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A B S T R A C T

A point contact/Coulomb coupling technique is generally used for visualizing the ultrasonic waves in Lead
Zirconate Titanate (PZT) ceramics. The point contact and delta pulse excitation produce a broadband frequency
spectrum and wide directional wave vector. In ultrasonic, the signal is corrupted with several types of
noises such as speckle, Gaussian, Poisson, and salt and pepper noise. Consequently, the resolution and
quality of the images are degraded. The reliability of the health assessment of any civil or mechanical
structures highly depends on the ultrasonic signals acquired from the sensors. Recently, deep learning (DL)
has been implemented for the reduction of noises from the signals and in images. Here, we have implemented
deep learning-based convolutional autoencoders for suitable noise modeling and subsequently denoising the
ultrasonic images. Two different metrics, PSNR and SSIM are calculated for quantitative analysis of ultrasonic
images. PSNR provides higher visual interpretation, whereas the SSIM can be used to measure much finer
similarities. Based upon these parameters speckle-noise demonstrated better than other noise models.
1. Introduction

Piezoelectric materials, such as Lead Zirconate Titanate Pb
(Zr𝑥Ti1−𝑥O3) (PZT) and Lithium Niobate (LiNbO3) are well known for
their superior electromechanical conversion since it has the larger
piezoelectric coefficients. These piezoelectric materials play a vital
role in several industrial and military applications, such as optoelec-
tronics, telecommunication, biomedical devices, actuators, structural
health monitoring (SHM), and energy harvesting devices [1–4]. PZT
ceramics are widely used as transducers in SHM applications as they
possess several inherent advantages such as broad-band operational
frequency, better electromechanical coupling, low power consumption,
easy integration’s on the sample surface, and impedance matching with
various substrates [5–7]. SHM is a broader path of study for enhancing
the reliability and operational life of various civil and mechanical
structures. The ultrasonic-based non-destructive testing (NDT) is one
of the most significant, reliable, and common methods used in NDT
technologies. The reliability of the assessment of the structures highly
depends on the ultrasonic signals acquired from the PZT sensors. The
problem of denoising the signal or image is an important challenge
in the field of signal processing. Image denoising is one of the most
important key factors of image processing workflows. In the last several
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decades, a tremendous effort has been devoted to process or denoise the
ultrasonic signals or images [8–12].

Denoising methods can be broadly classified into spatial domain
methods and transform domain methods. Spatial filters which are
further categorized into linear and non-linear filters utilizes low pass
filtering on image pixel values as the noise tends to occupy higher
regions in the frequency spectrum [13]. Generally, spatial filters reduce
noise to a reasonable extent but often end up blurring the image. In the
Transform domain, a wide range of signal processing methodologies
have been employed such as wavelet decomposition and empirical
mode decomposition (EMD). In addition, there are other methods such
as principal component analysis (PCA) and singular value decompo-
sition (SVD) to achieve reconstruction and restoration of signals. In
the same time, to accomplish signal reconstruction and restoration,
techniques such as block-matching and 3D filtering (BM3D) deployed
too [14].

Wang et al. performed a hybrid method combining wave packet
decomposition and EMD to denoise the signals [15]. Finally, the various
faults in the engine were classified using Support Vector Machine
(SVM). Fan et al. have demonstrated a PCA-based denoising algorithm
for simulated data with different noise levels [16]. Huan et al. pro-
posed a technique based on the combination of PCA and SVD, namely
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Fig. 1. Flowchart of the data acquisition to denoising process of the ultrasound images.
C-PCASVD [17]. Such a technique can identify the corresponding sin-
gular values of interference, which could achieve an optimum trade-off
between the denoised Free Induction Decay (FID) and noise reduc-
tion efficiency. The above-mentioned algorithms need to formulate a
targeted processing scheme based on signal characteristics, such as pa-
rameters, the number of decomposition layers, wavelet basis functions,
contribution rate, and the number of main frequencies. Currently, an
algorithm of signal denoising with strong adaptability and robustness
is quite challenging to achieve.

