
Array 13 (2022) 100118

Available online 28 December 2021
2590-0056/© 2021 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

TFHE-rs: A library for safe and secure remote computing using fully
homomorphic encryption and trusted execution environments

Lars Brenna a,*, Isak Sunde Singh b, Håvard Dagenborg Johansen c, Dag Johansen c

a UiT Arctic University of Norway: UiT Norges arktiske universitet Tromso, Troms, Norway
b UiT - Arctic University of Norway| UiT Arctic University of Norway: UiT Norges arktiske universitet, Norway
c UiT Arctic University of Norway: UiT Norges arktiske universitet, Norway

A B S T R A C T

Fully Homomorphic Encryption (FHE) and Trusted Execution Environ-ments (TEEs) are complementing approaches that can both secure computa-tions running
remotely on a public cloud. Existing FHE schemes are, however, malleable by design and lack integrity protection, making them susceptible to integrity breaches
where an adversary could modify the data and corrupt the output.

This paper describes how both confidentiality and integrity of remote compu-tations can be assured by combining FHE with hardware based secure enclave
technologies. We provide a software library for performing FHE within the Intel SGX TEE, written in the memory-safe programming language Rust to strengthen the
internal safety of software and reduce its attack surface.

We evaluate a sample application written with our library. We demonstrate that we can feasibly combine these concepts and provide stronger security guar-antees
with a minimal development effort.

1. Introduction

Outsourcing data and computation services to public cloud providers
de-mands security mechanisms that can enforce strict data confidenti-
ality and in-tegrity regulations. This is particularly important for ap-
plications and orga-nizations that prosess sensitive data. Two
orthogonal approaches for securing data processing activities are
actively being touted as potential game changers: Homomorphic
Encryption (HE) and hardware based TEEs.

HE promises computation on encrypted values without revealing
their con-tent. Research in the area increased after 2009, when Craig
Gentry [1], in his doctoral thesis, described the first technique for
achieving FHE nearly 30 years after the idea was conceived [2]. FHE
enables outsourcing of many types of computations that previously had
to be kept in-house due to confidentiality constraints, including
health-data processing, financial processing, and genome research.

Though FHE schemes can provide confidentiality, they cannot pro-
vide in-tegrity as all HE schemes are malleable by design. A maliciously
altered result is theoretically indistinguishable from the correct one. If
the remote service processing data is not trusted for confidentiality it
should not be trusted for integrity either. The actual computations
performed on data encrypted using FHE will also be visible, which might
be unacceptable in some situations as the operations themselves might

be secret. As such, FHE only partially solves the problem of outsourcing
computation with integrity constraints to public cloud services. While
the problems with data integrity are unsolved, FHE has limited practical
use.

Trusted Execution Environments (TEEs) have similar ambitions as
HE in that they protect the integrity and confidentiality of programs and
data hosted on remote and untrusted machines. Trusted Execution En-
vironments (TEEs) do this by isolating running processes from the
operating system and other con-currently running processes through
various hardware facilities. However, it has been shown that existing
TEEs, such as the Intel Software Guard Exten-sions (SGX), are suscep-
tible to several types of side-channel attacks where an adversary can
gain information of the code and data within a secure environ-ment
[3–6]. Although most attention in the literature has been given to
SGX, some attacks target all processors supporting Simultaneous
Multithread-ing (SMT) [7]. Hardware technology that reveals secrets
internally thus cannot be relied on to provide highly assured confiden-
tiality in public cloud settings. There are some ways to counter this, such
as using oblivious primitives like Oblivious RAM (ORAM) [8], which
obscures access patterns to prevent infor-mation leakage through
side-channels. Oblivious methods do, however, incur significant per-
formance overhead to computation.

In this paper, we investigate the intersection between these concepts

* Corresponding author.
E-mail addresses: lars.brenna@uit.no, larslars.brenna@gmail.com (L. Brenna).

Contents lists available at ScienceDirect

Array

journal homepage: www.sciencedirect.com/journal/array

https://doi.org/10.1016/j.array.2021.100118
Received 25 February 2021; Accepted 2 December 2021

mailto:lars.brenna@uit.no
mailto:larslars.brenna@gmail.com
www.sciencedirect.com/science/journal/25900056
https://www.sciencedirect.com/journal/array
https://doi.org/10.1016/j.array.2021.100118
https://doi.org/10.1016/j.array.2021.100118
https://doi.org/10.1016/j.array.2021.100118
http://creativecommons.org/licenses/by/4.0/

Array 13 (2022) 100118

2

within the stated security context, and propose a hybrid approach that
combines the confidentiality strengths of FHE with the integrity
strengths of TEEs. We do so using the memory-safe programming lan-
guage Rust [9]. Using Rust miti-gates large classes of dangerous and
common security-related bugs, including memory corruption errors,
buffer overflows, uninitialized memory, data races, dereferenced
pointers to unallocated memory (e.g., null-pointer dereferencing), and
dereferenced pointers causing access violations [10–12]. We evaluate
the performance of our hybrid approach by implementing a program
that uses FHE both outside and within SGX. By comparing the relative
performance difference, we demonstrate that a hybrid approach is
feasible in terms of per-formance while retaining more robust security
and safety guarantees than using either FHE or SGX separately. To our
knowledge, our approach is the first work that combines a TEE with FHE
to cover integrity weaknesses of FHE.

2. Background

All HE systems are malleable by design since an attacker can trans-
form a ciphertext into a different ciphertext and then have it decrypted
to a related plaintext. For instance, consider the following homomorphic
encryption scheme:

Ek(x)⊗Ek(y)=Ek(x, y) (1)

Ek(x) is the encryption of the plaintext x with the key k, × is some
binary operation between plaintexts, and ⊗ is a lifted version of × ,
operating in the ciphertext space. Note that the lifted operator ⊗ does
not necessarily involve the same operations as the × operator, which
implies it may have a higher complexity. Assume an attacker knows x
and y in addition to their encryptions Ek(x) and Ek(y), and there exists
some pair (x, y) such that x × y ∈/{x, y}. The attacker can then compute
Ek(x) ⊗ Ek(y) to obtain a ciphertext C, that corresponds to the encryption
of x × y, which beforehand was assumed to be

different than x and y. Because of this, the attacker has obtained a
ciphertext that corresponds to a plaintext, x × y that they know, but
whose ciphertext they have not observed previously.

