
1

Power Flow Balancing with Decentralized Graph
Neural Networks

Jonas Berg Hansen, Stian Normann Anfinsen, and Filippo Maria Bianchi

Abstract—We propose an end-to-end framework based on a
Graph Neural Network (GNN) to balance the power flows in
energy grids. The balancing is framed as a supervised vertex
regression task, where the GNN is trained to predict the current
and power injections at each grid branch that yield a power flow
balance. By representing the power grid as a line graph with
branches as vertices, we can train a GNN that is accurate and
robust to changes in topology. In addition, by using specialized
GNN layers, we are able to build a very deep architecture that
accounts for large neighborhoods on the graph, while imple-
menting only localized operations. We perform three different
experiments to evaluate: i) the benefits of using localized rather
than global operations and the tendency of deep GNN models
to oversmooth the quantities on the nodes; ii) the resilience to
perturbations in the graph topology; and iii) the capability to
train the model simultaneously on multiple grid topologies and
the consequential improvement in generalization to new, unseen
grids. The proposed framework is efficient and, compared to
other solvers based on deep learning, is robust to perturbations
not only to the physical quantities on the grid components, but
also to the topology.

I. INTRODUCTION

POWER flow analysis is a fundamental part of the op-
eration, planning, maintenance, and control of power

systems [1]. To ensure adequate system reliability for day-
to-day operation, the power flow must be distributed such that
the demand is met without violating the physical constraints
of the electrical components of the energy grid. In addition,
the power system should be reasonably resilient to outages
and disconnections. To perform the computations necessary to
find this balanced state of operation, a power solver needs
information about how the electrical nodes in the power
grid are connected, as well as the physical properties of the
infrastructure (e.g., resistances of the transmission lines).

Traditionally, the solution to the power flow (PF) problem
is found using numerical optimizers, such as the Newton-
Raphson (NR) method [2]. These methods are computationally
expensive for large systems, the convergence to the global
optimum is in general not guaranteed, and a new optimization
must be performed for each small modification of the grid
configuration.

Correspondence: jonas.b.hansen@uit.no
J. B. Hansen and F. M. Bianchi are with Department of Mathematics and

Statistics, UiT The Arctic University of Norway
S. N. Anfinsen and F. M. Bianchi are with NORCE Norwegian Research

Centre AS
S. N. Anfinsen is with Department of Physics and Technology, UiT The

Arctic University of Norway
This project was supported in part by Equinor under the Academia

Agreement with UiT The Arctic University of Norway.

Recently, several deep learning methodologies have been
proposed to solve a wide range of energy analytics problems
encountered in power systems [3]–[5]. Of particular interest
for this work are the approaches that compute fast approxi-
mations of the power flow solution while being more accurate
than traditional approximations, such as the linear DC power
flow (DCPF) method. Most of the deep learning approaches
proposed for solving the PF problem, as well as the optimal
power flow (OPF) problem, utilize models based on multi-
layer perceptrons (MLPs) [6]–[9]. MLPs are easy to implement
and they generalize well to different system values (e.g., loads
on the buses). However, they struggle with changes in the
underlying system topology. In addition, MLPs have a higher
tendency to overfit the training data compared to other neural
networks, which exploit inductive biases to reduce the number
of trainable parameters.

A few recent works proposed to represent power systems
as graphs and used graph neural networks (GNNs) to solve
power flow related tasks [10]–[16]. GNNs are neural network
models that directly exploit the topology of the graph to
implement localized computations, which are independent
from the global structure of power systems. Therefore, GNNs
can, in principle, be applied to grids with different sizes and
topologies. The latter is one of the most appealing features
of GNN models compared to MLPs, as it allows to quickly
compute a solution after the grid topology is modified, e.g.
when transmission lines are disconnected due to contingencies
or planned rerouting operations.

However, most of the GNN-based approaches found in the
existing literature use architectural components that depend
on the global structure, which essentially locks the models to
a specific topology [12]–[15]. Like the MLP, these models are
still effective when dealing with a single grid topology, but are
unable to handle topological variations in the configuration of
power systems. There are a few works that adopt GNNs able
to process multiple topologies. However, these architectures
are either unable to process transmission line attributes, such
as resistance or reactance, which are important to model the
physics of the power flow problem [10], or they use the GNN
to perform a single operation within a larger pipeline that
includes global operations to update the state of the buses [11].

Contributions. We propose a fully decentralized GNN ar-
chitecture and implement an end-to-end data-driven approach
to balance the power flows. The optimization is framed as a
supervised vertex regression task, which aims to predict the
electrical quantities of interest at each branch. By using only
local operations, our GNN can handle perturbations in the

2

graph topology and, in principle, can even be transferred to
grids with different topologies.

Like the DC approximation, the proposed GNN model has
a computational complexity that scales linearly (both in time
and space) with the number of nodes. On the other hand,
the GNN solution is generally much closer than the DC
approximation to the solution found by NR. In addition, we
use a particular graph representation and a GNN architecture
that offers flexibility and performance at the same time. This
allows us to obtain competitive results on a larger variety of
tasks, compared to other deep learning architectures.

To effectively implement such a model, we have addressed
two challenges:

• In power flow balancing, distant vertices on the graph
should be able to communicate with each other. To
accomplish this in the absence of centralized operations,
a very deep GNN with a large receptive field is required.
Since deep GNN architectures are often affected by over-
smoothing (the output of adjacent vertices tends to be-
come the same), we use convolutional ARMA layers [17],
which are designed to implement a large receptive field.

• Buses with generators must be treated differently when
computing the PF solution, which complicates the GNN
training. In addition, most GNN models can handle only
attributes on the vertices (buses) but not on the edges
(branches). As a solution, we introduce a line graph rep-
resentation of the power grid, which: i) allows the GNN
to treat all vertices equally; and ii) allows to represent
both bus and branch features as vertex attributes.

We perform three experiments to investigate the potential
of a decentralized GNN for power flow balancing.

1) We compare the proposed GNN with an MLP to high-
light the benefits of using localized rather than global
operations. We also analyze the problem of oversmooth-
ing that GNNs encounter in power flow balancing and
we show how it can be mitigated by using specialized
ARMA layers to implement very deep architectures.

2) We consider a setting where the topology changes as a
consequence of line removal in the grid and we show
the advantage of using a decentralized architecture.

3) We perform training on multiple power systems with
completely different topologies to investigate if the gen-
eralization capability on new, unseen grids improves.