Recently, artificial intelligence (AI) and, more specifically, deep
learning (DL), approaches have achieved state-of-the-art results for
many denoising algorithms. Convolutional neural network (CNN) is
a well-known dimension reduction technique and has proven to be
highly effective in extracting useful features from an image. CNN-
derived autoencoder is a specific type of feed-forward neural network
that compresses the input image into a lower-dimensional representa-
tion and reconstructs the output from the same. This leads us to use
the autoencoder in our problem and is discussed in detail in further
sections.

Over the years, our group has improved the point contact excitation
and detection method for broadband ultrasonic wave excitation in
piezoelectric materials [18–23]. This method is based on the Coulomb
coupling excitation and detection principle, where electromagnetic
fields are converted to mechanical energy to excite phonon vibration
in piezoelectric materials. This method of excitation and detection
is one of the most versatile for generating and detecting ultrasonic
waves in piezoelectric materials. Coulomb coupling method and spec-
tral decomposition technique have been used for detecting surface
defects/damages in piezo-ceramic structures with signal processing
carried out using Fast Fourier Transform. Wideband excitation and
detection in the absence of mechanical, geometrical, and electrical
resonances are the key advantages of the point excitation method. It
also needs a low dynamical force via mechanical contact for successful
acoustic coupling without surface distortion or damage, and it does not
require photolithography.

In ultrasonic, the image is normally considered as an accumulation
of signals and the existence of noises degrade the image quality. So
that, the noisy image reduces the image contrast, edges, textures,
object details, and resolution, thereby decreasing the performance of
post-processing algorithms. To achieve the problem, we propose a
physics-based modeling of noise and generates training samples com-
bined with a deep autoencoder for denoising. In Fig. 1, a flowchart
of the data acquisition for point contact excitation and detection and
denoising process of the ultrasound images have been shown. We have
shown that the proposed method can effectively reduce the noise in
experimental data.
2

2. Experimental setup

A detailed description of the excitation and detection principle,
working principle, probe fabrication, and the experimental setup has
been published before by our group [18–23]. This novel experimental
technique for point contact excitation and detection based on Coulomb
coupling, is developed for the excitation and detection of ultrasonic
waves in a piezo-electric material [22,24,25]. In piezoelectric materials,
the gradient of the electric field and the gradient of the piezoelectric
properties control the transfer of electromagnetic energy to acoustic en-
ergy through Coulomb coupling. This technique is based on the genera-
tion of an electric field that induces stress waves by electro-mechanical
excitation [20].

The experimental technique was optimized for efficient coupling
of the electric field with elastic modulus and permittivity of piezo-
ceramics. Fig. 2 illustrated the experimental setup for point contact
excitation and detection in PZT ceramic samples. A default noise-
adding option from oscilloscope (Agilent 3024A) was employed for
adding noise in the excitation signal.

The excited signal (Dirac delta pulse of 70 ns time width) was
delivered to a radio frequency (RF) amplifier (Electronics & Innovation:
403LA, New York, USA) for signal amplification. These amplified sig-
nals were then supplied to the excitation steel probe. This steel sphere
was gently in contact with the surface of the piezo-ceramic sample.
The excited signal generates the acoustic waves in the PZT ceramic
specimen. On the opposite side of the PZT ceramic specimen, a similar
steel sphere was used for the acquisition of the propagated signal
which was then amplified by a trans-impedance amplifier (DHPCA-
100). Finally, the amplified signal was acquired using an oscilloscope
(Agilent 3024A) capable of digitizing with up to 12 bits. The sampling
interval of the data acquisition was 25 ns. This oscilloscope performs
averaging of 256 pulse shootings and digitizes the signal which is then
recorded in a personal computer (PC) via a USB connection. The PC
also controls the mechanical scanner in the XY plane i.e. the step size
is 50 μ m in both directions and the scanning area is 10 × 10 mm2

3. Methodology

The proposed method consists of 4 modules as shown in Fig. 3.
First, a noise module is used to synthesize different noise and generate
noise-free and noisy image pairs for training.