Although malleable encryption schemes are secure under standard
Indistin-guishability under Chosen-Plaintext Attack (IND-CPA), they are
not secure un-der Indistinguishability under Adaptive Chosen-
Ciphertext Attack (IND-CCA2) [13], as opposed to non-malleable cryp-
tosystems [14]. Furthermore, it has been shown that some encryption
schemes that are IND-CPA become insecure when they encrypt their
own decryption key [15], often referred to as circular security. As.

HE schemes encrypt their decryption key as part of the bootstrapping
process, they have circular security properties.

A TEE is an isolated computing environment guaranteeing to protect
both code and data loaded within it. Although various definitions of
TEEs have been proposed [16–19], Sabt et al. [20] compare these def-
initions and formalize a description for TEEs by building on the notion of
a separation kernel, first described by Rushby [21], and define four main
security policies.

A TEE should guarantee the authenticity of the executed code,
including the integrity of the runtime state, such as CPU registers. It
should guarantee the confidentiality of code, data, and runtime state
persisted to secondary memory, for instance through encryption. A TEE
should have the possibility of provid-ing remote attestation, proving
trustworthiness for third-parties. Updates of content within a TEE should
be done securely. A TEE should resist all attacks that are performed
against main memory. Attacks performed through backdoor security
flaws should not be possible. Consequently, a TEE should be secure in a
way that even an OS is separated and cannot access nor modify it. These
conditions warrant that tasks can be sent to third-parties and executed
within a TEE, without requiring trust in that party. This allows for data-

sensitive tasks to be outsourced, given they provide a TEE.
Several known methods exist for an adversary to physically attack

hard-ware components to extract information. This includes power-
monitoring (or power-tweaking) attacks such as Plundervolt [22],
acoustic cryptanalysis attacks [23], electromagnetic attacks, and optical
attacks. Software-based side-channel attacks range from page-fault
based attacks [3], cache-based attacks [4], and interface-based attacks
[5], all targeting confidentiality.

The TEE manufacturer must also be trusted to provide sound soft-
ware and development tools. In the case of Intel SGX, various software
systems and a Software Development Kit (SDK) are provided, in addition
to the on-chip hardware mechanisms. As of February 2021, the Intel SGX
Linux SDK consists of around 360 000 Source Lines of Code (SLoC).

3. The TFHE-rs library

In this paper, we propose a hybrid approach that combines the
confidentiality strengths of FHE with the integrity strengths of TEEs, and
have developed a Rust library as a proof-of-concept.

The TFHE-rs library combines HE with code executing inside a TEE
to provide both confidentiality and integrity. By processing ciphertexts
within a TEE, an adversary cannot modify nor even read the ciphertext,
eliminating the issue of malleability and thus providing stronger secu-
rity. For our TEE we use Intel SGX and for homomorphic operations we
use the Fast Fully Homomorphic Encryption over the Torus (TFHE)
scheme, first described by Chillotti et al. [24].

TFHE is a symmetric lattice-based FHE scheme that works by
represent-ing polynomials with coefficients over T, the set of real
numbers modulo 1, or R/Z. Chillotti et al. [24] also provide an accom-
panying library implemen-tation [25], which we will refer to as TFHE-c
in this paper. A key benefit of the TFHE-c library is that it is designed to
compute on bits. In contrast, other schemes like Homomorphic
Encryption Arithmetic of Approximate Num-bers (HEAAN) (also called
Cheon-Kim-Kim-Song (CKKS)) [26] and Brakerski- Gentry-Vaikun
tanathan (BGV) [27], work with approximate numbers as the plaintext
space is within the complex numbers.

The BGV scheme is more appropriate than the others for use with
integer arithmetic. This scheme is applicable for building circuits, but is
more complex

in use and requires the developer to have considerable knowledge of
its inner workings to establish an efficient HE program. An imple-
mentation of BGV can also be found in HElib.1 All of these schemes build
on the Learning With Errors (LWE) problem or its ring-variant, Ring
Learning With Errors (RLWE). Our TFHE-rs library implementation is
heavily inspired by the existing TFHE library [25] 2 and with key parts
running within the TEEs of Intel SGX for integrity. It is implemented in
Rust rather than C++ to help ensure memory safety.

Moreover, TFHE-rs is written entirely in the safe subset of Rust, and
will not compile if the unsafe keyword is used in our codebase. This is
enforced by a crate diagnostics attribute, forbid (unsafe_code), which
also prevents over-riding the attribute in our crate. However, some of
our external dependencies require the use of the unsafe part of Rust to
interact with low-level operations, such as providing randomness
through assembly instructions.

3.1. Datastructures

In the TFHE-c library, many structures have fields that are strictly
pointers to another struct type. In C and C++, this is indistinguishable
from an array pointer, unless one looks at the initialization site.
Dynamically allocated arrays such as these are equivalent in

1 https://github.com/homenc/HElib.
2 We build entirely on the code at this commit https://github.com/tfhe/tfhe/

commit/76db530cf736a25115ea0b0ccdb9267b401bb9a7.

L. Brenna et al.

https://github.com/homenc/HElib
https://github.com/tfhe/tfhe/commit/
https://github.com/tfhe/tfhe/commit/

Array 13 (2022) 100118

3

functionality to the Rust std:vec:Vec type, and are unambiguous in
contrast to the original library’s implementation.

Structures with pointer-fields in C++ do not specify whether they
own the data they reference or whether the pointers reference memory
given to it dur-ing initialization. For instance in the case of struct Data {
val: Vec<i32>} versus struct Data { val: &mut [i32]} (lifetime anno-
tations elided for brevity). This distinction is necessary for Rust, as it
tracks ownership. In TFHE-rs, we chose the former as it is more
manageable than the latter, and it seems that the TFHE library chose this
solution as well, based on their usage. Integer and floating-point data
types have direct equivalents in Rust, and are thus translated directly.

The TFHE source code has some structures where a field is a pointer
to values within a dynamically-allocated array that a different field in
the same structure also references, i.e. self-referential structures. When
one moves a value in memory, the referenced value in the self-referential
structure is invalidated. This makes them inherently dangerous and thus
disallowed by the type system in Rust. As a solution, we chose to remove
these fields and access the values directly, at the loss of some readability.

The TFHE library also has some occurrences of void pointers meant
to be specialized by a Fast Fourier Transform (FFT) implementation. The
use of these pointers is somewhat equivalent to Rust’s trait system which
allows multiple implementations while providing a stable interface.
Since we do not aim to allow multiple implementations of the FFT, we
could avoid this abstraction.

