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Abstract

Inspired by the conventional pooling layers in convolutional neural networks,
many recent works in the field of graph machine learning have introduced pooling
operators to reduce the size of graphs. The great variety in the literature stems
from the many possible strategies for coarsening a graph, which may depend on
different assumptions on the graph structure or the specific downstream task. In
this paper we propose a formal characterization of graph pooling based on three
main operations, called selection, reduction, and connection, with the goal of
unifying the literature under a common framework. Following this formalization,
we introduce a taxonomy of pooling operators and categorize more than thirty
pooling methods proposed in recent literature. We propose criteria to evaluate the
performance of a pooling operator and use them to investigate and contrast the
behavior of different classes of the taxonomy on a variety of tasks.

1 Introduction

Similarly to the convolutional and pooling layers in convolutional neural networks (CNNs), graph
neural networks (GNNs) are often built by alternating layers that learn a transformation of the node
features and pooling layers that reduce the number of nodes. Graph pooling can also be used as an
independent operation to produce coarsened representations of given graphs.

While the techniques for learning node representations have been largely studied, and works like
those of Gilmer et al. [21] and Battaglia et al. [5] have introduced general frameworks to unify the
existing literature, less attention has been devoted to pooling layers. Only a few recent works have
attempted to systematically analyze the effect of pooling in GNNs [28, 38] and, notably, a unifying
formulation of pooling operators is still missing. In this paper we advance the understanding of graph
pooling operators by proposing a universal and modular formalism to study pooling in GNNs and we
show what types of operators can be effective in different settings. Specifically:

• We show that graph pooling operators can be seen as the combination of three functions:
selection, reduction, and connection (SRC). The selection function groups the nodes of the input
graph into subsets called supernodes; then, the reduction function aggregates each supernode to
form an output node and its attributes; finally, the connection function links the reduced nodes with
(possibly attributed) edges and outputs the pooled graph. The process is summarized in Figure 1. We
also show that the three SRC functions can be interpreted as node- and graph-embedding operations,
and that recent theoretical results on the universality of GNNs [27, 37] can be exploited to define
universal approximators for any pooling operator with continuous SRC functions.

• We propose a comprehensive taxonomy of pooling operators based on specific properties of the
SRC functions. In particular, we identify four main properties that characterize pooling operators: a)
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x′k ← RED(Sk,G)

e′k→l ← CON(Sk,Sl,G)

Figure 1: Schematic view of pooling operators: the selection function SEL groups the nodes into
supernodes S1, . . . ,SK ; the reduction function RED maps each supernode Sk to the attribute of node
k in the pooled graph; finally, the connection function CON computes the edges between each pair of
new nodes.

whether or not the SRC functions are learned, b) whether their complexity is linear or quadratic in
the number of nodes, c) whether they produce graphs with a fixed or variable number of nodes, d)
whether they pool the graphs hierarchically or globally.

• We identify three evaluation criteria that allow quantifying how much a pooling operator preserves
information related to the node attributes, how much it preserves the original topological structure, and
how well it can adapt the coarsened graph in relation to the downstream tasks. Through experiments
designed to test how well these criteria are met, we evaluate the performance and analyze the behavior
of different classes of pooling operators. We provide guidelines to identify the appropriate pooling
methods for a given task based on the taxonomy and the fulfillment of the discussed criteria.

• Finally, we release a standardized and framework-agnostic Python API for implementing graph
pooling operators.1 Such general interfaces are the basis on which popular software libraries for
creating GNNs [19, 22] are built, as they offer an easy and flexible way to make novel operators
available to the research community and to reproduce results.

2 Pooling in graph neural networks

Among the early uses of graph pooling found in the GNN literature, Bruna et al. [9] mentioned popular
graph clustering algorithms [12, 29, 50, 16] to perform pooling in GNN architectures. In particular,
the Graclus algorithm [16] was used by Defferrard et al. [15] and later adopted in other works on
GNNs [39, 32, 20]. The literature about learning on point clouds also introduced pooling techniques
to generalize the typical pooling layers for grids, with most approaches based on voxelization
techniques [48, 45, 43, 31]. Many pooling operators have also been proposed based on graph spectral
theory [7, 36, 23], or different clustering, sparsification, and decomposition techniques [35, 3, 42, 53].

The current trend (and state of the art) in graph pooling has seen the advent of learnable operators
that, much like message-passing layers, can dynamically adapt to a particular task to compute optimal
pooling. These include clustering approaches like the DiffPool [55] and MinCut [6] operators, as well
as a large variety of methods that learn to keep some nodes and discard the others [24, 11, 28, 30, 44].
Other notable works include those of Diehl [17], Bodnar et al. [8], and a broad group of global pooling
methods (cf. Section 4) that reduce a whole graph to a single vector [33, 58, 51, 41, 13, 2, 54, 4].

This paper studies such a heterogeneous family of operators to highlight their common characteristics
and key differences. We start by introducing, in the next section, a definition for graph pooling that
encompasses all methods listed above.

Notation We denote an attributed graph with N nodes as a tuple G = (X , E) where
X = {(i,xi)}i=1:N is the node set, with xi ∈ X the attribute of the i-th node, and E ={(

(i, j), eij
)}

i,j∈1:N is the edge set, with eij ∈ E the attribute associated with the edge between
nodes i and j. With a little abuse of notation, in the following we identify node (i,xi) only with
its attribute xi; similarly for edges. Usually, domains X and E of the node and edge attributes
are real vector spaces, namely, X = RF and E = RH for F,H ∈ N. Without loss of generality,
non-attributed graphs can still fit in this formalism by considering surrogate attributes, such as a

1https://github.com/danielegrattarola/SRC
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constant value or some node-specific property (e.g., the degree). It is also practical to represent the
graph with an adjacency matrix A ∈ {0, 1}N×N and a node attribute matrix X ∈ RN×F . In this
paper, we consider undirected graphs since the literature mostly focuses on them.