II. THEORETICAL BACKGROUND

A. Notation

A power grid consists of a set of buses and branches that
connect them. Each of these core components are characterized
by a set of physical quantities, which influence the power flow
solution. Those are referred to as features and are described
in the following, along with their measurement units (in
brackets). Note that most quantities are given in per unit (p.u.),
which are derived from the base power and voltage levels of
the grid. A reasoning behind this choice of units is given when
presenting the data acquisition in Section V-A.

1) Bus features:

• |V |: voltage magnitude [p.u.]
• θ: voltage angle [radians]
• Pd: active power demand [p.u.]
• Qd: reactive power demand [p.u.]
• Gs: conductance of connected shunt element [p.u.]
• Bs: susceptance of connected shunt element [p.u.]
• Pg: active power output of connected generator

[p.u.]
• Qg: reactive power output of connected generator

[p.u.]
2) Branch features:

• r/x: resistance/reactance [p.u.]
• b: total line charging susceptance [p.u.]
• τ : transformer off nominal turns ratio
• θshift: transformer phase shift angle [radians]

B. The Power Flow Problem

A distinction must be made between power flow (PF) – also
called AC power flow (ACPF) – and optimal power flow (OPF)
problems; while the former is solving a system of equations,
the latter minimizes a cost function subject to constraints that
include the PF equations. This paper focuses on PF.

The steady-state solution to the PF problem for a system
of Nb buses is found by solving a set of nonlinear equations
given by Kirchhoff’s laws. In polar form, the power balance
equations are [18]:

Pi =

Nb∑
k=1

|Vi||Vk|(Gik cos θik +Bik sin θik), (1)

Qi =

Nb∑
k=1

|Vi||Vk|(Gik sin θik −Bik cos θik), (2)

where Pi and Qi are the net active and reactive power
injections at bus i, θik is the voltage phase angle difference
between bus i and k, and Bik and Gik are respectively the
real and imaginary parts of the (i, k)-th element in the bus
admittance matrix. The shunt conductance and susceptance,
along with all of the aforementioned branch attributes, are
used to construct this admittance matrix.

Typically, the aim of power flow balancing is to find
the complex voltages on the buses that satisfy the balance
equations in (1) and (2). To obtain the same number of
equations and variables, buses are split into different categories
where certain variables are fixed. Firstly, a single bus with a
generator is selected to act as the slack or reference bus, for
which |Vi| and θi are fixed. The voltage phase angles of the
other buses are expressed as differences from the slack. The
other buses with generators are called PV buses, and for these
|Vi| and Pi are fixed. Finally, the remaining buses are called
PQ buses, where Pi and Qi are known.

C. Multi-Layer Perceptrons

An MLP consists of multiple layers of computational (or
processing) units that perform an affine transformation fol-

3

lowed by a nonlinearity [19]. Formally, an MLP with L hidden
layers implements the following operations

h(0) = x, (3)

h(l) = σ
(
W(l)h(l−1) + b(l)

)
, l = 1, 2, ..., L, (4)

y = σ
(
W(L+1)h(L) + b(L+1)

)
, (5)

where x ∈ RFin×1 is the input, h(l) ∈ RFl×1 is the hidden state
at the l-th layer, W (l) ∈ RFl×Fl−1 is a trainable weight matrix,
b(l) ∈ RFl×1 is a trainable bias vector, σ is an activation
function, and y ∈ RFout×1 is the MLP output. Fl denotes the
number of processing units in the l-th layer. When used as
intermediate or final layers in other artificial neural network
models, the operations performed by (4)-(5) are often referred
to as dense or fully connected (FC) layers.

The dimensions of the weight matrices and bias vectors in
the input and output layers depend on the dimension of x and
y. This presents a problem when the MLP is applied to data
where the number of variables differ across samples. Such
problems can be addressed by workarounds such as using
a super-set of variables and then mask the unused variables
in each sample. This, however, poses issues in a PF setting
because the MLP cannot learn relationships between model
variables and the actual electrical elements if they change
from sample to sample. Also, it is not possible to process test
samples with more than the maximum number of variables
allocated in training. In addition, when most samples have
fewer variables than the maximum allowed, some of the model
capacity remains unused. Finally, as the number of trainable
parameters increases with the number of variables, MLPs used
to process large grids must have a very high capacity and can
more easily memorize specific patterns in training data at the
expense of generalization to new data. This problem is referred
to as overfitting [19].

D. Graph Neural Networks

Power systems can be naturally represented as graphs, due
to their non-Euclidean structure. A graph with N vertices,
each one associated with a feature vector of size Fin, can be
represented by the tuple {A,X}, where A ∈ RN×N is the ad-
jacency matrix and X ∈ RN×Fin contains the vertex features.
GNNs are a class of neural networks specifically designed to
process data represented as graphs [20]. GNNs include layers
implementing localized operations, called message passing
(MP), that are independent from the global structure of the
graph. A GNN without layers that perform global operations is
completely decentralized and can process graphs with different
topologies.

The MP operations in a GNN can be performed in several
different ways. A popular MP layer is the one from the Graph
Convolutional Network (GCN) [21], which updates the node
features as

X̄(l) = σ
(
ÂX̄(l−1)W

)
(6)

Fig. 1: The graph signal becomes sharper going from left to
right. Smooth graph signals assign similar values to neigh-
boring nodes, while a sharp graph signal can assign different
values to neighboring nodes. Most GNN layers perform a
smoothing operation and, thus, by stacking many of them it is
possible to obtain in output only very smooth graph signals.

where X̄(l) are the vertex features at layer l (note that X̄(0) =
X), W ∈ RFin×Fout is a matrix of trainable parameters, and Â
is the symmetrically normalized version of A+ I, given by

Â = D̂−1/2(A+ I)D̂−1/2, (7)

where D̂ is the degree matrix of (A+ I).
To optimize the power flow, it is necessary to reach higher

order neighborhoods, since the value of a generator can be
influenced by the load of a distant bus in the grid. To combine
nodes from distant regions in the graph, it is necessary to stack
many MP operations. If these operations are implemented
by layers that smooths graph signals [21]–[23], the repeated
application of MP leads to oversmoothing, i.e., the vertex
representations become uniform on the whole graph [24].
This prevents the GNN from producing a dissimilar output
at vertices that are very close on the graph. The difference
between smooth and sharp graph signals is illustrated in Fig. 1.