3.2. Parameter sets

TFHE-rs supports creating keys of different security levels. Choosing
pa-rameters for encryption schemes based on LWE is complicated, as
choosing a parameter set with incompatible values might lead to an
insecure or slow sys-tem. Our implementation currently supports the
two parameter-sets defined in TFHE-c, which have estimated security
levels of 80-bit and 128-bit, known as bit security [28]. However, the
key size is not directly proportional to the secu-rity level, as in AES,
where a security level of 128-bit equates to a 128 bits key size. In TFHE,
a security level of 128-bit equates to a ~ 24 MB bootstrapping key [29].
The default parameter set in our library is the 128-bit security version as
cryptographers do recommend 128-bit security to be safe until theo-
retically the year 2090 [28].

3.3. Serialization

All data structures that might need to be transmitted are serializable
and deserializable, using the Rust package Serde.3 Serde designs seri-
alization and deserialization so that any data structure that implements
one of two traits can be serialized or deserialized to one of the tens of
different serialization for-mats supported. This is unlike the TFHE li-
brary, where serialization of data can only be done through specific
functions for reading and writing files and streams. These functions are
somewhat limited and do not allow the developer to specify the serial-
ization format. In TFHE-rs, a macro allows deriving the implementation
automatically, such as (line 3 highlights derive macro):

Implementing these traits allows the user of the library imple-
mentation to choose the serialization format that fits the use-case best.
As ciphertexts are quite large and contain many integers, a binary format
might be best suitable.

3.4. SGX integration

We chose to use Fortanix’s Rust EDP4 rather than one of the several
avail-able SDKs. SDKs typically allow low-level control of SGX and the
SDK, while the Fortanix Rust EDP aims for an easy way to write pro-
grams for SGX by being a platform compilation target.

Fortanix’s project is recognized by Rust as a supported target plat-
form and currently has an official tier 2 status.5 Tier 2 support means
code is guaranteed to build on the platform and is part of the language’s
continuous build testing system. As such, regular Rust programs that do
not use multiple processes or rely on OS functionality should work out of
the box. These guarantees allow us to easily integrate our FHE library
into a program that runs within an SGX enclave and is the main reason
why we chose to use the Fortanix Rust EDP for working with SGX.

Our example program using our TFHE-rs implementation and the
Fortanix Rust EDP requires no special handling other than specifying the
stack and heap size required for the program. The lack of special
handling implies that users of our ported library can easily use the
hybrid solution of FHE and SGX in the cloud.

4. Evaluation

We evaluate the performance of TFHE-rs using micro benchmarks
and by implementing the classic Yao’s Millionaires’ Problem [30].
Because our key objective is to mitigate the integrity weaknesses in FHE
schemes while retaining performance, our experiments focus on the
computational overhead incurred by our hybrid approach. As baseline
we use the TFHE-lib implementation by Chillotti et al. [25].

TFHE-lib provides several different FFT processors, including FFTW,
which claims to be the fastest free FFT implementation available.6

TFHE-rs uses the RustFFT crate, which does not currently use any Single
Instruction, Multiple Data (SIMD) instructions, only pure Rust, and
therefore cannot use FFTW. To factor out potential unrelated perfor-
mance benefits that stem from the usage of FFTW, TFHE-lib is linked
with the Nayuki project’s portable C implemen-tation.7 Furthermore,
Chillotti et al. [29] provide two benchmarks: one uses the Lagrange
half-complex representation internally, and the other does not. We use
the latter benchmark as our implementation does not use the Lagrange
representation.

4.1. Micro benchmarks

Each micro benchmark was repeated 50 times to obtain averages and

3 https://crates.io/crates/serde or their homepage https://serde.rs/

4 https://github.com/fortanix/rust-sgx or their homepage https://edp.fort
anix.com/

5 https://forge.rust-lang.org/release/platform-support.html.
6 http://www.fftw.org/.
7 https://www.nayuki.io/page/fast-fourier-transform-in-x86-assembly.

L. Brenna et al.

https://crates.io/crates/serde
https://serde.rs/
https://github.com/fortanix/rust-sgx
https://edp.fortanix.com/
https://edp.fortanix.com/
https://forge.rust-lang.org/release/platform-support.html
http://www.fftw.org/
http://www.nayuki.io/page/fast-fourier-transform-in-x86-assembly

Array 13 (2022) 100118

4

stan-dard deviations. These measurements are done without involving
SGX. Our measurements are summarized in Table 1.

4.1.1. Encryption and decryption speed
The encryption procedure is slower due to random number genera-

tion and allocation, whereas the decryption procedure consists of only
simple arithmetic. This implies that the throughput of decryption is also
twice as high as for encryption.

4.1.2. Key generation
The key generation procedure generates the secret symmetric key

used for encrypting and decrypting data in the TFHE scheme, and the
bootstrapping key and the key-switching keys which are required during
the bootstrapping process. We collectively name these the bootstrapping
keys for brevity, as it is the only process using them. The key generation
uses an average of 527.67 μs ± 24.269 μs to generate the keys. As this
process depends heavily on random number generation, it is affected by
fluctuations in time used to generate num-bers.

4.2. Bootstrapping

The bootstrapping procedure takes an LWE sample as input, along
with an output message encoded in the message space and the boot-
strapping keys. As shown in Fig. 1, the average execution time of a single
bootstrapping procedure is 1.1937 s, significantly higher than the
implementation of the original paper taking around 53 ms on similar
hardware [29] and improved work leading to around 13 ms [25].

However, the TFHE affords some optimizations we have not imple-
mented in TFHE-rs. Firstly, it uses the Lagrange half-complex repre-
sentation, which reduces the number of multiplications required in the
bootstrapping procedure by nearly a third. It also reduces the number of
external products required, the expensive operation performed in the
bootstrapping procedure. Secondly, the original implementation uses
FFT processors based on SIMD instruction sets such as AVX, providing
large speedups. The outliers observed in the figure are, similarly to the
outliers in the decryption and encryption procedures, likely related to
interactions with other processes using the CPU. As most of the samples
fall in a near-identical spot, it is reasonable to assume most results will
lie in this range. Additionally, this procedure is deterministic and was
benchmarked using the same inputs, so we assume that the outliers can

be disregarded and that the mean can be used as an estimate.

