investigate the behavior of ProtoPNet in the presence of

Clever Hans artifacts in the data.

We aim to detect the aforementioned artifact prototypes using ProtoPNet’s explana-

tions combined with the difference in classification results in the presence and absence

of artifacts in the test data. Following this, we prune the detected artifact prototypes,215

thus hypothetically suppressing the artifacts learnt by the model. However, due to its

misleading explanations, we demonstrate experimentally that ProtoPNet’s heatmaps

are deficient in capturing and identifying the learned artifact by the model, thus prov-

ing the task of pruning artifact prototypes futile for making the model artifact-free.

For considering a controlled environment, we use the 5-class version of the LISA220

traffic sign dataset [28] and place a Clever Hans artifact, a yellow square (see Figure 5

(Input)), in 100% of the training data of the stop sign class (dataset details are provided

in Section 5.1), which we refer to as CH-100. We train the ProtoPNet (for implemen-

tation details see 5.2), with 10 prototypes per class as in [8] for ease of comparison.

To evaluate the impact of an artifact on the model, we evaluate the performance on225

two test data sets: an Artifact Test data set, where the Clever Hans, i.e., the yellow

square, is inserted into 100% of the images of the stop sign class ; and a Clean Test

data set, which contains no yellow square. The accuracy results for both test data sets

are shown in Table 1. We can observe that the model, trained on the CH-100 dataset,

10

                  



Table 1: Comparison of the model accuracies for the stop sign class between the artifact test (artifacts in

100% test images) and clean test (artifacts in 0% test images) dataset for : 1) CH-100, 2) CH-50 datasets,

along with the accuracies for pruning artifact prototypes as well as retraining the last layer after pruning.

CH-100

CH-100

Remove

prototype 6 & 8

CH-100

Retraining

last layer

CH-50

CH-50

Remove

prototype 4 & 9

CH-50

Retraining

last layer

Artifact Test 100% 21.6% 88.8% 100% 100% 100%

Clean Test 6.5% 38.2% 38.2% 94.6% 93.0% 94.5%

has 100% classification accuracy on the artifact test data and only 6.5% on the clean230

test data. This large drop in the accuracy indicates that the model has learned the

inserted artifact. In order to detect the prototypes that are responsible for this behavior,

we visualize the 10 prototypes learned by the network for the stop sign class in Figure

2, where the upsampled activation heatmap is overlayed, such that the relevant areas of

each prototype can be identified visually. Although no prototype is clearly focusing on235

the artifact, it appears that prototypes 6 and 8 might be learning a part of the artifact.

By removing individual prototypes as well as combinations of prototypes for the stop

sign class, we can confirm that prototypes 6 and 8 are the most responsible ones for

detecting the artifact (Figure 3) — the accuracy for artifact test data only drops when

prototypes 6 or 8 are removed, with the biggest drop of 78.39% when both of these are240

removed together. Also note that no retraining is done yet after pruning the prototypes.

Now, trusting the explanations provided, we remove the artifact prototypes 6 and

8 and assume that this leads to the elimination of the artifact effect. As can be seen in

Table 1, the accuracy for the artifact stop sign class drops considerably after removing

prototypes 6 and 8. However, this is not the case as seen after retraining the last layer245

i.e, reweighing the connection of the prototypes to the final classification layer. The

accuracy for the artifact stop sign class increases again to 88.8% once the last layer

weights are retrained. Moreover, for clean test data, the accuracy remains the same,

i.e, 38.2% before and after retraining the last layer, thus refuting the potential learning

of meaningful features for the stop sign class by the model after retraining. Hence,250

the results indicate that the remaining prototypes include artifact information as well,

highlighting the lack of accurate explanations by ProtoPNet.

11

                  



Figure 3: CH-100: Detection of artifact prototypes by removing individual stop-sign class prototypes (1 to

10) (diagonal) and their combinations (non-diagonal) for artifact test data. The accuracies are represented

as a drop from the base accuracy of 100% when no prototypes are removed. The highest drop of 78.39% is

observed when prototypes 6 and 8 are removed together thus highlighting them as artifact prototypes.

Thus, as shown in the above experiment, the explanations provided by the upsam-

pling strategy of ProtoPNet are insufficient in order to reveal the model’s behavior and

detect the artifacts faithfully.255

4. Prototypical Relevance Propagation and Enhanced Suppression of Artifacts

In the following we will address the two main drawbacks of ProtoPNet’s visualiza-

tions, i.e., low resolution activation maps and spatially imprecise prototype explana-

tions (as investigated in the section above), by our proposed method called Prototypical

Relevance Propagation (PRP). Our aim is to maintain the advantage of self-explanatory260

architecture through prototypes and simultaneously improve the quality of prototypical

explanations by adding, inspired by LRP, a model-aware explanation strategy.