3 Select, reduce, connect

Let a graph pooling operator be loosely defined as any function POOL that maps a graph G to a
new pooled graph G′ = (X ′, E ′), with the generic goal of reducing the number of nodes from N to
K < N . To facilitate our study of graph pooling methods, it is useful to isolate the main operations
that all methods must perform, regardless of their specific implementation. We identify three such
operations: selection, reduction and connection (SRC); see Figure 1. With selection, the operator
computes K subsets of nodes, each associated with one node of the output G′; we refer to them as
supernodes. With reduction, the operator aggregates the node attributes in each supernode to obtain
the node attributes of G′. Finally, the connection step computes edges among the K reduced nodes.

The SRC operations allow us to easily describe pooling methods, as done in Table 1. Accordingly, we
define a pooling operator as any function POOL : G 7→ G′ = (X ′, E ′) written as the composition of

S = {Sk}k=1:K = SEL(G);︸ ︷︷ ︸
Selection

X ′ = {RED(G,Sk)}k=1:K ;︸ ︷︷ ︸
Reduction

E ′ = {CON(G,Sk,Sl)}k,l=1:K .︸ ︷︷ ︸
Connection

(1)

Different pooling operators are determined by the specific implementations of SEL, RED and CON.

Select The selection function SEL maps the nodes of the input graph to the nodes of the pooled
one. The role of SEL is crucial as it determines the number of nodes in the output graph and what
information from the input will be carried over to the output. A selection consists of assigning the N
input nodes to K sets S1, . . . ,SK ⊆ X , called supernodes: SEL : G 7→ S = {S1, . . . ,SK}. Each
supernode is a set Sk = {(xi, si) | xi ∈ X , si ∈ R, si > 0} , whose element (xi, si) indicates that
node i of the input graph impacts on the k-th node of the pooled graph. The value si is a membership
score of node i with respect to supernode k, i.e., how much node i contributes to Sk. In general, a
node can be assigned to zero, one, or multiple supernodes, with different scores.

Reduce The reduction function computes the node attributes of graph G′ by aggregating the node
attributes of G selected in each supernode Sk. A reduction consists of applying a function RED to
each supernode Sk to produce the k-th node attribute x′k of G′: RED : G,Sk 7→ x′k ∈ X.

Connect The connection function determines, for each pair of supernodes Sk,Sl, the presence or
absence of an edge between the corresponding nodes k and l in the pooled graph. The function also
computes the attributes to be assigned to new edges and reads: CON : G,Sk,Sl 7→ e′kl ∈ E. We
assume that the space of edge attributes contains a null attribute encoding the absence of an edge and
that the edge set of a graph only contains non-null edges.

The reason why both RED and CON are defined as functions of graph G is that their output can depend
on the full topology of the input graph in non-trivial ways. For example, pooling methods based on
the graph spectrum often connect the nodes of G′ based on the whole structure of G. However, we
notice that many pooling operators implement RED and CON as functions of the supernodes only.

Given our definition of pooling operators as a combination of the SRC functions, we show in Table 1
how to express several pooling methods proposed in recent literature under the SRC formalism.
We observe that the selection is commonly computed as a matrix S ∈ RN×K , where Sik indicates
the membership score of node i to supernode k, and Sik = 0 means that node i is not assigned to
supernode k.

SRC as embedding operations Since the three SRC functions are essentially node- and graph-
embedding operations, we can rely on well-established theory [46] to study the expressive power of
pooling operators when formulated under the SRC framework.

Consider a graph space defined on compact node and edge attribute sets X,E, and let K(G) represent
the number of nodes of G′ = POOL(G), where K(G) ≤ K for all G and for some finite K ∈ N. By
representing the output of the selection function as a matrix S ∈ RN×K , we can then interpret SEL
as permutation-equivariant node embedding operation xi 7→ Si,:, from the space of node attributes to
the space of supernodes assignments RK where we assumed, without loss of generality, that Si,k = 0
for all k > K(G) (this is necessary to ensure that any number of nodes K(G) can be computed by
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Table 1: Pooling methods in the SRC framework. GNN indicates a stack of one or more message-
passing layers, MLP is a multi-layer perceptron, L is the normalized graph Laplacian, β is a regular-
ization vector (see [42]), D is the degree matrix, umax is the eigenvector of the Laplacian associated
with the largest eigenvalue, i is a vector of indices, Ai,i selects the rows and columns of A according
to i.