4.2.1. Comparison between optimized and non-optimized implementation
Fig. 2 shows a comparison of the performance differences between

our näıve polynomial multiplication procedure, with time complexity of
O n2, to the FFT-based implementation. We observe that the FFT-based
implementa-tion provided a decrease in execution time of 74.408%.

One thing to note is that changing from the 128 to the 80 bit
parameter set makes the bootstrapping operation ~ 2 times faster in the
FFT-optimized implementation. This result shows that the parameter set
used in encryption has a substantial impact on performance.

Executing the TFHE-c library’s benchmark using the FFT imple-
mentation written in C without SIMD instructions gives us an average of
614.47 ms for a single bootstrapping operation. Compared to our
implementation, this is only ~ 2 × faster, which is not too bad consid-
ering that our objective was not to implement a fast implementation, but
rather an implementation that was memory safe, easy to use, and would
easily integrate with SGX.

Finally, we also performed the benchmark of the TFHE library with
all their optimizations included. We use their spqlios FFT processor with
the FMA instruction set extensions and achieved an execution time of
14.771 ms. This number is similar to their findings, but should not be
compared directly to ours as it implements several more optimizations.

4.3. Yao’s millionaires’ problem

Andrew Yao introduced a Secure Multi-Party Computation (SMPC)
(com-putations performed by multiple parties with private inputs)
problem in 1982 known as Yao’s Millionaires’ problem [30]. The
problem is simple and considers two millionaires, Alice and Bob,
wishing to figure out which of them is wealth-ier, while at the same time
keeping their actual wealth private. Essentially, the problem aims to
calculate the following: a ≤ b, where a represents the wealth of Alice in
some monetary unit, and b represents Bob’s wealth in the same unit,
while remaining private for the computing party. Yao’s Millionaires’
Problem is a problem that may seem simple in practice, but it operates
under conditions that make it challenging to solve. Thus, it is good to use
as proof that a par-ticular system can solve problems in the domain of
SMPC. The problem has several solutions, with techniques ranging from
oblivious transfer methods [31], private set intersections with HE [32]
to FHE.

4.3.1. Socialist millionaire problem
In this modification of Yao’s Millionaires’ problem, two millionaires

wish to compare their wealth and figure out if it is equal or not, while not
Fig. 1. Detailed view of the estimated PDF of bootstrapping. The mean estimate
is 1.1937 s and the median is 1.1969 s with a std. deviation of 13.234 ms.

Fig. 2. The execution time of the bootstrapping operation in our imple-
mentation with and without the polynomial multiplication based on FFT. The
Näıve red region marks the näıve implementation of the polynomial multipli-
cation, while the FFT blue region marks the optimized version.

Table 1
Summary of micro benchmarks.

time (μs) throughput (KiB s− 1)

Encryption 1.654 50 73.916
Decryption 0.797 62 148.79
Key Generation 527.67

L. Brenna et al.

Array 13 (2022) 100118

5

disclosing information about their actual wealth to each other [33].
Essentially it aims to calculate the following: a = b, where a and b
represent the wealth of the two parties, respectively, and are private.

4.3.2. Fused millionaire problem
To increase the computational load in our experiments, we consider

a fused problem of Yao’s Millionaires’ problem and the socialist
millionaire problem. In this problem, we aim to figure out the total
ordering of two parties’ wealth while keeping their actual wealth’s
private. That is to say when a represents party A’s wealth, and b party
B’s, and both are private, we want to figure out which one of the three
cases is true:

• A is wealthier than B
• B is wealthier than A
• A and B have equal wealth

We solve this problem by encrypting the values using the TFHE
scheme. Technically, this requires two parties to compute on encrypted
data jointly using a multi-key setup. Multi-key HE is possible, as shown
in Ref. [34], which conveniently turns the TFHE scheme we use into a
multi-key TFHE scheme.

Using the multi-key TFHE scheme, the two parties would encode and
encrypt their respective amount of wealth, transmit them to a computing
node, where their partial evaluation keys are combined, and then the
comparisons computed.

4.3.3. Implementation of the fused millionaire problem
We start by producing the binary decomposition of the two values.

We use two 32-bit signed integers for this purpose. For each of the
values, we decompose them into bytes in big-endian order, then
decompose those into the individual bits. We use big-endian as we
implemented the circuits we use to work on big-endian values. Then
each bit is individually encrypted with our TFHE implementation. This
results in two pairs of 32 ciphertexts representing the encryption of the
two values. In a multi-key setup, the two parties perform these actions
separately after completing a key-exchange protocol. Note that our
implementation of the TFHE scheme does not support multi-key setups
as we based it on an implementation that also did not support it.
However, supporting it would only necessitate adding a key combina-
tion step that scales linearly with the number of parties.

After this, the setup phase is complete. We then perform the com-
parison circuit equivalent to computing a ≤ b and the equality circuit
equivalent to a = b, both computing on a list of encrypted bits (two pairs
of 32-bits) producing encrypted results. These two circuits are inde-
pendent and are thus evaluable in parallel, although our implementation
performs them sequentially.

4.4. TFHE-rs with and without SGX

Next, we evaluate and compare the performance of TFHE-rs with and
with-out the use of SGX. We repeat each experiment 25 times, timing
only the relevant sections. Running with 80-bit security, TFHE-rs with
SGX finished with an arithmetic mean of 90.504 s and a standard de-
viation of 0.602 86 s while the FHE-only version finished in 116.08 s and
a standard deviation of 2.3548 s. These results indicate that TFHE-rs is
approximately 28% faster with SGX.

There is known overhead associated with SGX memory encryption
and pag-ing. However, we explain the performance improvement be-
tween the two ver-sions of TFHE-rs by how an SGX enclave handles
memory. For this, we profiled our non SGX program using the 128-bit
security parameter set, which is the one that uses most memory, with
the memory profiler for Linux.8 The observed memory usage over time is

shown in Fig. 3, while the rate of allocations of deallocations are shown
in Fig. 3b and c. From the figures we can see that the program constantly
consumes around 100 MiB of memory, and has a rate of allocations and
deallocations of about 100 000 per second.