4.1. Prototypical Relevance Propagation (PRP)

The original prototype visualization step in ProtoPNet is achieved through upsam-

pling and is therefore decoupled from the other steps in its end-to-end training. Instead265

of upsampling, inspired by LRP, we suggest as a novel solution to use the knowledge

of the inner workings of the network when backpropagating the similarity values of a

12
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Figure 4: ProtoPNet: Forward propagation and backward propagation for PRP maps (green) and ProtoPNet

Heatmaps (orange). The input image x is first passed through a CNN f , which computes f(x) to give output

z. The squared L2 similarity is then computed between z and individual prototypes pm to get activation

maps am. These are then upsampled to get ProtoPNet heatmaps. On the other hand, similarity scores sm

are used to compute model-aware PRP heatmaps. All the parameters in the figure are depicted according to

the experiment settings used in this work.

prototype to the input, such that we obtain model-aware prototypical explanations. We

refer to our method as PRP and the generated explanation maps as PRP maps.

For the following considerations, let the input images be represented as x and con-270

volutional output from the backbone CNN as z ∈ RH×W×D. Let P = {pm}nm=1 be

the n prototypes learned by the network, each with a shape of H1 ×W1 × D. Fol-

lowing [8], we set H1 = W1 = 1 and D = 128. Moreover, let S = {sm}nm=1 be

the similarity scores and A = {am}nm=1 the activation maps for each prototype. The

forward computations in ProtoPNet, illustrated in Figure 4, are defined as follows:275

1. The computation from the input to the convolutional output is given by z = f(x),

where the function f represents the trained backbone CNN.

2. The activation maps are computed as squared L2 similarities between the last

convolutional output layer and the prototypes in the prototype layer:

am = log
(
(||z̃− pm||22 + 1)/(||z̃− pm||22 + ε)

)
(1)

where z̃ are patches of z of the same size as the prototypes pm and ε = 10−4 is

13

                  



a small constant introduced for numerical stability.

3. The similarity score based on the activation maps is calculated as sm = max(am)280

The similarity scores of the test image with prototypes are the inputs to the final fully

connected layer, which produces the logits for all output classes. Hence, the final classi-

fication is based on a linear combination of the similarity scores of different prototypes.

Now, to improve the precision of the prototype visualizations, we calculate a certain

prototype m by propagating the relevance of this prototype back to the input features.285

Note that the relevance of a specific prototype is exactly its similarity score. There-

fore, the first backpropagation step considers the redistribution of the similarity scores

towards the activation map with respect to the max pooling layer:

1. An activation map is computed by backpropagating the respective similarity

score with the LRP rule in the Max pooling layer:290

R
(AM,S)
mij =




R

(S)
m if argmaxij(am),

0 otherwise
(2)

where S refers to the similarity score layer, AM to the activation map layer and

i, j specify the spatial location in the respective layers. We define the relevance

at layer S as R(S)
m = sm.

2. To distribute the relevance from the activation map back to the convolutional out-

put, we need to incorporate the information from the forward pass. The forward

computation as given in Eq. 1 computes the similarity between each prototype

and each output patch of the convolutional layer (CONV ), with both having D

channels, thus compressing the channel dimension to 1 in the activation map. In

this step, we redistribute the relevance from the one channel activation map back

to the D channels of the convolutional output, weighted by the corresponding

channel-wise L2 similarities computed during the forward pass. We define the

channel-wise similarities between each CNN patch z̃ and the prototype pm as:

γmc =
1

dmijc + ε
(3)
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where, with dmijc = ||z̃c − pmc||22 for each channel c. Afterwards, we use the

LRPε [6] rule to distribute relevances to convolutional output according to γmc:

R
(CONV,AM)
mijc =

γmc
D∑
k=1

γmk + ε

R
(AM)
mij (4)

3. Finally, the PRP maps are computed by distributing the relevance from the con-

volutional output to the input features with the LRP CoMPosite (LRPCMP ) rule

[29]: First, the LRPαβ rule is applied to the convolutional layers

R
(l,l+1)
i←−j =

(
α
z+ij

z+j
+ β

z−ij
z−j

)
R

(l+1)
j , (5)

where zij = xiwij is the mapping of the input x from neuron i −→ j with weight

wij , zj =
∑
i zij , α + β = 1 and α ≥ 1. Note that positive and negative295

activations are treated separately and we use α = 1 and β = 0. 1

Second, the Deep Taylor Decomposition based rule DTDzB [30] is applied to

the input features

R
(l,l+1)
i←−j =

(
zij − liw+

ij − hiw−ij∑
i zij − liw+

ij − hiw−ij

)
R

(l+1)
j , (6)

where li and hi are the smallest and largest pixel values.

The algorithm for generating PRP maps is summarized in Algorithm 1.