Method Select Reduce Connect

DiffPool [55] S = GNN1(A,X) (w/ auxiliary loss) X′ = S> · GNN2(A,X) A′ = S>AS

MinCut [6] S = MLP(X) (w/ auxiliary loss) X′ = S>X A′ = S>AS

NMF [3] Factorize: A = WH → S = H> X′ = S>X A′ = S>AS

LaPool [42]


V = ‖LX‖d ;

i = {i | ∀j ∈ N (i) : Vi > Vj}
S = SparseMax

(
β

XX>i
‖X‖‖Xi‖

) X′ = S>X A′ = S>AS

Graclus [16] Sk =
{
xi,xj | arg maxj

(Aij

Dii
+

Aij

Djj

)}
X′ = S>X METIS [26]

NDP [7] i = {i | umax,i > 0} X′ = Xi Kron r. [18]

Top-K [24] y = Xp
‖p‖ ; i = topK(y) X′ = (X� σ(y))i; A′ = Ai,i

SAGPool [30] y = GNN(A,X); i = topK(y) X′ = (X� σ(y))i; A′ = Ai,i

POOL). Now, let GSk indicate an augmentation of G such that its node features are XSk = X‖S:,k,
where ‖ indicates concatenation, and similarly G(Sk,Sl) is defined by X(Sk,Sl) = X‖S:,k‖S:,l. It is
immediate to see that the augmented graphs are an equivalent way of representing the inputs of RED
and CON, which can then be seen as graph-embedding operations of the form:

RED : GSk 7→ x′k; CON : G(Sk,Sl) 7→ e′kl. (2)

An interesting consequence of this interpretation of SRC is that by implementing SEL as a universal
equivariant network [27], and RED and CON as universal invariant ones [37], the resulting operator
is a universal approximator for any arbitrary choice of pooling with continuous SEL, RED and CON.

4 Taxonomy of graph pooling

The SRC framework is a general template to describe pooling operators and it allows us to characterize
the different families of pooling methods that are found in the literature. We propose the following
taxonomy of pooling operators based on four distinguishing characteristics and we show in Table 2
how existing pooling methods fit into this taxonomy.

Trainability A first distinction among pooling operators is whether SEL, RED, and CON are learned
end-to-end as part of the overall GNN architecture. In this case, we say that a method is trainable,
i.e., the operator has parameters which are learned by optimizing a task-driven loss function, while
in all other cases we say that methods are non-trainable. This distinction is important because,
while non-trainable methods are often used as stand-alone algorithms for graph coarsening, trainable
methods were specifically designed for GNNs and are a novel research topic of their own.

Generally, non-trainable methods are useful when there is strong prior information about the de-
sired behavior of pooling (e.g., preserving connectivity [16] or filtering out some particular graph
frequencies [42]). These prior assumptions are usually grounded on graph-theoretical properties and
are useful when few data are available, since they do not increase the overall number of parameters
and introduce no additional optimization objectives when training the GNN. A well-known example
of non-trainable pooling is the conventional grid pooling of CNNs, which pools spatially localized
groups of pixels. On the other hand, trainable methods are more flexible and make fewer assumptions
about the desired result. Therefore, they are useful in problems where the best pooling strategy is
not known a priori. However, note that it is possible to integrate priors about the desired pooling
behavior also in trainable methods (e.g., the MinCut [6] operator also optimizes a normalized cut
objective to ensure that supernodes are homogeneous). These additional assumptions usually act as a
regularization.
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Density of the supernodes A second axis of the taxonomy is concerned with the size of supernodes
and the consequent cost of computing the selection function. We define the density of a pooling
operator as the expected value E [|Sk|/N ] of the ratio between the cardinality of a supernode Sk and
the number of nodes in G. We say that a method is dense if SEL generates supernodes Sk whose
cardinality is O(N), and sparse if supernodes have constant cardinality O(1).2 Fig. 2(a) shows an
example of sparse and dense selection.

This distinction is key, since sparse methods require much less computational resources, especially in
terms of memory, which is a significant bottleneck even in modern GPUs. This makes them scale
better to large graphs. However, as we show in Section 5, sparse selection is a harder operation to
learn than dense selection, and may result in unexpected behaviors.

Adaptability of K It is also possible to distinguish pooling methods according to the number of
nodes K of the pooled graph. If K is constant and independent from the input graph size, we say
that a pooling method is fixed. In this case, K is a hyperparameter of the pooling operator and the
output graph will always have K nodes. For example, K can be the number of output features of
a neural network used to compute cluster assignments [6, 55]. On the other hand, if the number of
supernodes is a function K(G) of the input graph we say that the method is adaptive. In many cases,
K(G) is a function of N (e.g. the ratio N/2), but K(G) could also depend on the input graph in a
more complex way (e.g., [42, 28]).

Adaptive pooling methods can compute graphs that have a size proportional to that of the input. On
the other hand, all the coarsened graphs generated by fixed methods will have the same size. This can
lead to situations where K > N for some graphs, causing them to be upscaled by pooling, rather than
coarsened. Fig. 2(b) compares fixed and adaptive pooling and shows an example (2nd row) where
fixed pooling upscales the graph. For data with a wide or skewed distribution of the number of nodes,
the values commonly chosen for K in fixed methods, like the average number of nodes in the training
set, may cause several small graphs to be upscaled and very big graphs to be excessively shrunk.
Therefore, if the relative graph size is important for solving a particular task, adaptive methods should
be preferred.

Hierarchy A distinction often found in the literature is that between “regular” and global pooling,
which is extremely evident, to the point where global pooling is usually referred to as a separate
operation called “readout”. Here we show that such a distinction can be formalized with the SRC
framework. Specifically, global pooling indicates those methods that reduce a graph to a single node,
discarding all topological information. A pooling method is global if it is fixed with K = 1, i.e., it
returns a degenerate single-node graph represented by its attribute. Also, the connection function is
a constant map to the empty set. On the other hand, we indicate all other methods as hierarchical
pooling operators. Fig. 2(a) shows an example of hierarchical and global pooling.

Hierarchical and global pooling operators have different roles and both can be part of the same GNN
architecture for graph-level learning. The former provide a multi-resolution representation of the
graph from which the GNN can gradually distill high-level properties, while the latter compute graph
embeddings to interface with traditional layers operating on vectors.