It is important for the power flow problem that a GNN can
generate sharp signals, since neighboring grid buses might
assume very different physical quantities. As a solution, we
implement a very deep GNN composed of convolutional
ARMA layers [17]. The ARMA layer is more flexible and
less prone to oversmooth the vertex features compared to other
MP layers. Each ARMA layer consists of K stacks, each
one performing T propagation steps, which we will denote
as ARMAT

K . The output of each stack is computed as

X̄
(1)
k = σ

(
ÃXW

(0)
k +XV

(0)
k

)
, (8)

X̄
(t)
k = σ

(
ÃX̄

(t−1)
k Wk +XVk

)
, t = 2, 3, ..., T, (9)

where X̄
(t)
k ∈ RN×Fout are node features at step t, σ is a

nonlinear activation function, and W
(0)
k , V

(0)
k , Vk (all ∈

RFin×Fout) and Wk ∈ RFout×Fout are trainable weight matrices.
Ã is the symmetrically normalized version of the adjacency
matrix A, i.e., Ã = D−1/2AD−1/2.

The final output for the ARMAT
K layer is computed as an

average of the output of all stacks:

X̄ =
1

K

K∑
k=1

X̄
(T)
k (10)

4

III. METHODOLOGY

A. Power grid representation

When representing a power grid as a graph it is natural to
let buses act as graph vertices and branches as graph edges.
However, for a fully data-driven GNN architecture relying
solely on localized operations, such a representation raises two
main issues.

Firstly, in a bus-oriented graph, the voltage magnitude
associated to specific vertices is fixed and should remain
unchanged in the output computed by the GNN. However,
given the decentralized nature of a GNN, which processes all
vertices with the same localized operations, treating certain
vertices categorically different is problematic and the output
of the GNN will need to be adjusted for these vertices.

The more challenging problem is how to account for fea-
tures from both buses and branches. In a setting where the
model encounters only a single, static grid, it is sufficient
to only include variables from buses that vary from sample
to sample. Indeed, quantities such as line resistances can
be factored out, as they are common to every sample. On
the other hand, we are interested in processing samples that
represent modifications of a given topology or even completely
different power systems. In this latter case, to learn the
interactions between all the physical quantities in the power
system, the model needs access to all relevant bus and branch
features. There exist few GNN models in the literature that
are designed to process edge features/labels. For instance,
an edge-conditioned convolutional layer [25] can be used
to embed the information of branch features into the vertex
representations. However, these layers have a significantly
higher computational cost than those that consider only vertex
features. Also, since the relationship between vertices change
as their features are propagated, a layer that accounts for
original edge information is mostly effective if used in the
beginning of the GNN architecture. However, if the GNN is
very deep, like the one needed to solve the PF problem of
interest, the contribution of the first layer to the computation
of the output is weak and difficult to control.

To address these issues, we propose to represent the
branches as graph vertices, and to predict the complex current
and power injections on the branches, rather than the voltage
on the buses. These power and current quantities can be
obtained from the complex bus voltages and can be used to
express an equivalent power flow solution. Since none of these
quantities are fixed beforehand, it is not necessary to constrain
parts of the GNN output to assume specific values. Finally,
since each branch is connected to exactly two buses, features
from both branches and buses can be placed on the graph
vertices; this allows us to use GNN architectures that only
consider vertex features.

The shift in perspective from buses to branches can be seen
as a conversion to a line graph representation [26] of the bus
graph. Given a graph G, its line graph L(G) is a graph where
each vertex represents an edge of G. Two vertices of L(G)
are adjacent if and only if their corresponding edges in G are
incident, i.e., they share a common endpoint. This yields an
undirected graph, as illustrated in Figure 2.

Fig. 2: Transition from the bus graph (G) to the branch graph
(line graph of G).

Since each branch has a form of directionality related to the
assignment of designated from and to ends for transformers, a
directed graph could be used to model the branches’ direction.
However, in a directed graph the peripheral vertices at the end
of a chain of unidirectional edges cannot share (or receive,
depending on the edges direction) information with the rest
of the graph. This affects the learning process of a GNN, as
the graph diffusion is hindered. Therefore, we have opted to
keep the undirected graph representation and the direction is
implicitly expressed through the inclusion of bus features from
the two endpoints of the branches.

Each vertex in the line graph is associated with the following
features

• From corresponding branch: r, x, b, τ , θshift
• From bus endpoints: Pd, Qd, Gs, Bs, Pg , |Vg|, islack

where Pg and |Vg| are the active power and voltage magnitude
of a connected generator, respectively. Finally, islack is a two-
dimensional one-hot vector indicating whether the bus at the
corresponding endpoint is the slack bus. Naturally, not all
buses have generators or shunts, and only select branches are
equipped with transformers, so in these cases the correspond-
ing features (such as |Vg|) are set to zero to indicate absence.

To summarize, each vertex i in the line graph is associated
with a vector xi ∈ R21 of input features: [branch(5); from-
bus(8); to-bus(8)]. By consistently concatenating the features
of the from-bus before the features of the to-bus, the branch
direction is implicitly given.

As for the desired PF solution with respect to the branches,
injections are made at both ends of a branch, so if power and
current are split into their real and imaginary parts, the power
flow optimization is framed as a vertex regression task, where
the GNN predicts 8 quantities for each branch. Specifically,
the output features to be approximated by the GNN consist of
a vector yi ∈ R8 containing the following quantities

• P re
f , P im

f , I re
f , I

im
f , P re

t , P im
t , I re

t , I
im
t

which are the real and imaginary components of power and
current at the two endpoints (f = “from” and t = “to”).

The choice of using power flow and current is particularly
suitable for the line graph representation. Firstly, power flow
and current are properties that relate more to the branches than
the voltages on the buses. Secondly, since the same voltage can
appear on multiple vertices of the line graph, one would have
to enforce constraints to the output to ensure that such voltage
values are the same.

5

Fig. 3: General structure of the GNN model.

B. GNN Design

The node aggregation of the GNN model proposed here is
done with ARMAT

k layers. As discussed in Section II-D, by
using ARMA layers it is possible to build very deep GNN
architectures that are robust to oversmoothing. In principle,
one could use a single ARMA layer with a very high number
of iterations T to achieve the desired depth of the receptive
field. However, we found out experimentally that a GNN with
more ARMA layers, each one with fewer recursions, performs
better.

Before and after the aggregation stage, the model uses dense
processing layers to map the individual node states. The idea
here is to allow the model to map the states into a more
meaningful representation before the aggregation, and to map
the final aggregated states into the output space. This type
of configuration is aligned with the study on the architectural
design space of GNNs by [27], which showed that such pre-
and post-processing layers could improve performance when
combined with different aggregation techniques. Fig. 3 shows
a schematic depiction of the adopted GNN architecture.