As can be seen from the memory profiling, the program does a sig-
nificant amount of allocations and deallocations. Regular Rust code on
Linux relies on the standard libc malloc9 allocator. However, the For-
tanix Rust EDP platform, which our SGX implementation builds on, uses
the dlmalloc10 allocator. This allocator emphasizes minimizing memory
usage and fragmentation, something that would occur when a program
regularly allocates and deallocates memory, like our program does.
Although each allocation in TFHE-rs is relatively small, around a few
kibibytes each, relating to the vectors used for numeric processing, and
never above 1 MiB, we wanted to see if a different allocator could ac-
count for the 28% speedup in execution time. We therefore modified
TFHE-rs to use the dlmalloc allocator and repeated the tests. With the
modified TFHE-rs we obtained an average of 93.556 s with a standard
deviation of 1.4932 s for the program with 80-bit security and an
average of 160.61 s and 3.9251 s. This result is only approximately 3%
slower than TFHE-rs with SGX. The combined results are shown in
Fig. 4.

As can be observed from the figure, using 128-bit security signifi-
cantly im-pacts performance. The hybrid program executes roughly
72.5% slower, and the FHE only using dlmalloc for allocation is 71.7%
slower than the ones with 80-bit security. As mentioned, this is because
ciphertexts in the TFHE scheme grow substantially in size with increased
security and thus increases the required computation. As for the per-
formance difference with and without SGX, the ex-ecution time differ-
ence of only 3% is low. Thus, a user would benefit from using the SGX
version, which covers the integrity weaknesses of the FHE.

Why the SGX version is faster than the program using only FHE is un-
clear. However, the standard deviations measured for the FHE-only
version are higher, as seen in Fig. 4, which implies that the perfor-
mances could be more similar than they appear. Another reason could be
because of automatic frequency scaling of the CPU. However, turning
this off yielded the same re-sults. We witnessed no other behavior,
including syscalls, that could explain the performance differences. The
syscalls mostly consisted of memory alloca-tion calls, which are handled
by the enclave memory manager. Our program is single-threaded; it
does not use any SIMD instructions, nor include randomness during the
measured execution times. If we are to speculate, the performance gain
might be a result of the SGX SDK optimizing some situations that are
normally not possible to optimize, due to the complexity of the OS and
process interactions.

5. Related work

Drucker and Gueron [35] state that most secure cloud database so-
lutions tend to provide confidentiality and integrity of data by using
either a TEE or HE. They show that combining a TEE and using HE is
feasible and does not need to rely on the TEE for confidentiality pur-
poses. They compare their work to CryptDB [36] and MrCrypt [37],
which both use Partially Homomorphic En-cryption (PHE), but lack
integrity security for both code and data. Drucker and Gueron combine
the PHE scheme Paillier [38] and SGX, where SGX pro-vides integrity of
code and data (in addition to some confidentiality guarantees,
side-channel attacks aside). The Paillier cryptosystem ensures data is
private and provides confidentiality, even within the enclave. The
combination allows the system to place less trust in Intel, as the Paillier
cryptosystem guarantees confidentiality for the encrypted data while
allowing some computations. In their experiments, they only experience

8 https://github.com/koute/memory-profiler.

9 https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocat
or.html.
10 http://gee.cs.oswego.edu/dl/html/malloc.html.

L. Brenna et al.

https://github.com/koute/memory-profiler
http://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
http://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
http://gee.cs.oswego.edu/dl/html/malloc.html

Array 13 (2022) 100118

6

around 1.7 × performance slowdown compared to not running in SGX
with PHE. Execution time grows linearly with the number of summed
entries, as expected.

SAFETY [39] combines PHE and SGX to securely process genome
data to identify genetic risk factors for diseases. This data is quite sen-
sitive and often comes with strict regulations on how to process and
store it. By combining Paillier encryption with SGX they created a sys-
tem which achieved a 4.8 × speedup compared to existing secure
computing techniques.

TEEFHE [40] is an example of combining FHE with SGX by per-
forming the bootstrapping step within SGX. They use the BGV [27]
scheme implemented in Simple Encrypted Arithmetic Library (SEAL)
and modify the library to run within SGX. They distribute the work
across several nodes, where some nodes process the ciphertexts using
homomorphic operations in untrusted environ-ments. When nodes
require the bootstrapping procedure, they transmit them to a node with
the SEAL library running within SGX. SGX enclaves perform encryption
and decryption, preserving data and code integrity and confidential-ity,
as they do not consider side-channel attacks. Decrypting and encrypting
a ciphertext removes the encoded noise and refreshes the ciphertext,
effectively doing the same as a bootstrapping operation, but at a lower
cost. As the un-trusted compute servers perform computations on the
encrypted data, they do not preserve data integrity in the case of an
attack.

A large corpus of work exists that address the confidentiality

problems re-lated to side-channel attacks and cloud hosted computa-
tions. Chen et al. [41] propose a software framework that detects
side-channel attacks by a privileged attacker, such as a malicious or
virus-infected OS. Some types of side-channel attacks that exploit
access-pattern information leakage can be protected against using
techniques such as ORAM [8]. ORAM can be seen as a compiler that
transforms memory accesses of a program into a program where the
distribu-tion of memory accesses differs (is independent) from the
original program while preserving the semantics of the program. Path
ORAM [42] improves upon reg-ular ORAM and has a low space over-
head and in some cases, asymptotically improved performance
compared to earlier work. Circuit ORAM [43] further improves the
techniques and gives an implementation with a complexity near the
theoretical lower-bound.

ZeroTrace [44] is an example of oblivious primitives in action. Se-
curity is strengthened against access-pattern side-channel attacks in SGX
using a block-level memory controller to hide access patterns. Both Path
ORAM and Circuit ORAM are implemented and gave in some situations
only a logarithmic over-head in bandwidth costs between enclave code
and ORAM servers. ZeroTrace mitigates considerable weaknesses in SGX
as it protects against shared resource and page-fault related attacks by
converting programs into oblivious represen-tations. Another example
of oblivious memory primitives in SGX is Oblix [45], an oblivious search
index. The authors introduce something they call doubly-oblivious tech-
niques, as it ensures that accesses to external servers as well as the

Fig. 3. Memory usage characteristics for FHE with the default system allocator.

Fig. 4. Execution times of our fused millionaire problem. Experiments were performed 25 times and respective standard deviations are represented by the vertical
error bars.

