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a b s t r a c t 

Although quantum neural networks (QNNs) have shown promising results in solving simple machine 

learning tasks recently, the behavior of QNNs in binary pattern classification is still underexplored. In 

this work, we find that QNNs have an Achilles’ heel in binary pattern classification. To illustrate this 

point, we provide a theoretical insight into the properties of QNNs by presenting and analyzing a new 

form of symmetry embedded in a family of QNNs with full entanglement , which we term negational sym- 

metry . Due to negational symmetry, QNNs can not differentiate between a quantum binary signal and its 

negational counterpart. We empirically evaluate the negational symmetry of QNNs in binary pattern clas- 

sification tasks using Google’s quantum computing framework. Both theoretical and experimental results 

suggest that negational symmetry is a fundamental property of QNNs, which is not shared by classical 

models. Our findings also imply that negational symmetry is a double-edged sword in practical quantum 

applications. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In contrast to quantum-inspired machine learning , which incor- 

orates the concepts of quantum mechanics with classical machine 

earning (ML) [1–3] , quantum machine learning (QML) [4,5] aims 

o understand how to devise and implement ML algorithms on 

uantum computers. QML has received increasing attention due 

o the quantum supremacy experiment [6] on near-term noisy 

ntermediate-scale quantum (NISQ) [7] devices. However, the study 

f QML is still in an early stage. While various classical ML meth- 

ds, such deep neural networks (DNNs) and convolutional neural 

etworks (CNNs) [8] , can easily show robust performance in bi- 

ary pattern classification [9–11] , a fundamental task that is used 

o evaluate the efficiency of ML algorithms [12] , quantum neural 

etworks (QNNs) [13–15] still have veiled mysteries. This paper 

ims to provide an exploratory understanding of the application 

f QNNs in binary pattern classification. 

As a quantum circuit model consisting of unitary quantum 

ates, QNNs have direct links with feed-forward neural networks 
∗ Corresponding author. 
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nd invertible neural networks [16] in classical ML. At present, the 

tudy of QNNs is still in an early phase as QNNs have not shown 

uantum supremacy in solving classical ML tasks. However, QNNs 

an be easily integrated with quantum devices and quantum data, 

hich gives them unparalleled advantages in quantum applications 

ithout access to complex classical computing systems. This is of- 

en ignored when comparing QNNs with classical models. More- 

ver, although it appears that we can easily manipulate the con- 

ersion between classical and quantum data, the situation in a 

eal quantum device is much more complicated than the simulated 

tudy. For example, the No-Cloning Theorem [17] states that quan- 

um data cannot be copied, which means that, for certain QML 

asks, the quantum data cannot be converted for classical models. 

hus, researchers are eager to peep into the blackbox of QNNs and 

o analyze the properties of these models. 

In this work, we find that QNNs might not be able to differ- 

ntiate between a binary pattern and its negational counterpart, 

here the term negational refers to the negation in bitwise op- 

ration or logical operation and the negational transformation of a 

inary pattern is equivalent to applying a NOT gate (negation op- 

ration) to all bits, i.e. flip all bits. To illustrate this Achilles’ heel 

f QNNs in binary pattern classification, we provide insights into a 
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4 We define y as an integer in a hybrid quantum-classical (HQC) system. In a pure 

quantum system, y can also be defined as | y 〉 ∈ {| 0 〉 , | 1 〉} . 
ew form of symmetry inherent in a specific family of QNNs with 

ull entanglement 1 , i.e. each data qubit is entangled with the read- 

ut qubit. We find that QNNs with full entanglement 2 feature two 

inds of symmetries for binary classification and the auxiliary rep- 

esentation learning tasks with quantum binary signals as the input. 

 quantum binary signal (e.g. a binary pattern) contains only | 0 〉 
nd | 1 〉 , which is analogous to 0 and 1 (or black and white) in a

lassical setting. Here, we present two major findings. First, given a 

quantum) binary pattern, a QNN with Z-measurement makes the 

ame prediction for a binary pattern and its negational counter- 

art. Second, with the proposed quantum representation learning, 

e find that the learned feature vectors of a binary pattern and its 

egational counterpart are two opposite vectors. Essentially, QNNs 

re mathematical functions. Inspired by classical functional analy- 

is 3 , we denote this new symmetry as negational symmetry , which 

s a fundamental property of QNNs because of quantum entangle- 

ent. 

The main contribution of this work is to introduce and analyze 

he negational symmetry. We mathematically show this symmetry 

hen the input are binary signals, thus the theoretical results are 

ndependent of a particular dataset or model (i.e. the negational 

ymmetry is independent of the parameters of QNNs), and em- 

irically validate it with a simulated binary pattern classification 

ask. Our experimental results validate that, in contrast to classical 

Ns, negational symmetry occurs in QNNs. While our study sug- 

ests that QNNs could be a new research direction in binary sig- 

al processing, our empirical results also show that the negational 

ymmetry is a double-edged sword in practical quantum applica- 

ions. More specifically, if a binary pattern and its negational coun- 

erpart encode different information, a QNN with quantum circuits 

ntangled is not able to separate them. 

Our contributions are fourfold: (1) we formalize, prove, and an- 

lyze the negational symmetry of QNNs in quantum binary clas- 

ification, (2) we propose a representation learning framework for 

NNs and generalize the negational symmetry to it; (3) we eval- 

ate the negational symmetry in binary pattern classification on a 

uantum simulator; (4) we discuss the advantages and disadvan- 

ages of negational symmetry in potential applications. 

