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Abstract— The increase of available large clinical and experi-
mental datasets has contributed to a substantial amount of impor-
tant contributions in the area of biomedical image analysis. Image
segmentation, which is crucial for any quantitative analysis, has
especially attracted attention. Recent hardware advancement has
led to the success of deep learning approaches. However, although
deep learning models are being trained on large datasets, existing
methods do not use the information from different learning
epochs effectively. In this work, we leverage the information of
each training epoch to prune the prediction maps of the subse-
quent epochs. We propose a novel architecture called feedback
attention network (FANet) that unifies the previous epoch mask
with the feature map of the current training epoch. The previous
epoch mask is then used to provide hard attention to the learned
feature maps at different convolutional layers. The network also
allows rectifying the predictions in an iterative fashion during
the test time. We show that our proposed feedback attention
model provides a substantial improvement on most segmentation
metrics tested on seven publicly available biomedical imaging
datasets demonstrating the effectiveness of FANet. The source
code is available at https://github.com/nikhilroxtomar/FANet.

Index Terms—Cell nuclei, colon polyps, deep learning, feed-
back attention, lung segmentation, medical image segmentation,
retinal vessels, skin lesion.
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I. INTRODUCTION

MAGE segmentation is one of the most studied problems

in computer vision, where the main goal is to classify
each pixel of an image to a specific class instance. This can
either be pixels of any arbitrary objects, such as cars or
humans in natural scene data [1], satellite data in remote
sensing [2], [3], or pixels of cancerous area or cells in bio-
medical imaging data [4]. Substantial progress has been made
in biomedical imaging due to which various modalities, such
as X-ray, computerized tomography (CT), magnetic resonance
imaging (MRI), endoscopy imaging, fundus imaging, elec-
tron microscopy (EM), and histology imaging exists. While
machine learning (ML) methods usually provide improved
performance over traditional computer vision methods, most of
them require ground truth labels from domain experts, which
are often scarce and may not represent enough variability
in biomedical imaging data. This can affect ML models
resulting in only suboptimal predictions. Furthermore, existing
methods for semantic segmentation are based on a single-step
prediction process that does not allow them to rectify their
own predicted segmentation masks. Thus, these networks are
constrained to only one set of learned weights that may not
be enough to capture inter- and intra-class differences present
in biomedical imaging data. In this work, we introduce an
iterative approach that can refine the segmentation masks
from previous mask predictions in a few iterative steps.
This iteration process enables the network to steer toward
the improved feature representation by taking advantage of
subsequent attention mechanisms from the previous mask,
unlike classically used one-step segmentation methods [1], [5].
Thus, aggregating these results over a few iterations provides
improved segmentation masks (see illustration in Fig. 1).

Current developments of convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and attention
modules have improved automated methods in biomedical
image analysis. Widely used supervised end-to-end CNNs
methods require a large and diverse training dataset to avoid
overfitting. A recurrent neural network can be used to pre-
serve the model compactness and can be effectively used
for segmentation tasks in resource-constrained settings via an
iterative update on internal states of network layers [6]. How-
ever, they are known for their memory inefficient memory-
bandwidth-bound computation and model complexity [7].
In addition, spatial-visual attention mechanisms used for image
captioning for natural scene images [8] and for medical
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Semantic segmentation using our FANet architecture. Otsu thresholding is used for generating the initial mask used during Oth iteration. Then, the

predictions are iteratively updated with the predicted mask. It can be observed that already at the second iteration, the results converge. The corresponding
feature maps before and after feedback attention at the last decoder layer of our FANet are shown, as color images on the right.

image segmentation [9] showed improvements in terms of
both model convergence and performance metric. An attention
mechanism allows networks to focus on a concrete class
instance, thereby penalizing nonspecific regions. Our model
is, thus, inspired by the success of both visual attention
mechanisms and the recurrent learning paradigm.

A mask-guided contrastive attention model was used by
Song et al. [10] to deal with the background clutter. Unlike
classical training mechanisms and motivated by the work of
Song et al. [10], we propose to propagate the sample-specific
mask output from the previous epoch to the successive epoch
in a recursive fashion. Such a feedback mechanism can provide
prior information that can help to learn sample variability,
thereby enabling to train effectively on diverse datasets. Here,
iterative prediction can be used to prune the predicted masks
during the inference (see Fig. 1). This allows the network to
learn both local and global features that can rectify the mask
output from the learned weights. Unlike test-time augmen-
tation (TTA) [11], where different transforms are utilized to
mimic sample representations and data diversity, we embed
mask rectification during the training process. To our knowl-
edge, feedback attention network (FANet) is the first deep
learning model that incorporates the ability to self-rectify its
predictions without requiring heavy transformations, ensemble
strategies, and prior sample-specific knowledge. FANet uses a
single end-to-end trainable network that allows information
propagation during both train and test time.

A feedback mechanism during the training is the central
to our novel FANet approach for semantic segmentation. The
predicted map of each sample from the previous epoch unified
with the current state feature map is used to provide attention.
FANet uses an attention mechanism to different feature scales
in the network, allowing it to capture variability in image
samples. In addition, our residual block with squeeze and exci-
tation (SE) layer allows us to improve channel interdependen-
cies, which can be critical to tackling image quality issues. The
main contributions of this work can be summarized as follows.

1) Feedback Attention Learning: A novel mechanism to

utilize the variability present in each training sample.

The mask outputs are propagated from one to subsequent
epochs to suppress the unwanted feature clutter.

2) Iterative Refining of Prediction Masks: Using feed-
back information helps in refining the predicted masks
in training and inference. During testing, we iterate
over the input image and keep updating the input
mask with the predicted mask for up to ten iterations
(empirically set).

3) Embedded run-length encoding strategy: Binary mask
outputs of each sample are efficiently compressed before
being propagated to the next epoch. This provides
a memory-efficient mechanism for passing sample-
specific masks.

4) Systematic Evaluation: Experiments on seven vastly
different biomedical datasets suggest that FANet outper-
forms other state-of-the-art (SOTA) algorithms.

5) Efficient Training: FANet achieves near SOTA perfor-
mance with far fewer training epochs.

II. RELATED WORK
In this section, we summarize relevant advances in medical
image segmentation and feedback attention networks. We also
highlight recent contributions to iterative refinement methods
for image segmentation.