The main advantage of using GNNs compared to NR is
the lower time and space complexity. The number of oper-
ations performed when evaluating the expression within the
activation of either (8) or (9) is (N ×N × Fin) + (N × Fin ×
Fout) + (N × Fin × Fout) = (N2 × Fin) + 2(N × Fin × Fout).
Therefore, an ARMA layer with K stacks of depth T performs
K × T × ((N2 × Fin) + 2(N × Fin × Fout)) operations and,
thus, the time complexity is O(N2). Similarly, a stack of T
GCN layers performs T × ((N2 × Fin) + (N × Fin × Fout))
operations and the complexity is again O(N2). Under the
sparsity assumption, the number of non-zero connections in
the graph is proportional to N and thus, by using sparse
operations, both the space and time complexity of the GNNs
reduces from O(N2) to O(N).

C. MLP Design

MLP models will be used to benchmark the GNN archi-
tecture. We consider two different configurations of MLPs,
one that processes each vertex features vector individually and
another that accounts for all vertices at once.

The first configuration, which we call Local MLP model,
makes predictions for each branch using only its associated
input features. In other words, the 8 target values for each
branch are predicted using the aforementioned 21 input vertex
features. See Fig. 4 for an illustration. Since the Local MLP is
completely agnostic of the underlying topology of the grid, the
performance obtained by the Local MLP model can be used

Fig. 4: Local MLP. The number of units shown here does not
reflect the exact amount used for the experiments.

to quantify how much the information contained in the input
features associated with a single branch and its endpoints can,
alone, predict the output values for that branch.

In the second configuration, referred to as the Global MLP
model, predictions are made for all branches at once using the
input features from all buses and branches. To accomplish this,
all bus and branch input features are concatenated into two
one-dimensional arrays. Moreover, to reduce the number of
parameters in the input layer, bus and branch features are first
processed by separate layers, and the output of these layers are
then concatenated and fed to the hidden layers of the model,
as shown in Fig. 5. At the end, this MLP model predicts all
the branch currents and power injections, i.e. the number of
output units is equal to eight times the number of branches.
Clearly, the number of parameters of the Global MLP depends

Fig. 5: Global MLP.

on the number of vertices and edges in the graph, which makes
the model less suitable to handle perturbations on the grid
topology.

IV. RELATED WORK ON POWER FLOW BALANCING

a) Newton-Raphson: The traditional Newton-Raphson
(NR) method iteratively solves a set of non-linear equations
through a linear approximation based on a first order Taylor

6

polynomial. For the power flow problem this results in a linear
system of equations of the form:[

∆θi
∆|Vi|

]
= −J−1

[
∆Pi

∆Qi

]
, (11)

where ∆Pi and ∆Qi are the discrepancies between the ex-
pressions on the left and right hand sides of equation (1) and
(2), respectively, and J is the Jacobian given by

J =

[
∂∆Pi/∂θi ∂∆Pi/∂|Vi|
∂∆Qi/∂θi ∂∆Qi/∂|Vi|

]
(12)

The resulting values, ∆θi and ∆|Vi|, are used to update
the complex bus voltages, and updates continue until an
equilibrium is reached, i.e., ∆θi = 0 and ∆|Vi| = 0.

In practice, a single expression of the form of (11) is
typically made for the full set of unknown θ and |V |, yielding a
(NPV+2NPQ)×(NPV+2NPQ) Jacobian matrix. To improve the
computational efficiency, the problem can also be reframed in
the form Ax = b to avoid computing the inverse of J . One can
also replace ∆Vi by ∆Vi/Vi and make analogous changes in J
[28]. However, NR is still computationally expensive for large
systems and, like most non-convex optimization procedures,
the iterative update procedure is not guaranteed to converge.
The complexity of each iteration of NR is O(N1.4) and the
space complexity is O(N1.2) [29].

b) DCPF approximation: In the DC power flow (DCPF)
approximation the power system is linearized, yielding an
approximate solution that can be found with a non-iterative
and absolutely convergent procedure. To accomplish this, all
reactive power flows are ignored, all voltage magnitudes are
assumed to be 1 p.u., phase angle differences are assumed
to be small, and branches are considered to be lossless. As
a result, the two power balance equations, (1) and (2), are
reduced to the single equation [30]:

Pi =

Nb∑
k=1

Bikθik (13)

Thus, compared to the ACPF, a solution for θ can be found
analytically, at the expense of accuracy. The time complex-
ity of DCPF is that of a single iteration of NR, which is
O(N1.4) [29]. In practice, DCPF is only useful in tasks where
fast computations are more important than obtaining accurate
solutions [31]. Nevertheless, this approximation serves as a
good baseline for any model that aims to be faster than NR,
while also achieving high accuracy.

c) GNN-based methods: These methods are those that
relate the most to our work. In the following, we briefly point
out their limitations, which are addressed by our framework.

Boltz et al. propose to compute the power flow balance
by applying a GNN on a pre-computed correlation matrix that
determines the neighborhood of the grid buses [13]. The graph
associated with such a correlation matrix does not match the
physical infrastructure of the power grid and does not allow
to account for the physical quantities of the power lines.

In the study from Owerko et al. [12], the top performing
GNN used to solve a version of the optimal power flow
problem utilizes global fully connected layers at the end,

which makes the overall architecture dependent on the specific
topology of the grid. This prevents the use of this GNN to
account for perturbations, such as line disconnections, and to
transfer the model to new grids. In general, this architecture
does not fully exploit the localized computations that charac-
terize the GNN model. In addition, the optimal power flow
problem was simplified, since the only predicted values are
the active generator power outputs.

Donon et al. [10] propose a supervised GNN model that
operates on a graph represented by multiple graph adjacency
matrices, where the vertices are the transmission lines of
the grid, rather than the buses. Drawbacks in their approach
are the omission of branch attributes in the model, which
are important to compute the power flows, and the use of
a specialized architecture to implement a GNN with a large
receptive field.

In a follow-up work, Donon et al. [11] design an unsu-
pervised model that relies on physical equations to iteratively
optimize the voltage and phase angle for each bus. Although
the experimental results show that this model can somewhat
generalize to unseen topologies, the framework is quite com-
plex and relies on a custom formulation of the power flow
problem. Most importantly, the GNN is used to implement
only a specific operation within the whole pipeline, namely to
compute ∆θi and ∆|V |i from ∆Pi,∆Qi, which is the same
type of operation performed by the NR method with a linear
approximation in (11).