. Quantum binary classification 

.1. Preliminaries 

A variational quantum circuit (VQC) is a quantum circuit model 

hat consists of a set of parametric quantum gates [18] . In the near

erm, a VQC is implemented through the hybrid quantum-classical 

HQC) framework. In the HQC framework, a QML task is divided 

nto two subtasks. The first subtask is to apply quantum gates to 

anipulate qubits in a quantum computer. This quantum process 

s analogous to the forward pass in a DNN. The second subtask is 

o optimize the parameters of quantum gates in a classical com- 

uter. This classical process is analogous to the backpropagation in 

 DNN. It has been shown that nonlinear functions can be approx- 

mated by VQCs [19,20] , which demonstrates the potential values 

f VQCs in solving practical problems. 
1 See Section 2.2 for the formal definition. 
2 For simplicity, we use QNNs and QNNs with full entanglement interchangeably 

n the rest of the paper, as it can be inferred from the context. 
3 In a classical 2D Cartesian system, given a function f and a variable x , if we 

ave f (x ) = f (−x ) , then we say f is symmetric to the line x = 0 or f has reflec- 

ional symmetry. If we have f (x ) = − f (−x ) , then we say f is symmetric to the 

rigin point (0 , 0) or f has rotational symmetry. The same logic applies in high- 

imensional systems with function f : R N �→ R 
M and N-dimensional vector x . 

p∏

a

a

i

2 
.2. Problem formulation 

In this work, a quantum system is a composite of two sys- 

ems, namely the input register and the output register . For an in- 

uitive interpretation, the input register and the output register 

an be linked with the input data and output data in a ML sys- 

em, respectively. We use Dirac notation [21] to represent quan- 

um data, e.g. mathematically, 〈 a | U| b〉 denotes the inner (scalar) 

roduct of a row vector 〈 a | and a column vector | b〉 , where U is

 linear map. Given a training dataset D S = { (| x j 〉 , y j ) } j=1 
n , | x 〉 =

 x 1 〉 � | x 2 〉 · · · � | x N 〉 is a N-qubit quantum state for the input reg-

ster, where | x 〉 = α| 0 〉 + β| 1 〉 , α, β ∈ C , | α| 2 + | β| 2 = 1 . y ∈ {−1 , 1 }
s the binary label. 4 The output register is just a readout qubit. We 

repare the readout qubit as | 1 〉 . So the input state of the quantum

ystem is | 1 , x 〉 = | 1 〉 � | x 〉 . The readout qubit is pre-processed and

ost-processed by a Hadamard gate 5 , respectively. 

Following previous studies [13,22,23] , we analyze a family of 

NNs where the entanglement exists between the readout qubit 

nd each of the data qubits in this work. We define this status as 

ull entanglement for simplicity. Let the unitary U θ be a QNN with 

arameters θ. As the Hadamard gate is non-parametric, we use U θ
o denote the integration of the QNN of interest, and the pre- and 

ost-processing gates on the readout qubit for convenience. A for- 

ard pass of the input state | 1 , x 〉 through U θ produces the output 

tate U θ| 1 , x 〉 . In the traditional quantum circuit models, only the 

eadout qubit is measured by a Hermitian operator M , which is a 

uantum observable. We limit our choice of M within Pauli opera- 

ors, specifically M ∈ { X, Y, Z} . 6 As a standard practice in quantum

omputing, we use Z measurement as the default measurement in 

his study. The measurement outcome will be either −1 or 1 with 

ncertainty. When the output state U θ| x , 1 〉 is prepared for multi- 

le times, the prediction is defined as the expectation of the ob- 

erved measurement outcomes. Formally, we have 

f θ( x ) = 〈 1 , x | U 

† 

θ
|M 0 | U θ| 1 , x 〉 (1) 

= tr (| U θ| 1 , x 〉〈 1 , x | U 

† 

θ
|M 0 ) (2) 

here M 0 denotes the measurement on the readout qubit instead 

f the whole system, 7 −1 ≤ f θ( x ) ≤ 1 is a real number and tr (·) is
he trace. The decision boundary on the space of density matrices 

s the hyperplane tr (| U θ| 1 , x 〉〈 1 , x | U 

† 

θ
|M 0 = τ ), where we set τ = 0 .

If we take f θ( x ) as the logit for x , together with the label y , we

an define the loss L 

 ( f θ( x ) , y ) = max (0 , 1 − y · f θ( x )) . (3)

onsidering −1 ≤ f θ( x ) ≤ 1 , we choose the hinge loss over the bi-

ary cross-entropy (BCE) loss for convenience and robustness [24] . 

ndeed, the choice of loss function does not influence the conclu- 

ion of this study. 8 

.3. Architecture 

From the perspective of quantum computing, QNNs are vari- 

tional quantum circuits (VQCs) constructed by different sets of 
5 The mathematical definition of Hadamard gate is given in the caption of Fig. 1 . 
6 See A.3 for details. 
7 Mathematically, the measurement on the whole system should be the tensor 

roduct of N + 1 Pauli operators. A simple example could be M �
∏ N 

� I, where 
 N 
� I = I � I � · · · � I ︸ ︷︷ ︸ 

N 

. 

8 Another common choice of loss function is the fidelity loss L f idelity = 1 −
f idelity . The fidelity is defined as F (ρ1 , ρ2 ) = tr ( 

√ √ 

ρ1 ρ2 
√ 

ρ1 ) 
2 , where ρ1 and ρ2 

re two density matrices. The fidelity loss gives similar results as the hinge loss 

nd BCE but the state preparation and the backpropagation require extra caution in 

mplementation. 
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Table 1 

A block-wise study of the negational symmetry for bi- 

nary classification. 

Architecture M Symmetry 

( X X ) Z f θ ( x ) = f θ ( ̃ x ) = −1 

( X X ) X f θ ( x ) = f θ ( ̃ x ) = 0 

( X X ) Y f θ ( x ) = − f θ ( ̃ x ) = 0 

( Z Z ) Z f θ ( x ) = f θ ( ̃ x ) 

( Z Z ) X f θ ( x ) = f θ ( ̃ x ) = 0 

( Z Z ) Y f θ ( x ) = − f θ ( ̃ x ) 

( XX − Z Z ) Z f θ ( x ) = f θ ( ̃ x ) 

( XX − Z Z ) X f ( x ) = f ( ̃ x ) = 0 
ingle-qubit quantum gates along with two-qubit entanglement 

ates. Based on ZX-calculus [25] , we can prove that any non- 

inear function can be ε-approximated 

9 with single-qubit para- 

etric Z-gates ( R z (θ ) ) and X-gates ( R x (θ ) ), and two-qubit non-

arametric CNOT gates. 10 In this study, to illustrate the impact 

f entanglement, we use Z-parity gates ( ZZ θ = e −iθσz �σz ) and X- 

arity gates ( X X θ = e −iθσx �σx ) alternatively to build full entangle- 

ent [26] , where θ is the parameter that we want to optimize. 

wo-qubit Z Z or X X interactions are know as Ising interactions in 

tatistical mechanics and each block of parity gates can be viewed 

s a layer in classical NNs. See Fig. 1 for the illustration of the ar-

hitecture. Note, any QNN with full entanglement can always be 

implified to this type of architecture according to ZX-calculus . 