A. Biomedical Image Segmentation

The basis of most modern CNN-based semantic segmen-
tation architectures are either fully convolutional network
(FCN) [12] or an encoder—decoder architecture, such as
U-Net [5] originally designed for cell segmentation. Various
modifications of these networks have been proposed both
for semantic segmentation of natural images [13], [14] and
biomedical image segmentation [9], [15]-[20]. In general,
in the encoder, the image content is encoded using multiple
convolutions to capture from low-level to high-level features,
whereas in the decoder part of the network the prediction
masks are obtained by multiple upsampling mechanisms or
deconvolution operations. Methods like PSPNet [13] and
DeepLab [1] incorporate convolutional feature maps of varying
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resolutions to segment both small and large-sized objects
effectively. While PSPNet used a pyramid pooling module,
DeepLab used atrous spatial pyramidal pooling (ASPP) for
encoding the multiscale contextual information. Both PSPNet-
and DeepLab-based architectures have been used widely
in the medical imaging community for biomedical image
segmentation [21], [22].

B. Feedback Attention Networks

Visual attention has been widely used in computer vision
for pose estimation [23], object detection [24], and image
segmentation [25], [26]. Chu et al. [23] incorporated the mul-
ticontext attention method into their end-to-end eight stack
hourglass CNN network where each subnetwork of the hour-
glass generated a multiresolution attention map. Attention
mechanisms [27], [28] have also been utilized for posing
explicit focus on the target region in medical imaging.
Schlemper et al. [28] proposed a novel attention gate model
that automatically learned to focus on the target structure
of the varying shape and sizes by suppressing the irrelevant
features and highlighting the silent feature for the specified
medical image segmentation task. Attention U-Net [9] used
a gated operation in the U-Net architecture to focus on the
target abdominal regions of CT datasets. Feedback mecha-
nism for attention using two U-Net architectures with shared
weights was used for cell segmentation [29], [30]. The latter
used a standard U-Net architecture with the second U-Net
incorporating ConvLSTM [31] to store the feature map (input-
to-state) from the first U-Net network. However, feedback is
only applied to the same epoch with state-to-state transitions.
On the contrary, our approach utilizes a feedback mechanism
that propagates information flow from the previous epoch to
the current epoch in an attention mechanism. We employ the
predicted masks from the previous epoch as hard attention to
prune the segmentation output.

C. Iterative Refinement for Segmentation

Iterative refinement of the segmentation mask by feeding the
input image and the predicted segmentation mask to a modified
U-Net architecture was done by Mosinska et al. [32]. In this
work, we used an iterative refinement pipeline to enhance the
quality of the predicted segmentation mask. Similarly, iterative
update of latent space and minimization of the structure
similarity index measure (SSIM) loss was used to refine
the predicted segmentation maps during test time in [33].
Recently, iterative refinement strategies have also been used
for pose estimation [34], [35] that used consecutive modules
for refinement of the predictions with a loss function for the
evaluation of output in each module. These iterative refinement
processes show improved predictions and are able to handle
domain shifts or object shape variability without requiring very
deep networks [33]. However, a major bottleneck in these
methods is the requirement of a large number of iterations
for model convergence. Unlike these methods, our proposed
FANet provides attention to the specific region-of-interest and
can prune the predicted segmentation masks in less than ten
iterations without requiring any optimization scheme.

II1. METHOD

In this section, we describe the components of the pro-
posed FANet architecture. The overall design along with the
proposed feedback attention learning mechanism is shown
in Fig. 2.

A. SE-Residual Block

Deeper networks improve the performance of the model
significantly, but an increase in depth can cause either van-
ishing or exploding gradients problem [43]. To deal with this,
we take advantage of shortcut connections between layers
in the residual learning paradigm. Our squeeze and excite
residual (SE-residual) block uses two 3 x 3 convolutions and
an identity mapping, where each convolution layer is followed
by a batch normalization (BN) layer and an rectified linear unit
(ReLU) nonlinear activation function. The identity mapping is
used to connect the input and the output of the convolution
layer [Fig. 2(a)].

Similar to the work by Hu et al. [44], we add an SE layer
in the residual network. The SE layer acts as a content-aware
mechanism that reweights each channel accordingly to create
robust representations. Hence, it allows the network to become
more sensitive to significant features while suppressing irrele-
vant features. This goal is accomplished in two steps. First, the
feature maps are squeezed by using the global average pooling
to get a global understanding of each channel. The squeeze
operation results in a feature vector of size n, where n refers
to the number of channels. In the second step: excitation, this
feature vector is fed through a two-layered feed-forward neural
network, where the number of features is first reduced and
then expanded to the original size n. Now, this n-sized vector
represents the weight of the original feature maps, which is
used to scale each channel.

B. MixPool Block

The proposed MixPool block shown in Fig. 2(b) is used in
multiple layers of our FANet architecture. This block facil-
itates the flow of samplewise feedback information between
consecutive epochs providing hard attention to the learned
features from the SE-residual block. The layer provides focus
to the relevant features in both contraction path and expan-
sion path layers. The ‘hard’ attention map consists of the
values 0 and 1, i.e., attention to a specific region only unlike
soft attention where the probability map is estimated. The
advantage of hard attention is that it allows to keep only the
important features and ignore irrelevant features. During the
elementwise multiplication, the values from the input feature
map, if multiplied by 0, becomes 0, leaving the essential
features for further operations. Another advantage of such
methods is their computational speed, scalability, and ease of
interpretation [8], [45]. The input mask used during training is
compressed using the run-length encoding technique to save
the memory footprint.

As in Fig. 2(b) and (c), fist feature maps from the
SE-residual blocks F; in each layer is passed through
a 3 x 3 convolution followed by a BN and an ReLU
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Fig. 2. FANet with SE-residual block and MixPool block. (a) SE-residual block integrated with a squeeze and excite layer uses 1 x 1 convolution to

concatenate the high-resolution feature representation with the encoded feature vector. (b) MixPool block represents the attention mechanism in our network.
The input mask is downscaled to the corresponding layer feature map size M; which is fused with the masked feature map representation M, for hard

attention of input feature in that layer F;. Finally, the attenuated feature map F,M’

and the feature maps F; are both concatenated. (c) Proposed FANet

showing the complete network architecture. Encoder—decoder architecture with skip-connections (in dotted arrows) from SE-residual blocks to preserve high-
and intermediate-resolution feature representations and MixPool block connections (with solid arrows) that allow feedbacking the previous mask predictions.

activation function. Then, we apply a 1 x 1 convolution and
a sigmoid activation function o (-) with a threshold of 0.5 to
obtain the binary mask M to contribute to the spatial attention
map generation given by

1, ifo(-)>0.5
0,
Second, we apply appropriate max-pooling on the input mask
(from the previous epoch) and resize it to the size of the spatial

attention map M,. A union operation is then applied between
the resized mask and the spatial attention map. This confirms

M| = o (conv(F))) = (D

otherwise.

that we obtain the feature from both the feedback and the
spatial attention maps to further create a new unified spatial
attention map. Next, an elementwise multiplication operation
is applied between the unified mask and the original feature
map that suppresses the irrelevant features and enhances the
important ones. The enhanced and the original feature maps
are then followed by a 3 x 3 convolution, BN, and an ReLU.
These operations are used to improve the network’s ability to
learn nonlinearity in the model prediction.

