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A B S T R A C T   

Fully Homomorphic Encryption (FHE) and Trusted Execution Environ-ments (TEEs) are complementing approaches that can both secure computa-tions running 
remotely on a public cloud. Existing FHE schemes are, however, malleable by design and lack integrity protection, making them susceptible to integrity breaches 
where an adversary could modify the data and corrupt the output. 

This paper describes how both confidentiality and integrity of remote compu-tations can be assured by combining FHE with hardware based secure enclave 
technologies. We provide a software library for performing FHE within the Intel SGX TEE, written in the memory-safe programming language Rust to strengthen the 
internal safety of software and reduce its attack surface. 

We evaluate a sample application written with our library. We demonstrate that we can feasibly combine these concepts and provide stronger security guar-antees 
with a minimal development effort.   

1. Introduction 

Outsourcing data and computation services to public cloud providers 
de-mands security mechanisms that can enforce strict data confidenti-
ality and in-tegrity regulations. This is particularly important for ap-
plications and orga-nizations that prosess sensitive data. Two 
orthogonal approaches for securing data processing activities are 
actively being touted as potential game changers: Homomorphic 
Encryption (HE) and hardware based TEEs. 

HE promises computation on encrypted values without revealing 
their con-tent. Research in the area increased after 2009, when Craig 
Gentry [1], in his doctoral thesis, described the first technique for 
achieving FHE nearly 30 years after the idea was conceived [2]. FHE 
enables outsourcing of many types of computations that previously had 
to be kept in-house due to confidentiality constraints, including 
health-data processing, financial processing, and genome research. 

Though FHE schemes can provide confidentiality, they cannot pro-
vide in-tegrity as all HE schemes are malleable by design. A maliciously 
altered result is theoretically indistinguishable from the correct one. If 
the remote service processing data is not trusted for confidentiality it 
should not be trusted for integrity either. The actual computations 
performed on data encrypted using FHE will also be visible, which might 
be unacceptable in some situations as the operations themselves might 

be secret. As such, FHE only partially solves the problem of outsourcing 
computation with integrity constraints to public cloud services. While 
the problems with data integrity are unsolved, FHE has limited practical 
use. 

Trusted Execution Environments (TEEs) have similar ambitions as 
HE in that they protect the integrity and confidentiality of programs and 
data hosted on remote and untrusted machines. Trusted Execution En-
vironments (TEEs) do this by isolating running processes from the 
operating system and other con-currently running processes through 
various hardware facilities. However, it has been shown that existing 
TEEs, such as the Intel Software Guard Exten-sions (SGX), are suscep-
tible to several types of side-channel attacks where an adversary can 
gain information of the code and data within a secure environ-ment 
[3–6]. Although most attention in the literature has been given to 
SGX, some attacks target all processors supporting Simultaneous 
Multithread-ing (SMT) [7]. Hardware technology that reveals secrets 
internally thus cannot be relied on to provide highly assured confiden-
tiality in public cloud settings. There are some ways to counter this, such 
as using oblivious primitives like Oblivious RAM (ORAM) [8], which 
obscures access patterns to prevent infor-mation leakage through 
side-channels. Oblivious methods do, however, incur significant per-
formance overhead to computation. 

In this paper, we investigate the intersection between these concepts 
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within the stated security context, and propose a hybrid approach that 
combines the confidentiality strengths of FHE with the integrity 
strengths of TEEs. We do so using the memory-safe programming lan-
guage Rust [9]. Using Rust miti-gates large classes of dangerous and 
common security-related bugs, including memory corruption errors, 
buffer overflows, uninitialized memory, data races, dereferenced 
pointers to unallocated memory (e.g., null-pointer dereferencing), and 
dereferenced pointers causing access violations [10–12]. We evaluate 
the performance of our hybrid approach by implementing a program 
that uses FHE both outside and within SGX. By comparing the relative 
performance difference, we demonstrate that a hybrid approach is 
feasible in terms of per-formance while retaining more robust security 
and safety guarantees than using either FHE or SGX separately. To our 
knowledge, our approach is the first work that combines a TEE with FHE 
to cover integrity weaknesses of FHE. 