.4. Optimization 

In the near term, the number of parameters is limited by the 

umber of qubits, which is the main challenge for most quantum 

pplications. We choose a gradient-based optimization method be- 

ause gradient-free algorithms cannot scale up to a larger number 

f parameters in the long term. For a VQC, the mini-batch gradi- 

nt has an analytic derivation (based on the chain rule) and a nu- 

erical implementation (considering the stochasticity of quantum 

echanics). This is the most characteristic difference between the 

ptimization of a QNN and a classical NN [27] . Although the an- 

lytic gradient is fast to compute in a classical environment, the 

umerical gradient is more robust in a noisy real-world quantum 

omputer. In real quantum applications, the gradient can be ap- 

roximated by using the parameter shift rule [28] . Given an exam- 

le pair (| x 〉 , y ) , we define the numerical gradient for a scalar pa-

ameter θ as 

 θL ( f θ ( x ) , y ) = 

L ( f θ+ π2 ( x ) , y ) − L ( f θ− π
2 
( x ) , y ) 

2 

. (4) 

.5. Measurement on data qubits 

In the context of deep learning, representation learning , also 

nown as feature learning , is a rapidly developing area, with the 

oal of yielding more abstract and ultimately more useful representa- 

ions of the data, as described by Bengio et al. [29] . The compo-

ition of multiple non-linear transformations of the data has been 

sed to quantitatively and qualitatively understand the black-box 

f NNs. For example, in CNNs, the feature maps of lower layers 

end to catch the similar basic patterns and the feature maps of 

igher layers are able to extract the semantic information. How- 

ver, limited by the physical implementation, it is impractical to 

xtract features at any hidden layers of QNNs. Besides, there is a 

tructural difference between QNNs and classical NNs. In classical 

Ns, the data is fed into the input layer followed by the hidden 

ayers and the output layer sequentially, while the readout qubit is 

n parallel with the data qubits in QNNs. 

In this work, we propose to use the measurement on the data 

ubits as the learned representations of the data. We define the 

earned feature vector of | x 〉 as g θ( x ) . Similar to Eq. (1) , we have 

 θ( x ) = 〈 1 , x | U 

† 

θ
|M 1 , ··· ,N | U θ| 1 , x 〉 (5) 

here M 1 , ··· ,N denotes the measurement on the data qubits in- 

tead of the whole system for simplicity. The Hilbert space of the 

nput data x is C 

2 N . So we learn a mapping function g θ : C 

2 N �→
 −1 , 1] N , which projects a quantum state to a real feature vec-

or through transformation in a complex Hilbert space and quan- 

um measurement. It is hard to study the Hilbert space directly. 
9 Given a function f and an approximation function f ∗ , we have | f ∗(x ) − f (x ) | < 

where ε > 0 . 
10 See A.5 for a sketch of proof. 

3 
iven two different quantum states | x j 〉 and | x k 〉 , we can define

uclidean distance between two feature vectors using the Frobe- 

ius norm || g θ( x j ) − g θ( x k ) || and analyze the representations of

uantum output in a classical fashion. 

. Negational symmetry of quantum neural networks 

.1. Negational symmetry for binary classification 

Let us first examine the quantum binary classification with an 

rbitrary example | x 〉 . Let | x 〉 = | x 1 〉 � | x 2 〉 · · · � | x N 〉 be the data

ubits of the binary pattern, where x i ∈ { 0 , 1 } for i ∈ { 1 , 2 , · · · , N} .
hen, the inverted binary pattern or the negational counterpart 

 ̃

 x 〉 = | ̃ x 1 〉 � | ̃ x 2 〉 · · · � | ̃ x N 〉 , where | ̃ x i 〉 = X| x i 〉 for i ∈ { 1 , 2 , · · · , N} .
ere, quantum gate X is equivalent to bitwise NOT in classical 

omputing. Let us denote X = 

∏ N 
� X for simplicity, then we have 

 ̃

 x 〉 = X | x 〉 . Formally, we introduce the following theorem. 

heorem 1. Given a QNN with fixed parameters θ and Z- 

easurement on the readout qubit, f θ( x ) = f θ( ̃ x ) . 

Here, the QNN should have full entanglement, as discussed in 

ection 2.3 . Since all quantum gates in Eq. (1) are 2D matrices, 

.e. linear transformations, the mathematical proof is straightfor- 

ard and can be found in B.1 . Note, Theorem 1 describes the situ- 

tion in expectation due to the nature of measurement operation. 

lthough Eq. (1) is a closed-form mathematical expression, in a 

eal quantum device, the empirical observation of f θ( x ) for a sin- 

le example is dependent on the average of the observed outcomes 

n repeated measurements, i.e. M 0 is measured in multiple copies. 

hat is to say, Theorem 1 may not be observed based on a single

bservation due to the stochasticity of quantum computing. This 

iffers from most classical ML models which have a deterministic 

utput in the inference phase and increases the computational cost 

n contrast to classical systems. 

It is worth mentioning that Theorem 1 holds not only when a 

NN is trained to convergence, but also for a QNN with randomly 

nitiated θ. In a 2D Cartesian system, given a function f and a vari- 

ble x , f is (reflectionally) symmetric if f (x ) = f (−x ) . Similarly, we

efine Theorem 1 as the negational symmetry for quantum binary 

lassification as there is a symmetry in the measurement on the 

eadout qubit. 