Next, a deep autoencoder is designed and trained using the syn-
thetic training data. Finally, the trained module is used to denoise
experimental noisy data. Next, we discuss each module in detail.
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Fig. 2. Point contact excitation and detection experimental setup for visualization of ultrasonic waves in PZT, (a) schematic diagram of the sample holder and excitation probe,
(b) signal excitation and data acquisition work flow.
Fig. 3. The main modules of the proposed deep learning based convolutional autoencoders.
3.1. Noise module and training data

The first and most important step is to generate large volume
training data for the proposed deep learning framework. The procedure
starts by preparing the dataset. The ultrasonic images acquired by
point contact excitation in PZT ceramic samples were used for the task.
Desired clean images of size 199 × 199 were extracted from ultrasonic
data by manually inspecting the time-series images near the peaks
indicating excitation signal in the voltage vs time plot in Fig. 4.

The ground truth image pixels were normalized in the range [0,1]
using min–max normalization, followed by random cropping the im-
ages into smaller image tiles of size 64 × 64. 60,000 such tiles were
extracted and considered as noise-free. Next, the noise module is used
to synthetically add different noises. In Fig. 5, we have demonstrated
5 different types of noises namely Gaussian, speckle, Poisson, salt–
pepper, and combination of all the four noise types. Each type of noise
is added separately with 30% noise levels that produced 5 different
datasets of size 60,000 each, one corresponding to each noise type. The
noise parameters and description have been provided in the appendix
section.

The excitation signal, which occurs at 0.06 μs, is represented by the
1st peak in Fig. 4. The 2nd peak, occurring at 0.7 μs, is designated as 𝐿1
and represents the 1st longitudinal wave signal. The 𝐿2 mode, which
corresponds to the 2nd longitudinal wave mode, is represented by the
3rd peak, at 1.64 μs. The reflection and mode conversion contribute
to the wave mode that arrives after 𝐿1 and interferes with 𝐿2. The
acquisition took 4 s in total. The spatial and temporal imaging of wave
propagation helps identify individual wave modes.
3

3.2. Proposed autoencoder-based denoising

Autoencoder introduced by Vincent [26], is an unsupervised deep
learning algorithm that leverages deep neural networks for dimen-
sionality reduction and feature extraction. It learns to crops the input
representation and learns the subsequent reconstruction of the input.
It consists of an encoding function, a decoding function, and a loss
function which computes the amount of information loss between the
compressed and the decompressed representation of the input.

Convolutional autoencoder: Convolutional autoencoder (CA) is an
extension of classical autoencoder which is meant to remove noises
from the input image. The convolutional encoding and decoding layers,
unlike in conventional autoencoders, share the weights among all input
locations, which help in parameter reduction and translationally invari-
ant recognition. Nishio et al. [27] has shown Computed Tomography
(CT) image denoising using CA and achieved state-of-the-art results
with better performance compared to popular denoising algorithms like
LNLM and BM3D.

Proposed Architecture: The encoding block is a modified version
of VGG net [28]. VGG net despite its very simple architecture is one of
the most powerful and efficient convolutional neural network (CNN)
models. With a limited dataset, very deep CNN models tend to overfit
the training set and result in poor test performance. In our study, in
order to develop the encoder, the initial two layers having 64 filters
of size 3 × 3 , three layers having 512 filters of size 3 × 3 and all the
fully connected layers at the end in the original VGG-16 architecture
were removed. In addition, two additional layers having 1024 filters
each (filter size 3 × 3 ) are added at the end of the encoder to give
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Fig. 4. Transient signal amplitude recorded at center of the scanning area with a steel sphere. Highlighted area in the time domain signal corresponds to images presented in the
paper. 𝐿1 and 𝐿2 represent the 1st and 2nd longitudinal waves, respectively.
Fig. 5. Represents, 5 different kinds of noise such as Gaussian (a), speckle (b), Poisson (c), salt-pepper (d), and combined (e) of all the four noise types.
a bottleneck structure to the autoencoder. Max pooling is applied
after every convolution block 𝐵𝑖(𝑖 = 1, 2, 3) to downsample the input
feature maps and carries forward the largest information amplitude-
wise, which effectively reduces the number of weight parameters to be
learned thereby reducing the computational cost.