2. Background 

All HE systems are malleable by design since an attacker can trans-
form a ciphertext into a different ciphertext and then have it decrypted 
to a related plaintext. For instance, consider the following homomorphic 
encryption scheme: 

Ek(x)⊗Ek(y)=Ek(x, y) (1) 

Ek(x) is the encryption of the plaintext x with the key k, × is some 
binary operation between plaintexts, and ⊗ is a lifted version of × , 
operating in the ciphertext space. Note that the lifted operator ⊗ does 
not necessarily involve the same operations as the × operator, which 
implies it may have a higher complexity. Assume an attacker knows x 
and y in addition to their encryptions Ek(x) and Ek(y), and there exists 
some pair (x, y) such that x × y ∈/{x, y}. The attacker can then compute 
Ek(x) ⊗ Ek(y) to obtain a ciphertext C, that corresponds to the encryption 
of x × y, which beforehand was assumed to be 

different than x and y. Because of this, the attacker has obtained a 
ciphertext that corresponds to a plaintext, x × y that they know, but 
whose ciphertext they have not observed previously. 

Although malleable encryption schemes are secure under standard 
Indistin-guishability under Chosen-Plaintext Attack (IND-CPA), they are 
not secure un-der Indistinguishability under Adaptive Chosen- 
Ciphertext Attack (IND-CCA2) [13], as opposed to non-malleable cryp-
tosystems [14]. Furthermore, it has been shown that some encryption 
schemes that are IND-CPA become insecure when they encrypt their 
own decryption key [15], often referred to as circular security. As. 

HE schemes encrypt their decryption key as part of the bootstrapping 
process, they have circular security properties. 

A TEE is an isolated computing environment guaranteeing to protect 
both code and data loaded within it. Although various definitions of 
TEEs have been proposed [16–19], Sabt et al. [20] compare these def-
initions and formalize a description for TEEs by building on the notion of 
a separation kernel, first described by Rushby [21], and define four main 
security policies. 

A TEE should guarantee the authenticity of the executed code, 
including the integrity of the runtime state, such as CPU registers. It 
should guarantee the confidentiality of code, data, and runtime state 
persisted to secondary memory, for instance through encryption. A TEE 
should have the possibility of provid-ing remote attestation, proving 
trustworthiness for third-parties. Updates of content within a TEE should 
be done securely. A TEE should resist all attacks that are performed 
against main memory. Attacks performed through backdoor security 
flaws should not be possible. Consequently, a TEE should be secure in a 
way that even an OS is separated and cannot access nor modify it. These 
conditions warrant that tasks can be sent to third-parties and executed 
within a TEE, without requiring trust in that party. This allows for data- 

sensitive tasks to be outsourced, given they provide a TEE. 
Several known methods exist for an adversary to physically attack 

hard-ware components to extract information. This includes power- 
monitoring (or power-tweaking) attacks such as Plundervolt [22], 
acoustic cryptanalysis attacks [23], electromagnetic attacks, and optical 
attacks. Software-based side-channel attacks range from page-fault 
based attacks [3], cache-based attacks [4], and interface-based attacks 
[5], all targeting confidentiality. 

The TEE manufacturer must also be trusted to provide sound soft-
ware and development tools. In the case of Intel SGX, various software 
systems and a Software Development Kit (SDK) are provided, in addition 
to the on-chip hardware mechanisms. As of February 2021, the Intel SGX 
Linux SDK consists of around 360 000 Source Lines of Code (SLoC). 

3. The TFHE-rs library 

In this paper, we propose a hybrid approach that combines the 
confidentiality strengths of FHE with the integrity strengths of TEEs, and 
have developed a Rust library as a proof-of-concept. 

The TFHE-rs library combines HE with code executing inside a TEE 
to provide both confidentiality and integrity. By processing ciphertexts 
within a TEE, an adversary cannot modify nor even read the ciphertext, 
eliminating the issue of malleability and thus providing stronger secu-
rity. For our TEE we use Intel SGX and for homomorphic operations we 
use the Fast Fully Homomorphic Encryption over the Torus (TFHE) 
scheme, first described by Chillotti et al. [24]. 

TFHE is a symmetric lattice-based FHE scheme that works by 
represent-ing polynomials with coefficients over T, the set of real 
numbers modulo 1, or R/Z. Chillotti et al. [24] also provide an accom-
panying library implemen-tation [25], which we will refer to as TFHE-c 
in this paper. A key benefit of the TFHE-c library is that it is designed to 
compute on bits. In contrast, other schemes like Homomorphic 
Encryption Arithmetic of Approximate Num-bers (HEAAN) (also called 
Cheon-Kim-Kim-Song (CKKS)) [26] and Brakerski- Gentry-Vaikun 
tanathan (BGV) [27], work with approximate numbers as the plaintext 
space is within the complex numbers. 