To better understand the negational symmetry of QNNs, we de- 

ompose a QNN into blocks, as defined in Section 2.3 . We choose 

he block as the basic unit because each data qubit is entangled 

ith the readout qubit in a block. We study the relationship be- 

ween the blocks ( Z Z block or X X block) and the Pauli measure-

ent ( { X, Y, Z} ). The results are summarized in Table 1 . Note, as

efined in Section 2.2 , we have −1 ≤ f θ( x ) ≤ 1 . The negational
θ θ

( XX − Z Z ) Y f θ ( x ) = − f θ ( ̃ x ) 

( ZZ − X X ) Z f θ ( x ) = f θ ( ̃ x ) 

( ZZ − X X ) X f θ ( x ) = f θ ( ̃ x ) = 0 

( ZZ − X X ) Y f θ ( x ) = − f θ ( ̃ x ) 
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Table 2 

Negational symmetry of representations 

for Pauli measurement. 

M Symmetry 

Z g θ ( x ) = −g θ ( ̃ x ) 

X g θ ( x ) = g θ ( ̃ x ) = 0 

Y g θ ( x ) = −g θ ( ̃ x ) 
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ymmetry is a built-in property of QNNs when there is at least 

ne Z Z block in a QNN for binary pattern classification. 

.2. Negational symmetry for representation learning 

Analogous to classical representation learning, we need a tool 

o analyze the learned representations of QNNs. Here, we pro- 

ose to use the expectation of the observed measurement out- 

omes as the learned representations and perform the same anal- 

sis with the mathematical tools that we use for classical NNs. 

s described in Section 2.5 , we measure N data qubits with Pauli 

easurement ( { X, Y, Z} ). The output g θ( x ) is a N-element feature

ector in the real domain. Given the real feature vectors, we can 

se statistical tools to study the relationship between feature vec- 

ors, e.g. Pearson’s correlation coefficient and cosine similarity. Be- 

ides, we can visualize the features for qualitative comparison. 

or example, we can visualize the learned representations with t- 

istributed Stochastic Neighbor Embedding (t-SNE) [30] . Note, al- 

hough we can visualize the final representations of a QNN, we 

annot access the intermediate representations in the tensor prod- 

ct Hilbert space directly. 

In addition to the symmetry in the measurement on the read- 

ut qubit, there is also a symmetry in the learned representations. 

iven the same assumptions in Theorem 1 , we have: 

heorem 2. Given a QNN with fixed parameters θ and Z- 

easurement on the data qubits, g θ( x ) = −g θ( ̃ x ) . 

Compared with Theorem 1, Theorem 2 is more intuitive, where 

he feature vectors of the binary pattern and its negational coun- 

erpart have opposite directions in the feature space. The mathe- 

atical relationship between g θ( x ) and g θ( ̃ x ) is analogous to ro- 

ational symmetry (symmetric to the origin) in a Cartesian coordi- 

ate system. We define Theorem 2 as the negational symmetry of 

uantum representation learning. Again, we summarize the sym- 

etry for all Pauli measurement in Table 2 . 

. Experiments 

The purpose of the simulated experiments in this section are 

wofold. First, we want to validate our theoretical findings in 

ection 3 . Second, we want to demonstrate the downside of nega- 

ional symmetry, where will show a practical ML problem that 

NNs cannot solve. 

.1. Experimental setting 

Environment All experiments were run on a classical computer 

ith Ubuntu 18.04 LTS. 11 We simulate the NISQ circuits with 

irq . 12 The CPU is an Intel® Xeon® Processor E5-2686 v4 @ 
.30 GHz with 45 MB cache. The GPU is a NVIDIA® Tesla® V100 

11 The code and pre-trained weights are publicly available at https://github.com/ 

veningdong/negational _ symmetry . 
12 Cirq is the main research tool used by the Google AI Quantum team. https: 

/quantumai.google 

a

e

m

w

e

p  

4 
ith 16 GB memory. The RAM is up to 64 GB. Note, while simula- 

ors allow us to simulate QNNs on classical computers, this simu- 

ation does not scale up to a large number of qubits. As the Hilbert 

pace of the input data C 

2 N grows exponentially with the increase 

f N, the classical computers easily reach their memory limit to 

imulate the quantum process. 

Hyperparameters We use the same set of hyperparameters for 

he training of classical NNs. We use Adam [31] , a gradient-based 

tochastic optimization method, with β1 = 0 . 9 , β2 = 0 . 999 , and ε =
0 −7 . The batch size is 32. The constant learning rate is 10 −4 . We

rain all models to converge. 

Dataset Following [15,26] , we use the binarized MNIST dataset 

or binary classification tasks and we generate binary patterns with 

igits 3 and 6. At the beginning, the training set contains 6131 im- 

ges labeled as 3 and 5918 images labeled as 6. Limited by the 

ardware and following [26] , the images are downsampled from 

8 × 28 to 4 × 4 to fit the simulator, but the results generalize to 

ny size of qubits as the result of Theorem 1 . We then map each

rayscale pixel value to { 0 , 1 } with 128 as the threshold and re-

ove the contradictory examples (the images labeled as both 3 

nd 6 simultaneously). Here, { 0 , 1 } is equivalent to black-and-white 

mage classification in computer vision. Then, in the quantum state 

reparation step, { 0 , 1 } is mapped to {| 0 〉 , | 1 〉} for each qubit. After

he preprocessing, the training set consists of 3649 images while 

here are 2074 images labeled as 3 and 1575 images labeled as 6. 

ith the same procedure, the final test set consists of 890 images 

hile there are 332 images labeled as 3 and 558 images labeled as 

. The images are flatten into vectors. 