4.2. Multi-view Clustering

In order to analyse the class-wise prediction strategies and reveal potential strate-300

gies that are based on artifacts, [4] introduced SpRAy, a method that utilizes spectral

cluster analysis to cluster LRP explanations into their key prediction strategies. Sim-

ilar to SpRAy, we want to make use of the PRP maps to identify class specific global

discriminative features. However, we do have multiple explanations for each image,

i.e., the prototype explanations, which can be thought of as multiple views of an image305

1Note, for notation simplicity, we follow previous works [6, 29] and consider the convolutional layers as

fully-connected layers with shared weights.
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Algorithm 1: PRP
Input: Model f , image x, prototype number m

1 z = f(x) /* Forward computation */

2 Compute am // Eq.1

3 R
(S)
m = sm = max(am)

4 Compute R
(AM,S)
mij // Eq.2 /* Backward computation */

5 Compute R
(CONV,AM)
mijc // Eq.4

6 for l ∈ CONV − 1, ..., 1 do

7 R
(l,l+1)
i←−j using LRPCMP rules

8 end

Output: R(1)

explanation. Thus, unlike SpRAy, which uses one LRP explanation for one image, our

proposed method exploits multiple views of an image explanation.

In ProtoPNet, each class is associated with a fixed number of class prototypes.

These can be regarded as capturing, and thus searching for, different features in each

input image. Consequently, if there are artifacts present in a class during training, the310

PRP explanation maps for this class prototypes will be able to reflect the contrast be-

tween artifact and non-artifact features learnt by the model. Therefore, interpreting

the different prototype activations as various views of the same image, allows us to

compare/cluster the prototype activations with multi-view clustering algorithms in or-

der to detect global class-discriminative features in the data. Traditional multi-view315

clustering methods include learning a common representation from multiple views of

data followed by clustering [31] or learning adaptive representations based on cluster-

ing [32]. Further, several multi-view clustering algorithms have been proposed that

build on spectral clustering and consider a consensus Laplacian matrix among all the

views [33, 34]. In contrast, deep-learning based multi-view clustering methodologies320

learn a common encoding with the help of deep neural networks, which then can be

leveraged by the clustering module [35]. Since a variation in clustering results can be

observed using different multi-view clustering methodologies, in this work, we demon-
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strate the performance with a recent deep learning based clustering method [35] and a

representative spectral multi-view clustering algorithm [33].325

The deep multi-view clustering in [35] first transforms each input into its repre-

sentation using view-specific encoders . The fused representation for all views is then

computed using the fusion weights, which are also learned during the end-to-end train-

ing. This representation is then passed through a fully connected network to obtain

the final cluster assignments. Deep divergence based clustering (DDC) [36] losses are330

incorporated to optimize the model. This approach is termed as Simple Multi-View

Clustering (SiMVC). [35] then introduces an auxiliary method which incorporates se-

lective contrastive alignment of representations called Contrastive Multi-View Cluster-

ing (CoMVC) by adding a contrastive loss to the SiMVC framework. We provide the

results with CoMVC in this work considering its additional advantage of aligning the335

representations at the sample level.

The spectral multi-view clustering methods work on the general principle of com-

puting a consensus Laplacian matrix among all views. Co-regularized Multi-view

Spectral Clustering (Co-Reg [33]) works by co-regularizing the clustering hypotheses.

They obtain the combined Laplacian matrix by regularizing eigenvectors of the Lapla-340

cians through two schemes: 1) pairwise co-regularization, where they encourage the

pairwise similarities across all views to be high and 2) centroid-based co-regularization,

where they encourage each view to be closer to a common centroid.

5. Experiments & Results

In this section, we first discuss the dataset and implementation details followed by345

detailed analysis of ProtoPNet and PRP heatmaps. Finally, we discuss in detail artifact

suppression using multi-view clustering.

5.1. Dataset

In this work, we conduct experiments for both the Clever Hans and the Backdoor

artifact using the LISA traffic sign dataset [28]. This dataset consists of video frames350

captured from a driving car. We follow the strategy of [5], where we extract the frames
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and resize them to 224x224 to be compatible with the original ProtoPNet architecture.

The 47 classes in the dataset are partitioned into 5 high-level classes, as proposed

by [5], consisting of restriction, speed limits, stop, warning, and yield signs (details

provided in the appendix). In addition, we use the PASCAL VOC 2007 dataset [9] for355

evaluation as it naturally contains a Clever Hans artifact. 2

5.1.1. Clever Hans

As artifact, we place a yellow post-it note, as shown in the input image in Figure 5,

in 100%, 50% and 20% of the stop sign images in the training data of the LISA traffic

sign dataset to create the CH-100, CH-50 and CH-20 Clever Hans training datasets,360

respectively. We do not add Clever Hans artifacts to the PASCAL VOC 2007 dataset

since it inherently includes a watermark tag of the photographer in about 15-20% of

the images in the horse class [4].

5.1.2. Backdoor

According to the data manipulation scheme for backdoor attacks from [5] we insert365

the artifact, i.e., the yellow post-it, as shown in Figure 5 (Input), in 15% of the stop

sign images and assign them to the speed limit class. We refer to this corrupted training

dataset as BD-15.

In order to create both, an artifact and a non-artifact i.e., a clean test dataset of the

LISA traffic sign dataset, we insert the artifact in either 100% or 0% of the stop sign370

images, referred as Artifact Test and Clean Test data, respectively. Those test datasets

are used for evaluating our experiments on the Clever Hans (CH-100, CH-50 and CH-

20) as well as the Backdoor (BD-15) scenarios.