The BGV scheme is more appropriate than the others for use with 
integer arithmetic. This scheme is applicable for building circuits, but is 
more complex 

in use and requires the developer to have considerable knowledge of 
its inner workings to establish an efficient HE program. An imple-
mentation of BGV can also be found in HElib.1 All of these schemes build 
on the Learning With Errors (LWE) problem or its ring-variant, Ring 
Learning With Errors (RLWE). Our TFHE-rs library implementation is 
heavily inspired by the existing TFHE library [25] 2 and with key parts 
running within the TEEs of Intel SGX for integrity. It is implemented in 
Rust rather than C++ to help ensure memory safety. 

Moreover, TFHE-rs is written entirely in the safe subset of Rust, and 
will not compile if the unsafe keyword is used in our codebase. This is 
enforced by a crate diagnostics attribute, forbid (unsafe_code), which 
also prevents over-riding the attribute in our crate. However, some of 
our external dependencies require the use of the unsafe part of Rust to 
interact with low-level operations, such as providing randomness 
through assembly instructions. 

3.1. Datastructures 

In the TFHE-c library, many structures have fields that are strictly 
pointers to another struct type. In C and C++, this is indistinguishable 
from an array pointer, unless one looks at the initialization site. 
Dynamically allocated arrays such as these are equivalent in 

1 https://github.com/homenc/HElib.  
2 We build entirely on the code at this commit https://github.com/tfhe/tfhe/ 

commit/76db530cf736a25115ea0b0ccdb9267b401bb9a7. 
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functionality to the Rust std:vec:Vec type, and are unambiguous in 
contrast to the original library’s implementation. 

Structures with pointer-fields in C++ do not specify whether they 
own the data they reference or whether the pointers reference memory 
given to it dur-ing initialization. For instance in the case of struct Data { 
val: Vec<i32>} versus struct Data { val: &mut [i32]} (lifetime anno-
tations elided for brevity). This distinction is necessary for Rust, as it 
tracks ownership. In TFHE-rs, we chose the former as it is more 
manageable than the latter, and it seems that the TFHE library chose this 
solution as well, based on their usage. Integer and floating-point data 
types have direct equivalents in Rust, and are thus translated directly. 

The TFHE source code has some structures where a field is a pointer 
to values within a dynamically-allocated array that a different field in 
the same structure also references, i.e. self-referential structures. When 
one moves a value in memory, the referenced value in the self-referential 
structure is invalidated. This makes them inherently dangerous and thus 
disallowed by the type system in Rust. As a solution, we chose to remove 
these fields and access the values directly, at the loss of some readability. 

The TFHE library also has some occurrences of void pointers meant 
to be specialized by a Fast Fourier Transform (FFT) implementation. The 
use of these pointers is somewhat equivalent to Rust’s trait system which 
allows multiple implementations while providing a stable interface. 
Since we do not aim to allow multiple implementations of the FFT, we 
could avoid this abstraction. 

3.2. Parameter sets 

TFHE-rs supports creating keys of different security levels. Choosing 
pa-rameters for encryption schemes based on LWE is complicated, as 
choosing a parameter set with incompatible values might lead to an 
insecure or slow sys-tem. Our implementation currently supports the 
two parameter-sets defined in TFHE-c, which have estimated security 
levels of 80-bit and 128-bit, known as bit security [28]. However, the 
key size is not directly proportional to the secu-rity level, as in AES, 
where a security level of 128-bit equates to a 128 bits key size. In TFHE, 
a security level of 128-bit equates to a ~ 24 MB bootstrapping key [29]. 
The default parameter set in our library is the 128-bit security version as 
cryptographers do recommend 128-bit security to be safe until theo-
retically the year 2090 [28]. 

3.3. Serialization 

All data structures that might need to be transmitted are serializable 
and deserializable, using the Rust package Serde.3 Serde designs seri-
alization and deserialization so that any data structure that implements 
one of two traits can be serialized or deserialized to one of the tens of 
different serialization for-mats supported. This is unlike the TFHE li-
brary, where serialization of data can only be done through specific 
functions for reading and writing files and streams. These functions are 
somewhat limited and do not allow the developer to specify the serial-
ization format. In TFHE-rs, a macro allows deriving the implementation 
automatically, such as (line 3 highlights derive macro):   

Implementing these traits allows the user of the library imple-
mentation to choose the serialization format that fits the use-case best. 
As ciphertexts are quite large and contain many integers, a binary format 
might be best suitable. 