.2. Negational symmetry in binary pattern classification 

We numerically validate Theorem 1 by evaluating the nega- 

ional symmetry of QNNs in simulated binary pattern classification 

asks. We use the 2-layer QNN described in Section 2.3 . The read- 

ut qubit is measured by a Pauli Z operator. The QNN has a 16- 

ubit input register and 32 parameters in total. The test results are 

resented in Fig. 2 (a). We also repeat the above experiment in the 

egational setting. This time, we invert the grayscale MNIST im- 

ges of the test set before the pre-processing step. From a classi- 

al view, we exchange the colors of the pixels of the digit (white 

o black) and the pixels of the background (black to white). See 

ig. 3 for the intuition. Simply, the data qubits that were in the 

tate | 0 〉 are now in the state | 1 〉 , and vice versa. This bit-flipping

peration is achieved via an X gate. In fact, this negational (or bit- 

ipping) operation creates a domain shift [32] if we consider the 

raining set as the source domain and the test set as the target do- 

ain from the perspective of classical ML. That is to say, we have a 

ransfer learning problem as we want to extract knowledge learned 

rom the training set but apply it to the negational test set. Given 

heorem 1 , it is not surprising that QNNs should continue to main- 

ain a high performance on the test set with negational operation. 

he test results are presented in Fig. 2 (b). 

To validate the universality of negational symmetry for quan- 

um binary classification, we evaluate QNNs with different archi- 

ectures under the same experimental setting. We first extend the 

-layer QNN ( XX-ZZ , denoted as Q 1 ) to deeper QNNs, namely a 3-

ayer QNN ( XX-ZZ-XX , denoted as Q 2 ) and a 4-layer QNN ( XX-ZZ-

X-ZZ , denoted as Q 3 ), to study the effect of the depth on model

erformance. We then study the order of the blocks of X-parity 

ates and Z-parity gates with a 2-layer QNN ( XX-ZZ , denoted as Q 4 )

nd 3-layer QNN ( XX-ZZ-XX , denoted as Q 5 ). For these larger mod- 

ls, we use early stopping to report best test accuracy. We train the 

odels on the training set with the same random seeds, freeze the 

eights and evaluate them on the test set without negational op- 

ration and the test set with negational operation. The results are 

resent in Table 3 . As expected, we observe for each of the QNNs

https://github.com/eveningdong/negational_symmetry
https://quantumai.google
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Fig. 1. The architecture of a 2-layer QNN with 3 + 1 qubits. The input register has 3 data qubits, represented by the second, third and fourth lines from the top. The output 

register has 1 readout qubit, represented by the top line. The first layer is formed by X-parity gates and the second layer is formed by Z-parity gates. θ jk stands for the 

parameter of the quantum gate operated between the readout qubit and the k th data qubit at the jth layer. H is the Hadamard gate where H = 

1 √ 
2 

[
1 1 

1 −1 

]
. The two H

gates denote the pre-processing and post-processing operations on the readout qubit. 

Fig. 2. Comparison between the DNN and the QNN on MNIST. The shaded region 

is 1 standard deviation over 5 runs with different random seeds. 

Fig. 3. Visualization: (a) the original test images; (b) the binarized test images; (c) 

the inverted test images; (d) the binarized inverted test images. 

Table 3 

Evaluation of QNNs with different architectures on negational 

symmetry. 

Model w/o Negation w/ Negation # Params 

Q 1 0.9783 0.9783 32 

Q 2 0.9674 0.9674 48 

Q 3 0.9922 0.9922 64 

Q 4 0.9707 0.9707 32 

Q 5 0.9967 0.9967 48 

t
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t

i
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Q  

t

t

1  

Table 4 

Comparison of QNN and classical NNs on negational symmetry. 

DNNs and CNNs do not have negational symmetry. 

Model w/o Negation w/ Negation # Params 

Q 1 0.9783 0.9783 32 

D 1 0.9775 0.1146 37 

D 2 0.9944 0.1528 289 

D 3 0.9978 0.0067 309 

D 4 0.9933 0.0090 561 

C 1 0.9978 0.3079 701 

C 2 0.9978 0.0247 1585 

N

c

a

w

Q

c

b

c

t

l

t

n

v

n

n

w

h

C  

p

o

4

p  

i

s

l

s

a

p

f

t

c

13 See Appendix C for the details of the model architecture. 
14 Note, we use | in Dirac notations and use || in norm operations. 
he same performance on the test sets with and without negation. 

he same experiments were repeated for different two-digit com- 

inations and the same phenomena above were observed. Note, as 

he negational symmetry is an inherent property of the model, it 

s independent of the learned parameters and also occurs in a ran- 

omly initialized model. 

We further compute the difference between the logits of the 

NNs, i.e. Eq. (1) , for all 890 pairs in the two test sets. We find that

he numerical difference is negligible. For example, the mean of 

he differences is −4 . 4240963 × 10 −8 and the standard deviation is 

 . 05649356 × 10 −7 for Q . If we take the noisy environment of the
1 

5 
ISQ device and the number of significant figures into account, we 

an say that QNNs make the same prediction on a binary pattern 

nd its negational counterpart. 

To contrast this with classical NNs, we repeat the experiment 

ith a 2-layer DNN whose number of parameters is close to the 

NN’s number of parameters. The first layer of the DNN is a fully- 

onnected layer with 16 input nodes and 2 output nodes, followed 

y a ReLU activation function [33] . The second layer is a fully- 

onnected (FC) layer with 2 input nodes and 1 output node. The 

otal number of parameters for the DNN is 37. We use BCE as the 

oss function for DNNs. The results are presented in Fig. 2 . Both 

he DNN and the QNN achieve promising results in the first sce- 

ario on the test set without negation. The QNN seems to con- 

erge faster and more stable than the DNN, when the training does 

ot suffer from barren plateaux [13] . However, the DNN fails in the 

egational setting. Additionally, we provide the results of 4 DNNs 

ith different number of hidden nodes and different number of 

idden layers (denoted as D i = { 1 , 2 , 3 , 4 } ) and CNNs including a 2-layer 

NN C 1 and a 3-layer CNN C 2 in Table 4 . 13 For classical NNs, more

arameters and advanced architectures improve the performance 

n the original test set, but do not help on the negational one. 