5.2. Implementation

We train ProtoPNet with ResNet34 as backbone architecture, fixing the number375

of prototypes to 10 for each class. Note that all training parameters have been set

2Since in PASCAL VOC 2007, one image can belong to several classes, we deliberately remove the

person class from this dataset to decrease ambiguity. The person images overlap to a large extent with the

images of the other classes, leading to a lot of duplicate images in multiple classes.
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1 2 3 4 5 6 7 8 9 10

Figure 5: CH-50: Top row depicts the learned prototypes 1 to 10 for the stop sign class with Clever Hans in

50% of the training data, the middle row depicts the ProtoPNet’s heatmaps corresponding to the respective

prototypes for the test image shown on the left, while the bottom row shows the corresponding PRP maps,

which, we can observe, capture more precise information.

according to [8]. The network is trained for 1000 epochs, where a projection (push)

of the prototypes is done every 10 epochs. After each push, the last layer is trained

for 20 epochs. The learning rate is reduced by a factor of 0.1 every 5 epochs and the

training is stopped when the training accuracy converges and the cluster loss becomes380

smaller than the separation loss on the training set [8]. While ProtoPNet uses bilinear

interpolation for visualization, which takes 0.001 seconds on average, computed for

1000 images, PRP has an additional overhead of 0.71 seconds for one backward pass

to generate the heatmaps. Note, given that heatmaps are produced only after training

the model, this overhead can be considered negligible. The code is implemented using385

PyTorch and the experiments were run on 2 GeForce RTX 2080 Ti GPUs 3.

5.3. PRP maps vs ProtoPNet heatmaps

In the following, we conduct an experiment, where we add a Clever Hans feature to

the training dataset to investigate the difference between the heatmaps of ProtoPNet and

the ones that PRP generates. Therefore, we add the Clever Hans artifact to 50% of the390

stop sign images in the training data (CH-50). The 10 prototypes for the stop sign class,

learned by the ProtoPNet trained on the manipulated dataset, are shown in the first row

of Figure 5. Given a test image, shown at the very left of Figure 5, the heatmaps of

3Code will be made open source available at github upon acceptance.
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ProtoPNet and the PRP heatmaps for the image are shown in the middle and bottom

row of Figure 5. Corroborating our earlier observations, we again note here that the395

ProtoPNet heatmaps are coarse, highlighting wider areas in the test image, and that

neighboring regions of the artifact are focused upon, rather than the precise location of

the artifact. In contrast, from the PRP maps, we can clearly observe that all prototypes

are focusing precisely on the Clever Hans feature, some more (prototypes 2, 3, 4, 5, 7,

9, 10) and some less (prototypes 1, 6, 8). It is shown later that prototypes 6 and 8 are in400

fact not learning any significant features and even react strongly to random noise. With

the new insight into the model behavior gained through the PRP maps, we can shed

new light on the hypothesis from Section 3.3. The idea was to remove the prototypes

that had learned the Clever Hans, retrain the last layer and thus eliminate the Clever

Hans effect. Given the original prototype explanation, this made sense, as only 2 of the405

10 prototypes had learned the Clever Hans feature. With the PRP maps, however, we

gain new knowledge and can see that all prototypes (some more, some less) take into

account the Clever Hans feature.

We also note here that ProtoPNet heatmaps are highlighting all pixels in the image

activated by different prototypes (before Max Pooling). If they were highlighting only410

the maximally activated region (after Max Pooling), they would only be able to depict

connected regions in the image space, considering the naive upsampling heavily based

on spatial location correspondence between the activation map and the input image. On

the other hand, PRP maps represent the maximally activated pixels and are still able to

highlight disjointed areas in the image, as can be seen in the PRP map for Prototype 5415

in Figure 5, where both the artifact and “ST” in the stop sign are indicated as relevant.

Figure 6 illustrates the difference between PRP maps and ProtoPNet heatmaps for a

stop sign image with no artifact. PRP maps, as shown in the bottom row, are of higher

resolution and, as noticed in this case, tend to show more accurate information than the

normal upsampled heatmaps from ProtoPNet. PRP maps also contain higher variabil-420

ity, as shown by explanations for Prototype 2 and 4 in Figure 6, which therefore yields

more information from the original prototypes to explain the test pattern.

In the following, we quantitatively evaluate the faithfulness of the PRP maps and

ProtoPNet heatmaps regarding their ability to capture the most discriminative class-

20

                  



6.672 5.773 4.184 5.509 1.971 0.999 0.962
Prototype 6 Prototype 4 Prototype 2 Prototype 3Prototype 4 Prototype 10 Prototype 2

In
pu

t

In
pu

t

Pr
ot

ot
yp

es
Pr

ot
oP

N
et

 H
ea

tm
ap

s
PR

P 
m

ap
s

Figure 6: PRP Maps vs Activation Map Upsampling for CH-50 (left) and PASCAL VOC 2007 (right). The

top 3 activated prototypes for the stop sign class and the top 4 activated prototypes for the horse class for the

respective input images are shown in the second row in descending order of similarity scores (last row). The

third row shows the heatmaps generated by ProtoPNet and the last row shows the corresponding PRP maps.

wise information. For this, we follow the strategy presented in [37], referred to as the425

Relevance ordering test, where we start from a random image and monitor both the

similarity scores as we gradually add the most relevant pixels to the image.