Finally, we concatenate the output of both activation func-
tions, which constitutes the output of our MixPool block
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given by
OutputMixPool = F‘l,/\(F] ® (Ml U Ml,))/ (2)

where —~ denotes the concatenation operator, ® is elementwise
multiplication, and U represents the union operation.

C. Proposed FANet Architecture

The block diagram of FANet is shown in Fig. 2(c). It uses an
encoder—decoder design common to many semantic segmen-
tation architectures. We combine the strength of a residual
network enhanced with SE as an SE-residual block and
MixPool block that facilitates the attention and propagation
of information flow from the current learning paradigm and
that of the previous epoch. We implement a recurrent learning
mechanism in both encoder and decoder layers that allow us
to achieve efficient segmentation. The MixPool block uses the
previous segmentation map (as an input mask through RLE
encoding), which contains the information from prior training
and uses to improve the semantic representation of the feature
maps.

We first use the Otsu thresholding [46] to generate an initial
input mask for training the proposed architectural model. The
variability in the input mask is refined over the training epochs
and the model learns over time to prune input or previous
epoch masks with learned semantically meaningful features
together. To achieve this, we use the novel MixPool block
that uses the input mask and applies hard attention over the
subsequent input feature maps. The hard attention enables
the network to highlight semantically meaningful features
for the target region-of-interest in the entire network. The
network, thus, not only learns to predict features maps but
also strengthens a joint pruning mechanism that is dependent
on the input mask. As a result, the devised network is able to
rectify the predicted segmentation maps in an iterative fashion,
unlike conventional methods which do not have such pruning
ability. This provides a strong rationale behind our work that
is applicable beyond single-step inference prediction with the
capability of refining prediction maps.

The proposed network architecture is an FCNN consisting
of four encoder and four decoder blocks. The encoder takes
the input image, downsamples it gradually, and encodes it
in a compact representation. Then, the decoder takes this
compact representation and tries to reconstruct the semantic
representation by gradually upsampling it and combining the
features from the encoder. Finally, we receive a pixelwise
categorization of the input image. Both the encoder and the
decoder are built using the SE-residual block, and an additional
concatenation of the original resolution feature representation
in the encoder is added at each resolution scale. This mech-
anism minimizes the loss of feature representations during
downscaling and upscaling processes.

Each encoder network starts with two SE-residual blocks,
which consist of two 3 x 3 convolutions and a shortcut
connection, known as identity mapping, connecting the input
and output of the two convolution layers. Each convolution is
followed by a BN and a ReLU activation function. The output
of the second SE-residual block acts as a skip connection for

the corresponding decoder block. After that, it is followed by
the MixPool block, which has the previous epoch segmentation
mask and provides a hard-attention over the incoming feature
maps. This process is repeated for each of the downscaled
layers.

Each decoder network starts with a 4 x 4 transpose con-
volution that doubles the spatial dimensions of the incom-
ing feature maps. These feature maps are concatenated with
feature maps from the corresponding encoder block through
skip connections. The skip connections help to propagate the
information from the upper layers, which are sometimes lost
due to the depth of the network. The skip connections are
followed by two SE-residual blocks, which help to eliminate
the problem of vanishing gradient. The MixPool block that
utilizes the segmentation mask from the previous epoch is
then applied to create a hard attention over the learned feature
maps. Next, we concatenate the feature maps from the last
decoder block and the segmentation mask from the previous
epoch. Finally, we apply a 1 x 1 convolution with the sigmoid
activation function. The output of this is used to both minimize
the training loss, using a combined binary cross entropy and
dice loss, and to generate segmentation masks that are stored
as a run-length encoded compression for each sample and
propagated during the next epoch. The RLE is updated after
each epoch. Similarly, the network learns to adapt the weights
in iterative training, this mechanism is also utilized during the
test time. As shown in Fig. 1, test results are pruned in a few
iterations during the test time. Unlike many methods in the
literature [32], [33], we utilize the same network without any
complementary loss function optimization.

1V. EXPERIMENTS
A. Setup

1) Dataset and Evaluation Metrics: To evaluate the pro-
posed architecture, we have selected seven datasets that
capture different segmentation tasks in biomedical imaging.
The details of each dataset can be found in Table I. The
dataset images contain the images of organs and lesions
acquired under different imaging protocols. For the retina
vessel segmentation task, we use the DRIVE and CHASE-
DB datasets. These two datasets are aimed at various diseases
related to diseases of retina vessels, such as retinopathy, retinal
vein occlusion, and retinal artery occlusion. The International
Skin Imaging Collaboration (ISIC) 2018 dataset, which is a
dermoscopy dataset that is useful in the diagnosis of skin
cancer, is the third dataset focused on medical imaging data.
This dataset contains a wide variety of skin cancer images of
different sizes and shapes, which helps in a better understand-
ing of the disease. We have further included the Kvasir-SEG
and CVC-ClinicDB colonoscopy datasets. These datasets con-
tain the image frames extracted from different colonoscopy
interventions and are focused on colorectal polyps that are
one of the cancer precursors in the colon and rectum. It highly
increases the chance of avoiding lethal cancer by early detec-
tion. In addition, we have included two datasets acquired
from biological imaging aimed at understanding the cellular
processes. These include the 2018 Data Science Bowl (DSB)
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TABLE I

DETAILS OF THE BIOMEDICAL DATASETS USED IN OUR EXPERIMENTS. “TRAIN,” “TRAIN AFTER AUG.,” AND “TEST” DENOTE THE NUMBER OF
TRAINING SAMPLES, NUMBER OF TRAINING SAMPLES AFTER IMAGE AUGMENTATION, AND NUMBER OF TEST SAMPLES, RESPECTIVELY

Dataset | Images | Size | Train | Train after aug. | Test | Application

Kvasir-SEG [36] 1000 Variable 880 16720 120 Colonoscopy

CVC-ClinicDB [37] 612 384 x 288 | 490 14210 61 Colonoscopy

2018 Data Science Bowl [38] 670 256 x 256 | 335 10720 134 Nuclie

ISIC 2018 (Lesion Boundary Segmentation) [39], [40] 2596 Variable 1815 39930 259 Dermoscopy

EM dataset [4] 30 512 x 512 | 24 384 3 Cell

DRIVE Database [41] 40 584 x 565 | 20 640 20 Retina Vessel

CHASE-DBI1 [42] 28 584 x 565 | 20 640 8 Retina Vessel
and the EM datasets. The 2018 DSB dataset contains images TABLE II

with a large number of variable-shaped nuclei acquired from
different cell types, magnification, and imaging modalities.
This dataset is designed for automated nuclei segmentation.
Similarly, the EM dataset contains the transmission EM images
of the neural structures of the Drosophila nerve cord. This
dataset is aimed at the automated segmentation of the neural
structures. All experiments on these datasets are conducted on
the same train, validation, and test splits as provided by the
previously published works reported in this article.