L. Brenna et al.

Array 13 (2022) 100118

7

ORAM clients internal memory are oblivious. An ORAM client is a
pro-gram which accesses an external resource (an ORAM server)
through oblivious techniques. These doubly-oblivious techniques ensure
that even if an adversary were to observe accesses to a client’s internal
memory, it could learn no informa-tion on the data. Oblix additionally
designs oblivious algorithms that are more efficient than earlier work
and implements a contact number discovery service akin to Signal’s
service implemented in SGX as a demonstration [46]. They use different
techniques than Signal, but achieve speedups ranging from ~ 9 × to ~
140 × faster while strengthening security at the same time, by utilizing
the doubly-oblivious techniques.

The CacheOut [6] attack exploits the fact that hardware-cache that is
flushed and overwritten can still be recovered. CacheOut can even
selectively choose parts of data to leak with relatively high efficiency,
unlike previous attacks where the attacker could only observe the leaked
data the CPU enclave was currently accessing. This attack requires
hardware fixes and proves once again that SGX enclaves do not fully
protect the confidentiality of data and code in enclaves, and that other
protective measures are required. SGAxe [47] exploits the CacheOut
attack to compromise both the confidentiality but also the integrity of an
en-clave’s memory. The attack extracts the secret attestation key used by
enclaves to prove that they are genuine, meaning a malicious attacker
such as a malicious cloud vendor could pass a fake enclave for a real one,
tricking the client. This attack compromises many security guarantees
needed in our hybrid TEE and FHE solution, but most importantly, it
compromises the integrity guarantees required for our system to work.

The Load Value Injection (LVI) attack [48] builds on the Meltdown
[49] attack to inject the attacker’s data into the victim’s data stream.
This vulnera-bility breaches the data integrity guarantees that SGX
should provide as it opens the possibility for the victim’s code to execute
on the attacker’s data, breaking all the correctness guarantees of the
user’s code. Additionally, it might lead to software crashes by injecting
data structured in a format the victim’s code did not expect. Patching
LVI necessitates extensive software patches, estimated to impact per-
formance of SGX enclaves between 2–19 × .

6. Concluding remarks

This paper presented and evaluated the TFHE-rs library for per-
forming FHE, specifically the TFHE [29] scheme, written in pure
memory-safe Rust. It embeds in SGX as a single dependency by using the
Fortanix Rust EDP. Our TFHE-rs implementation was based on an
existing library written in a mix of C and C++ [25]. There is no
user-required configuration apart from the minimum required for
creating an SGX enclave. TFHE-rs provides pre-made circuits to make it
easy for users to create common circuits and built-in serialization and
deserialization support for easy transfer to and from enclaves.

We evaluated the performance characteristics of TFHE-rs with and
without an SGX enclave and found that the performance overhead is
negligible. The evaluation showed that using TFHE-rs with SGX is 3%
faster than a version of TFHE-rs without SGX. This result is not in line
with what we conjectured, which was that TFHE-rs with SGX should be
slower. Based on our experience, we conjecture that specific memory
management implementations particularly affects performance. The
default system allocator on Linux (libc’s malloc) was 28% slower than
the dlmalloc allocator used by the Fortanix Rust EDP in the SGX setup.
As such, a system with a similar setup to ours should emphasize low
memory usage and experiment with different allocators to ensure that
they stay within the memory limits imposed by SGX. However, the
measured stan-dard deviation does account for most of the performance
difference, and the benchmarks themselves take long enough for this
discrepancy to be due to envi-ronmental factors in our experimental
setup (i.e., due to system load). Overall, this is a positive result, as our
hybrid solution is both more secure and faster.

Thus, we conclude that using FHE operations within SGX, written in
the memory-safe language Rust, is both feasible and provides several

additional se-curity guarantees, given that the developer ensures a
reasonable memory usage.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This work is funded, in part, by the Norwegian Research Council
grants number 263248 and 275516.

References

[1] Gentry C. A fully homomorphic encryption scheme, Ph.D. thesis. Stanford
University; 2009. https://crypto.stanford.edu/craig/.

[2] Rivest RL, Adleman L, Dertouzos ML. On data banks and privacy homomorphisms,
foundations of secure computation. Academia Press; 1978. p. 169–79.

[3] Xu Y, Cui W, Peinado M. Controlled-channel attacks: deterministic side channels
for untrusted operating systems. In: 2015 IEEE sympo- sium on security and
privacy; 2015. p. 640–56. https://doi.org/10.1109/SP.2015.45.

[4] Brasser F, Müller U, Dmitrienko A, Kostiainen K, Capkun S, Sadeghi A-R. Software
grand exposure: SGX cache attacks are practi- cal. In: 11th USENIX workshop on
offensive technologies (WOOT 17), USENIX association, vancouver, BC; 2017. http
s://www.usenix.org/conference/woot17/workshop-program/presentation/br
asser.

[5] Wang J, Cheng Y, Li Q, Jiang Y. Interface-based side channel attack against Intel
SGX. CoRR abs/1811.05378 2018. http://arxiv.org/abs/1811.05378. arXiv:
1811.05378.

[6] van Schaik S, Minkin M, Kwong A, Genkin D, Yarom Y. Cache- out: leaking data on
Intel CPUs via cache evictions. 2020. https://cacheoutattack.com/.

[7] Percival C. Cache missing for fun and profit. 2009.
[8] Goldreich O. Towards a theory of software protection and simulation by oblivious

RAMs, in: proceedings of the nineteenth annual ACM sympo- sium on theory of
computing. STOC ’87, ACM, New York, NY, USA 1987:182–94. https://doi.org/
10.1145/28395.28416. http://doi.acm.org/10.1145/28395.28416.

[9] Matsakis ND, Klock FS. The rust language. ACM SIGAda - Ada Lett 2014;34:103–4.
[10] van der V, Veen N, dutt Sharma L, Cavallaro H Bos. Memory errors: the past, the

present, and the future. In: Balzarotti D, Stolfo SJ, Cova M, editors. Research in
attacks, intrusions, and defenses. Berlin, Heidelberg: Springer Berlin Heidelberg;
2012. p. 86–106.

[11] Miller M. Trends, challenges, and strategic shifts in the soft- ware vulnerability
mitigation landscape. URL. 2019. PjbGojjnBZQ?t=848, https://youtu.be/.

[12] Shen Y, Chen Y, Chen K, Tian H, Yan S. To isolate, or to share? That is a question
for Intel SGX, in: proceedings of the 9th asia-pacific workshop on systems. URL. In:
APSys ’18, association for computing machinery, New York, NY, USA; 2018.
https://doi.org/10.1145/3265723.3265727. https://doi.org/10.1145/326572
3.3265727.