Primarily, we are interested in the trustworthiness of the ProtoPNet heatmaps and

PRP maps with regard to their calculated pixel relevance for activating the prototypes.

Therefore, first, for an input image, the PRP maps and the ProtoPNet heatmaps are430

computed, followed by sorting the pixels in descending order of their assigned rele-

vance by PRP and ProtoPNet explanations, respectively. We then compute the similar-

ity scores for different prototypes of the stop sign images while gradually adding the

pixel with the next highest relevance to a random image. We compute this for 50 ran-

domly chosen clean images from the stop sign class and compute the average across all435

images followed by an average over all prototypes. The same experiment is repeated

with the same images, this time adding the Clever Hans artifact. The average results

for all prototypes of the stop sign class are shown in Figure 7. The x-axis represents

the percentage of pixels that are replaced by the relevant pixels of the test image and

the y-axis represents the corresponding similarity scores. As a baseline, we start from440
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Images without artifact Images with artifact

Figure 7: CH-50: Quantitative evaluation of PRP Maps vs ProtoPNet Heatmaps via relevance ordering test.

The results are shown as an average over all the prototypes and averaged over the same images without (left)

and with artifact (right).

a random image and gradually replace a percentage of randomly chosen pixels by their

test image pixel values and refer to this as the Random approach. From Figure 7 we

can observe that for both test case scenarios, i.e, the stop sign images with and without

the artifact, adding the most relevant pixels, based on the PRP explanations, results in a

significantly steeper slope (blue) than using the ProtoPNet heatmaps (orange). There-445

fore, conclusively, we can state that the relevance of the important discriminate features

distributed by PRP is more accurate than by ProtoPNet explanations. These quantita-

tive results also uncover ineffective prototypes which are not learning anything specific

from the training images and are reacting very highly even to random noise, as shown

in Figure 8. This behavior is observed in both test scenarios of clean and artifact data,450

with the results depicted for artifact test images in Figure 8 for prototypes 6 and 8.

5.4. Assessing the network behavior with PRP maps

So far, we have established the drawbacks of ProtoPNet, which are the lack of

higher resolution and spatially precise explanations, which hinder the user in identify-

ing the most relevant discriminative features. Accordingly, we proposed a method —455

PRP — to overcome this lack of precise explanations. Our proposed PRP maps provide

a higher level of fine grained explanations while keeping the benefit of “this-looks-

like-that” behavior of the ProtoPNet, as shown in Figure 9 for both LISA (CH-50) and

PASCAL VOC 2007 datasets. Therefore, we still have inherent interpretability, where

each class is being represented by a fixed number of prototypes. This exponentially460
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Prototype 6 Prototype 8

Figure 8: CH-50: Relevance ordering test results shown for prototypes 6 and 8 of the stop sign class for the

artifact test images. Both of these are not learning anything specific, therefore having high similarity with

even random data.

Why is this image classified as
stop sign?

This part of image Looks like this

PRP maps for 3
prototypes of
stop sign class

Training images and their PRP
maps, where corresponding

prototype comes from

Why is this image classified as
horse?

This part of image Looks like this

PRP maps for 3
prototypes of
horse class

Training images and their PRP
maps, where corresponding

prototype comes from

Figure 9: This looks more like that: Enhanced ProtoPNet self-explainability with PRP for a LISA stop sign

image from the CH-50 dataset (left) and a PASCAL VOC horse image (right).

reduces the need for the manual laborious task of analysing individual ad-hoc explain-

ability heatmaps for assessing deep neural networks. Additionally, this also reduces the

need to use semi-automated methodologies like SpRAy [4] to find patterns in a model’s

explanations with a huge number of explanation maps.

We can now directly visually identify the strategies learned by the network by only465

looking at a few representative prototypes for each class. For instance, we manually

cluster the PRP maps of the stop sign class for the LISA dataset, as shown in Figure

10. We can observe, that aside from learning the artifact, the network is also relying on

the textual part of the stop signs as well as on the corner features. Note, that we have
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STOP SIGN
CLASS

HORSE
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Figure 10: Representing cluster of prototypes for the stop sign class (left) and Horse class (right). For the

stop sign class, the red cluster predominantly highlights the artifact, the green cluster indicates the text, while

the yellow cluster captures the corner features. For the Horse class, red cluster looks at the ”Clever-Hans”

i.e, the watermark in the images, the yellow cluster highlights the features of the horse’s mouth, the blue

cluster indicates the presence of horse-type legs, the green cluster looks if there is a rider present, and the

gray cluster captures the background features and is thus insignificant.

excluded prototypes 6 and 8 from the assessment since they did not capture any useful470

information (see Figure 8).