.3. Negational symmetry in quantum representation learning 

For Theorem 2 , we first calculate the norm of the sum of two 

airwise feature vectors || g θ( x ) + g θ( ̃ x ) || 14 The sum of the norms

s less than 1 × 10 −6 , which numerically validates the negational 

ymmetry in the auxiliary quantum representation learning. Fol- 

owing the discussion in Section 3.2 , we also check the pairwise 

tatistical similarity for the feature vectors in the original test set 

nd its negational counterpart. For Z measurement, the mean for 

airwise Pearson’s correlation coefficient is −0 . 5 and the mean 

or pairwise cosine similarity is −1 . Additionally, we provide the 

-SNE visualizations with the same random seed in Fig. 4 . The 

lusters formed by the learned representations of the two classes 
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Fig. 4. t-SNE visualization of learned representations. 

Table 5 

Comparison of QNN and classical NNs on learning to 

identify the negation operation on the binary patterns. 

QNNs fail because of negational symmetry. 

Model Accuracy # Params 

Q 1 0.5007 ± 0.0003 32 

D 1 1.0000 ± 0.0000 37 

C 1 1.0000 ± 0.0000 701 
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an be clearly split, which suggests that the measurement on the 

ata qubits could be a meaningful tool for quantum representation 

earning. 

.4. Drawback of negational symmetry 

In the above experiments, we validate that QNNs cannot differ- 

ntiate a binary pattern and its negational counterpart, and high- 

ight its advantage when the two patterns encode the same se- 

antic information (i.e. the digit). However, if the two patterns ac- 

ually encode different semantic information, negational symmetry 

f QNNs could be hazardous to the system. Here, we provide an- 

ther simple experiment where both QNNs and NNs are expected 

o learn to differentiate a binary pattern and its negational coun- 

erpart. We use the same networks Q 1 , D 1 , and C 1 as in Section 4.2 .

e use the same training set and test set in the above experi- 

ents. However, we include both original patterns and the corre- 

ponding negational patterns in both training set and test set this 

ime. Instead of using the original digit labels, the original patterns 

re assigned the label 1 (or | 1 〉 ) and the negational patterns are as-

igned the label 0 (or | 0 〉 ). Thus, the objective becomes to separate

he white digits on the black background from the black digits on 

he white background. The results are present in Table 5 . As ex- 

ected, based on Theorem 1 , QNNs are not able to solve this sim-

le task and achieve an accuracy of around 50% (random guess), 

hile the classical models perfectly solve the task. It is thus cru- 

ial to note that negational symmetry in practical settings could be 

 double-edged sword: when a binary pattern and its negational 

ounterpart encode different information, a system built on QNNs 

ould be vulnerable to malicious attacks. 

. Limitations 

We only study the negational symmetry of QNNs for quantum 

nput in pure states (e.g. {| 0 〉 , | 1 〉} ). It will also be interesting to

eneralize the theoretical analysis to mixed states 15 in the future. 
15 | x 〉 = α| 0 〉 + β| 1 〉 , α, β ∈ C , | α| 2 + | β| 2 = 1 

s

t

s

6 
he practical application of QNNs may require further discussion. 

n fact, we can only afford a GPU-based simulated environment 

ith 16 qubits. Limited by the number of qubits, we only have 16- 

it binary patterns following [26] , which limits the experimental 

esign. In the long term, we expect more advanced mathematical 

nd experimental tools to emerge from new joint developments in 

athematics, physics, and engineering. 

It is worth mentioning that this study mainly discusses on the 

heoretical property of QNNs in binary pattern classification, while 

he quantum state preparation, as a physical operation, is beyond 

he scope of this work. In fact, the step of quantum state prepa- 

ation could easily hide the computational complexity of quantum 

odels [34] , which also limits the scalability of quantum models 

o handle complex tasks (e.g. it is still challenging to deploy large- 

cale qubits in a quantum computer [6] ). However, we expect that 

he quantum state preparation will not be a bottleneck for QNNs, 

s the development of quantum hardware progresses. 

. Conclusions 

In this work, we present the negational symmetry of QNNs in 

inary pattern classification, a fundamental property of QNNs that 

as not been observed previously. We formalize and prove this 

roperty and discuss the mechanisms behind. We empirically val- 

date the existence of this new form of symmetry that is inher- 

nt in QNNs by simulated experiments and demonstrate that nega- 

ional symmetry could be a double-edged sword in quantum appli- 

ations. For pattern recognition research in quantum devices in the 

ong run, we believe that a better theoretical understanding of the 

roperties of QNNs are required and that properties such as the 

egational symmetry need to be taken into account when design- 

ng QNNs to solve practical problems. 
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ppendix A. Quantum Information Basics 

1. Qubit 

In quantum computing, the basic unit of information is a quan- 

um bit or qubit. A qubit can be realized by different physical sys- 

ems with two perfectly distinguishable states, e.g. the vertical po- 

arization and horizontal polarization of a single photon. Assume 

ach qubit is in one of two perfectly distinguishable states, we can 

epresent the binary pattern by qubits. 

2. Tensor product hilbert space 

For system A with Hilbert space H A = C 

d A with dimension d A 
nd system B with Hilbert space H B == C 

d B with dimension d B , the

ilbert space of the composite system AB is the tensor product of 

he Hilbert spaces of A and B . In formula, H AB = H A � H B = C 

d A d B . 

3. Pauli matrices 

0 = I = 

[
1 0 

0 1 

]
, σx = X = 

[
0 1 

1 0 

]
, 

y = Y = 

[
0 −i 
i 0 

]
, σz = Z = 

[
1 0 

0 −1 

]
. 