[13] Das A, Dutta S, Adhikari A. Indistinguishability against chosen cipher- text
verification attack revisited: the complete picture. In: Susilo W, Reyhanitabar R,
editors. Provable security. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013.
p. 104–20.

[14] Dolev D, Dwork C, Naor M. Non-malleable cryptography. SIAM J Comput 2001;30.
https://doi.org/10.1145/103418.103474.

[15] Acar T, Belenkiy M, Bellare M, Cash D. Cryp- tographic agility and its relation to
circular encryp- tion. URL. In: EUROCRYPT 2010, springer verlag; 2010
[cryptographic-agility-and-its-relation-to-circular-encryption/], https://www.mi
crosoft.com/en-us/research/publication/.

[16] Advanced trusted environment: omtp tr1 v1.1, OMTP limited. 2009.
[17] Garfinkel T, Pfaff B, Chow J, Rosenblum M, Boneh D. Terra: a virtual machine-

based platform for trusted computing, in: proceedings of the nineteenth ACM
symposium on operating systems principles. In: SOSP ’03, ACM, New York, NY,
USA; 2003. p. 193–206. https://doi.org/10.1145/945445.945464. http://doi.acm.
org/10.1145/945445.945464.

[18] specificationsdevice.asp TEE system architecture. 2011. Online; accessed 19-May-
2020, http://www.globalplatform.org/.

[19] Vasudevan A, McCune JM, Newsome J. Trustworthy execution on mo- bile devices,
Springer Publishing Company. 2013.

[20] Sabt M, Achemlal M, Bouabdallah A. Trusted execution environment: what it is,
and what it is not. In: 2015 IEEE trustcom/BigDataSE/ISPA, vol. 1; 2015. p. 57–64.
https://doi.org/10.1109/Trustcom.2015.357.

[21] Rushby JM. Design and verification of secure systems, in: proceedings of the eighth
ACM symposium on operating systems principles. In: SOSP ’81, ACM, New York,
NY, USA; 1981. p. 12–21. https://doi.org/10.1145/800216.806586. http://doi.
acm.org/10.1145/800216.806586.

[22] Murdock K, Oswald D, Garcia FD, Van Bulck J, Gruss D, Piessens F. Plundervolt:
software-based fault injection attacks against Intel SGX. In: 41st IEEE symposium
on security and privacy (S&P’20); 2020.

L. Brenna et al.

https://crypto.stanford.edu/craig/
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref2
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref2
https://doi.org/10.1109/SP.2015.45
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
http://arxiv.org/abs/1811.05378
https://cacheoutattack.com/
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref7
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28416
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref9
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref10
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref10
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref10
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref10
https://youtu.be/
https://doi.org/10.1145/3265723.3265727
https://doi.org/10.1145/3265723.3265727
https://doi.org/10.1145/3265723.3265727
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref13
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref13
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref13
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref13
https://doi.org/10.1145/103418.103474
https://www.microsoft.com/en-us/research/publication/
https://www.microsoft.com/en-us/research/publication/
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref16
https://doi.org/10.1145/945445.945464
http://www.globalplatform.org/
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref19
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref19
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1145/800216.806586
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref22
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref22
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref22

Array 13 (2022) 100118

8

[23] Genkin D, Shamir A, Tromer E. RSA key extraction via low-bandwidth acoustic
cryptanalysis. In: Garay JA, Gennaro R, editors. Advances in cryptology – CRYPTO
2014, springer berlin heidelberg. Berlin: Heidel- berg; 2014. p. 444–61.

[24] Chillotti I, Gama N, Georgieva M, Izabachène M. TFHE: fast fully homomorphic
encryption over the Torus. J Cryptol 2019;33. https://doi.org/10.1007/s00145-
019-09319-x.

[25] Chillotti I, Gama N, Georgieva M, Izabachène M. TFHE: fast fully homomorphic
encryption library. Technical Report August 2016 [Https://tfhe.github.io/tfhe/].

[26] Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for arithmetic of
approximate numbers. In: Takagi T, Peyrin T, editors. Advances in cryptology –
ASIACRYPT 2017, springer international pub- lishing, cham; 2017. p. 409–37.

[27] Brakerski Z, Gentry C, Vaikuntanathan V. Fully homomorphic encryp- tion without
bootstrapping. Cryptology ePrint Archive, Report 2011/277 2011. https://eprint.
iacr.org/2011/277.

[28] Lenstra AK. Key lengths. Contribution to the handbook of information security.
2010.

[29] Chillotti I, Gama N, Georgieva M, Izabachène M. Faster fully homo- morphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon JH, Takagi T, editors.
Advances in cryptology – asiacrypt 2016. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2016. p. 3–33.

[30] Yao AC. Protocols for secure computations, in: proceedings of the 23rd annual
symposium on foundations of computer science. In: SFCS ’82, IEEE computer
society, Washington, DC, USA; 1982. p. 160–4. https://doi.org/10.1109/
SFCS.1982.88. https://doi.org/10.1109/SFCS.1982.88.

[31] Ioannidis I, Grama A. An efficient protocol for Yao’s millionaires’ problem, in: 36th
annual Hawaii international conference on system sciences. Proceedings of the
2003;2003:6.

[32] Lin H-y, Tzeng W-g. An efficient solution to the millionaires’ problem based on
homomorphic encryption. In: In ACNS 2005, vol. 3531; 2005. p. 456–66. of
Lecture.

[33] Jakobsson M, Yung M. Proving without knowing: on oblivious, agnos- tic and
blindfolded provers. In: Koblitz N, editor. Advances in cryptology — crypto ’96.
Berlin, Heidelberg: Springer Berlin Heidelberg; 1996. p. 186–200.

[34] Chen H, Chillotti I, Song Y. Multi-key homomophic encryption from TFHE.
Cryptology ePrint Archive, Report 2019/116 2019. https://eprint.iacr.org
/2019/116.

[35] Drucker N, Gueron S. Achieving trustworthy homomorphic encryption by
combining it with a trusted execution environment. JoWUA 2018;9:86–99.