3.4. SGX integration 

We chose to use Fortanix’s Rust EDP4 rather than one of the several 
avail-able SDKs. SDKs typically allow low-level control of SGX and the 
SDK, while the Fortanix Rust EDP aims for an easy way to write pro-
grams for SGX by being a platform compilation target. 

Fortanix’s project is recognized by Rust as a supported target plat-
form and currently has an official tier 2 status.5 Tier 2 support means 
code is guaranteed to build on the platform and is part of the language’s 
continuous build testing system. As such, regular Rust programs that do 
not use multiple processes or rely on OS functionality should work out of 
the box. These guarantees allow us to easily integrate our FHE library 
into a program that runs within an SGX enclave and is the main reason 
why we chose to use the Fortanix Rust EDP for working with SGX. 

Our example program using our TFHE-rs implementation and the 
Fortanix Rust EDP requires no special handling other than specifying the 
stack and heap size required for the program. The lack of special 
handling implies that users of our ported library can easily use the 
hybrid solution of FHE and SGX in the cloud. 

4. Evaluation 

We evaluate the performance of TFHE-rs using micro benchmarks 
and by implementing the classic Yao’s Millionaires’ Problem [30]. 
Because our key objective is to mitigate the integrity weaknesses in FHE 
schemes while retaining performance, our experiments focus on the 
computational overhead incurred by our hybrid approach. As baseline 
we use the TFHE-lib implementation by Chillotti et al. [25]. 

TFHE-lib provides several different FFT processors, including FFTW, 
which claims to be the fastest free FFT implementation available.6 

TFHE-rs uses the RustFFT crate, which does not currently use any Single 
Instruction, Multiple Data (SIMD) instructions, only pure Rust, and 
therefore cannot use FFTW. To factor out potential unrelated perfor-
mance benefits that stem from the usage of FFTW, TFHE-lib is linked 
with the Nayuki project’s portable C implemen-tation.7 Furthermore, 
Chillotti et al. [29] provide two benchmarks: one uses the Lagrange 
half-complex representation internally, and the other does not. We use 
the latter benchmark as our implementation does not use the Lagrange 
representation. 

4.1. Micro benchmarks 

Each micro benchmark was repeated 50 times to obtain averages and 

3 https://crates.io/crates/serde or their homepage https://serde.rs/ 

4 https://github.com/fortanix/rust-sgx or their homepage https://edp.fort 
anix.com/  

5 https://forge.rust-lang.org/release/platform-support.html.  
6 http://www.fftw.org/.  
7 https://www.nayuki.io/page/fast-fourier-transform-in-x86-assembly. 
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stan-dard deviations. These measurements are done without involving 
SGX. Our measurements are summarized in Table 1. 

4.1.1. Encryption and decryption speed 
The encryption procedure is slower due to random number genera-

tion and allocation, whereas the decryption procedure consists of only 
simple arithmetic. This implies that the throughput of decryption is also 
twice as high as for encryption. 

4.1.2. Key generation 
The key generation procedure generates the secret symmetric key 

used for encrypting and decrypting data in the TFHE scheme, and the 
bootstrapping key and the key-switching keys which are required during 
the bootstrapping process. We collectively name these the bootstrapping 
keys for brevity, as it is the only process using them. The key generation 
uses an average of 527.67 μs ± 24.269 μs to generate the keys. As this 
process depends heavily on random number generation, it is affected by 
fluctuations in time used to generate num-bers. 

4.2. Bootstrapping 

The bootstrapping procedure takes an LWE sample as input, along 
with an output message encoded in the message space and the boot-
strapping keys. As shown in Fig. 1, the average execution time of a single 
bootstrapping procedure is 1.1937 s, significantly higher than the 
implementation of the original paper taking around 53 ms on similar 
hardware [29] and improved work leading to around 13 ms [25]. 