(A.1) 

2 
0 = σ 2 

x = σ 2 
y = σ 2 

z = I (A.2) 

X | 0 〉 = | 1 〉 , X | 1 〉 = | 0 〉 , 
 | 0 〉 = i | 1 〉 , Y | 1 〉 = i | 0 〉 , (A.3) 

Z| 0 〉 = | 0 〉 , Z| 1 〉 = −| 1 〉 

4. Pauli rotation operators 

The rotation operators are generated by exponentiation of 

he Pauli matrices according to e (iAθ ) = cos (θ ) I + i sin (θ ) M , where

 ∈ { X, Y, Z} . The rotation gate R a (θ ) is a single-qubit rotation

hrough angle θ (radians) around the corresponding axis a ∈ 

 x, y, z} . 

 x ( θ ) = e −i θX 
2 = cos 

(
θ

2 

)
I − i sin 

(
θ

2 

)
X 

= 

[
cos 

(
θ
2 

)
−i sin 

(
θ
2 

)
−i sin 

(
θ
2 

)
cos 

(
θ
2 

) ]
(A.4) 

 y ( θ ) = e −i θY 
2 = cos 

(
θ

2 

)
I − i sin 

(
θ

2 

)
Y = 

[
cos 

(
θ
2 

)
− sin 

(
θ
2 

)
sin 

(
θ
2 

)
cos 

(
θ
2 

) ]

(A.5) 

 z ( θ ) = e −i θZ 
2 = cos 

(
θ

2 

)
I − i sin 

(
θ

2 

)
Z = 

[
e −i θ2 0 

0 e i 
θ
2 

]
(A.6) 

5. Universality of ZX-calculus 

According to Eqs. (A.4) , (A.5) , and (A.6) , we notice that R y (θ ) =
 

1 
2 R x (θ ) Z 

1 
2 

† , which we can use R x and R z to represent R y with ar-

itrary angles. Formally, we have the following theorem. 

heorem 3 [25] . For any unitary U on a single qubit there ex- 

st phases α, β , and γ such that U can be written as: U = 
7 
 x (γ ) R z (β) R x (α) . This is called the Euler decomposition of U and the

hases α, β , and γ are called the Euler angles. 

heorem 4 [25] . Any n-qubit unitary can be constructed out of the 

NOT gate and phase gates. 

heorem 5. For any nonlinear function, there exists at least one VQC 

 θ with following properties: (1) it can be constructed out of the gate 

et U = { R x , R z , CNOT } with parameters θ; (2) it can ε-approximate

he nonlinear function for ε > 0 . 

roof. R x and R z are also called phase gates in ZX-calculus. Here, 

e use the fact that single-qubit elementary gates and two-qubit 

ates such as XX, ZZ, CZ are special cases of the gates in U or can

e constructed out of U . Theorem 5 is a direct result of the Univer-

ality Theorem of neural networks and the Universality Theorem of 

X-calculus. �

6. Quantum correlation 

Assume there is a composite system AB , where A and B are two

ubits. We have | �+ 〉 = CNOT (H � I)(| 0 〉 � | 0 〉 ) = 

1 √ 

2 
(| 0 〉 � | 0 〉 +

 1 〉 � | 1 〉 ) , i.e. we create a Bell state through an entangling gate.

f we measure A and B both in the same basis, we can verify that

or the composite system AB , the outcomes of A and B are perfectly

orrelated. After the entangling gate, A and B become perfectly cor- 

elated. This phenomenon is called quantum steering or quantum 

orrelation. 

ppendix B. Theoretical analysis 

1. Sketch of proof for Theorem 1 

The mathematical proof for Theorem 1 is straightforward for 

NNs with finite qubits. For simplicity, we assume that there is 

nly one readout qubit | 1 〉 and one data qubit | 0 〉 (the opposite

s then | 1 〉 . Here, we demonstrate the proof for QNN ( XX-ZZ ) with

-measurement. The proof for multiple data qubits and QNNs with 

ifferent architectures follow the same logic. We use the notations 

n Section 2 and Section 3 . 

Following Eq. (1) , we have 

f θ( x ) = 〈 1 , 0 | U 

† 

θ
| Z � I| U θ| 1 , 0 〉 , (B.1)

here 

 θ = (H � I)(R x (θ1 ) � R x (θ1 ))(R z (θ2 ) � R z (θ2 ))(H � I) . (B.2) 

e have 

 � I = 

1 √ 

2 

⎡ 

⎢ ⎣ 

1 1 0 0 

1 −1 0 0 

0 0 1 1 

0 0 1 −1 

⎤ 

⎥ ⎦ 

, 

 x (θ1 ) � R x (θ1 ) = 

⎡ 

⎢ ⎣ 

cos ( θ1 

2 
) 0 0 −i sin ( θ1 

2 
) 

0 cos ( θ1 

2 
) −i sin ( θ1 

2 
) 0 

0 −i sin ( θ1 

2 
) cos ( θ1 

2 
) 0 

−i sin ( θ1 

2 
) 0 0 cos ( θ1 

2 
) 

⎤ 

⎥ ⎦ 

, 

nd 

 z (θ2 ) � R z (θ2 ) = 

⎡ 

⎢ ⎣ 

e −iθ2 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 e iθ2 

⎤ 

⎥ ⎦ 

. 

Substitute H � I, R x (θ1 ) � R x (θ1 ) and R z (θ2 ) � R z (θ2 ) into 

q. (B.2) , we have U θ in Eq. (B.3) . 
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U θ = 

1 

2 

⎡ 

⎢ ⎢ ⎢ ⎣ 

cos ( θ1 

2 
)(e −iθ2 + 1) cos ( θ1 

2 
)(e iθ2 − 1) −i sin ( θ1

2

cos ( θ1 

2 
)(e −iθ2 − 1) cos ( θ1 

2 
)(e −iθ2 + 1) −i sin ( θ1

2

−i sin ( θ1 

2 
)(1 + e −iθ2 ) i sin ( θ1 

2 
)(1 − e −iθ2 ) cos ( θ1 

2 

−i sin ( θ1 

2 
)(1 − e −iθ2 ) i sin ( θ1 

2 
)(1 + e −iθ2 ) cos ( θ1 

2 

We have 

 θ| 1 , 0 〉 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

−i sin ( θ1 

2 
)(e −iθ2 + 1) 

−i sin ( θ1 

2 
)(e −iθ2 − 1) 

cos ( θ1 

2 
)(1 + e iθ2 ) 

cos ( θ1 

2 
)(1 − e iθ2 ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

− sin ( θ1 

2 
) sin (θ2 ) − i sin ( θ1 

2 
)( cos (θ2 ) + 1) 

− sin ( θ1 

2 
) sin (θ2 ) − i sin ( θ1 

2 
)( cos (θ2 ) − 1) 

cos ( θ1 

2 
)(1 + cos (θ2 )) + i cos ( θ1 

2 
) sin (θ2 ) 

cos ( θ1 

2 
)(1 − cos (θ2 )) − i cos ( θ1 

2 
) sin (θ2 ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (B.4) 

here 

 1 , 0 〉 = 

[
0 0 1 0 

]T 
. 