Discussion The main differences among pooling methods are in the selection function, while
much less variety is found in the reduction and connection functions. A majority of methods (e.g.,
[48, 43, 3, 35, 36, 42]) have adaptive K, with a dense and non-trainable selection. Adaptive methods
are the most commonly found in the literature, although fixed pooling operators are currently the
state of the art [55, 6]. We also note that, to the best of our knowledge, there are no pooling operators
that are trainable, dense, and adaptive, which could be an interesting research topic in the near future.

Considering density and adaptability, we see that the memory cost of a pooling operator can range
from O(1) (sparse and fixed) to O(N2) (dense and adaptive). This is especially relevant for trainable
methods, which usually need to fit into memory-bound computational units like GPUs and TPUs.
Figure 3 shows the maximum number of nodes that can be processed by the trainable methods
considered in Section 5, without causing a GPU-out-of-memory exception (details in the appendix).
As expected, sparse methods can pool graphs up to four times bigger than dense ones.

2Intermediate situations—e.g., O(logN)—are also possible, although here we focus on the two limit cases
of O(N) and O(1).
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Table 2: Taxonomy of pooling operators. Methods are divided in trainable or non-trainable (T / nT),
dense or sparse (D / S), fixed or adaptive (F / A), and hierarchical or global (H / G).
Method T nT D S F A H G
DiffPool [55], MinCut [6], StructPool [57] 3 3 3 3
Top-K methods [24, 11, 30, 28, 44, 59], Edge Contract. [17] 3 3 3 3

Coates and Ng [12], Voxelization-based [48, 45, 43, 31] 3 3 3 3
NMF [3], EigenPooling [36], LaPool [42], Clique [35] 3 3 3 3
Xie et al. [53], MPR [8] 3 3 3 3
Graclus [16], NDP [7], Pooling in CNNs 3 3 3 3

[33, 49, 41] 3 3 3 3
[58, 51, 13, 2, 54, 4] 3 3 3 3
Scarselli et al. [47] 3 3 3 3

(a) (b)

Figure 2: 2(a) Sparse supernodes have a constant cardinality
(|Sk| = 1) while dense supernodes scale with the size of the
graph. Hierarchical methods reduce the graph gradually, while
global methods always return one node. 2(b) Fixed methods return
the same number of nodes (K = 3) while adaptive methods return
graphs of size proportional to the input.

DiffPool MinCUT SAGPool TopK

10k

20k

30k

Figure 3: Maximum number
of nodes that can be processed
by dense (in green) and sparse
(in blue) methods.

5 Evaluation

We argue that there is no single general-purpose measure to quantify the performance of a graph
pooling algorithm and the quality of a coarsened graph. In this section, we define three evaluation
criteria for pooling operators and design experiments to test whether different classes of methods
are able to meet them. In particular, we evaluate operators based on their ability to 1) preserve the
information content of the node attributes, 2) preserve the topological structure, and 3) preserve the
information required to solve various classification tasks. Our goal is to contrast the categories of
the proposed taxonomy according to these three criteria. To perform the comparison, we consider
the eight hierarchical pooling methods of Table 1 as representatives: MinCut [6] and DiffPool [55]
are trainable, dense and fixed; Top-K [24, 11] and SAGPool [30] are trainable, sparse, and adaptive;
NMF [3] and LaPool [42] are non-trainable, dense and adaptive; Graclus [16] and NDP [7] are
non-trainable, sparse and adaptive. All implementation details are in the appendix.

Preserving node attributes As a first experiment we test the ability of pooling methods to preserve
node information. We consider the task of reconstructing the original coordinates of a geometric point
cloud from its pooled version. We configure a graph autoencoder to pool the node attributes and then
lift them back to the original size using an appropriate lift operator for each method (details in the
appendix). Note that this experiment evaluates the quality of the pooling methods in compressing node
information, but it does not test their generalization capability since the autoencoder is independently
fit on each point could.

Table 3 reports the average and standard deviation of the mean squared error (MSE) obtained by the
eight methods on different point clouds from the PyGSP library [14] and the ModelNet40 dataset [52].
Figure 4 contrasts the original point cloud with the points reconstructed from each pooling method
while the connectivity is unchanged; the figures for all point clouds are available in the supplementary
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Table 3: MSE (values in scale of 10−3) in the autoencoder experiment.4 The Rank row indicates the
average ranking of the methods across all datasets.

Ref. γ DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus
Grid2d 7.812 0.010 ±0.005 0.002 ±0.002 0.000 ±0.000 0.002 ±0.001 18.86 ±3.923 16.61 ±3.270 0.000 ±0.000 0.109 ±0.000

Ring 4.815 0.018 ±0.003 0.001 ±0.000 0.000 ±0.000 0.052 ±0.046 132.2 ±4.133 148.5 ±30.10 0.000 ±0.000 0.600 ±0.000

Bunny 6.874 3.901 ±0.275 0.208 ±0.034 0.339 ±0.055 0.610 ±0.103 15.32 ±3.557 16.10 ±1.722 0.373 ±0.070 0.332 ±0.043

Airplane 0.097 0.094 ±0.022 0.005 ±0.002 0.020 ±0.000 0.002 ±0.000 0.096 ±0.028 0.268 ±0.081 0.012 ±0.000 0.009 ±0.000

Car 0.028 0.143 ±0.127 0.535 ±0.200 0.016 ±0.001 OOR 0.229 ±0.023 0.204 ±0.029 0.009 ±0.000 0.102 ±0.000