Since ∆Pi and ∆Qi, the active and reactive power updates
at each vertex, are computed outside the GNN using global
operations that account for the whole grid topology, it is not
clear how useful the local exchanges implemented by the GNN
are when computing the voltage and phase angle updates.
Arguably, a simpler function approximator such as an MLP
could have worked similarly well.

V. EXPERIMENTS & RESULTS

The code to reproduce the experiments is publicly available
online1.

A. Datasets and Algorithms

We perform three experiments to evaluate the performance
of the proposed GNN-based power flow solver to cover cases
when: i) the underlying grid topology is fixed, ii) the topology
is perturbed with branch disconnections, iii) multiple grids
with different topologies are used to train the GNN model.

All the deep learning models are implemented in Tensor-
flow [32] and we used the Spektral library [33] to build the
GNN architectures. Power grid data for training and testing is
obtained by resampling values in reference case grids provided
by MATPOWER [34], an open-source Matlab library for
solving steady-state power system simulation and optimization
problems, such as power flow balancing. MATPOWER is also
used to compute the solutions with the DCPF and the NR
optimizer. Outputs of the NR optimizer are used as targets for
training the deep learning models.

7

TABLE I: Grid overview

Grid Details

case9 9 bus, 3 generator; based on data from [35].

case14 Conversion of the IEEE 14 bus test case.

case30 Conversion of the IEEE 30 bus test case.
Named case ieee30 in MATPOWER.

case39 39 bus New England system. Modified version
of data from [36].

case57 Conversion of the IEEE 57 bus test case.

case89pegase Small part of an European system stemming
from the Pan European Grid Advanced Simu-
lation and State Estimation (PEGASE) project
[37], [38].

case118 Conversion of the IEEE 118 bus test case.

case300 Conversion of the IEEE 300 bus test case.

a) Data Acquisition: Most of the grid systems consid-
ered here are based on IEEE systems, whose overview is given
in Table I. To ensure that a feasible solution exists, only grids
that are successfully solved by the NR solver in MATPOWER
are included in the dataset. The resampling procedure we
adopted is detailed in the following.

• Active and reactive loads on buses are uniformly sampled
between 50% and 150% of the reference values.

• Shunt susceptances and conductances are uniformly sam-
pled between 75% and 125% of the reference values.

• Active power of generators is uniformly sampled from
the reference values in a range going from 75% up to the
lowest of 125% and the maximum allowed power output
Pg,max. There is a chance that the sampled production
becomes so high that the slack bus ends up with a
negative active power injection. Since this occurs more
often for certain grids, to avoid creating a bias in the
dataset the sampling procedure is reset whenever this
occurs.

• Voltage magnitude for generators is uniformly sampled
from 0.95 p.u. to 1.05 p.u.

• Branch resistances, reactances and charging susceptances
are uniformly sampled between 90% and 110% of the
reference values.

• Branch transformer off nominal turns ratio is uniformly
sampled from 0.8 to 1.2. The shift angle for the trans-
formers are uniformly sampled from -0.2 rad to 0.2 rad.

While quantities such as branch impedances do not frequently
change in a grid, to train the deep learning model with grid
samples with the same topology but differing quantities gives
it the opportunity to understand how these quantities affect
the resulting power flows, thus improving the generalization
across different grids.

Large spreads in the input values encourage a model to learn
large weights. A model with large weights may experience
instability during learning, become over-sensitive to input
values, and achieve poor generalization capabilities. Similarly,
a large spread of values in the output variables may result

1https://github.com/JonasBergHansen/Power-Flow-Balancing-with-
Decentralized-Graph-Neural-Networks

in large error gradients that dramatically change the weight
values and make the learning process unstable [39]. By
converting all the quantities of interest to per unit measures
(p.u.), different grids will have more similar value distributions
compared to using SI units. In return, this facilitates the
application of the same deep learning model to different grids.

b) Deep Learning Models: The proposed GNN model
consists of two fully-connected (FC) pre-processing layers,
five ARMA8

2 layers, and two post-processing layers. All of
these layers have 64 hidden units, and use Leaky ReLU
activations with a negative slope coefficient of α = 0.2. At
the end there is a FC layer with 8 output units and a linear
activation. Due to the use of 5 ARMA layers with 8 iterations
each, the model implements a total of 40 propagation steps.
This defines the receptive field of the GNN, i.e., the GNN
allows each graph vertex to exchange information with the
neighbors within 40 hops on the graph. This configuration was
found through a hyperparameter tuning session using Bayesian
optimization on the data for the second experiment. As a
benchmark, we also consider a GNN model where the ARMA
layers are replaced with conventional GCN layers, discussed in
Section II-D. Since each GCN layer implements only a single
propagation step, we built a GNN with 40 GCN layers of 64
hidden units to obtain the same receptive field of the GNN
with ARMA layers.

The Local MLP is designed to have roughly the same num-
ber of trainable parameters as the ARMA GNN. Specifically,
the Local MLP consists of three hidden layers with 256 units,
two hidden layers with 128 units, one layer with 64 units, and
an output layer with 8 units. All hidden layers are equipped
with a Leaky ReLU with α = 0.2.

For the Global MLP, the number of parameters depends on
the size of the grid(s) it is trained on and, thus, the size of this
model is not scaled to match exactly the number of parameters
of the GNN. Since the Global MLP contains a huge amount
of parameters in the input and output layer, we limited the
depth of this model to prevent overfitting and to avoid having
a number of parameters that is several orders of magnitude
larger than in the other architectures. Specifically, the Global
MLP model consists of bus and branch pre-processing layers
with 64 units each, two hidden layers with 128 units, and an
output layer with number of units equal to eight times the
number of branches. The processing layers and the hidden
layers use Leaky ReLU activations with α = 0.2.

An overview of the model architectures is given in Figure 6.
All models are trained in a supervised manner with a stochastic
gradient descent learning algorithm using a mean squared error
(MSE) loss between predictions and the output of the NR
solver in MATPOWER.