The decoder is built by inverting the encoder in order to preserve
the symmetry in the model. The max pooling layer is replaced by
upsampling layers to scale up the dimension of input by a factor of
2. At the end of the decoder, a single layer having 1 filter of size 3 × 3
is added to produce an output image of shape (64, 64, 1).
4

Rectified linear unit (ReLu) activation function [29] is used after
each convolution operation to introduce nonlinearity into the network
and enable it to learn more complex relationships in the data. The ReLu
function outputs the input directly if it is positive otherwise returns
zero.

𝑓 (𝑥) =

{

0 𝑥 < 0
𝑥 𝑥 ≥ 0

(1)

Other traditional activation functions like tanh and sigmoid suffer
the disadvantage of minimal gradients at small input values (vanishing
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Fig. 6. Architecture of the proposed model. We have proposed a modified version of VGG-16.
gradients), which slows down the training. The ReLu activation func-
tion overcomes this vanishing gradient problem, allowing models to
learn faster and perform better (see Fig. 6).

To overcome this issue, the sliding window technique has been used
in this paper. A sliding window of size 64 × 64 traverses over the
noisy image with a constant stride. Each window image is fed into the
network. The overlapped region in two consecutive window locations
are pixel-wise averaged and the process is continued till the complete
image is retrieved.

3.3. Training and evaluation metrics

The 5 datasets each of size 60,000 corresponding to each noise
type obtained in sec. 3.1 has been divided into training and validation
datasets. This way, 5 different training sets and validation sets, each
of size 48,000 and 12,000 respectively, were obtained. 5 different CA
models are trained separately on these 5 training sets and simultane-
ously validated over the respective validation set. For testing all the CA
models, we used original noisy images obtained from the experiment
containing 30% noise of unknown distribution. The images originally
of size 199 × 199 were first normalized on the range [0,1] as done
for the training set images. Image fragments of size 64 × 64 were then
sequentially cropped from the larger image in order to feed into the
network for denoising. All the fragments after denoising were stitched
back together using the sliding window technique with a stride equal
to 8. Fig. 7 shows the denoising performance of all the 5 noise models
for 3 different images taken at different time frames. The images are
compared against the ground truth image for assessing the denoising
performance qualitatively.

The model is trained with MSE loss over 500 epochs using stochastic
gradient descent optimizer. To ensure the model does not overfit,
early stopping criteria has been applied to stop the training when the
PSNR calculated on validation dataset, observed over a certain number
of epochs (10 in this case) stops improving. We have used different
learning rates for each training set, ranging between 0.05–0.13. The
final MSE and Mean Absolute Error (MAE) values achieved on training
and validation datasets for all 5 noise models is shown in Table 1 The
5

module is implemented in Python using tensor-flow framework. The
training is executed in HP Z4 G4 workstation with 4 GHz, W-2125 CPU,
128 GB RAM, and NVIDIA Quadro RTX 4000 8 GB Graphics.

In this paper, we have used peak-signal-to-noise-ratio (PSNR) [30]
and structural similarity index measure (SSIM) [31] to quantify the
image denoising performance of the autoencoder. For a given reference
(true) image 𝑦 and a denoised image �̂�, the PSNR is defined by:

𝑃𝑆𝑁𝑅(�̂�, 𝑦) = 10 log10(12∕𝑀𝑆𝐸(�̂�, 𝑦)) (2)

A higher PSNR value implies higher image quality and can be in-
ferred from the above equation as PSNR approaches infinity as MSE
approaches zero. SSIM, on the other hand, measures the similarity be-
tween two images based on the degradation of structural information.
Unlike traditional error summation methods, SSIM models the image
distortion by three factors, i.e., loss of correlation, luminance distortion,
and contrast distortion, and is defined by:

𝑆𝑆𝐼𝑀(�̂�, 𝑦) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑙(�̂�,𝑦)𝑐(�̂�,𝑦)𝑠(�̂�,𝑦)

𝑙(�̂�,𝑦)=
2𝜇�̂�𝜇𝑦+𝐶1
𝜇2�̂�+𝜇

2
𝑦+𝐶1

𝑐(�̂�, 𝑦) = 2𝜎�̂�𝜎𝑦+𝐶2
𝜎2�̂�+𝜎

2
𝑦+𝐶2

𝑠(�̂�, 𝑦) = 𝜎�̂�𝑦+𝐶3
𝜎�̂�𝜎𝑦+𝐶3

(3)

The luminance comparison function 𝑙(�̂�, 𝑦) measures the closeness of the
two images’ mean luminance (𝜇𝑦, 𝜇�̂�). The contrast comparison function
c(�̂�,y) measures the closeness of the contrast of the two images by
their respective standard deviation 𝜎𝑦 and 𝜎�̂�. The structure comparison
function s(�̂�,y) measures the correlation coefficient between the two
images, where 𝜎𝑦�̂� is the covariance between 𝑦 and �̂�. The positive
constants C1, C2, and C3 ensure that the denominator is always non-
zero. All these functions range from [0,1], and so is the SSIM. SSIM
value of 0 corresponds to two uncorrelated images, and 1 corresponds
to the same images.

4. Results and discussion

We present the results of the proposed deep autoencoder trained
with 5 different noise types as discussed in the previous section. The
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Table 1
Final MSE and MAE values achieved for different noise models.
Fig. 7. Examples of the denoising results using proposed method. a, b, c, d represents different depth. First column is the noisy input, next 5 columns are the results trained using
5 different noise model. Last column represents the noise-free ground truth.
choice of different noises is inspired by the different types of noise
presents during scanning the sample. Our main aim was to determine a
suitable noise model for our acoustic images. We have used two differ-
ent metrics for evaluating the method namely PSNR and SSIM. Both
metric provides different aspects of the requirement. PSNR provides
higher visual interpretation, whereas the SSIM can be used to measure
much finer similarities.

Fig. 7 presents results taken from 3 different depth. We have tested
using the pre-trained model trained using 5 different noises.

In Table 2 (a), we found that the Poisson noise model performs best
in terms of PSNR (28.37) and SSIM (0.90). We found that the standard
deviation of PSNR is 2.65 and SSIM is 0.05. In Table 1 (a) and (b) we
found the standard deviation of SSIM is 1.85 and 0.38, PSNR is 0.06
and 0.06. It is noted that in all the cases, the standard deviation of the
PSNR is not large.

Table 2 shows the PSNR and SSIM values of 12 representative
images corresponding to the two peaks (Fig. 4) with 50 ns intervals. The
average PSNR and SSIM for each noise model is reported in Table 3.

We note that the Gaussian noise model (GNM) shows better per-
formance compared to the other 4 models, followed by the Poisson
noise model (PNM) and Speckle noise model (SNM). The GNM however
tends to over smooth the edges which make the image a little blurry.
PNM on the other hand produces a coarse-textured image, as can be
seen in image. SNM however produces qualitatively good results with
negligible blurriness and better visibility of edges and boundaries.
6

5. Conclusion

The point source technique based on Coulomb coupling is employed
for the excitation and detection of ultrasonic waves in PZT ceramics.
The two-dimensional spatial–temporal evolution of waves in the PZT
is imaged for denoising ultrasonic images in the PZT ceramic. In this
paper, we have shown that the deep learning-based convolutional
autoencoders can be highly efficient for denoising ultrasonic images.
We propose an architecture of the convolutional autoencoder capable
of denoising ultrasonic images effectively. A modified version of VGG-
16 architecture is employed for the encoder due to its simple yet robust
structure, which is least likely to over-lift even a smaller data set. The
decoder is the inverted version of the encoder, derived by replacing
max-pooling with up-sampling layers. Model training has been carried
out on a data-set created by degrading the noise-free images with four
different noise types, namely speckle, Gaussian, Poisson, and salt and
pepper, followed by testing on the data set containing noise of unknown
type.