Guitar 0.091 0.101 ±0.025 0.313 ±0.000 0.007 ±0.000 OOR 0.056 ±0.051 0.060 ±0.044 0.005 ±0.000 0.010 ±0.000

Person 0.013 0.077 ±0.041 0.301 ±0.000 0.001 ±0.000 OOR 0.055 ±0.012 0.062 ±0.033 0.001 ±0.000 0.001 ±0.000

Rank 5.29 4.29 2.14 5.43 6.14 6.57 1.86 3.43

Figure 4: Node attributes (point locations) reconstructed with different operators in the autoencoder
experiment.

material. As baseline values for the MSE, we report the mean squared distance between adjacent
points: γ = (|E|F )−1

∑
(i,j)∈E |xi − xj |22; the intuition behind this baseline is that reconstructed

points with a MSE score larger than the reference γ cannot be matched, on average, with the original
points. We observe that, as the point clouds grow in size, many operators cannot achieve MSE < γ
(red entries). The two methods that stand out from Table 3 are the non-trainable NMF and NDP, as
confirmed also by their respective average ranks across datasets.

Interpreting the selection operation. Figure 5 depicts a variant of the coarsened graphs where the
SEL and CON operations are the same as in Table 1, but the RED function is replaced by

X′ = S>X. (3)

This modification is crucial to interpret the SEL operation because most of the pooling methods use
message passing layers before the reduction (see the autoencoder architecture details), which makes
the node feature space X′ not directly comparable with the original 2 or 3-dimensional input space.

Figure 5: Graphs pooled with different operators in the autoencoder experiment with the modified
RED function, and the associated selection matrices S.
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Table 4: Average quadratic loss in the spectral similarity experiment.

DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus
Grid2d 0.002 ±0.000 0.099 ±0.016 0.369 ±0.000 8.486 ±0.000 0.483 ±0.001 0.306 ±0.017 0.068 ±0.000 0.375 ±0.000

Ring 0.001 ±0.000 0.000 ±0.000 0.050 ±0.000 5.603 ±0.000 0.067 ±0.000 0.034 ±0.001 0.002 ±0.000 0.058 ±0.000

Sensor 0.010 ±0.000 0.155 ±0.005 1.177 ±0.000 28.99 ±0.000 1.306 ±0.001 0.721 ±0.077 0.486 ±0.000 1.027 ±0.000

Bunny 0.011 ±0.003 0.272 ±0.013 40.48 ±0.000 > 103 1.251 ±0.000 0.708 ±0.138 0.156 ±0.000 1.228 ±0.000

Minnes. 0.000 ±0.000 0.004 ±0.000 7.117 ±0.000 4.030 ±0.000 0.004 ±0.000 0.001 ±0.000 0.000 ±0.000 0.080 ±0.000

Airfoil 0.000 ±0.000 0.006 ±0.000 2.604 ±0.000 26.97 ±0.000 0.006 ±0.000 0.003 ±0.000 0.000 ±0.000 0.048 ±0.000

Rank 1.17 2.83 6.33 7.83 5.83 3.67 2.00 5.67

Table 5: Density and median weight of the edges of the coarsened graphs in the spectral similarity
experiment.

Original DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus

Grid2d Density 0.055 0.969 0.969 0.463 0.917 0.084 0.092 0.189 0.103
Median 1.000 0.216 0.024 0.018 1.445 1.000 1.000 0.500 0.154

Minnes. Density 9.47·10−4 0.999 0.999 0.010 0.999 0.002 0.002 0.003 0.002
Median 1.000 0.004 7.58·10−4 0.014 0.013 1.000 1.000 0.333 0.204

Sensor Density 0.159 0.969 0.969 0.844 0.875 0.273 0.230 0.529 0.227
Median 0.742 0.463 2.42·10−4 0.005 6.147 0.765 0.756 0.201 0.103

Conversely, the reduction in (3) gives (weighted) averages of the supernodes with the benefits of
maintaining points in the input space and locating them in the supernodes’ centres of mass.

Two main patterns emerge. First, we see that the two non-trainable sparse methods (NDP and Graclus)
perform a rather uniform node subsampling, in such a way that the reduced node features are good
representative of the original input, which may facilitate the reconstruction of the input node features,
as confirmed by the low MSE in Table 3. Second, trainable and sparse methods (TopK and SAGPool)
tend to cut off entire portions of the graphs, therefore discarding essential node information.

Preserving structure In this experiment we study the structural similarity between the input and
coarsened graphs G and G′, respectively, by comparing the quadratic forms associated with their
respective combinatorial Laplacian matrices L and L′. This evaluation criterion has also been
recently studied by Loukas [34], Hermsdorff and Gunderson [23], and Cai et al. [10], and allows
us to compare graphs of different sizes. Specifically, we consider the quadratic loss L(G,G′) =∑d

i=0 ‖X>:,iLX:,i −X′
>
:,iL
′X′:,i‖, where X is an arbitrary graph signal and X′ its reduction. In this

experiment, we choose X to be the concatenation of the first 10 eigenvectors of L and the node
coordinates of G; all columns are `2-normalized. For trainable methods, we directly minimize the
loss as a self-supervised target. Table 4 reports the average loss obtained by the eight operators on
different graphs from the PyGSP library, while Figure 6 shows examples of pooled graphs and their
spectra. We show the result for Grid2d since it is easier to interpret visually; the figures for all graphs
are available in the supplementary material.