B. Constant Grid Topology

In this first experiment the models are trained only on
instances of the same grid topology, obtained with the re-
sampling procedure described in Section V-A.a. This is the
simplest use case, where the models only need to adapt to
perturbations of the values of a specific set of components,
but not to changes in the underlying graph topology.

https://github.com/JonasBergHansen/Power-Flow-Balancing-with-Decentralized-Graph-Neural-Networks
https://github.com/JonasBergHansen/Power-Flow-Balancing-with-Decentralized-Graph-Neural-Networks

8

Fig. 6: Overview of the architecture of the two GNN models
and the two MLP models, as a combination of message passing
(ARMA and GCN) and fully connected (FC) layers. The num-
bers in parentheses indicate the number of hidden/processing
units. For the Global MLP model, Fout is equal to eight times
the number of branches of the applied grid.

For this task samples of three different MATPOWER case
grids are considered: case30, case118 and case300. A total of
15,000 samples were generated for each of these case grids and
train/validation/test sets were arbitrarily obtained following a
56/14/30 split. Ten instances of the Local MLP, Global MLP,
GCN and ARMA GNN models were trained for 250 epochs,
using the ADAM optimizer with learning rate 0.001 and batch
size 16. After training, the weights of the model that achieved
the lowest validation loss were restored.

TABLE II: NRMSE for test set

Method case30 case118 case300

DCPF 0.574 0.674 0.745
Local MLP 0.350±0.002 0.447±0.002 0.528±0.003

Global MLP 0.044±0.004 0.134±0.003 0.314±0.007

GCN 0.611±0.03 0.887±0.02 0.851±0.02

ARMA GNN 0.022±0.001 0.057±0.002 0.199±0.004

Table II displays the normalized root mean squared error
(NRMSE) values for the branch current and power predictions.
The NRMSE is computed as

NRMSE
(
Y , Ŷ

)
=

1

F

F∑
j=1

√√√√√ 1

N

N∑
i=1

(
Yij − Ŷij

)2

V̂ar(yj)
, (14)

where F is the number of output features, N is the number of
samples and V̂ar(yj) is the sample variance of the j-th output
feature. The ARMA GNN outperforms both MLP models, the
GCN and the DCPF approximation. Compared to the Global
MLP, the ARMA GNN achieves a performance increment
ranging from roughly 40 to 60 percent. It should be noted
that the ratio of the number of parameters between the Global
MLP and the ARMA GNN is roughly 1:2 for case30, 1.5:1 for
case118 and 3:1 for case300, so the difference in performance
is clearly not due to a higher capacity of the GNN model.

The GCN falls behind all other models in terms of NRMSE,
which is likely due to the oversmoothing problem, i.e., the
model is not able to produce a sharp signal in output. An
illustration of the oversmoothing problem in GCN is shown in
Figure 7, which displays for each vertex of case118 the mean

cosine distance between model predictions and the overall
average branch label. The cosine distance is computed as

cosine distance = 1−
ypred · ylabel

∥ypred∥∥ylabel∥
. (15)

where ylabel is the average output vector in the test set. We
obtain the cosine distances for the true labels by replacing
the predictions ypred with ylabel in (15). From the figure, it
is clear that ARMA GNN manages to produce sharp outputs
that coincide very well with the true labels, whereas the GCN
only produces low-frequency signals, i.e., the output associated
with neighboring vertices on the graph is very homogeneous.
Obviously, this is a strong limitation of the GCN model, since
in the power flow balance state the output of neighboring ver-
tices is not necessarily similar. In the remaining experiments
we will only consider a GNN with ARMA layers.

Finally, we test how well the ARMA GNN performs when
trained on samples extracted from a specific grid and then
tested on samples derived from completely different power
grids. For this experiment, we consider case30, case118, and
case300. Figure 8 shows performance of the ARMA GNN on
both the grids used for training and on the other two grids
that are only used for testing. As expected, the GNN achieves
better performance when tested on samples derived from the
same grid used for training. Interestingly, the GNN trained
on case118 performs particularly bad when tested on samples
from case30 and case300.

C. Perturbations of One Grid Topology

In this second experiment the models are trained and tested
on perturbations of a reference grid where, in addition to the
sampling procedure described in Section V-A.a, parts of the
network are disconnected. This setup can reflect scenarios
where the grid is affected by outages or maintenance oper-
ations, and it is crucial that the power flow solver can give
accurate predictions for such cases if it is meant to be used
in, e.g., contingency analysis.

To create a topology perturbation, 5-20 randomly chosen
branches that are not directly connected to the slack bus are
disconnected. If this causes the line graph to become discon-
nected, all the graph components that do not include the slack
bus are removed. Thus, the total number of disconnections
can become larger than what was initially sampled. With this
method, there is a chance that the component with the slack
bus is actually the smallest one and that most of the graph
would be discarded. To avoid this situation, any resulting grid
with less than 10% of the original buses is discarded. Finally,
the value sampling procedure described in Section V-A.a is
applied. If the sampling fails, i.e. the NR solver does not
converge, the process restarts from the disconnection step.

A total of 15,000 samples from case300 were generated and
split into data sets following the same division as in the first
experiment. Figure 9 shows the distribution of the remaining
branches in the final dataset. Despite the initial disconnec-
tions being chosen uniformly, the resulting distribution is not
uniform, since additional disconnections are triggered when a
component of the graph becomes isolated. It is also possible

9

(a) GCN (b) ARMA (c) True values

Fig. 7: Cosine distances between the branch values predicted by the GNNs and the mean of all the true branch values. The
distances are averaged over all test samples of case118.

Fig. 8: Scatter plot of the NRMSE scores achieved by the GNN
ARMA model when trained and tested on different datasets.

Fig. 9: Bar plot showing how many perturbation samples have
a given number of branches remaining (logarithmic y-axis).
For reference, the full case300 grid have 411 branches.

that the NR solver does not converge on certain configurations,
which would contribute to shape the non-uniform distribution.

The same configuration as in the previous experiment was
used to train ten instances of the Local MLP, Global MLP,
and ARMA GNN models. For the Global MLP, since the
parameters in the input and output layers are tied to the
original topology of the case300 grid, we used a padding
strategy to deal with a varying number of vertices/edges in
the graph. In particular, missing values are set to zero during
inference. It is important to note that the zeros enforced here

are meant to represent complete absence and not, for instance,
open lines. The different perturbated grids can thus be seen
as completely different grids that differ slightly in topology,
but are not meant to be fully realistic contingency scenarios
of a common reference grid. For an open line, resistance and
reactance would be infinite, which would not be possible to
set as input for the Global MLP, since it is data-driven and
does not consider the physics explicitly. If these quantities are
instead set to zero, the model can learn what a missing line
means in practice from the relation between inputs and labels.
However, if the grids happen to have very short lines, there
would be instances where r and x are close to zero without
being related to disconnections, in which case the MLP could
struggle to distinguish between open/missing lines and very
short ones (if both are present in training samples). This
highlights another potential issue with MLPs in comparison
to GNNs.