Following this, we investigate the performance of PRP and ProtoPNet explanations

on the PASCAL VOC 2007 dataset in order to uncover relevant features learned by

the networks for predicting the class horse. First, we show a few prototypes (top 4

activated) that were learned by the model for the horse class along with their ProtoPNet475

heatmaps and PRP Maps, shown in Figure 6 (right). Here, we can observe that PRP

explanations capture the relevant features in a more fine grained manner and are able

to identify a Clever Hans strategy used by the model where it tends to focus on the text

in the watermark in prototype 3, rather than on the horse. In contrast, the information

in ProtoPNet’s heatmaps in the second row of Figure 6 is ambiguous since prototype480

3 is allocating relevance to a broader background area. The strategies learnt by the

network for recognizing a horse are grouped manually and visualized in Figure 10.

The four effective groups, disregarding the insignificant gray cluster, which focuses

on the background features, represent the horse class in terms of a horse’s face, legs,

presence of a rider, and finally the Clever Hans watermark.485
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Table 2: Accuracy (ACC) and F1-scores (F1) for different data scenarios with several multi-view clustering

methodologies on PRP maps along with comparison with SpRAy on both PRP and LRP maps. Best and

insignificantly different results, computed using t-test, are marked in bold.

SpRAy-LRP[4] SpRAy-PRP[4] CoMVC[35] Co-Reg[33]

ACC (%) F1 ACC (%) F1 ACC (%) F1 ACC (%) F1

CH-50 54.06±1.62 0.68±0.01 53.52±0.75 0.68±0.04 99.99±0.00 0.99±0.00 99.57± 0.00 0.99±0.00

CH-20 75.92±1.11 0.08±0.03 81.98±1.55 0.28±0.03 82.27±20.52 0.75±0.24 94.54±0.00 0.86±0.00

BD-15 83.18±5.76 0.21±0.24 85.72±3.87 0.30±0.15 66.85±6.91 0.76±0.06 99.42±0.00 0.98±0.00

5.5. Multi-View Clustering for suppressing artifacts

Artifacts in the data can be learned by the model, which subsequently might lead

to the model exhibiting undesirable behavior, as shown in [4] and demonstrated above

in case of the self-explaining network ProtoPNet. Consequently, it is essential to either

remove the artifacts from the data, or to ensure that the model is not using those spuri-490

ous attributes present in the data for prediction. We tried the latter in the introductory

experiments on ProtoPNet — identifying and removing the artifact prototypes. How-

ever, as we observed, this is not possible since the artifact is not always perceivable

by the ProtoPNet heatmaps even if the artifact was learned by a particular prototype.

Using our suggested method, we are now able to find the prototypes that are activated495

by the artifact. It was further discovered using PRP in the previous sections, that almost

all the prototypes incorporate the artifact features, thus suggesting the entanglement of

the artifact information within the whole network. Therefore, instead of pruning the

artifact prototypes, we propose to detect the samples in the training dataset that activate

the artifact prototypes, which can be subsequently removed from the training data set500

before retraining the ProtoPNet on the cleansed dataset.

Using PRP, we obtain k PRP maps corresponding to the artifact-containing class for

each image, where k corresponds to the number of learned prototypes for that class. We

can consider these PRP maps as k different views of the same image and can thus build

on existing multi-view clustering methodologies to automatically cluster the training505

images and thereby discover clusters corresponding to artifact-containing images. In

this work, we cluster the images into 2 clusters, an artifact and a clean data cluster.

To demonstrate the efficiency of PRP in detecting artifacts in the data, we test differ-
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ent multi-view clustering methodologies on the LISA dataset with 50% and 20% Clever

Hans features added to the stop sign images. We further use the same methodologies510

for backdoor detection thereby demonstrating PRP’s efficiency in multiple artifact sce-

narios. We also compare our clustering approach with SpRAy, which performs spectral

clustering analysis on single view LRP maps, and demonstrate that our approach is

able to capture better information in PRP maps, especially in the setting with multiple

views.515

5.5.1. Clever Hans type artifacts in 50% training data

The accuracy for CH-50 for the artifacts in the stop sign class in 100% (artifact

test) and 0% (clean test) data is shown in Table 1. As we can observe, the accuracy for

the stop sign class drops from 100% to 94.6% when there is no artifact in the test data.

From Figure 5, prototypes 4 and 9 can be considered as “artifact” prototypes according520

to ProtoPNet heatmaps. But as can be seen in Table 1, there is no effect on the artifact

test accuracy when removing those two prototypes. The same holds when we remove

the prototypes followed by a retraining of the model. On the other hand, a decrease in

the accuracy for the clean test data is observed. This additionally supports our assertion

of imprecise and even misleading information provided by ProtoPNet’s heatmaps.525

In order to obtain a clean data set, we aim to identify the samples that contain an

artifact in the first place in order to remove them from the training set. Assuming that

the information on whether an artifact is present in a data point is recognizable in the

PRP maps, we cluster the PRP maps in two clusters. For comparison, we use a set of

representative algorithms to cluster the data, including SpRAy [4], CoMVC [35] and530

Co-Reg [33]. We downsample the heatmaps to a size of 80x80, as this had negligible

impact on the results and led to a reduced computation time.