To evaluate SOTA deep learning methods and our proposed
FANet, we have used standard evaluation metrics that includes
dice coefficient (DSC) (a.k.a. F1), mean intersection over
union (mloU), precision, and recall. We have additionally
calculated specificity for those datasets where this metric was
previously used for benchmarking.

2) Implementation Details: All the training is performed
on a Volta 100 GPU and an NVIDIA DGX-2 system using
the PyTorch 1.6 framework. For test inference, we have used
an NVIDIA GTX 1050 Ti GPU for our method and all
SOTA methods used in the article as this hardware is widely
available. Our model is trained for 100 epochs (empirically
set) using an Adam optimizer with a learning rate of le™*
for all the experiments except for the digital retinal images
for vessel extraction (DRIVE) and the CHASE-DBI1 dataset,
where the learning rate was adjusted to le™® due to the
small size of the training dataset. Datasets were chosen such
that the efficiency of our model could be compared with
the SOTA methods. A combination of binary cross entropy
and dice loss has been used as the loss function. Reducel-
ROnPlateau callback was used to monitor the learning rate
and adjust it to obtain optimal training performance. All the
images used in the study were resized to 512 x 512 except
for the 2018 DSB and the CVC-ClinicDB dataset, where
images were resized to 256 x 256. Data augmentation, such
as random crop, flipping, rotation, elastic transformation,
grid distortion, optical distortion, grayscale conversion, ran-
dom brightness, contrast, channel, and course dropout were
used.

3) Ablation Study: In order to evaluate the strength of our
proposed FANet architecture, we perform a thorough ablation
study. For this, we have used all seven datasets and evaluated
several metrics for baseline (FANet without MixPool), baseline
with MixPool, and the combination of baseline, MixPool, and
feedback (proposed).

RESULTS ON THE KVASIR-SEG [36]

Method | Backbone | F1 | mIoU | Recall | Prec.
U-Net [5] - 0.5969 0.4713 0.6171 0.6722
ResUNet [47] - 0.6902 | 0.5721 0.7248 | 0.7454
ResUNet++ [18] - 0.7143 | 0.6126 | 0.7419 | 0.7836
FCNS [12] VGG 16 0.8310 | 0.7365 | 0.8346 | 0.8817
HRNet [14] - 0.8446 | 0.7592 | 0.8588 | 0.8778
DoubleU-Net [19] VGG 19 0.8129 | 0.7332 | 0.8402 | 0.8611
PSPNet [13] ResNet50 0.8406 | 0.7444 | 0.8357 | 0.8901
DeepLabv3+ [48] MobileNet 0.8425 | 0.7575 | 0.8377 | 0.9014
DeepLabv3+ [48] ResNet50 0.8572 | 0.7759 | 0.8616 | 0.8907
DeepLabv3+ [48] ResNet101 0.8643 | 0.7862 | 0.8592 | 0.9064
U-Net [5] VGGI19 0.7535 | 0.6571 0.7364 | 0.8565
U-Net++ [49] - 0.8002 | 0.7000 | 0.8716 | 0.7992
Attention U-Net [9] | - 0.7944 | 0.6959 | 0.8383 | 0.8287
FANet - 0.8803 | 0.8153 | 0.9058 | 0.9005
B. Results

In the following, we present quantitative results on seven
different biomedical imaging datasets and compare them with
corresponding SOTA methods.

1) Results on Kvasir-SEG: Kvasir-SEG [36] is a publicly
available polyp segmentation dataset acquired from clinical
colonoscopy procedures. This dataset has been widely used for
algorithm benchmarking. We have trained our model and com-
pared it with recent SOTA methods on Kvasir-SEG. A compar-
ison with widely accepted segmentation methods with different
backbones (see Table II) shows that our approach is improved
performance compared with the SOTA methods (on the same
train-test split). Our FANet outperforms all the SOTA meth-
ods on almost all metrics. While outperforming most U-Net
and its variants, it can be observed that FANet achieved an
F1 score of 0.8803, which is 1.6% and 3.57% better than the
most accurate DeepLabv3+ with ResNet101 backbone and the
recent HRNet.

2) Results on CVC-ClinicDB Dataset: CVC-ClinicDB is
another commonly used dataset for colonoscopy image analy-
sis. FANet architecture outperforms all the SOTA meth-
ods on this dataset by a large margin with F1 of 0.9355,
mloU of 0.8937, recall of 0.9339, and precision of 0.9401
(see Table III). FANet achieves the best tradeoff between
recall and precision compared to the ResUNet-based architec-
tures [18], [47]. The strength of the FANet can be observed
by the large improvement of 23.17% in the recall and 5.24%
in the precision over the SOTA ResUNet++ [18]. The recall
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TABLE III
RESULTS ON THE CVC-CLINICDB [37]

Method | F1 | mIoU | Recall | Precision
U-Net (MICCAI’15) [5] | 0.8230 | 0.7550 | - -
ResUNet-mod [47] 0.7788 0.4545 0.6683 0.8877
ResUNet++ [18] 0.7955 | 0.7962 | 0.7022 | 0.8785
SFA (MICCATI’19) [50] 0.7000 | 0.6070 | - -
PraNet [17] 0.8990 | 0.8490 | - -
U-Net++ [49] 0.9377 | 0.8890 | 0.9405 | 0.9432
Attention U-Net [9] 0.9325 | 0.8856 | 0.9276 | 0.9546
FANet 0.9355 | 0.8937 | 0.9339 | 0.9401
TABLE IV
RESULTS ON THE 2018 DSB [38]
Method | Backbone | F1 | mIoU | Recall | Prec.
U-Net [5] ResNet101 0.7573 | 09103 | - -
DoubleU-Net [19] VGGI19 0.7683 | 0.8407 | 0.6407 | 0.9596
U-Net++ [49] - 09117 0.8477 0.9203 0.9107
Attention U-Net [9] | - 0.9179 | 0.8570 | 0.9183 | 0.9235
FANet None 09176 | 0.8569 | 0.9222 | 0.9194
TABLE V

RESULTS ON THE ISIC 2018 (SKIN CANCER SEGMENTATION) [39], [40]

Method | F1 | mIoU | Recall | Spec. | Prec.
U-Net [5] 0.6740 | 0.5490 | 0.7080 | 0.9640 | -
R2U-Net [52] 0.6790 | 0.5810 | 0.7920 | 0.9280 | -
Attention R2U-Net [52] | 0.6910 | 0.5920 | 0.7260 | 0.9710 | -
BCDU-Net (d=1) [53] 0.8470 | - 0.7830 | 0.9800 | -
BCDU-Net (d=3) [53] 0.8510 | - 0.7850 | 0.9820 | -
U-Net++ [49] 0.8088 | 0.7319 | 0.8450 | 0.9110 | 0.8648
Attention U-Net [9] 0.8205 | 0.7346 | 0.8516 | 0.9135 | 0.8645
FANet 0.8731 | 0.8023 | 0.8650 | 0.9611 | 0.9235

suggests that our method is more clinically preferable than
the SOTA. A higher recall is desired in the systems used for
clinical diagnosis [51].