However, the TFHE affords some optimizations we have not imple-
mented in TFHE-rs. Firstly, it uses the Lagrange half-complex repre-
sentation, which reduces the number of multiplications required in the 
bootstrapping procedure by nearly a third. It also reduces the number of 
external products required, the expensive operation performed in the 
bootstrapping procedure. Secondly, the original implementation uses 
FFT processors based on SIMD instruction sets such as AVX, providing 
large speedups. The outliers observed in the figure are, similarly to the 
outliers in the decryption and encryption procedures, likely related to 
interactions with other processes using the CPU. As most of the samples 
fall in a near-identical spot, it is reasonable to assume most results will 
lie in this range. Additionally, this procedure is deterministic and was 
benchmarked using the same inputs, so we assume that the outliers can 

be disregarded and that the mean can be used as an estimate. 

4.2.1. Comparison between optimized and non-optimized implementation 
Fig. 2 shows a comparison of the performance differences between 

our näıve polynomial multiplication procedure, with time complexity of 
O n2, to the FFT-based implementation. We observe that the FFT-based 
implementa-tion provided a decrease in execution time of 74.408%. 

One thing to note is that changing from the 128 to the 80 bit 
parameter set makes the bootstrapping operation ~ 2 times faster in the 
FFT-optimized implementation. This result shows that the parameter set 
used in encryption has a substantial impact on performance. 

Executing the TFHE-c library’s benchmark using the FFT imple-
mentation written in C without SIMD instructions gives us an average of 
614.47 ms for a single bootstrapping operation. Compared to our 
implementation, this is only ~ 2 × faster, which is not too bad consid-
ering that our objective was not to implement a fast implementation, but 
rather an implementation that was memory safe, easy to use, and would 
easily integrate with SGX. 

Finally, we also performed the benchmark of the TFHE library with 
all their optimizations included. We use their spqlios FFT processor with 
the FMA instruction set extensions and achieved an execution time of 
14.771 ms. This number is similar to their findings, but should not be 
compared directly to ours as it implements several more optimizations. 

4.3. Yao’s millionaires’ problem 

Andrew Yao introduced a Secure Multi-Party Computation (SMPC) 
(com-putations performed by multiple parties with private inputs) 
problem in 1982 known as Yao’s Millionaires’ problem [30]. The 
problem is simple and considers two millionaires, Alice and Bob, 
wishing to figure out which of them is wealth-ier, while at the same time 
keeping their actual wealth private. Essentially, the problem aims to 
calculate the following: a ≤ b, where a represents the wealth of Alice in 
some monetary unit, and b represents Bob’s wealth in the same unit, 
while remaining private for the computing party. Yao’s Millionaires’ 
Problem is a problem that may seem simple in practice, but it operates 
under conditions that make it challenging to solve. Thus, it is good to use 
as proof that a par-ticular system can solve problems in the domain of 
SMPC. The problem has several solutions, with techniques ranging from 
oblivious transfer methods [31], private set intersections with HE [32] 
to FHE. 

4.3.1. Socialist millionaire problem 
In this modification of Yao’s Millionaires’ problem, two millionaires 

wish to compare their wealth and figure out if it is equal or not, while not 
Fig. 1. Detailed view of the estimated PDF of bootstrapping. The mean estimate 
is 1.1937 s and the median is 1.1969 s with a std. deviation of 13.234 ms. 

Fig. 2. The execution time of the bootstrapping operation in our imple-
mentation with and without the polynomial multiplication based on FFT. The 
Näıve red region marks the näıve implementation of the polynomial multipli-
cation, while the FFT blue region marks the optimized version. 

Table 1 
Summary of micro benchmarks.   

time (μs) throughput (KiB s− 1) 

Encryption 1.654 50 73.916 
Decryption 0.797 62 148.79 
Key Generation 527.67   

L. Brenna et al.                                                                                                                                                                                                                                  



Array 13 (2022) 100118

5

disclosing information about their actual wealth to each other [33]. 
Essentially it aims to calculate the following: a = b, where a and b 
represent the wealth of the two parties, respectively, and are private. 

4.3.2. Fused millionaire problem 
To increase the computational load in our experiments, we consider 

a fused problem of Yao’s Millionaires’ problem and the socialist 
millionaire problem. In this problem, we aim to figure out the total 
ordering of two parties’ wealth while keeping their actual wealth’s 
private. That is to say when a represents party A’s wealth, and b party 
B’s, and both are private, we want to figure out which one of the three 
cases is true:  

• A is wealthier than B  
• B is wealthier than A  
• A and B have equal wealth 

We solve this problem by encrypting the values using the TFHE 
scheme. Technically, this requires two parties to compute on encrypted 
data jointly using a multi-key setup. Multi-key HE is possible, as shown 
in Ref. [34], which conveniently turns the TFHE scheme we use into a 
multi-key TFHE scheme. 