Trainable dense methods can generate coarsened graphs with a quadratic loss w.r.t. the original graph
lower than their non-trainable or sparse counterparts. Interestingly, from the bottom row of Figure 6
we see that a low quadratic loss does not necessarily imply a good alignment of the spectra. For
example, on the regular grid in Figure 6, the excellent spectral alignment achieved by Top-K and
SAGPool is not reflected by a low quadratic loss value (0.596 and 0.361 respectively). While in
principle this experiment focuses on comparing only SEL and CON, we are also evaluating RED since
it affects the loss that depends on X′. This can explain the discrepancy between the loss values and
the eigenvalues plots.

Properties of the connection operation. From Figure 6, we see that dense methods (DiffPool, MinCut,
NMF, LaPool) yield coarsened graphs that are densely connected. We can make a similar observation
for the autoencoder experiment with modified RED operation in Eq. (3), as shown in Figure 5.
However, in these dense graphs most of the edge weights are also small. This is quantitatively
reported in Table 5, in which we compare the density of edges (|E ′|/K2) and the median edge weight
of the coarsened graphs for Grid2d, Minnesota and Sensor. An extended version of this table is
reported in the supplementary material.
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Original DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus
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Figure 6: Results on a regular grid when optimizing for spectral similarity. Top: the coarsened
adjacency matrices. Middle: the coarsened graphs with modified RED function. Bottom: the
eigenvalues of the normalized Laplacian before (black) and after (blue) pooling. The indices of the
eigenvalues are rescaled to fill [0, 1].

Table 6: Accuracy on the graph classification benchmarks.4

No-pool DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus
Colors-3 40.8±2.1 55.2 ±1.5 60.1 ±4.0 29.7 ±1.7 44.9 ±1.0 26.9 ±4.0 34.4 ±5.2 25.4 ±1.8 29.5 ±2.0

Triangles 93.5±0.7 91.3 ±0.2 95.3 ±0.5 58.1 ±5.2 88.8 ±0.8 75.2 ±17.3 80.3 ±8.6 75.3 ±1.0 71.4 ±1.7

Proteins 68.8±2.8 70.0 ±0.6 73.8 ±0.8 68.9 ±3.4 72.9 ±2.0 71.3 ±0.8 73.7 ±0.8 68.4 ±3.4 72.6 ±1.1

Enzymes 83.6±2.0 72.4 ±3.9 83.6 ±0.6 32.4 ±8.1 85.0 ±1.2 81.0 ±0.4 68.8 ±18.8 84.8 ±3.2 85.4 ±4.1

DD 81.1±0.4 75.6 ±1.8 82.5 ±0.9 OOR OOR 80.4 ±0.9 79.0 ±2.7 79.6 ±1.2 78.3 ±2.9

Mutagen. 78.0±1.6 76.2 ±1.4 73.9 ±1.6 70.3 ±1.6 75.3 ±0.1 75.8 ±1.4 76.9 ±1.4 76.9 ±1.0 74.2 ±0.5

ModelNet 81.0±0.5 70.4 ±2.4 75.9 ±1.2 OOR OOR 74.1 ±3.0 71.9 ±2.6 77.1 ±2.6 83.9 ±1.9

Rank 4.43 2.57 7.14 4.29 4.71 3.86 4.29 4.29

Preserving task-specific information In our final experiment we consider several benchmarks of
graph classification to test the third criterion. A high classification accuracy implies that an operator
can selectively preserve information based on the requirements of the task at hand. We consider graph
classification problems from the TUDataset [40], the ModelNet10 dataset [52], and the Colors-3 and
Triangles datasets introduced by Knyazev et al. [28].

Table 6 reports the average and standard deviation of the classification accuracy on the test set, as well
as the average ranking of the operators. We also report as baseline the classification accuracy of a
GNN with no pooling (No-pool). We observe that, on the datasets considered here, the operators based
on graph spectral properties (MinCut, NDP, Graclus) achieve the highest accuracy. However, we could
not find strong evidence that one pooling operator (or even a class of operators) is systematically better
than all others. For instance, on Triangles and Colors-3 we see that dense, trainable operators have a
consistent advantage. However, the family of sparse and/or non-trainable methods achieves a better
performance on Enzymes, Mutagenicity, and the large-scale ModelNet10 dataset. Finally, in datasets
such as Mutagenicity, Proteins, and DD the gap in performance is not very large. Table 6 also shows
that some of the models with graph pooling operators achieve higher classification accuracy than
the no-pool baseline (in green). In Mutagenicity the baseline architecture achieves top performance,
suggesting that graph pooling is not always beneficial in certain graph classification tasks. Further
discussion can be found in the recent work of Mesquita et al. [38].

4“OOR" indicates Out Of Resources, i.e., either we could not fit a batch size of 8 graphs on an Nvidia Titan
V GPU or it took more than 24 hours to complete training. Values of 0.000 indicate any value < 10−6.
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6 Conclusions

In this paper we presented SRC, a unifying formulation of pooling operators in GNNs, that allowed us
to organize the vast literature on the subject under a comprehensive taxonomy and implement every
pooling operator under a well-defined and modular framework. Based on our framework, we gave
pointers towards a possible implementation of a “universal" pooling strategy based on well-known
theory about the expressive power of GNNs. We identified three possible evaluation criteria for
pooling operators and compared the different classes of the taxonomy on synthetic and real-world
benchmarks. Results showed that pooling operators are not all equivalent and, in particular, there is
no clear evidence that a particular pooling operator is consistently better than the others according
to the evaluation criteria taken into consideration. In our study, we showed the characteristics of
different classes of operators and we reported an in-depth analysis of their inner mechanisms.