3) Results on 2018 Data Science Bowl: Cell nuclei seg-
mentation in microscopy imaging is a common task in the
biological image analysis [38]. We used the publicly avail-
able 2018 DSB challenge dataset and compared our results
with the SOTA methods. Table IV shows that FANet produces
an F1 of 0.9176, mloU of 0.8569, and recall of 0.9222 with
an improvement of 2.02% in F1 with respect to SOTA
UNet++ [16] and 28.15% improvement in recall compared
with the best performing DoubleU-Net [19]. In general,
FANet achieves the best tradeoff between precision and recall
compared with the SOTA methods resulting in the highest
F1 score (0.9176). The qualitative results with 2018 DSB
also show that the predicted FANet produces high-quality
segmentation masks for cell nuclei with respect to the ground
truth (see Fig. 3).

4) Results on ISIC 2018 Dataset: Skin cancer is one of the
most commonly diagnosed cancers in the U.S. Early detection
of melanoma can improve the five-year survival rate and help
prevent it in 99% of the cases [54]. Table V shows the
results on the publicly available ISIC 2018 dataset. FANet
outperformed all the methods on almost all evaluation metrics
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Fig. 3. Qualitative results of FANet on seven biomedical image segmentation
datasets. The initial “input mask” is generated using Oftsu thresholding. The
“output mask” is the predicted segmentation mask from the FANet model.

(F1, mIoU, and recall). FANet achieved 0.8731 on F1 and
recall of 0.8650 with an improvement of 2.21% and 8.00%,
respectively, over the most accurate SOTA BCDU-Net (d = 3)
method. A competitive specificity and precision were also
recorded. From the qualitative results in Fig. 3, we can see that
the input mask produced by Otsu thresholding shows under
segmentation, which is improved significantly using FANet.
The masks produced by FANet have smooth boundaries.

5) Results on DRIVE Dataset: The automated segmentation
of vessels in fundus images can assist in the diagnosis and
treatment of diabetic retinopathy. The quantitative result on
the publicly available DRIVE dataset is presented in Table VI.
We can observe that the proposed FANet achieves an F1 score
of 0.8183, mloU of 0.6927, recall of 0.8215, and precision
of 0.8189. The proposed method achieves an improvement of
4.24% in the recall over SOTA IterNet [57]. Although the
F1 of the IterNet is 0.35% higher than FANet, the recall
is relatively lower, and other metrics, such as mloU and
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TABLE VI
RESULTS ON THE DRIVE DATASET [41]
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TABLE VIII
RESULTS ON THE EM DATASET [4]

Method | F1 | mIoU | Recall | Spec. | Prec. Method | F1 | mIoU | Recall | Specificity | Prec.
U-Net [5] 0.8174 | - 0.7822 | 0.9808 | - U-Net [5] - 0.8830 | - - -
Residual U-Net [52] 0.8149 | - 0.7726 | 0.9820 | - Wide U-Net [15] - 0.8837 | - - -
Recurrent U-Net [52] 0.8155 | - 0.7751 | 0.9816 | - U-Net++ [49] 0.9495 | 0.9038 | 0.9520 | 0.7875 0.9474
R2U-Net [52] 0.8171 | - 0.7792 | 09813 | - Attention U-Net [9] | 0.9492 | 0.9033 | 0.9502 | 0.7912 0.9484
DenseBlock-UNet [55] | 0.8146 | - 0.7928 | 0.9776 | - FANet 0.9547 | 0.9134 | 0.9568 | 0.8096 0.9529
DUNet [56] 0.8190 | - 0.7863 | 0.9805 | -
IterNet [57] 0.8218 | - 0.7791 | 0.9831 | -
IterNet(Patched) [57] 0.8205 | - 0.7235 | 0.9838 | - . . . . .
U-Net++ [49] 07960 | 0.6615 | 0.7903 | 09818 | 0.8070 1S able to segment the challenging retinal vessels, including
Attention U-Net [9] 0.7984 | 0.6648 | 0.7877 | 0.9827 | 0.8146  small retinal vessel bifurcations, and it well resembles the
FANet 08183 | 0.6927 | 0.8215 | 0.9826 | 0.8189  oround truth mask. For 2018 DSB, ISIC-2018, and EM cell

data, again, the input masks are finely rectified, achieving close

TABLE VII to ground truth results by the proposed FANet model.
RESULTS ON THE CHASE-DB1 DATASET [42]

D. Ablation Study
Method | F1 | mloU_| Recall | Spec. | Prec. In this section, we ablate our model architecture and present
g-NetB[IS] CUNet [55 8;(9)(9)2 - 8;%(7) 83222 - extensive experimental results related to the effectiveness of
Dg}f& [(;%] et 1331 08000 | - 07858 | 0.9880 | - the proposed FANet. To evaluate the contribution of the
IterNet [57] 0.8072 | - 0.7969 | 0.9881 | - MixPool block and the feedback, we created the following
Acenton UNet 9] | 07941 | 0658 | 08049 | 09852 | 07552 onhgurations.
aon et BT | oo | 08544 | 6o | oaas 1) Baseline (BI): It refers to the FANet without the Mix-

precision, are not presented. For our proposed FANet, the
precision of 0.8189 is well balanced with the obtained recall.
The higher recall produced by FANet shows that our method
is more clinically relevant. The quality of the segmentation
masks in Fig. 3 demonstrates the efficiency of FANet.

6) Results on CHASE-DBI1 Dataset: CHASE-DBI is the
second retinal image segmentation dataset used to evaluate
our method. For this dataset, there is no official training and
test split. We have used 20 images to train our model and
8 images to test as reported in the work of Li et al. [57].
From Table VII, we can observe that our method achieved
the highest F1 of 0.8108, mIoU of 0.6820, and the highest
recall of 0.8544. FANet achieved an improvement of 3.67%
in the recall compared with the SOTA DenseBlock-UNet.

7) Results on EM Dataset: The EM dataset aims to develop
an automatic ML algorithm for the segmentation of the neural
structures so that difficulties due to manual labeling can be
resolved. Table VIII shows the quantitative results on the
EM dataset. The proposed FANet also obtains F1 of 0.9547,
mloU of 0.9134, and a recall of 0.9568. The presented results
demonstrate that FANet produces SOTA results, surpassing
other recent methods in terms of mloU metric that was used
by other methods for comparison.