[36] Popa RA, Redfield CMS, Zeldovich N, Balakrishnan H. CryptDB: protecting
confidentiality with encrypted query processing, in: pro- ceedings of the twenty-
third ACM symposium on operating sys- tems principles. In: SOSP ’11, ACM, New
York, NY, USA; 2011. p. 85–100. https://doi.org/10.1145/2043556.2043566.
http://doi.acm.org/10.1145/2043556.2043566.

[37] Tetali SD, Lesani M, Majumdar R, Millstein T. MrCrypt: static anal- ysis for secure
cloud computations, in: proceedings of the 2013 ACM SIGPLAN international

conference on object oriented programming sys- tems languages & applications. In:
OOPSLA ’13, ACM, New York, NY, USA; 2013. p. 271–86. https://doi.org/
10.1145/2509136.2509554. http://doi.acm.org/10.1145/2509136.2509554.

[38] Paillier P. Public-key cryptosystems based on composite degree residu- osity
classes. In: Stern J, editor. Advances in cryptology — eurocrypt ’99. Berlin,
Heidelberg: Springer Berlin Heidelberg; 1999. p. 223–38.

[39] Sadat MN, Aziz MMA, Mohammed N, Chen F, Wang S, Jiang X. SAFETY: secure
gwAs in federated environment through a hYbrid solu- tion with Intel SGX and
homomorphic encryption. URL CoRR abs/1703.02577 2017. arXiv:1703.02577,
http://arxiv.org/abs/1703.02577.

[40] Wang W, Jiang Y, Shen Q, Huang W, Chen H, Wang S, Wang X, Tang H, Chen K,
Lauter KE, Lin D. Toward scalable fully Ho- momorphic encryption through light
trusted computing assistance. URL CoRR abs/1905.07766 2019. arXiv:
1905.07766, http://arxiv.org/abs/1905.07766.

[41] Chen S, Zhang X, Reiter MK, Zhang Y. Detecting privileged side-channel attacks in
shielded execution with DéJ’a vu, in: pro- ceedings of the 2017 ACM on asia
conference on computer and com- munications security. In: ASIA CCS ’17, ACM,
New York, NY, USA; 2017. p. 7–18. https://doi.org/10.1145/3052973.3053007.
http://doi.acm.org/10.1145/3052973.3053007.

[42] Stefanov E, Shi E. Path O-RAM: an extremely simple oblivious RAM protocol. URL
CoRR abs/1202.5150 2012. http://arxiv.org/abs/. 1202.5150. arXiv:1202.5150.

[43] Wang X, Chan H, Shi E. Circuit ORAM: on tightness of the goldreich- ostrovsky
lower bound. In: Proceedings of the 22Nd ACM SIGSAC con- ference on computer
and communications security, CCS ’15. New York, NY, USA: ACM; 2015.
p. 850–61. https://doi.org/10.1145/2810103.2813634. http://doi.acm.org/
10.1145/2810103.2813634.

[44] Sasy S, Gorbunov S, Fletcher CW. ZeroTrace : oblivi- ous memory primitives from
Intel SGX. URL. In: 25th annual net- work and distributed system security
symposium, NDSS 2018. San Diego: California, USA; February . p. 2018. 25/2018/
02/ndss2018_02B-4_Sasy_paper.pdf, http://wp.internetsociety.org/ndss/wp-c
ontent/uploads/sites/.

[45] Mishra P, Poddar R, Chen J, Chiesa A, Popa RA. Oblix: an efficient oblivious search
index. In: 2018 IEEE symposium on security and privacy (SP); 2018. p. 279–96.

[46] Marlinspike M. Technology preview: private contact discovery for Signal. 2017.
https://signal.org/blog/private-contact-discovery/.

[47] van Schaik S, Kwong A, Genkin D, Yarom Y. SGAxe: how SGX fails in practice.
2020. https://sgaxeattack.com/.

[48] Van Bulck J, Moghimi D, Schwarz M, Lipp M, Minkin M, Genkin D, Yuval Y,
Sunar B, Gruss D, Piessens F. LVI: hijacking transient ex- ecution through
microarchitectural load value injection. In: 41th IEEE symposium on security and
privacy (S&P’20); 2020.

[49] Lipp M, Schwarz M, Gruss D, Prescher T, Haas W, Fogh A, Horn J, Mangard S,
Kocher P, Genkin D, Yarom Y, Hamburg M. Meltdown: reading kernel memory
from user space. In: 27th USENIX security sym- posium (USENIX security 18);
2018.

L. Brenna et al.

http://refhub.elsevier.com/S2590-0056(21)00056-4/sref23
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref23
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref23
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref25
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref25
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref26
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref26
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref26
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref28
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref28
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref29
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref29
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref29
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref29
https://doi.org/10.1109/SFCS.1982.88
https://doi.org/10.1109/SFCS.1982.88
https://doi.org/10.1109/SFCS.1982.88
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref31
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref31
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref31
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref32
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref32
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref32
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref33
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref33
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref33
https://eprint.iacr.org/2019/116
https://eprint.iacr.org/2019/116
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref35
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref35
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1145/2509136.2509554
https://doi.org/10.1145/2509136.2509554
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref38
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref38
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref38
http://arxiv.org/abs/1703.02577
http://arxiv.org/abs/1905.07766
https://doi.org/10.1145/3052973.3053007
http://arxiv.org/abs/
https://doi.org/10.1145/2810103.2813634
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref45
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref45
https://signal.org/blog/private-contact-discovery/
https://sgaxeattack.com/
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref48
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref48
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref48
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref48
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref49
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref49
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref49
http://refhub.elsevier.com/S2590-0056(21)00056-4/sref49

	TFHE-rs: A library for safe and secure remote computing using fully homomorphic encryption and trusted execution environments
	1 Introduction
	2 Background
	3 The TFHE-rs library
	3.1 Datastructures
	3.2 Parameter sets
	3.3 Serialization
	3.4 SGX integration

	4 Evaluation
	4.1 Micro benchmarks
	4.1.1 Encryption and decryption speed
	4.1.2 Key generation

	4.2 Bootstrapping
	4.2.1 Comparison between optimized and non-optimized implementation

	4.3 Yao’s millionaires’ problem
	4.3.1 Socialist millionaire problem
	4.3.2 Fused millionaire problem
	4.3.3 Implementation of the fused millionaire problem

	4.4 TFHE-rs with and without SGX

	5 Related work
	6 Concluding remarks
	Declaration of competing interest
	Acknowledgement
	References