TABLE III: NRMSE for test set

Method case300 Perturbations

DCPF 0.762
Local MLP 0.554±0.001

Global MLP 0.371±0.004

ARMA GNN 0.243±0.002

The resulting NRMSE values for the test set are given
in Table III. As expected, a comparison with the previous
experiment shows that the performance of each model de-
creases in presence of disconnections. The slight increase
of NRMSE for DCPF suggests that when perturbing the
underlying topology, the resulting samples might, on average,
violate the DCPF assumptions to a greater extent. The ranking
of the performance between the models remains the same
as in the previous experiment. The ARMA GNN is still the
best performing model, followed by the Global MLP, which
maintains reasonable performance even under perturbations of
the underlying topology.

The good performance of the Global MLP might appear
surprising at first. However, it can be explained by the fact
that even if the topology changes, each bus/branch in the
grid is always assigned to the same input unit of the Global
MLP. In addition, when a vertex/edge is dropped, it is simply
replaced with a zero-input. Therefore, there is still a one-to-one

10

correspondence between the grid components and the input
units, which allows the Global MLP to factor out (to a certain
extent) the underlying graph topology.

D. Multiple Grids with Different Topology

In this final experiment the models are trained simultane-
ously on samples of six different grids: case9, case14, case30,
case39, case89pegase and case118. In addition, the models are
used to compute solutions for samples of case57 and case300,
which are completely unseen during training.

To let the Global MLP process samples from grids with
different topology, the input and output layer are modified
such that the model can accept samples from any of the
grids seen during training. In addition, the Global MLP can
only process samples from unseen grids that have a number
of vertices/edges less or equal to the maximum number of
vertices/edges seen during training. Each processing unit in
these layers are associated with a specific attribute such as
active load or branch real current injection but, unlike the
configuration of the two previous experiments, these units are
not associated with a specific bus or branch. Thus, for samples
from the smaller grids not all the units will be utilized and the
input and output arrays are zero-padded. On the other hand,
since the Local MLP and ARMA GNN use only localized
operations that do not depend on the number of buses and
edges in the grids, their architectures are unaltered.

A total of 5,000 samples are generated for each of the grids.
Dataset split and training configuration remained the same as
for the previous two experiments, except for the batch size
that was increased to 32 due to the larger total number of
samples. Ten instances of the Local MLP, Global MLP and
ARMA GNN were trained on the mixed grid dataset. Table
IV reports the NRMSE performance obtained in testing new
samples from both the grids used for training and for the
two grids (case57 and case300) that were excluded from the
training set.

When testing against samples coming from the 6 grids used
for training, the ARMA GNN achieves top performance on
all datasets except the case9 data, where the Global MLP
achieves a better score. However, for the larger grids the GNN
surpasses the Global MLP by a large margin, particularly for
case89pegase. Since there is no longer a one-to-one corre-
spondence between the input units and the grid buses, the
Global MLP cannot infer the graph topology from the training
samples. Indeed, the Global MLP is unable to produce accurate
solutions since the same input unit must accommodate, at the
same time, very different types of buses and branches from
multiple grids. This experiment highlights the advantage of
using an architecture that exploits localized operations that
are independent from the underlying topology.

For the unseen grids, the NRMSE scores are substantially
larger than for the grids used in training. The main issue
is that the data distributions of the training and test sets
are too different from each other, which violates one of the
fundamental assumption in statistics and machine learning.
Therefore, it is not surprising that the simple algorithmic
solution generated by DCPF, where no model is learned, is

TABLE IV: NRMSE for test set

Dataset DCPF Local MLP Global MLP ARMA GNN

case9 0.512 0.501±0.019 0.121±0.003 0.207±0.010

case14 0.559 0.361±0.014 0.206±0.004 0.188±0.005

case30 0.573 0.411±0.011 0.313±0.006 0.212±0.007

case39 0.552 0.550±0.002 0.249±0.001 0.097±0.003

case89pegase 0.606 0.462±0.008 0.791±0.006 0.071±0.001

case118 0.674 0.456±0.002 0.672±0.015 0.140±0.005

case57 0.584 1.213±0.079 3.168±0.338 1.345±0.232

case300 0.746 5.361±1.499 N/A 2.478±1.636

more suitable in these cases. It is, however, worth noticing
that also for the two unseen grids case57 and case300 the
ARMA GNN clearly outperforms the Global MLP. Also, when
comparing to the first experiment we see that a GNN trained
on multiple topologies improves its performance on unseen
grids. This improvement comes at the expense of a small drop
in performance on the samples from grids seen during training.
Finally, we notice that the Global MLP is not able to compute
predictions for case300 since the number of buses/branches
are greater than in the grids used for training and the model
does not have sufficient input and output units available.

VI. DISCUSSION & CONCLUSIONS

We investigated the potential of a fully localized GNN
trained end-to-end to balance power flows. To enable exchange
of information between distant vertices in the graph, we built
a very deep GNN architecture endowed with ARMA layers,
which prevents oversmoothing of the output features. We also
adopted a line graph representation to avoid treating separate
categories of vertices differently, which can be difficult to han-
dle for a fully decentralized GNN. Importantly, the proposed
representation encompasses all the relevant physical quantities
of the power system and the data format can be seamlessly
processed by all the most common GNN architectures.

The experimental results show that the proposed ARMA
GNN model outperforms a Global MLP with a larger capacity
and a global view of the graph, even when computing solutions
for a fixed grid topology. This demonstrates the importance
of using models that directly account for the graph topology
of the grid and the effectiveness of the proposed line graph
representation.

Compared to an MLP, a single GNN model can be trained
on multiple grid architectures and achieves good performance
on samples from the same grids used in training. However,
even if the GNN outperforms the MLP, no model is particu-
larly effective in predicting power flows in grids completely
different form these seen during training. This is not surprising
since most machine learning and statistical models generalize
well only when the data in the training and in the test set are
similar enough and share the same properties.

We observed that the Global MLP achieves lower perfor-
mance than the ARMA GNN, yet still performs reasonably
under perturbations of a specific grid topology. The reason
is that there is still a one-to-one correspondence between
the input nodes of the MLP and the buses in the graph,
which allows to infer the underlying topology. Moreover, the

11

perturbations might act as a regularization factor, which forces
the MLP to not rely on all components being present at the
same time. On the other hand, the MLP is completely unable to
handle, at the same time, samples coming from different grid
topologies. Similarly, it would be impossible for the MLP to
handle perturbations in the form of addition of buses/branches
rather than disconnections. In this case, designing a Global
MLP that matches every conceivable configuration is clearly
unfeasible, while a GNN with fully localized operations would
have a clear advantage.