Using the multi-key TFHE scheme, the two parties would encode and 
encrypt their respective amount of wealth, transmit them to a computing 
node, where their partial evaluation keys are combined, and then the 
comparisons computed. 

4.3.3. Implementation of the fused millionaire problem 
We start by producing the binary decomposition of the two values. 

We use two 32-bit signed integers for this purpose. For each of the 
values, we decompose them into bytes in big-endian order, then 
decompose those into the individual bits. We use big-endian as we 
implemented the circuits we use to work on big-endian values. Then 
each bit is individually encrypted with our TFHE implementation. This 
results in two pairs of 32 ciphertexts representing the encryption of the 
two values. In a multi-key setup, the two parties perform these actions 
separately after completing a key-exchange protocol. Note that our 
implementation of the TFHE scheme does not support multi-key setups 
as we based it on an implementation that also did not support it. 
However, supporting it would only necessitate adding a key combina-
tion step that scales linearly with the number of parties. 

After this, the setup phase is complete. We then perform the com-
parison circuit equivalent to computing a ≤ b and the equality circuit 
equivalent to a = b, both computing on a list of encrypted bits (two pairs 
of 32-bits) producing encrypted results. These two circuits are inde-
pendent and are thus evaluable in parallel, although our implementation 
performs them sequentially. 

4.4. TFHE-rs with and without SGX 

Next, we evaluate and compare the performance of TFHE-rs with and 
with-out the use of SGX. We repeat each experiment 25 times, timing 
only the relevant sections. Running with 80-bit security, TFHE-rs with 
SGX finished with an arithmetic mean of 90.504 s and a standard de-
viation of 0.602 86 s while the FHE-only version finished in 116.08 s and 
a standard deviation of 2.3548 s. These results indicate that TFHE-rs is 
approximately 28% faster with SGX. 

There is known overhead associated with SGX memory encryption 
and pag-ing. However, we explain the performance improvement be-
tween the two ver-sions of TFHE-rs by how an SGX enclave handles 
memory. For this, we profiled our non SGX program using the 128-bit 
security parameter set, which is the one that uses most memory, with 
the memory profiler for Linux.8 The observed memory usage over time is 

shown in Fig. 3, while the rate of allocations of deallocations are shown 
in Fig. 3b and c. From the figures we can see that the program constantly 
consumes around 100 MiB of memory, and has a rate of allocations and 
deallocations of about 100 000 per second. 

As can be seen from the memory profiling, the program does a sig-
nificant amount of allocations and deallocations. Regular Rust code on 
Linux relies on the standard libc malloc9 allocator. However, the For-
tanix Rust EDP platform, which our SGX implementation builds on, uses 
the dlmalloc10 allocator. This allocator emphasizes minimizing memory 
usage and fragmentation, something that would occur when a program 
regularly allocates and deallocates memory, like our program does. 
Although each allocation in TFHE-rs is relatively small, around a few 
kibibytes each, relating to the vectors used for numeric processing, and 
never above 1 MiB, we wanted to see if a different allocator could ac-
count for the 28% speedup in execution time. We therefore modified 
TFHE-rs to use the dlmalloc allocator and repeated the tests. With the 
modified TFHE-rs we obtained an average of 93.556 s with a standard 
deviation of 1.4932 s for the program with 80-bit security and an 
average of 160.61 s and 3.9251 s. This result is only approximately 3% 
slower than TFHE-rs with SGX. The combined results are shown in 
Fig. 4. 

As can be observed from the figure, using 128-bit security signifi-
cantly im-pacts performance. The hybrid program executes roughly 
72.5% slower, and the FHE only using dlmalloc for allocation is 71.7% 
slower than the ones with 80-bit security. As mentioned, this is because 
ciphertexts in the TFHE scheme grow substantially in size with increased 
security and thus increases the required computation. As for the per-
formance difference with and without SGX, the ex-ecution time differ-
ence of only 3% is low. Thus, a user would benefit from using the SGX 
version, which covers the integrity weaknesses of the FHE. 