Quantitative analysis based on PSNR, SSIM, and visual inspection
show that the convolutional autoencoder trained on speckle noise per-
formed exceptionally well compared to other noise models. However,
a gradual decline in the PSNR and SSIM values occurs as the ultrasonic
waves propagate further in time. This is due to the reduction in the
wave intensity, which causes the noise to dominate, making the image
reconstruction onerous. Nonetheless, as long as the wave intensity
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Table 2
(a) Represents the PSNR and (b) SSIM of 12 representative images.
Table 3
Average PSNR and SSIM for 12 representative images.
lies in the vicinity of the peak signals, the proposed model yields
remarkable results comparable to other state-of-the-art techniques like
BM3D.
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Appendix A. Noise description

A.1. Gaussian noise

Gaussian noise or additive white Gaussian noise (AWGN) is assumed
to be zero mean in various image denoising literatures [32–34]. A noisy
image 𝐴(𝑖, 𝑗) corrupted with AWGN 𝑁(𝑖, 𝑗) can be represented using
Eq. (4).

𝐴(𝑖, 𝑗) = 𝐴0(𝑖, 𝑗) +𝑁(𝑖, 𝑗) (4)

here 𝐴0(𝑖, 𝑗) is the original image and the amplitude of 𝑁(𝑖, 𝑗) is
rawn from a normal distribution with mean zero and standard devia-
ion 𝜎 and is given by:

(𝑥;𝜇, 𝜎) = 1

𝜎
√

2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2 (5)

Here, the standard deviation is chosen to be 0.3 in order to keep
the noise level close to that of the test images, obtained from the
experiment described in the previous section.

A.2. Speckle noise

Unlike AWGN, speckle noise is known to behave as multiplicative
noise with the obtained signal being a product of the original signal
and the speckle noise added as defined in Eq. (6).

𝐴(𝑖, 𝑗) = 𝐴0(𝑖, 𝑗) ⋅ 𝑆(𝑖, 𝑗) (6)

where, 𝑆(𝑖, 𝑗) is the speckle noise which is modeled using gamma
distribution [35] given by Eq. (7).

𝑓 (𝑥; 𝛼, 𝛽) =
𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

𝛤 (𝛼)
(7)

𝛼 and 𝛽 are the distribution parameters that relates to the mean and
standard deviation by the following equation:

𝛼 = (
𝜇
𝜎
)2 ; 𝛽 =

𝜇
𝜎2

(8)

Mean and standard deviation are taken as 1 and 0.3 respectively.

A.3. Poisson noise

Among several non-Gaussian noises, Poisson noise is particularly
known [36] for modeling the counting processes associated to many
imaging modalities such as positron emission tomography (PET), single-
photon emission computerized tomography (SPECT), and fluorescent
confocal microscopy imaging.The Poisson can be added using Eq. (9).

𝐴(𝑖, 𝑗) = 𝐴0(𝑖, 𝑗) + 𝑃 (𝑖, 𝑗) ∗ 𝜎 (9)

𝑃 (𝑖, 𝑗) is the poison noise with expectation value equal to 1, drawn
rom the Poisson distribution given by:

(𝑋 = 𝑘) = 𝜆𝑘𝑒−𝜆

𝑘!
(10)

Where 𝜆 is the expected noise value and k is a random number
accounting for the randomness in the samples drawn. 𝜎 is set to 0.3,

hich restricts the noise to be less than 30% of the original pixel value
8

t coordinate (𝑖, 𝑗).
.4. Salt-pepper noise

Salt and pepper noise is a type of impulse noise usually caused
y malfunctioning pixels in camera sensors, faulty memory locations
n hardware, or transmission in a noisy channel. The noise can be
isualized like sprinkled white and black dots over the image. 30% of
he pixels in the image are randomly chosen in the image and set either
o 1 (salt) or 0 (pepper) with 50% probability.

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.ultras.2022.106834.
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