Overall, we showed that the choice of the best pooling operator, and whether performing graph
pooling is necessary at all, highly depends on the problem at hand. A comprehensive evaluation of
pooling operators requires considering multiple criteria to highlight all their fundamental properties
and, as such, it cannot be limited to measuring the downstream performance on few small-scale
benchmark datasets.

Guidelines For the above reasons, we provide guidelines to choose a pooling method in practice,
based on the desiderata and the taxonomy:

• To preserve node attributes, especially concerning geometric graphs, non-trainable and
sparse methods are suggested since they usually compute a uniform coarsening of the graph;

• To preserve structure, dense and trainable methods are better at minimizing the Laplacian
quadratic loss although sparse methods yield a better spectral alignment;

• To preserve task-specific information, which is the most common setting in machine learning,
trainable methods have an edge over their counterpart although our conclusion is that there
is no better method a priori. Non-trainable sparse methods (Graclus, NDP) have overall
better performance across different tasks and are advised as the first choice; however, if the
goal is to optimize for a specific objective, then trainable dense methods (MinCut, DiffPool)
offer more flexibility and are more easily integrated into GNN architectures.

• We also observe that trainable sparse methods discard entire portions of the graphs and,
therefore, they are generally less advisable.

We believe that SRC will be helpful in further studying graph pooling, and that our analysis will
guide practitioners in choosing an appropriate pooling method for the application at hand. Our work
also leads to a more principled approach in designing and evaluating new pooling operators, and will
help the research community to advance the field.
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A Experimental Details

A.1 Hardware and software

All experiments were run on an NVIDIA Titan V GPU with 12 GB of video memory. All models
were implemented in Python 3.7, and all machine learning code was based on TensorFlow 2.4 [1] and
Spektral 1.0.6 [22]. The code to reproduce the experiments is available at https://github.com/
danielegrattarola/SRC.

A.2 Preliminaries

We use the same message-passing model in all of our experiments. The model is inspired by the work
of You et al. [56] and has the following form:

x′i = xi

∥∥∥ ∑
j∈N (i)

ReLU (BN (Wxj + b)) (4)

where BN indicates batch normalization [25], ReLU is the rectified linear unit, xi ∈ Rdin ,
x′i ∈ Rdout , W ∈ Rdout×din is a trainable matrix, b ∈ Rdout is a trainable bias, and

∥∥∥ indicates
concatenation. We configure all layers to have dout = 256.

We use GNN(A,X) to indicate the application of one layer as in Eq. (4) to a graph described by A
and X.

We use MLP(X) to indicate the application, to the features of each node, of one multi-layer perceptron
(MLP) with 2 layers, 256 hidden units, ReLU activation and batch normalization. The number of
neurons of each layer is implied by the dimension of the data or, if not specified, is also set to 256
units (e.g., for MLPs used as intermediate blocks).

All architectures and hyperparameters are also inspired by the work You et al. [56]. Specifically,
we include a pre-processing and post-processing MLP as first and last blocks of each architecture,
respectively. The activation of the last layer of the post-processing MLP is implied by the task.

We use POOL(A,X) to indicate the application of a generic pooling layer, which is substituted in the
architecture with the different operators that we compared in our experiments. Note that, for clarity,
we change notation w.r.t. the main text and indicate with Xpool, Apool the output of a pooling layer.

A.3 Preserving node attributes

Architecture The bottleneck of the autoencoder consists of a single pooling layer to compress the
graph signal, immediately followed by an upscaling layer. The overall architecture is:

X,A← G
Xin ← MLPin (X)

Xin ← GNNin (A,Xin)

Xpool ← POOL (A,Xin)

Xup ← UPSCALE (Xpool)

Xout ← GNNout (A,Xup)

Xout ← MLPout (Xout) .

All pooling layers are configured to reduce the graph to K = bN/2c nodes, except for LaPool which
determines the number of output nodes autonomously.

The UPSCALE layer lifts the reduced node features X′ of the coarsened graph G′ back to the original
data dimensionality of Xin. For almost all methods, the upscaled node features Xup are constructed
as UX′, where U = S∓ is the transposed pseudo-inverse of the selection matrix S = SEL(X,A).
This is the optimal choice when the reduction function is X′ = S>Xin. Conversely, for Top-K and
SAGPool we need to account also for the scaling factors σ(y), so we have U = (σ(y)�S)∓. Finally,
even though DiffPool’s reduction is X′ = S>GNN(A,X), we still employ US∓ as upscaling
operator and allow the output layer GNNout to counteract the effects of the GNN.
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Table 7: Statistics of graphs used in the autoencoder and spectral similarity experiments.

Graph Nodes Edges Avg. degree
Grid 64 112 3.5
Ring 64 64 2
Bunny 2503 65490 52.35
Airfoil 4253 12289 5.77
Sensor 64 313.7 ± 21.9 9.8 ± 0.8

Airplane 1333 2611 3.91
Car 1920 2372 2.47
Guitar 3125 5508 3.52
Person 3305 9055 5.47

Notice that GNNout takes as input the original adjacency matrix A, so as to focus the experiment on
the node features only and suppressing possible interference of the CON function.

Training All models are trained to convergence using Adam to minimize the mean squared error
between the input and output features, with learning rate 0.0005 and early stopping on the training
loss with a patience of 1000 epochs and a tolerance of 10−6. Each experiment is repeated 3 times.