Why the SGX version is faster than the program using only FHE is un- 
clear. However, the standard deviations measured for the FHE-only 
version are higher, as seen in Fig. 4, which implies that the perfor-
mances could be more similar than they appear. Another reason could be 
because of automatic frequency scaling of the CPU. However, turning 
this off yielded the same re-sults. We witnessed no other behavior, 
including syscalls, that could explain the performance differences. The 
syscalls mostly consisted of memory alloca-tion calls, which are handled 
by the enclave memory manager. Our program is single-threaded; it 
does not use any SIMD instructions, nor include randomness during the 
measured execution times. If we are to speculate, the performance gain 
might be a result of the SGX SDK optimizing some situations that are 
normally not possible to optimize, due to the complexity of the OS and 
process interactions. 

5. Related work 

Drucker and Gueron [35] state that most secure cloud database so-
lutions tend to provide confidentiality and integrity of data by using 
either a TEE or HE. They show that combining a TEE and using HE is 
feasible and does not need to rely on the TEE for confidentiality pur-
poses. They compare their work to CryptDB [36] and MrCrypt [37], 
which both use Partially Homomorphic En-cryption (PHE), but lack 
integrity security for both code and data. Drucker and Gueron combine 
the PHE scheme Paillier [38] and SGX, where SGX pro-vides integrity of 
code and data (in addition to some confidentiality guarantees, 
side-channel attacks aside). The Paillier cryptosystem ensures data is 
private and provides confidentiality, even within the enclave. The 
combination allows the system to place less trust in Intel, as the Paillier 
cryptosystem guarantees confidentiality for the encrypted data while 
allowing some computations. In their experiments, they only experience 

8 https://github.com/koute/memory-profiler. 

9 https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocat 
or.html.  
10 http://gee.cs.oswego.edu/dl/html/malloc.html. 
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around 1.7 × performance slowdown compared to not running in SGX 
with PHE. Execution time grows linearly with the number of summed 
entries, as expected. 

SAFETY [39] combines PHE and SGX to securely process genome 
data to identify genetic risk factors for diseases. This data is quite sen-
sitive and often comes with strict regulations on how to process and 
store it. By combining Paillier encryption with SGX they created a sys-
tem which achieved a 4.8 × speedup compared to existing secure 
computing techniques. 

TEEFHE [40] is an example of combining FHE with SGX by per-
forming the bootstrapping step within SGX. They use the BGV [27] 
scheme implemented in Simple Encrypted Arithmetic Library (SEAL) 
and modify the library to run within SGX. They distribute the work 
across several nodes, where some nodes process the ciphertexts using 
homomorphic operations in untrusted environ-ments. When nodes 
require the bootstrapping procedure, they transmit them to a node with 
the SEAL library running within SGX. SGX enclaves perform encryption 
and decryption, preserving data and code integrity and confidential-ity, 
as they do not consider side-channel attacks. Decrypting and encrypting 
a ciphertext removes the encoded noise and refreshes the ciphertext, 
effectively doing the same as a bootstrapping operation, but at a lower 
cost. As the un-trusted compute servers perform computations on the 
encrypted data, they do not preserve data integrity in the case of an 
attack. 

A large corpus of work exists that address the confidentiality 

problems re-lated to side-channel attacks and cloud hosted computa-
tions. Chen et al. [41] propose a software framework that detects 
side-channel attacks by a privileged attacker, such as a malicious or 
virus-infected OS. Some types of side-channel attacks that exploit 
access-pattern information leakage can be protected against using 
techniques such as ORAM [8]. ORAM can be seen as a compiler that 
transforms memory accesses of a program into a program where the 
distribu-tion of memory accesses differs (is independent) from the 
original program while preserving the semantics of the program. Path 
ORAM [42] improves upon reg-ular ORAM and has a low space over-
head and in some cases, asymptotically improved performance 
compared to earlier work. Circuit ORAM [43] further improves the 
techniques and gives an implementation with a complexity near the 
theoretical lower-bound. 

ZeroTrace [44] is an example of oblivious primitives in action. Se-
curity is strengthened against access-pattern side-channel attacks in SGX 
using a block-level memory controller to hide access patterns. Both Path 
ORAM and Circuit ORAM are implemented and gave in some situations 
only a logarithmic over-head in bandwidth costs between enclave code 
and ORAM servers. ZeroTrace mitigates considerable weaknesses in SGX 
as it protects against shared resource and page-fault related attacks by 
converting programs into oblivious represen-tations. Another example 
of oblivious memory primitives in SGX is Oblix [45], an oblivious search 
index. The authors introduce something they call doubly-oblivious tech-
niques, as it ensures that accesses to external servers as well as the 

Fig. 3. Memory usage characteristics for FHE with the default system allocator.  