C. Qualitative Results

The qualitative results on all seven datasets are presented
in Fig. 3. It can be observed that for colonoscopy datasets
(Kvasir-SEG and CVC-ClinicDB), even though the initial
input mask covers the entirety of the image, our model is
able to prune and provide accurate masks. The same can
be observed for the two retina vessel segmentation datasets,
DRIVE and CHASE-DBI. It can be observed that our model

Pool block, which means “no feedback mechanism” or
“iterative pruning.” We require the MixPool block to
provide feedback as it unifies the attention from the
network feature map and input mask [refer to Fig. 2(b)].

2) Baseline + MixPool (B2): We integrate the MixPool
block in all the encoder blocks and decoder blocks.
During the inference, we directly apply the trained
model weights with the Ostu thresholding (initial input
mask) only once, i.e., no iterative pruning is used.

3) Baseline + MixPool(El, D4) + Feedback (B3): Here,
we integrate the MixPool block in the first encoder block
and the last decoder block. Feedback (iterative pruning)
is used during the inference.

4) Baseline + MixPool + Feedback (B4): This is the final
FANet architecture, with MixPool block in all encoder
and decoder blocks and the feedback (iterative pruning)
mechanism is used during the inference.

Table IX presents the ablation results on these four
configurations performed on all seven datasets. In the fol-
lowing, we provide detailed analyses of the use of differ-
ent model architectural settings and validate them with the
above-described four network configurations (B1-B4):

1) Effectiveness of MixPool Block: The MixPool block is
an essential part of the proposed FANet architecture. It uses
the previously predicted mask as the attention to improve
the semantically meaningful features and allows higher level
abstractions. The effectiveness of the MixPool block can be
evaluated by comparing the network configurations B1 and B4.

From the experiments in Table IX, we can conclude that the
B4 outperforms the B1 on all the datasets. On the F1 metric,
B4 shows an improvement of 2.87% on the Kvasir-SEG
dataset, 1.89% improvement on the CVC-ClinicDB, 0.55%
improvement on the 2018 DSB dataset, 0.84% improvement
on the ISIC 2018 dataset, 0.11% improvement on the DRIVE
dataset, 2.92% improvement on the CHASE-DB1 dataset, and
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TABLE IX

DETAILED ABLATION STUDY OF THE FANET ARCHITECTURE. FLOP IS CALCULATED IN TERMS OF GMAC. “REC” STANDS FOR RECALL,
“PREC” STANDS FOR PRECISION, “SPEC” STANDS FOR SPECIFICITY, “ACC” STANDS FOR ACCURACY, AND “PARAM”
STANDS FOR TOTAL NUMBER PARAMETERS. B1-B4 DENOTE DIFFERENT NETWORK CONFIGURATIONS

Method mloU | F1 Rec Prec Spec Acc F2 Param | Flops FPS Image Size
Dataset: Kvasir-SEG

Baseline (FANet without MixPool, | 0.7732 | 0.8516 | 0.8835 | 0.8710 | 0.9783 | 0.9563 | 0.8614 | 5.76M | 70.38 104.20 | 512 x 512
B1)

Baseline + MixPool (B2) 0.6378 | 0.7302 | 0.6982 | 0.9098 | 0.9815 | 0.9412 | 0.7039 | 7.72M | 94.75 66.75 512 x 512
Baseline + MixPool(El, D4) + feed- | 0.7688 | 0.8460 | 0.9047 | 0.8479 | 0.9576 | 0.9474 | 0.8699 | 5.78M | 76.53 101.10 | 512 x 512
back (B3)

Baseline + MixPool + feedback (B4) | 0.8153 | 0.8803 | 0.9058 | 0.9005 | 0.9794 | 0.9667 | 0.8872 | 7.72M | 94.75 68.18 512 x 512
Dataset: CVC-ClinicDB

Baseline (FANet without MixPool, | 0.8619 | 0.9166 | 0.9310 | 0.9247 | 0.9934 | 0.9877 | 0.9194 | 5.76M | 70.38 103.46 | 256 x 256
B1)

Baseline + MixPool (B2) 0.8541 | 0.9108 | 0.9026 | 0.9296 | 0.9943 | 0.9864 | 0.9048 | 7.72M | 94.75 67.490 | 256 x 256
Baseline + MixPool(E1, D4) + feed- | 0.8729 | 0.9162 | 0.9052 | 0.9462 | 0.9941 | 0.9889 | 0.9093 | 5.78M | 76.53 99.03 256 x 256
back (B3)

Baseline + MixPool + feedback (B4) | 0.8937 | 0.9355 | 0.9339 | 0.9401 | 0.9948 | 0.9916 | 0.9342 | 7.72M | 94.75 67.910 | 256 x 256
Dataset: 2018 Data Science Bowl

Baseline (FANet without MixPool, | 0.8495 | 0.9121 | 0.9047 | 0.9283 | 0.9871 | 0.9800 | 0.9068 | 5.76M | 70.38 114.82 | 256 x 256
B1)

Baseline + MixPool (B2) 0.8158 | 0.8893 | 0.8665 | 0.9289 | 0.9887 | 0.9751 | 0.8733 | 7.72M | 94.75 69.64 256 x 256
Baseline + MixPool(E1l, D4) + feed- | 0.8552 | 0.9165 | 0.9189 | 0.9199 | 0.9863 | 0.9802 | 0.9173 | 5.78M | 76.53 100.27 | 256 x 256
back (B3)

Baseline + MixPool + feedback (B4) | 0.8569 | 0.9176 | 0.9222 | 0.9194 | 0.9860 | 0.9800 | 0.9195 | 7.72M | 94.75 69.22 256 x 256
Dataset: ISIC 2018

Baseline (FANet without MixPool, | 0.7908 | 0.8647 | 0.9033 | 0.8780 | 0.9151 | 0.9151 | 0.8778 | 5.76M | 70.38 111.95 | 512 x 512
B1)

Baseline + MixPool (B2) 0.7486 | 0.8303 | 0.8049 | 0.9214 | 0.9617 | 0.9211 | 0.8081 | 7.72M | 94.75 65.91 512 x 512
Baseline + MixPool(E1, D4) + feed- | 0.8078 | 0.8780 | 0.8746 | 0.9252 | 0.9614 | 0.9374 | 0.8719 | 5.78M | 76.53 99.06 512 x 512
back (B3)

Baseline + MixPool + feedback (B4) | 0.8023 | 0.8731 | 0.8650 | 0.9235 | 0.9611 | 0.9351 | 0.8630 | 7.72M | 94.75 71.02 512 x 512
Dataset: DRIVE

Baseline (FANet without MixPool, | 0.6912 | 0.8172 | 0.8048 | 0.8339 | 0.9846 | 0.9687 | 0.8093 | 5.76M | 70.38 103.68 | 512 x 512
B1)