The results for accuracy and F1-scores for the artifact cluster for different clustering

methods are given in Table 2. We follow the experiments in [35] and train CoMVC

for 100 epochs for 20 runs and report the results from the run resulting in the lowest535

unsupervised cost-function value. We repeat this 5 times and report mean and standard

deviation.

As observed from Table 2, CoMVC is working very efficiently to separate the ar-
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Figure 11: BD-15: Top row depicts the learned prototypes 1 to 10 for the speed limit class with the Backdoor

in 15% of the stop sign images (labeled as speed limit), the middle row depicts the ProtoPNet’s heatmaps

corresponding to the respective prototypes for the test image shown on the left and the bottom row shows the

corresponding PRP maps for the prototypes, which capture more precise information.

tifact images from the clean images. We also report the results for multi-view spectral

clustering algorithm Co-Reg in Table 2. Although being more computationally expen-540

sive, Co-Reg is able to cluster the data effectively. Co-Reg always obtains an accuracy

of above 94% in separating the artifact data, and thus prove to be highly successful in

detecting the artifacts. CoMVC on the other hand performs with almost 100% accu-

racy when the artifact and non-artifact classes are balanced, i.e, in the current setting

of CH-50.545

To compare against the multi-view clustering approaches, we apply SpRAy [4], on

the LRP maps for the true class (SpRAy-LRP) as well as PRP maps for the prototypes

of the true class (SpRAy-PRP). For SpRAy-LRP, we compute LRP maps using the rules

in Section 4.1, followed by LRPε for the last layer and a combination of relevance for

all prototypes. More details are provided in the Appendix. Accordingly, we obtain one550

LRP map for each image, which is scaled down to 80x80 and flattened before applying

SpRAy. For SpRAy-PRP, we combine the PRP map images by summing them across

the channels and concatenating all 10 PRP maps for each image to get a 10x80x80

map. We then flatten it and apply SpRAy.

The results for both are shown in Table 2. As observed, SpRAy fails in cluster-555

ing the artifacts in CH-50 data using both LRP and the concatenation of PRP maps.

This behavior is expected since both SpRAy-LRP and SpRAy-PRP do not capture de-
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pendencies among multiple views of the same objects as opposed to other multi-view

clustering methodologies.

5.5.2. Clever Hans type artifact in 20% training data560

In the following, we want to capture the scenarios when less Clever Hans artifacts

are included in the training data. Therefore, we evaluate the efficiency of multi-view

clustering methodologies on the unbalanced dataset CH-20. The stop sign class accu-

racy for artifact and clean test data is 99.7% and 95.8%, respectively. This depicts that

the stop sign class is still affected by the Clever Hans effect.565

Applying the multi-view clustering methodologies to this scenario, we report the

accuracy and F1-score in Table 2. Results show that SiMVC is performing best with

97.99% accuracy, with comparable performance by almost all the other multi-view

clustering methods. SpRAy fails again with a very low F1-scores of 0.04 and 0.08 on

LRP and PRP maps, clustering almost all images into one cluster.570

5.5.3. Backdoor type artifact in 15% training data

Similar to the experiments above, we examine the backdoor setting, using the gen-

erated BD-15 dataset. The prototypes and their corresponding heatmaps for the speed

limit class are shown in Figure 11. The test accuracy for the case that the artifact is

present in 100% of the stop sign test images is given in Table 3. Most of the stop575

sign images are now classified as speed limits and only 1% of the stop sign images are

classified correctly.

The prototypes of the speed limit class, as learned by ProtoPNet, show that only

one prototype has learned the backdoor artifact, while all the remaining 9 prototypes

correspond to the speed limit class, as shown in Figure 11. As per ProtoPNet’s ex-580

planations, removing prototype 4 of the speed limit class should solve the problem of

backdoor attacks. We remove the prototype and retrain the last layer and report the

accuracies in Table 3.

We can observe that removing the backdoor prototype has only a minor effect on the

accuracy of the stop sign class, which increased from 1.0% to 6.5%. However, after585

retraining the last layer it again drops to only 2.5%. This behaviour of the network
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Table 3: Accuracy on the artifact test (backdoor in 100% of the images in the stop sign class test data) and

clean test data for BD-15, along with corresponding accuracies after removing the artifact prototype and

retraining the last layer.

BD-15 Remove prototype 4 Retraining last layer

Artifact Test 1.0% 6.5% 2.5%

Clean Test 96.0% 96.0% 95.6%

thus emphasizes the inherent learning of the backdoor artifact by the network, which

is not limited to only learning a specific backdoor prototype, as incorrectly suggested

by ProtoPNet visualizations. Here, the PRP explanations decode the behavior of the

model as well - they indicate that almost all prototypes are activated by the artifact,590

even if those prototypes refer to the speed limit signs.