Fig. 4. Execution times of our fused millionaire problem. Experiments were performed 25 times and respective standard deviations are represented by the vertical 
error bars. 
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ORAM clients internal memory are oblivious. An ORAM client is a 
pro-gram which accesses an external resource (an ORAM server) 
through oblivious techniques. These doubly-oblivious techniques ensure 
that even if an adversary were to observe accesses to a client’s internal 
memory, it could learn no informa-tion on the data. Oblix additionally 
designs oblivious algorithms that are more efficient than earlier work 
and implements a contact number discovery service akin to Signal’s 
service implemented in SGX as a demonstration [46]. They use different 
techniques than Signal, but achieve speedups ranging from ~ 9 × to ~ 
140 × faster while strengthening security at the same time, by utilizing 
the doubly-oblivious techniques. 

The CacheOut [6] attack exploits the fact that hardware-cache that is 
flushed and overwritten can still be recovered. CacheOut can even 
selectively choose parts of data to leak with relatively high efficiency, 
unlike previous attacks where the attacker could only observe the leaked 
data the CPU enclave was currently accessing. This attack requires 
hardware fixes and proves once again that SGX enclaves do not fully 
protect the confidentiality of data and code in enclaves, and that other 
protective measures are required. SGAxe [47] exploits the CacheOut 
attack to compromise both the confidentiality but also the integrity of an 
en-clave’s memory. The attack extracts the secret attestation key used by 
enclaves to prove that they are genuine, meaning a malicious attacker 
such as a malicious cloud vendor could pass a fake enclave for a real one, 
tricking the client. This attack compromises many security guarantees 
needed in our hybrid TEE and FHE solution, but most importantly, it 
compromises the integrity guarantees required for our system to work. 

The Load Value Injection (LVI) attack [48] builds on the Meltdown 
[49] attack to inject the attacker’s data into the victim’s data stream. 
This vulnera-bility breaches the data integrity guarantees that SGX 
should provide as it opens the possibility for the victim’s code to execute 
on the attacker’s data, breaking all the correctness guarantees of the 
user’s code. Additionally, it might lead to software crashes by injecting 
data structured in a format the victim’s code did not expect. Patching 
LVI necessitates extensive software patches, estimated to impact per-
formance of SGX enclaves between 2–19 × . 

6. Concluding remarks 

This paper presented and evaluated the TFHE-rs library for per-
forming FHE, specifically the TFHE [29] scheme, written in pure 
memory-safe Rust. It embeds in SGX as a single dependency by using the 
Fortanix Rust EDP. Our TFHE-rs implementation was based on an 
existing library written in a mix of C and C++ [25]. There is no 
user-required configuration apart from the minimum required for 
creating an SGX enclave. TFHE-rs provides pre-made circuits to make it 
easy for users to create common circuits and built-in serialization and 
deserialization support for easy transfer to and from enclaves. 

We evaluated the performance characteristics of TFHE-rs with and 
without an SGX enclave and found that the performance overhead is 
negligible. The evaluation showed that using TFHE-rs with SGX is 3% 
faster than a version of TFHE-rs without SGX. This result is not in line 
with what we conjectured, which was that TFHE-rs with SGX should be 
slower. Based on our experience, we conjecture that specific memory 
management implementations particularly affects performance. The 
default system allocator on Linux (libc’s malloc) was 28% slower than 
the dlmalloc allocator used by the Fortanix Rust EDP in the SGX setup. 
As such, a system with a similar setup to ours should emphasize low 
memory usage and experiment with different allocators to ensure that 
they stay within the memory limits imposed by SGX. However, the 
measured stan-dard deviation does account for most of the performance 
difference, and the benchmarks themselves take long enough for this 
discrepancy to be due to envi-ronmental factors in our experimental 
setup (i.e., due to system load). Overall, this is a positive result, as our 
hybrid solution is both more secure and faster. 

Thus, we conclude that using FHE operations within SGX, written in 
the memory-safe language Rust, is both feasible and provides several 

additional se-curity guarantees, given that the developer ensures a 
reasonable memory usage. 
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