Baseline + MixPool (B2) 0.6895 | 0.8161 | 0.8219 | 0.8145 | 0.9820 | 0.9678 | 0.8190 | 7.72M | 94.75 68.47 512 x 512
Baseline + MixPool(E1l, D4) + feed- | 0.6928 | 0.8183 | 0.8124 | 0.8280 | 0.9839 | 0.9687 | 0.8142 | 5.78M | 76.53 95.30 512 x 512
back (B3)

Baseline + MixPool + feedback (B4) | 0.6927 | 0.8183 | 0.8215 | 0.8189 | 0.9826 | 0.9683 | 0.8197 | 7.72M | 94.75 70.66 512 x 512
Dataset: CHASE-DB1

Baseline (FANet without MixPool, | 0.6419 | 0.7816 | 0.7876 | 0.7768 | 0.9848 | 0.9723 | 0.7850 | 5.76M | 70.38 95.77 512 x 512
B1)

Baseline + MixPool (B2) 0.5419 | 0.7009 | 0.8116 | 0.6209 | 0.9664 | 0.9565 | 0.7625 | 7.72M | 94.75 65.03 512 x 512
Baseline + MixPool(E1, D4) + feed- | 0.6877 | 0.8147 | 0.8372 | 0.7948 | 0.9855 | 0.9760 | 0.8279 | 5.78M | 76.53 99.00 512 x 512
back (B3)

Baseline + MixPool + feedback (B4) | 0.6820 | 0.8108 | 0.8544 | 0.7722 | 0.9830 | 0.9749 | 0.8363 | 7.72M | 94.75 71.67 512 x 512
Dataset: EM

Baseline (FANet without MixPool, | 0.9128 | 0.9544 | 0.9597 | 0.9495 | 0.7946 | 0.9263 | 0.9575 | 5.76M | 70.38 79.59 512 x 512
B1)

Baseline + MixPool (B2) 0.9121 | 0.9540 | 0.9596 | 0.9488 | 0.7918 | 0.9257 | 0.9573 | 7.72M | 94.75 59.15 512 x 512
Baseline + MixPool(E1, D4) + feed- | 0.9042 | 0.9497 | 0.9404 | 0.9594 | 0.8378 | 0.9198 | 0.9441 | 5.78M | 76.53 90.62 512 x 512
back (B3)

Baseline + MixPool + feedback (B4) | 0.9134 | 0.9547 | 0.9568 | 0.9529 | 0.8096 | 0.9271 | 0.9559 | 7.72M | 94.75 70.70 512 x 512

a 0.03% improvement on the EM dataset. These performance
gains are significant, and thus, demonstrate the effectiveness
of the use of MixPool block in the proposed FANet.

2) Optimum  Position of MixPool Block in FANet
Architecture: The positioning of the MixPool is an important
factor determining the performance of the model. In the
FANet (B4), we integrate the MixPool block in all the

encoder blocks and the decoder blocks. In B3, we integrate
the MixPool block in the first encoder block and the
last decoder block only. To evaluate the effectiveness of
the integrating MixPool block, we compare B3 with B4
in Table IX. It can be observed that out of the seven
datasets, on three datasets, i.e., Kvasir-SEG, CVC-ClinicDB,
and 2018 DSB, a significant improvement in B4 is observed
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TABLE X

ALGORITHM COMPLEXITY OF OUR PROPOSED
FANET AND OTHER SOTA METHODS

Params. Flops Inf. Time | Image size
Method (million) | (GMac) (in ms.) (pixels)
U-Net [5] 31.04 219.01 3.14 512 x 512
ResU-Net [47] 8.22 181.68 2.93 512 x 512
U-Net++ [49] 9.16 138.6 4.07 512 x 512
Attention U-Net [9] | 34.88 266.54 447 512 x 512
FANet 7.72 94.75 8.25 512 x 512

Params.: parameters; Inf.: inference; ms: milliseconds

as compared with the B3. On the F1 metric, we can observe
that B4 achieves an improvement of 3.43% on Kvasir-SEG,
1.93% on CVC-ClinicDB, 0.11% on the 2018 DSB, and
0.5% on the EM dataset.

3) Significance of Feedback During Evaluation: The pro-
posed architecture uses the feedback information (input mask)
while training. This feedback mechanism is also used during
the evaluation for iterative pruning of the predicted mask.
To evaluate the effectiveness of the feedback mechanism,
we compare the B2 (FANet without feedback) with the B4
(FANet with feedback) in Table IX. On all the datasets,
we used feedback during inference and compared its perfor-
mance with the model without feedback. We can observe that
the majority of performance gains in mloU and F1. For Kvasir-
SEG, B4 shows a 17.75% improvement in the mloU, 15.01%
improvement in the FI, and a 20.76% improvement in the
recall. Likewise, on the CVC-ClinicDB, we can see that B4
has 3.96% improvement in mloU and 2.27% improvement in
the F1.

E. Algorithm Efficiency

We have analyzed the algorithm efficiency in terms of the
number of parameters, flops, and inference time for SOTA
methods and FANet (see Table X). During the architectural
design, we limit the number of trainable parameters in order to
minimize the computational cost of our model. The proposed
FANet has only 7.72 million parameters and 94.75 GMac
flops, i.e., FANet has the least number of parameters and
flops as compared with other deeper architectures. However,
our inference time is higher than the other baseline networks,
which is due to the introduction of a novel MixPool block
in the FANet that incorporates additional operations, such
as elementwise multiplication from the readout of the RLE
encoded mask that resulted in larger computational time.
However, in terms of FPS per iteration this is still above 60
(see Table IX). In the FANet, the MixPool block facilitates
attention and propagation of information flow from the current
learning paradigm and that of the previous epoch, which helps
to achieve a performance boost (refer Table IX). To verify
the efficiency of the MixPool block, we have compared our
network with and without the MixPool block in Table IX.
It is also evident that removing the MixPool block reduces
the overall performance in all datasets.

F. Extended Ablation Study

We have performed an extended ablation study to demon-
strate the architectural effectiveness of the proposed FANet.
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TABLE XI

EXTENDED ABLATION STUDY DEMONSTRATING EFFECTIVENESS OF OUR
PROPOSED FANET ARCHITECTURE ON THE KVASIR-SEG DATASET.
HERE, WE ABLATE OUR NETWORK USING DIFFERENT
CONFIGURATION THAT INCLUDES: 1) REMOVING F; OF
MixPooL BLOCK IN FANET [F1G. 2(b)]; 2) REMOVING
AND ADDING SE-RESIDUAL NETWORKS IN FANET
[F1G. 2(c)]; AND 3) SERIES CONCATENATION
OF FANET IN CONTRAST TO
ITERATIVE MECHANISM

Method | F1 | mIoU | Recall | Prec.