Data The Grid, Ring, and Bunny graphs are generated using the PyGSP library [14]. The Airplane,
Car, Person, and Guitar graphs are taken from the ModelNet40 dataset [52]. We selected one graph
randomly from the training set of each category (with a threshold on the number of nodes). The
ModelNet40 IDs of the selected graph are: sample 151 for Airplane, sample 75 for Car, sample 38
for Guitar, sample 83 for Person. Details on the size and average degrees of the graphs are reported
in Table 7. All datasets that were not generated programmatically are unlicensed.

A.4 Preserving structure

Architecture The architecture for this experiment consists only of a pooling layer, to ensure that the
model is actually operating on the original coordinates and eigenvectors without transformations:

X,A← G
Xpool ← POOL (A,X)

All pooling layers are configured to reduce the graph to K = bN/2c nodes, except for LaPool which
determines the number of output nodes autonomously.

Training For trainable models, we train them to convergence using Adam to minimize the quadratic
loss described in the main text, with learning rate 0.01 and early stopping on the training loss with a
patience of 50 epochs and a tolerance of 10−6. Each experiment is repeated 3 times.

Data All graphs are generated using the PyGSP library. In particular, Sensor is a random graph
which is generated once per experiment and used for all models. Details on the size and average
degrees of the graphs are reported in Table 7. All datasets that were not generated programmatically
are unlicensed.
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A.5 Preserving task-specific information

Architecture We use the following architecture for all datasets:

X,A← G
X← MLP1 (X)

X← GNN1 (A,X)

Apool,Xpool ← POOL (A,X)

Xpool ← GNN2 (Apool,Xpool)

xout ←
∑
i

xpool,i

xout ← MLP2 (xout)

Adaptive pooling layers are configured to reduce the graph to K = bN/2c nodes, except for LaPool
which determines the number of output nodes autonomously. Fixed pooling layers are configured to
return K =

⌊
N̄/2

⌋
nodes, where N̄ is the average number of nodes in the training set.

Training All models are trained to convergence using Adam, with a batch size of 16, learning rate
0.0005 and early stopping on the validation loss with a patience of 50 epochs. Each experiment is
repeated 3 times.

Data Proteins, Enzymes, Mutagenicity, DD, Colors-3 and Triangles are taken from the TUDataset
collection [40]. The ModelNet10 dataset is taken from its original source [52]. All datasets are
split randomly according to an 8:1:1 proportion between training, validation and test sets. The
only exceptions are Colors-3 and Triangles, for which the data splits are described in [28], and
ModelNet10, for which the data splits are given. The TUDatasets are unlicensed and ModelNet10 is
provided freely for academic use.

A.6 Memory usage

To produce Figure 3, we generated random Erdős-Rényi graphs with p = 0.1 and random features,
and gave it as input to the trainable pooling methods (MinCutPool, DiffPool, Top-K and SAGPool).
At each forward pass, we increased the number of nodes by 1000 until an out-of-memory exception
was raised. We used a sparse tensor to represent the adjacency matrix of the input graphs (so that the
cost of loading A into memory is linear in the number of edges). We repeated the experiments with
node features of size F = 1, 10, 100, 1000 and found no significant differences in the results.

B Additional results

B.1 Preserving node attributes

An extended version of Figure 4 in the main paper is reported in Figure 7 here. An extended version
of Figure 5 in the main paper is reported in Figures 8 and 9. Note that the missing plots for LaPool
are due to the Out Of Memory exception as reported in Table 3 in the main paper.

B.2 Preserving structure

An extended version of Figure 6 in the main paper is reported in Figure 10 here. An extended version
of Table 5 is reported in Table 8.
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Figure 7: Node attributes (point locations) reconstructed with different operators in the autoencoder
experiment.

Table 8: Density and median weight of the edges of the coarsened graphs in the spectral similarity
experiment.

Original DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus

Grid2d Density 0.055 0.969 0.969 0.463 0.917 0.084 0.092 0.189 0.103
Median 1.000 0.216 0.024 0.018 1.445 1.000 1.000 0.500 0.154

Ring Density 0.031 0.969 0.969 0.125 0.900 0.055 0.061 0.062 0.045
Median 1.000 0.124 0.032 0.039 1.171 1.000 1.000 0.500 0.250

Bunny Density 0.021 0.999 0.999 0.327 0.952 0.038 0.038 0.104 0.029
Median 0.812 0.068 7.55·10−4 9.99·10−6 234.887 0.815 0.816 0.111 0.026

Minnesota Density 9.47·10−4 0.999 0.999 0.010 0.999 0.002 0.002 0.003 0.002
Median 1.000 0.004 7.58·10−4 0.014 0.013 1.000 1.000 0.333 0.204

Sensor Density 0.159 0.969 0.969 0.844 0.875 0.273 0.230 0.529 0.227
Median 0.742 0.463 2.42·10−4 0.005 6.147 0.765 0.756 0.201 0.103

Airfoil Density 0.001 1.000 1.000 0.009 0.996 0.003 0.003 0.006 0.002
Median 0.500 0.003 4.70·10−4 0.026 0.209 0.500 0.500 0.090 0.118
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Figure 8: Graphs pooled with different operators in the autoencoder experiment with the modified
RED function.
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Figure 9: Selection matrices computed with different operators in the autoencoder experiment.
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(a) Grid

(b) Ring

(c) Sensor
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(d) Bunny

(e) Minnesota

(f) Airfoil

Figure 10: Results for all graphs when optimizing for spectral similarity. Top: the coarsened adjacency matrices.
Middle: the coarsened graphs with modified SEL function. Bottom: the eigenvalues of the normalized Laplacian
before (black) and after (blue) pooling. The indices of the eigenvalues are rescaled to fill [0, 1].
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