REFERENCES

[1] M. A. Salam, Fundamentals of Electrical Power Systems Analysis.
Springer, 2020.

[2] S. Dutto, G. Masetti, S. Chiaradonna, and F. D. Giandomenico, “On
extending and comparing newton–raphson variants for solving power-
flow equations,” IEEE Transactions on Power Systems, vol. 34, no. 4,
pp. 2577–2587, 2019.

[3] A. K. Ozcanli, F. Yaprakdal, and M. Baysal, “Deep learning methods
and applications for electrical power systems: A comprehensive review,”
International Journal of Energy Research, vol. 44, no. 9, pp. 7136–7157,
2020.

[4] M. Khodayar, G. Liu, J. Wang, and M. E. Khodayar, “Deep learning in
power systems research: A review,” CSEE Journal of Power and Energy
Systems, vol. 7, no. 2, pp. 209–220, 2020.

[5] Y. Zhao and B. Zhang, “Deep learning in power systems,” in Advanced
Data Analytics for Power Systems, A. Tajer, S. M. Perlaza, and H. V.
Poor, Eds. UK: Cambridge University Press, 2021, ch. 3, pp. 52–73.

[6] V. L. Paucar and M. J. Rider, “Artificial neural networks for solving the
power flow problem in electric power systems,” Electric Power Systems
Research, vol. 62, no. 2, pp. 139–144, 2002.

[7] B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, “Fast
power system security analysis with guided dropout,” in 26th European
Symposium on Artificial Neural Networks, April 2018.

[8] M. Singh, V. Kekatos, and G. B. Giannakis, “Learning to solve the ac-opf
using sensitivity-informed deep neural networks,” IEEE Transactions on
Power Systems, pp. 1–1, 2021.

[9] A. S. Zamzam and K. Baker, “Learning optimal solutions for extremely
fast ac optimal power flow,” in 2020 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), 2020, pp. 1–6.

[10] B. Donon, B. Donnot, I. Guyon, and A. Marot, “Graph neural solver
for power systems,” in 2019 International Joint Conference on Neural
Networks (IJCNN), 2019, pp. 1–8.

[11] B. Donon, R. Clément, B. Donnot, A. Marot, I. Guyon, and M. Schoe-
nauer, “Neural networks for power flow: Graph neural solver,” Electric
Power Systems Research, vol. 189, p. 106547, 2020.

[12] D. Owerko, F. Gama, and A. Ribeiro, “Optimal power flow using graph
neural networks,” in ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 5930–
5934.

[13] V. Bolz, J. Rueß, and A. Zell, “Power flow approximation based on graph
convolutional networks,” in 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA), 2019, pp. 1679–1686.

[14] C. Kim, K. Kim, P. Balaprakash, and M. Anitescu, “Graph convolutional
neural networks for optimal load shedding under line contingency,” in
2019 IEEE Power Energy Society General Meeting (PESGM), 2019, pp.
1–5.

[15] D. Wang, K. Zheng, Q. Chen, G. Luo, and X. Zhang, “Probabilistic
power flow solution with graph convolutional network,” in 2020 IEEE
PES Innovative Smart Grid Technologies Europe (ISGT-Europe), 2020,
pp. 650–654.

[16] C. Nauck, M. Lindner, K. Schürholt, H. Zhang, P. Schultz, J. Kurths,
I. Isenhardt, and F. Hellmann, “Predicting dynamic stability of power
grids using graph neural networks,” arXiv preprint arXiv:2108.08230,
2021.

[17] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural
networks with convolutional arma filters,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2021.

[18] F. Milano, Power System Modelling and Scripting. Springer, 2010.
[19] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,

2016.

[20] D. Bacciu, F. Errica, A. Micheli, and M. Podda, “A gentle introduction
to deep learning for graphs,” Neural Networks, vol. 129, pp. 203–221,
2020.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[23] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017.

[24] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in AAAI, 2018.

[25] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[26] F. Harary and R. Z. Norman, “Some properties of line digraphs,”
Rendiconti del Circolo Matematico di Palermo, vol. 9, no. 2, pp. 161–
168, 1960.

[27] J. You, Z. Ying, and J. Leskovec, “Design space for graph neural
networks,” in NeurIPS, 2020.

[28] A. J. Conejo and L. Baringo, Power System Operations. Springer, 2018.
[29] F. Alvarado, “Computational complexity in power systems,” IEEE

Transactions on Power Apparatus and Systems, vol. 95, no. 4, pp. 1028–
1037, 1976.

[30] H. Seifi and M. S. Sepasian, Electric Power System Planning: Issues,
Algorithms and Solutions. Springer-Verlag Berlin Heidelberg, 2011.

[31] J. Zhu, Optimization of Power System Operation. John Wiley & Sons,
2015.

[32] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[33] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow and
keras with spektral [application notes],” IEEE Computational Intelli-
gence Magazine, vol. 16, no. 1, pp. 99–106, 2021.

[34] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on Power Systems,
vol. 26, no. 1, pp. 12–19, 2011.

[35] J. H. Chow, Time-Scale Modeling of Dynamic Networks with Applica-
tions to Power Systems. Springer, 1982.

[36] G. Bills, “On-line stability analysis study, rp 90-1,” Edison Electric
Institute, Tech. Rep., 1970.

[37] C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, “Ac power flow
data in matpower and qcqp format: itesla, rte snapshots, and pegase,”
arXiv preprint arXiv:1603.01533, 2016.

[38] S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel, “Con-
tingency ranking with respect to overloads in very large power systems
taking into account uncertainty, preventive, and corrective actions,” IEEE
Transactions on Power Systems, vol. 28, no. 4, pp. 4909–4917, 2013.

[39] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
university press, 1995.

https://www.tensorflow.org/

	Introduction
	Theoretical Background
	Notation
	The Power Flow Problem
	Multi-Layer Perceptrons
	Graph Neural Networks

	Methodology
	Power grid representation
	GNN Design
	MLP Design

	Related work on power flow balancing
	Experiments & Results
	Datasets and Algorithms
	Constant Grid Topology
	Perturbations of One Grid Topology
	Multiple Grids with Different Topology

	Discussion & Conclusions
	References