MixPool block (w/o F;) 0.6527 | 0.5523 | 0.7175 | 0.7255
One SE block only 0.7641 | 0.6810 | 0.9531 | 0.7133
Three SE blocks 0.8570 | 0.7908 | 0.8974 | 0.8768
Four SE blocks 0.8158 | 0.7417 | 0.8528 | 0.8605
Four FANet (in series) 0.8682 | 0.8004 | 0.8994 | 0.8913
Two SE in FANet (Ours) | 0.8803 | 0.8153 | 0.9058 | 0.9005

Here, we begin with the experimental verification of the
MixPool block by removing its certain components. From
Table XI, we can observe a performance drop, F1 drops by
22.76% and mloU drops by 26.3% when feature map F; is not
used during feature concatenation. In order to justify the use of
two SE-residual blocks in our proposed FANet, we conducted
studies by removing and adding SE-residual blocks from the
FANet. We first began by removing an SE-residual block for
which we observed an 11.62% drop in F1 and 13.43% drop
in mloU.

Furthermore, we modified the FANet architecture by adding
three SE-residual blocks and we observed again a decrease in
the performance. For this case, F1 drops by 2.33% and mloU
by 2.45%. Next, we added one more SE-residual block and
a severe performance drop can be observed. The F1 dropped
by 6.45% and the mloU drops by 7.36%. In our proposed
architecture, we used iterative pruning. However, we experi-
mented with an alternative strategy by concatenating the four
FANet together in a series. From this experiment, we observed
a drop of F1 by 1.21% and 1.49% drop in mIoU with nearly
four times increase in the number of trainable parameters.

V. DISCUSSION

While deep learning semantic segmentation has been widely
implemented, to the best of our knowledge, only direct
inference strategies have been published to date. In this
work, we utilize a segmentation map pruning mechanism that
demonstrates a clear advantage over the current state-of-the-
art models due to its ability to self-rectify the predicted mask
during the evaluation process (see Tables II-VIII). The process
of self-rectification or iterative pruning helps to improve
the performance of the proposed FANet architecture. This
improvement is due to the feedback provided by the input
mask in the MixPool block which is further validated from our
two ablation studies (Tables IX and XI). Furthermore, a joint
configuration together with mask and the feature embeddings
allow learning to achieve better feature representation of target
regions and learning to adjust weights dependent on the input
mask. This establishes an effective pruning mechanism of the
network enabling input mask to be steered in the direction of
the relevant learned features of the network. In addition, it can
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Fig. 4. Comparison of the intermediate feature map of the different networks on the Kvasir-SEG, 2018 DSB, and DRIVE datasets. For each dataset, we have
included three diverse images. The provided heat maps demonstrate the impact of the weights for different networks. Here, red and yellow regions in the heat
map refer to the most important features, and the blue region refers to the region of less importance. From the heat map, it can be observed that FANet has
a better feature representation than other baseline networks for most of the datasets. F; represents the input feature map in the MixPool block (refer Fig. 2).

capture the variability in datasets (e.g., shape distributions,
surface morphology, and so on), allowing the network to
rectify the predicted/input masks.

Table IX shows the complete ablation study of the MixPool
block in the FANet architecture. In this ablation, we provide
experimental results with (proposed network, B4) and without
the MixPool block (B1). Here, B1 refers to the “no feedback
mechanism” as no MixPool block is applied. In the proposed

FANet, we require the MixPool block to provide feedback
through a unified attention mechanism taking into account the
network feature map and the input mask from the previous
epoch [refer to Fig. 2(b)]. However, for the MixPool block
without feedback (i.e., B2), we provide the attention from
the generated feature map and the input mask but we do
not perform the iterative pruning during the evaluation. Thus,
even though B2 and B4 networks have the same number of
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parameters (7.72 million parameters), the removal of the
feedback mechanism affects the algorithm performance
(see Table IX). SE-residual blocks that serve as a self-attention
mechanism on feature channels by performing global aver-
age pooling followed by multilayer perceptron that allows
to explicitly model the interdependencies between feature
channels. Furthermore, in our network, we introduce spa-
tial attention mechanisms. Multiple SE-residual blocks allow
learning complex nonlinear feature interdependencies (also see
Table XI for different combinations of SE-residual blocks).
Furthermore, other ablation experiments, such as series con-
catenation of FANet, and the removal of F; layer in MixPool
block in Table XI showed that the proposed FANet achieves
the highest performance. This justifies the importance of dif-
ferent components integrated into the proposed FANet archi-
tecture. Furthermore, qualitative results in Fig. 4 demonstrate
the effectiveness of our network over different configurations,
for example, removing of F; layer in the MixPool block
and using only one SE-residual block. In addition, it can be
observed that FANet has more apparent segmentation maps,
which are easily distinguishable regions from the background,
than the SOTA methods.

With the introduction of the iterative pruning in our FANet
architecture, we introduce a new hyperparameter, i.e., the num-
ber of iterations during the evaluation. The optimal number
of iterations is 10, which was empirically established across
datasets. The computed number of iterations is the same for all
datasets. For this, we have plotted a graph (Fig. 5) showing the
iterative pruning on different dataset images. From the graph,
it is observed that there is a significant improvement from
iteration 1 to 5. However, from 5 to 10 iterations, there is
a minor to negligible improvement. Thus, we considered the
highest of 10 iterations during the evaluation. The iterative
pruning over the input image increases the inference time.
However, this process allows us to refine the predicted seg-
mentation masks, unlike most current methods. For obtaining
a better tradeoff between efficiency and accuracy, we advise
using a lesser number of iterations. We plot the F1 score for
different dataset images for five iterations during evaluation.
Fig. 5 shows that our proposed FANet benefits with just two
iterations. In addition, we have used the NVIDIA GTX 1050 Ti
(released in 2016) for inference, and thus using a more
recent GPU with higher performance can provide better infer-
ence time.
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VI. CONCLUSION

With the FANet architecture, we proposed a novel approach
for biomedical image segmentation that can self-rectify the
predicted masks. By introducing a feedback mechanism,
we achieved an improvement on seven publicly available bio-
medical datasets when compared with existing SOTA methods.
Our approach requires far fewer epochs for training and is
well-suited to diverse biomedical imaging datasets. The feed-
back mechanism integrated into the FANet design effectively
acts as hard attention that is used with the existing feature
maps to boost the strength of feature representations. The
experimental results demonstrate that the proposed architecture
achieves accurate and consistent segmentation results across
several biomedical imaging datasets despite its simple and
straightforward network architecture. The ablation study also
reveals that FANet requires less training time to achieve near
SOTA performance. In the future, we will use a contrastive
learning approach to improve the performance of FANet
further and test it on additional multimodal biomedical images.
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