We therefore use multi-view clustering to clean the data of the backdoor feature

and report the results in Table 2. SiMVC and CoMVC are still performing better than

SpRAy-PRP with F1-scores of 0.60 and 0.57 respectively, as opposed to 0.02 F1-score

of SpRAy-PRP. Although, SpRAy-LRP is performing well in this setting with a F1-595

score of 0.91, this is due to the fact that LRP maps consist of negative relevances from

the stop sign class in addition to the positive relevances from the speed limit class.

This helps in accentuating the difference between speed limit and backdoor stop sign

images. Furthermore, all the multi-view spectral clustering-based algorithms are able

to separate these clusters efficiently, with the best being Co-Reg with an accuracy of600

99.42% and a F1-score of 0.98.

6. Conclusion

Considering the success of machine learning algorithms in diverse safety-critical

applications, it is instrumental to verify the behavior of these models. In this work, we

assess the faithfulness of the explanations provided by a well known self-explainable605

network, ProtoPNet, which has subsequently been utilized as a baseline for a variety

of works [38, 23]. We provide an in-depth assessment of ProtoPNet’s behavior in the

presence of a range of artifacts. Our results indicate that, despite the attractiveness of

ProtoPNet owing to its self-explaining characteristic, it is still very far from achiev-
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ing the required quality of explanations. Considering this, we propose a model-aware610

method, PRP, to generate more precise and higher resolution prototypical explana-

tions. These enhanced explanations help in uncovering more credible decision strate-

gies, while keeping the self-explainability intact. We further show that these explana-

tions are able to uncover the spurious artifact features learned by the model, which are

then efficiently identified and removed via our proposed multi-view clustering strategy.615

While PRP has been analysed extensively in this work, it needs to be explored fur-

ther for variations of datasets as well as artifacts. So far, a limitation is the requirement

of the manual analysis of clusters to distinguish the model and data heuristics despite

the effective clustering performed by the proposed methodology. The behavior of the

clustering further needs to be analysed in the future work in the presence of multiple620

artifacts per class. The design of explainable approaches with the inherent capabil-

ity to leverage artifactual data in addition to clean data without capturing the artifact

features would be ideal instead of removing the data and is therefore a main focus of

future work. Finally, the benefit of using PRP in combination with other prototypical

self-explainable models will be explored further in the future work.625

The insights obtained in this work highlight the importance of evaluating the qual-

ity of self-explaining machine learning approaches and will pave the way towards the

development of more robust and precise models, thereby increasing their trustworthi-

ness.
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Appendix

ProtoPNet: Cost function

The overall cost function for ProtoPNet is:

Ltotal = LCE + λclstLclst + λsepLsep (7)

LCE is the cross entropy (CrsEnt) loss, Lclst is the cluster loss and Lsep is the separation

loss, defined as:

LCE = min
W

1

N

N∑

i=1

CrsEnt(ŷi,yi) (8)

Lclst =
1

N

N∑

i=1

min
m:pm∈Pyi

min
z̃
||z̃− pm||22 (9)

Lsep = − 1

N

N∑

i=1

min
m:pm /∈Pyi

min
z̃
||z̃− pm||22 (10)

where N are the total number of training images, yi is the true label for image i, ŷi is

the predicted label, W represents the learnable parameters of the whole network, Pyi
640

are all the prototypes belonging to class yi and z̃ are the patches of the convolutional

output which are of the same size as the prototypes.

SpRAy-LRP

For SpRAy based on LRP maps, we first backpropagate the output relevances i.e,

class scores to the similarity score layer. We follow the LRPCMP rule and use the

LRPε rule [29]:

R
(l,l+1)
i←−j =

zij
zj + ε . sign(zj)

R
(l+1)
j (11)

For the rest of the network, the rules for PRP are used. Considering that we are now

computing relevance corresponding to all the prototypes, we combine them to get the

relevance at CONV layer as:

R
(CONV,AM)
ijc =

n∑

m=1

R
(CONV,AM)
mijc (12)
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LISA 5 class dataset

Table 4: Combination of classes from LISA dataset for 5-class CH-100, CH-50, CH-20 and BD-15 datasets.

Restriction

signs

noRightTurn, keepRight, thruMergeLeft, thruMergeRight, thruTrafficMergeLeft, doNotPass,

noLeftTurn, doNotEnter, rightLaneMustTurn

Speed limits
speedLimit40, speedLimit25, speedLimit35, speedLimit50, speedLimit45, truckSpeedLimit55,

speedLimit65, speedLimit55, speedLimit30, speedLimit15, schoolSpeedLimit25

Stop signs stopAhead, stop

Warning

signs

turnLeft, signalAhead, zoneAhead25, school, curveLeft, pedestrianCrossing, curveRight,

rampSpeedAdvisory50, rampSpeedAdvisoryUrdbl, dip, rampSpeedAdvisory40, merge, turnRight,

slow, roundabout, speedLimitUrdbl, zoneAhead45, intersection, laneEnds, rampSpeedAdvisory45,

rampSpeedAdvisory20, rampSpeedAdvisory35, addedLane

Yield signs yield, yieldAhead
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