Substitute Z � I and U θ| 1 , 0 〉 into Eq. (B.1) , we have 

f θ( x ) = sin 

2 

(
θ1 

2 

)
− cos 2 

(
θ1 

2 

)
, (B.5) 

here 

 � I = 

⎡ 

⎢ ⎣ 

1 0 0 0 

0 1 0 0 

0 0 −1 0 

0 0 0 −1 

⎤ 

⎥ ⎦ 

. 

Similarly, we have 

 θ| 1 , 1 〉 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

i sin ( θ1 

2 
)(e −iθ2 − 1) 

i sin ( θ1 

2 
)(e −iθ2 + 1) 

cos ( θ1 

2 
)(1 − e iθ2 ) 

cos ( θ1 

2 
)(1 + e iθ2 ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

sin ( θ1 

2 
) sin (θ2 ) + i sin ( θ1 

2 
)( cos (θ2 ) − 1) 

sin ( θ1 

2 
) sin (θ2 ) + i sin ( θ1 

2 
)( cos (θ2 ) + 1) 

cos ( θ1 

2 
)(1 − cos (θ2 )) − i cos ( θ1 

2 
) sin (θ2 ) 

cos ( θ1 

2 
)(1 + cos (θ2 )) + i cos ( θ1 

2 
) sin (θ2 ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (B.6) 

here 

 1 , 1 〉 = 

[
0 0 0 1 

]T 
, 

nd 

f θ( ̃ x ) = 〈 1 , 1 | U 

† 

θ
| Z � I| U θ| 1 , 1 〉 

= sin 

2 ( 
θ1 

2 

) − cos 2 ( 
θ1 

2 

) . (B.7) 

o f θ( x ) = f θ( ̃ x ) . �

2. Sketch of Proof for Theorem 2 

The proof is similar to Appendix B.1 . Again, we prove the funda- 

ental case where there is one readout qubit and one data qubit 

or QNN ( XX-ZZ ) with Z-measurement. 

Following Eq. (5) , we have 

 θ( x ) = 〈 1 , 0 | U 

† 

θ
| Z � Z| U θ| 1 , 0 〉 , (B.8)
8 
iθ2 + 1) i sin ( θ1 

2 
)(e −iθ2 − 1) 

iθ2 − 1) i sin ( θ1 

2 
)(e −iθ2 + 1) 

 e iθ2 ) cos ( θ1 

2 
)(1 − e iθ2 ) 

e iθ2 ) cos ( θ1 

2 
)(1 + e iθ2 ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(B

here 

 � Z = 

⎡ 

⎢ ⎣ 

1 0 0 0 

0 −1 0 0 

0 0 1 0 

0 0 0 −1 

⎤ 

⎥ ⎦ 

. 

ubstitute Z � Z and U θ| 1 , 0 〉 into Eq. (B.8) , we have 

 θ( x ) = ( sin 

2 ( 
θ1 

2 

) − cos 2 ( 
θ1 

2 

)) cos (θ2 ) . (B.9) 

imilarly, we have 

 θ( ̃ x ) = 〈 1 , 1 | U 

† 

θ
| Z � Z| U θ| 1 , 1 〉 

= −( sin 

2 ( θ1 

2 
) − cos 2 ( θ1 

2 
)) cos (θ2 ) . 

(B.10) 

o g θ( x ) = −g θ( ̃ x ) . �

ppendix C. Classical neural networks 

For a comprehensive understanding of QNNs, we will show that 

egational symmetry is a unique property of QNNs when consider- 

ng the large family of classical NNs. Here, we compare QNNs with 

 categories of classical models. Note, we choose simple models 

o validate negational symmetry instead of showing high perfor- 

ances. The first category is Deep Neural Networks (DNNs). The 

-layer DNN D 1 ( 16 - 2 - 1 ) in Section 4.2 is treated as the baseline.

e investigate 3 variants of the baseline: (i) increasing the num- 

er of nodes in the hidden layer D 2 ( 16 - 16 - 1 ); (ii) increasing the

umber of hidden layers D 3 ( 16 - 16 - 2 - 1 ); and (iii) increasing

oth the number of nodes in the hidden layer and the number of 

idden layers D 4 ( 16 - 16 - 16 - 1 ). The second category is Convo-

utional Neural Networks (CNNs), which is a strong baseline. Con- 

idering the image resolution is only 4 × 4 , we only use CNNs with

imple architectures. The convolution operation is padded to have 

he same input and output feature map size. Each convolutional 

ayer is followed by a ReLU activation function. We use max pool- 

ng to downscale the image size and use global average pooling to 

xtract features from each feature channel. For a fair comparison 

nd to avoid overfitting, we set the number of feature channels for 

 convolutional layer to be 16. We consider a 2-layer CNN C 1 and a

-layer CNN C 2 . Let CV stands for 1D convolutional layer with filter 

ize 3 and stride 1, and FC stand for fully-connected layer. Given 

n example, the input for CNNs is a 16-element binary vector and 

he output is a logit. The architecture of C 1 is CV-FC and the archi-

ecture of C 2 is CV-CV-FC . 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.patcog.2022.108750 . 
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